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Abstract

Symmetries of trigonometric integrable two-dimensional statistical face
models are considered. The corresponding symmetry operators on the
Hilbert space of states of the quantum version of these models define a
weak ∗-Hopf algebra isomorphic to the Ocneanu double triangle algebra.

1 Introduction

This paper deals with the correspondence between rational conformal field
theories of SU(2)-type and ADE graphs [24].

The first and most basic relation between these two notions comes from
the form of the modular invariant partition function associated to the above
mentioned theories. It turns out that the characters appearing in the parti-
tion function are labelled by the Coxeter numbers of ADE graphs [3, 4, 20].
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Next there is the Ocneanu algebra of quantum symmetries [18,19] of the
theory under consideration. The structure of this algebra can be given in
terms of a graph, the Ocneanu graph of quantum symmetries. Knowledge
of this graph allows, without any further aid, to directly write the partition
function in terms of characters. Furthermore, other objects with clear phys-
ical interpretation can also be constructed from the information contained
in this graph [5–7,21,23].

In addition there is the double triangle algebra [18]. This algebra is [8,21]
a weak Hopf algebra [2, 13–16] and the algebra of quantum symmetries can
be obtained as the algebra describing the tensor category of the double
triangle algebra representations associated with one of its product structures
(the same name sometimes denotes the bialgebra itself). The elements of
the double triangle algebra are certain endomorphisms of the vector space
of paths over the corresponding ADE graph. Thus by means of a purely
mathematical construction [8] one can obtain the double triangle algebra
associated to an ADE graph. Then the Ocneanu graph can be obtained as
describing the tensor category of representations of this algebra. Finally,
from the graph, the partition functions can be obtained.1

On the other hand, there are the face models [1] related to rational con-
formal field theories of SU(2)-type [20]. These classical statistical models
are defined in terms of ADE graphs, and they have second order transitions
points where the physics can be described by the corresponding rational
conformal field theory.

In this paper, we obtain a relation between the face models and the double
triangle algebra. Indeed, we show that this algebra is the weak Hopf algebra
of symmetries of the face model. This algebra will be obtained from the
action of its generators on the Hilbert space of states of the face model.
These generators being defined as linear hermitian operators that commute
with the corner transfer matrix of the face model for any horizontal length.
This, in our opinion, gives a clear physical interpretation of the double
triangle algebra that was lacking. Furthermore, it provides a derivation of
the assumptions in ref. [8] out of natural physical requirements. In addi-
tion, some interesting by-products appear as a result of this study. Among
them, to show that the construction can be carried out without referring to
essential paths and that their role is to provide a simple way to know the
dimension of the double triangle algebra. Another by-product is the possi-
ble extension of the formalism to bioriented tree graphs that are non-ADE.
In addition, the construction proves to be very useful for the calculation of

1Note, however, that the historical path has been just the opposite.
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Figure 1: Relationships.

connections on Ocneanu’s cells. This is shown in Appendix B for the case
of the An graphs.

The relation between all these approaches is schematically described by
figure 1.

The paper is organized as follows. Section 2 gives a very brief survey of
integrable trigonometric face models. Section 3 defines what we mean by
a symmetry transformation of the face models. Section 4 describes certain
consistency conditions related to the existence of the symmetry operators
and studies the solutions to these conditions. Section 5 describes the relation
with Ocneanu cell calculus and Section 6 makes contact with the double
triangle algebra. The main sections are supplemented by two appendices.

2 Face models: a brief survey

2.1 Variables and partition function [1]

Consider a lattice, such as the one drawn in figure 2, with N + 1(M) hor-
izontal (vertical) border vertices (in figure 2 , N = 4 , M = 3). To each
vertex in this lattice, we associate a vertex on a bioriented tree graph G
with |V | vertices2 (such as the example given in figure 3). This mapping is
made in such a way that to nearest neighbours in the lattice,3 we associate

2For some basic definitions and results on graph theory related to this work, see Appen-
dix A.

3Note that with the definition of a graph given in Appendix A, the lattice itself is a
graph.
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Figure 2: Lattice for the face model.

Figure 3: An example of a graph G(= E6).

nearest neighbours in the graph.4 The boundary conditions are chosen to
be periodic in the vertical direction and fixed in the horizontal direction (the
labelling of sites in figure 2 is meant to show these boundary conditions).
We remark that we are interested not in one precise fixed horizontal bound-
ary condition but in the set of all possible ones. To each elementary square
in the lattice (such as the one with vertices v0, v1, v2, v

′
1), we associate a

weight w ∈ R that depends only on the corresponding mapping of vertices.
We denote this number by w(v0, v1, v2, v

′
1).

The partition function corresponding to these models is defined by

Z =
∑

{v}

∏

�
w(�) (2.1)

where the product is over all elementary squares appearing in the lattice
and the summation is over all possible assignations of graphs vertices to the
lattice sites compatible with the rule given above.

2.2 Corner transfer matrix

We consider a lattice, analogue to the one in figure 2 with N + 1 horizontal
border vertices. To each horizontal zig-zag line of length 2N , such as the

4If one defines a connected path in the lattice or in the graph as a succession of nearest
neighbours, then this association corresponds to a continuous mapping from paths in the
lattice to paths in the graph.
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lower border in figure 2, we associate a state that we denote by

|v0v1 · · · v2N > (2.2)

These states are in 1–1 correspondence with successions of nearest neigh-
bours of length 2N . These successions will be called elementary paths and
provide a preferred basis of a complex vector space P2N .5 The elements of
this vector space being complex linear combinations of elementary paths of
length 2N . We define the corner operators Ui by

U1|v0v1 · · · v2N > =
∑

v′
1

w(v0, v1, v2, v
′
1)|v0v

′
1 · · · v2N >

U2|v0v1v2 · · · v2N > =
∑

v′
2

w(v1, v
′
2, v3, v2)|v0v1v

′
2 · · · v2N >

U3|v0v1v2v3 · · · v2N > =
∑

v′
3

w(v2, v3, v4, v
′
3)|v0v1v2v

′
3 · · · v2N >

... (2.3)

The partition function for a lattice with M vertical border sites (M = 3 in
2.1) can be written as

Z = Tr
[
(U1U3 · · ·U2N−1U2U4 · · ·U2N )M

]
(2.4)

2.3 Face Yang–Baxter equation, its trigonometric solutions
and the Temperley–Lieb–Jones algebra

From now on we will consider the case in which the weights depend on one
real parameter θ ∈ R. The face Yang–Baxter equation (FYBE) in terms of
corner operators is given by [1]

Ui+1(θ)Ui(θ + φ)Ui+1(φ) = Ui(θ)Ui+1(θ + φ)Ui(φ)
Ui(θ)Uj(φ) = Uj(φ)Ui(θ), |i − j| > 1 (2.5)

A solution of this equation is

Ui(θ) = 1 + fγ(θ)ei (2.6)

where,6

fγ(θ) =
sin θ

sin (γ − θ)
, β = 2 cos γ (2.7)

5The dimension d of PN can be obtained using the adjacency matrix M of the graph
G as d =

∑|V |
i,j=1(M

N )ij .
6See Appendix A Definition 3.18 for the definition of β and µvi .
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and the action of the operators ei on the states is given by

ei|v0 · · · vi+1 · · · >=
1
β

∑

v′
i+1

√
µvi+1µv′

i+1

µviµvi+2
δvivi+2 |v0 · · · v′

i+1 · · · > (2.8)

These last equations define a trigonometric solution of the FYBE.

The ei operators generate the Temperley–Lieb–Jones algebra [12] defined
by the following relations,7

eiei+1ei =
1
β2 ei, eiej = ejei, |i − j| > 1

e2
i = ei, e†

i = ei (2.9)

related to the Jones projections ei are the Ocneanu creation and annihilation
operators [18] c†

i and ci defined by

ci|vo · · · vivi+1 · · · > = δvivi+2

√
µvi+1

µvi

|vo · · · viv̌i+1v̌i+2 · · · >

c†
i |vo · · · vivi+1 · · · > =

∑

v′
i+1

√
µv′

i+1

µvi

|vo · · · viv
′
i+1vivi+1 · · · > (2.10)

where theˇdenotes omission. Indeed the projection ei is written in terms of
the operators ci and c†

i as

ei =
1
β

c†
i ci (2.11)

From now on, we shall refer to the models built up from the solutions (2.7)
of the FYBE as trigonometric face models.

3 Symmetries of the trigonometric face models

3.1 Conditions on symmetry generators

We will be looking for symmetry generators in the general sense of linear
hermitian operators that commute with the corner transfer matrix of the
face model for any horizontal length and any fixed horizontal boundary
condition. These linear operators T will act on the space of states of the
system, T : P → P, where we have denoted by P the separable Hilbert space
of paths of finite length on the bioriented tree graph G.

7The hermitean conjugate in the formulae below is taken with respect to a scalar
product where the basis of elementary paths is orthonormal [10].
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Tαβ

αi

βi

αf βf

Figure 4: The Tαβ mapping.

A basis of P is given by {ξi}, where ξi are the elementary paths defined
in Subsection 2.2. The dual basis {ξi} in P∗ is defined by (ξi, ξ

j) = δj
i ,

where (, ) denotes the bilinear pairing (, ) : P ⊗ P∗ → C. A basis of the
endomorphisms End(P) of P is given by {ξi ⊗ ξj}.

Each elementary path ξ in P has an starting vertex s(ξ) and an ending
vertex r(ξ). Let us denote by Pαiβi

the space of paths starting at the vertex
αi in G and ending at vertex βi. Let us call End(P)αβ : Pαiβi

→ Pαf βf
, α =

(αi, αf ), β = (βi, βf ) the subspace of End(P) of linear mappings from Pαiβi

to Pαf βf
. We have that End(P) is the direct sum of the End(P)αβ , i.e.,

End(P) =
⊕

αβ End(P)αβ .

The action of an operator Tαβ ∈ End(P)αβ is despited in figure 4.

For an operator Tαβ to be a symmetry operation, certain conditions will
be required. Below, we give the list of them together with the corresponding
physical interpretation. In this respect, it is worth remarking that we are
interested in the set8 of trigonometric face models associated to a graph G
as in Subsection 2.1.

1) Length should be preserved. That is, the image of a length l path should
be a linear combination of length l paths. This simply states that sym-
metry operations are endomorphism of the space of states of models with
the same horizontal length (that could differ one from the other by the
horizontal boundary conditions).

2) Continuity. In the space of paths P, there is a natural product given
by concatenation of paths. This product is defined for elementary paths
and extends linearly to other paths. The concatenation product of two

8We speak of a set because there are many trigonometric face models associated to
the graph G as in Subsection 2.1, differing one from the other by the fixed horizontal
boundary conditions and the number of horizontal and vertical border vertices.
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elementary paths is zero if the ending vertex of the first path is not
equal to the starting vertex of the second path. If the above holds,
then the product path is simply the extension of the first path by the
second. In symbols take ξi = (vi

0, . . . , v
i
n) and ξj = (vj

0, . . . , v
j
m), then the

concatenation product ξi � ξj of ξi and ξj is given by

ξi � ξj = δ
vi

nvj
0
(vi

0, . . . , v
i
n, vj

1, . . . , v
j
m). (3.1)

We require that9

Tαβ(ξ � ρ) =
∑

γ

Tαγ(ξ) � Tγβ(ρ) (3.2)

this means that the mappings Tαβ are continuous maps in the sense of
the third footnote in Section 2. From the physical point of view, it is
clear that this must be fulfilled since a disconnected path makes no sense
as a physical state.

3) Hermiticity properties. We impose10

T †
αβ = Tα̃β̃ (3.3)

4) Preserved involution for the concatenation product. Given a elementary
path ξi ∈ P, we can obtain another path ξ∗

i ∈ P reversing the sense in
which the succession of vertices is followed. This operation followed by
complex conjugation is an involution ∗ for the algebra of paths with
respect to the concatenation product. We require this structure to be
preserved by symmetry operations, that is,

Tαβ(ξ∗) = (Tβα(ξ))∗ (3.4)

5) Preserve evolution. This corresponds to commutation of all the Tαβ oper-
ators with the transfer matrix for a lattice of arbitrary horizontal length.
This is achieved iff,

[Tαβ , ei] = 0 ∀α, β, i (3.5)

9In equation (3.2), the terms in the summation over γ = (γi, γf ) will vanish if γi �=
r(ξ) = s(ρ) or γf is such that no path of length #ξ can join αf to γf .

10To show that this can always be done, suppose, T †
αβ = T ′

α̃β̃
, then define T ′′

αβ = Tαβ +
T ′

αβ and T ′′′
αβ = i(Tαβ − T ′

αβ), both T ′′ and T ′′′ satisfy (3.3).
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3.2 Conditions on the components of the symmetry generators

Being a endomorphism of paths, we can decompose an operator Tαβ in the
basis {ξi ⊗ ξj} of End(P) as

Tαβ =
∑

i,j

ξi• n�•
•

α ��•
β�

ξj

ξi ⊗ ξj =
∑

ξξ′

ξ
• n�•
•

α ��•
β�

ξ′
ξ ⊗ ξ′ (3.6)

where the last equality is only a short hand notation, the prime over a
elementary path indicating that it is the corresponding element in the dual
basis in P∗. The symbol,

ξ
• n�•
•

α ��•
β�

ξ′
(3.7)

denotes a coefficient taking values in C. This symbol turns out to be useful
to show the properties of the Tαβ operators. For example, the definition of
Tαβ and Condition 1 are summarized by saying that the symbol vanishes
unless

s(ξ) = αi, r(ξ) = βi, s(ξ′) = αf , r(ξ′) = βf , #ξ′ = #ξ (3.8)

where the notation is that #ξ = n denotes the length of path ξ. Condition
2 leads to

ξ1 � ξ2• n �•
•

α � �•
β�

ξ′
1 � ξ′

2

=

ξ1• n1
�•

•
α ��•

γ�
ξ′
1

ξ2• n2
�•

•
γ ��•

β�
ξ′
2

(3.9)

where n = n1 + n2 and γ is the pair of vertices γ = (r(ξ1), r(ξ′
1)). Condition

3 in terms of coefficients is

ξ
• n�•
•

α ��•
β�

ξ′
=

ξ′
• n�•
•

α̃ ��•
β̃�

ξ

(3.10)

where α̃ denotes the pair of vertices α̃ = (αf , αi). Condition 4 is

ξ
• n�•
•

α ��•
β�

ξ′
=

ξ∗
• n�•
•

β ��•
α�

ξ′∗
(3.11)
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Next we derive the consequences of condition 5. In order to do so, apply
(3.5) for i = 0 to a path (v0v1v2),

Tαβe0((v0v1v2)) = δv0v2

∑

u1

√
µv1µu1

µ2
v0

Tαβ(v0u1v0)

= δv0v2

∑

u1v′
0u′

1v′
2

√
µv1µu1

µ2
v0

v′
0 u′

1 v′
2• 2�•

•
α ��•

β�
v0 u1 v2

(v′
0u

′
1v

′
2) (3.12)

On the other hand, we have

e0Tαβ((v0v1v2)) =
∑

v′
0v′

1v′
2

v′
0 v′

1 v′
2• 2�•

•
α ��•

β�
v0 v1 v2

e0((v′
0v

′
1v

′
2))

= δv′
0v′

2

∑

u′
1v′

0v′
1v′

2

√
µu′

1
µv′

1

µ2
v′
0

v′
0 v′

1 v′
2• 2�•

•
α ��•

β�
v0 v1 v2

(v′
0u

′
1v

′
2) (3.13)

So (3.5) implies

δv0v2

∑

u1

√
µv′

0
µu1

µv0µu′
1

v′
0 u′

1 v′
2• 2�•

•
α ��•

β�
v0 u1 v0

= δv′
0v′

2

∑

v′
1

√
µv0µv′

1

µv′
0
µv1

v′
0 v′

1 v′
0• 2�•

•
α ��•

β�
v0 v1 v2

(3.14)

which leads to

∑

v′
1

√
µv0µv′

1

µv′
0
µv1

v′
0 v′

1 v′
0• 2�•

•
α ��•

β�
v0 v1 v2

= δv0v2

v′
0

v0

α
�

= δv0v2

v0

v′
0

α� (3.15)

where the symbols,
v0

v′
0

α� (3.16)

are coefficients taking non-negative real values, given by the l.h.s. of (3.15)
with v0 = v2.

We remark that one can apply condition (3.5) to longer paths and consider
other values of i. The relations so obtained can always be derived employing
(3.15) and (3.9).
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4 Consistency equations

The next step is to study the solutions to conditions (3.8)–(3.11) and (3.15)
of the previous subsection. It turns out that to have a solution, certain
consistency equations should be fulfilled by the coefficients (3.16).

4.1 Derivation

In order to illustrate the methodology and the type of solutions to the condi-
tions of the previous subsections, we consider the following simple example.

Example 4.1. The case of A3. The graph G = A3 and its corresponding
adjacency matrix M are

0 1 2
• • •, M =

⎛

⎝
0 1 0
1 0 1
0 1 0

⎞

⎠ (4.1)

where rows and columns are ordered as 0, 1, 2 (the values for vertex v can be
0, 1 or 2). The maximum eigenvalue is β =

√
2 and the Perron–Frobenius

eigenvector is (1,
√

2, 1). Equations (3.15) have a back-and-forth path for
the upper horizontal side of the cell involved. Furthermore, consider the
case in which the r.h.s. of (3.15) is non-vanishing, i.e., v0 = v2. In this case,
the bottom horizontal side of the cell involved has also a back-and-forth
length two horizontal path. Using (3.11), each term in the l.h.s. of (3.15)
is the modulus square of a length one cell. For each site αi and arbitrary
αf = v, v1 = v′ nearest neighbours, you get one equation. The resulting
three sets of equations (one equation in each set for each choice of nearest
neighbours v, v′) for this case are

√
µ1µv

µv′µ0

∣∣∣∣∣∣

0 1
• 1�•
•

α ��•
β�

v v′

∣∣∣∣∣∣

2

=
0

v

α
�

√
µ1µv

µv′µ2

∣∣∣∣∣∣

2 1
• 1�•
•

α ��•
β�

v v′

∣∣∣∣∣∣

2

=
2

v

α
�

√
µ0µv′

µ1µv

∣∣∣∣∣∣

1 0
• 1�•
•

α ��•
β�

v′ v

∣∣∣∣∣∣

2

+
√

µ2µv′

µvµ1

∣∣∣∣∣∣

1 2
• 1�•
•

α ��•
β�

v′ v

∣∣∣∣∣∣

2

=
1

v′
α� (4.2)



60 ROBERTO TRINCHERO

where vv′ is a pair of nearest neighbours vertices in G. The reflection
properties (3.11) imply

∣∣∣∣∣∣

0 1
• 1�•
•

α ��•
β�

v v′

∣∣∣∣∣∣

2

=

∣∣∣∣∣∣

1 0
• 1�•
•

α ��•
β�

v′ v

∣∣∣∣∣∣

2

,

∣∣∣∣∣∣

2 1
• 1�•
•

α ��•
β�

v v′

∣∣∣∣∣∣

2

=

∣∣∣∣∣∣

1 2
• 1�•
•

α ��•
β�

v′ v

∣∣∣∣∣∣

2

(4.3)

Using these last equations, one can replace the first two equations into the
third equation in (4.2), thus getting a consistency equation written purely
in terms the coefficients (3.16)

µ2

µv

2

v�
− µ1

µv′

1

v′�
+

µ0

µv

0

v�
= 0 (4.4)

It is nice to find out that the consistency equation as in (4.4) can be gen-
eralized for any bioriented tree graph. This result is given by the following
theorem.

Theorem 4.2. Given a bioriented tree graph with |V | vertices and any pair
vv′ of nearest neighbours in G, the general form of the consistency equations,
as (4.4) for A3, is given by

|V |−1∑

i=0

(−1)xi
µi

µv(xi)

i

v(xi)
�
= 0 (4.5)

where xi is one of the two possible colours11 1 or 0 of the vertex
i = 0, . . . , |V | − 1 and

v(xi) =
{

v if xi = 0
v′ if xi = 1 (4.6)

Proof. We use induction in the number of edges |A| in the graph. For
|A| = 1, the first value for which the condition makes sense, there is only
one possible graph, namely A2, given by

0 1
• ◦ (4.7)

The consistency conditions (4.5) are derived, as in the example of A3, out
of the equations obtained from (3.15) with αf = βf for the graph in consid-
eration. For the case of |A| = 1 (i.e., the case of the graph A2), it is simple
to check that they have the form (3.15) with |V | = 2 and µ0 = µ1 = 1.

Now consider the case of a graph G with |A| edges. According to Propo-
sition A.17 in Appendix A , there exists a family of subgraphs Ga each one

11For the notion of colourability and related results, we refer the reader to Appendix A.
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with a edges, a = 1, . . . , |A| such that G1(= A2) ⊂ G2 ⊂ G3 · · · ⊂ G|A|(= G).
Now suppose (4.5) is valid for the graph G|A|−1. This equation is derived
as (4.4) from (4.2) in the example of A3. For given v and v′, you have an
equation for each vertex of the graph G|A|−1, which involve the µi values of
the corresponding G|A|−1 graph. The derivation of the consistency condition
for the G|A| graph will follow the same steps as the one for the G|A|−1 graph
except for the following different features:

(i) The µi values are the ones corresponding to the graph G|A|.
(ii) The equations (3.15) with αf = βf that correspond to the vertex, call

it v|A|−1, where the additional edge of G|A| is inserted in G|A|−1, has
an additional term. Denoting by v|A| the additional border vertex that
G|A| has with respect to G|A|−1, the modified equation will be

∑

wn·n·v|A|−1

√
µwµv

µv|A|−1µv′

∣∣∣∣∣∣

v|A|−1 w
• 1�•
•� �•�
v v′

∣∣∣∣∣∣

2

+

√
µv|A|µv

µv|A|−1µv′

∣∣∣∣∣∣

v|A|−1 v|A|
• 1�•
•� �•�
v v′

∣∣∣∣∣∣

2

=
v|A|−1

v�

(4.8)
where the additional term is the last one in the l.h.s. of (4.8).

(iii) There will appear an additional equation corresponding to the border
vertex v|A| in G|A|, which does not belong to G|A|−1 . This equation is

√
µv|A|−1µv′

µv|A|µv

∣∣∣∣∣∣

v|A| v|A|−1
• 1 �•
•� �•�
v′ v

∣∣∣∣∣∣

2

=
v|A|

v′�
(4.9)

replacing (4.9) in (4.8), one gets

∑

wn·n·v|A|−1

√
µwµv

µv|A|−1µv′

∣∣∣∣∣∣

v|A|−1 w
• 1�•
•� �•�
v v′

∣∣∣∣∣∣

2

=
v|A|−1

v�
−

µv|A|µv

µv|A|−1µv′

v|A|

v′�
(4.10)

that is the same as the equation for vertex v|A|−1 of G|A|−1 with the difference
that the µ’s are the ones of G|A| and the following replacement should be
done,

v|A|−1

v�
→

v|A|−1

v�
−

µv|A|µv

µv|A|−1µv′

v|A|

v′�
(4.11)

So that what you will finally obtain as consistency condition will be the same
as for G|A|−1 but with the changes mentioned above. This leads exactly to
(4.5) for G|A|. �
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4.2 Structure of the solutions to the consistency conditions

Let us denote by R
+ the non-negative real numbers. A solution ω of the

consistency conditions (4.5) is a set of numbers ωα ∈ R
+ for the variables

(3.16) for which (4.5) holds. Since (4.5) is a set of linear homogeneous
equations for real and non-negative unknowns, then any linear combination
of solutions with coefficients in R

+ is also a solution. This situation leads
to the notion of purification of solutions.

Definition 4.3. Purification of solutions and pure solution. A solution ω
to (4.5) can be purified iff there exists non-trivial linearly independent in
R

+ solutions ω1 and ω2 and non-vanishing numbers a1, a2 ∈ R
+ such that

ωα = a1ω
1
α + a2ω

2
α ∀α. A solution is pure if it cannot be further purified.

The different pure solutions to the consistency equations (4.5) will be
labelled by an index x, the corresponding coefficients as in (3.7) will have a
label x and the operators obtained from them as in (3.6) will be denoted by
T x

αβ .

Regarding the indices α, β of the operators T x
αβ , we have the following

result relating them to the solutions of (4.5).

Proposition 4.4. Given a solution x to the consistency conditions (4.5),
the non-zero variables (3.16) are in 1–1 correspondence with the indices α
for which T x

αβ is non-vanishing for that solution and for some β.

Proof. Consider (3.15) for the case v0 = v2. Using equation (3.11), it is clear
that in this case the l.h.s. of (3.15) is a finite sum of moduli square. So if the
variable of the form (3.16) corresponding to the index α is non-vanishing,
then there is at least one index β for which T x

αβ is non-vanishing. �

4.3 Solutions to the consistency conditions

In this subsection, we analyse solutions of the consistency conditions (4.5).
We have the following results.

Proposition 4.5. For any connected finite bioriented tree graph there is a
solution of (4.5) given by

v1

v2
�

= δv1v2 (4.12)
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Proof. Replacing (4.12) in (4.5) only two terms survive. With the notation
of (4.5) they are the ones where i = v and i = v′. These terms have the
same modulus and opposite signs. �
Proposition 4.6. For any connected finite bioriented tree graph, there is a
solution of (4.5) given by

v1

v2
�

=
{

1 if v1v2 are nearest neighbours
0 otherwise

. (4.13)

Proof. Replacing (4.13) in (4.5) leads to

−
∑

vin.n.v

µvi

µv
+

∑

v′
in.n.v′

µv′
i

µv′
= 0 (4.14)

Next associate to V a complex inner product vector space where the elements
of V are a orthonormal basis. Define the adjacency operator by

M |v >= Mv′v|v′ > (4.15)

where Mv′v is as before the v′v matrix element of the adjacency matrix.
Note that the operator M is hermitian since Mv′v are the matrix elements
of a symmetric matrix. Then we can write (4.14) as

− 1
µv

< µ|Mv > +
1

µv′
< µ|Mv′ >= 0 (4.16)

where µ is the Perron–Frobenius eigenvector. Now since M is hermitian and
M |µ >= β|µ >, by definition of the Perron–Frobenius eigenvector, we get

− 1
µv

< µ|Mv > +
1

µv′
< µ|Mv′ >= −β

1
µv

< µ|v > +β
1

µv′
< µ|v′ >= 0

(4.17)
�

Next we show the explicit solutions for the case of the graph A3.

Example 4.7. A3. There are three linearly independent (in R
+) solutions

given by

0
0

0
�
=

2

2
�
=

1

1
�
= 1 the rest zero

1
0

1
�
=

1

0
�
=

2

1
�
=

1

2
�
= 1 the rest zero

2
2

0
�
=

0

2
�
=

1

1
�
= 1 the rest zero (4.18)
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Note that the first and second solutions in (4.18) are the ones of propositions
4.5 and 4.6 for this particular case.

Making a redefinition of connections (that will be given below), it is
possible to show that for the solutions of the form (4.13), equations (3.15),
(3.10) and (3.11) reduce to the unitarity and reflection conditions of ref. [8].
Thus those solutions correspond to the fundamental irreps dealt with in that
reference. That solutions are given explicitly for length 1 horizontal paths
in Appendix A of ref. [8] for the ADE graphs. In this respect, it is useful to
note that equation (3.15) give information not only on the modulus of the
connections (information that is written explicitly for A3 in Example 4.1)
but also on the phases. This information is given by equations (3.15) when
the r.h.s. vanishes and, although not proved here, this information is enough
to completely determine, up to gauge equivalence, the connections for the
ADE graphs (see Appendix A of ref. [8]).

It is also possible to build other symmetry operators satisfying the require-
ments of Section 3 by composing solutions of the consistency conditions
(4.5). However, these new solutions are not of the type we have considered
in Sections 3 and 4. They are not labelled by pair of vertices in G but by
more than two vertices in G. These solutions are dealt with in the following
proposition.

Proposition 4.8. The composition of operators satisfying conditions 1–5
of Section 3.1 also satisfy them.

Proof. Consider two operators T x
αβ and T y

γδ satisfying conditions 1–5 of Sec-
tion 3.1. The composed operator T xy

α∪γ β∪δ = T x
αβ ◦ T y

γδ obtained from the
successive application of them to a path can be written, in analogy with
(3.6), as

T xy
α∪γ β∪δ = T x

αβ ◦ T y
γδ =

∑

ξξ′

ξ
• n�•

xy
•

α∪γ � �•
β∪δ�

ξ′
ξ ⊗ ξ′ (4.19)

where the connection involved turns out to be

ξ
• n�•

xy
•

α∪γ � �•
β∪δ�

ξ′
= δαf γiδβf δi

∑

ρ

ξ
• n�•

x
•

α ��•
β�

ρ

ρ
• n�•

y
•

γ ��•
δ�

ξ′
(4.20)

the indices α ∪ γ denoting the triple of vertices α ∪ γ = (αiγiγf ) in G and
the same for β ∪ δ.
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Now we consider the different properties that define a symmetry operator
as written in terms of connections in Subsection 3.2. It is clear that (3.9) is
satisfied by the composed connection (CC) appearing in the l.h.s. of (4.20).
Furthermore, since the composition of continuous maps is a continuous map,
then (3.10) also holds for the CC. It is also simple to verify (3.11) and
(3.12) for the CC. Finally the validity of (3.5) for the composed operator is
clear. �

How these new solutions are related to the ones that satisfy (3.15) will be
considered in the following sections.

5 The relation with Ocneanu cell calculus

Replacing the solution (4.13) in the relation (3.15), we see that this equation
is a condition on connections for cells with length one horizontal paths and
indices α, β corresponding to nearest neighbours in the graph. Furthermore,
defining new cells by

v0 v1• n�•
Oc

•��•�
v2 v3

=
(

µv1µv2

µv0µv3

)1/4 v0 v1• n�•
•��•�
v2 v3

(5.1)

it is very simple to verify that equations (3.11), (3.12) and (3.15) of this
paper correspond to the unitarity and reflection conditions for Ocneanu
elementary connections [9, 17, 22] as written in equations (2.9) and (2.10)
of ref. [8]. Moreover (3.9) remain the same in terms of the Oc connections
and is the same as (2.11) of ref. [8]. In addition, equation (2.7) of ref. [8]
is the solution we dealt with in Proposition 4.5. Finally the expression for
the connection appearing in the l.h.s. of (4.20) is the one associated to
the tensor product representation that would follow from relation (2.12) of
ref. [8] when written in terms of connections. These results are summarized
in the following proposition.

Proposition 5.1. The connections Oc defined by (5.1) and corresponding
to the solutions of the consistency conditions given in Proposition 4.6 satisfy
conditions (2.7) and (2.9)–(2.11) of ref. [8]. In addition, condition (2.12)
of that reference, which defines the tensor product representation, when
written in terms of connections coincides with equation (4.20). Thus the
solutions in (5.1) are identified with the so-called fundamental connections
of ref. [8].
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6 The relation with the double triangle weak Hopf algebra

6.1 The construction in End(P)

In order to make contact with the weak Hopf algebra of ref. [8], we consider
the dual space End(P)∗ of linear forms on End(P). A basis of End(P) is
given by the elementary paths, i.e., {ξi ⊗ ξj} ξi ∈ P, ξj ∈ P∗. The dual
basis {ξi ⊗ ξj} in End(P)∗ is defined by

(ξk ⊗ ξl, ξi ⊗ ξj) = δi
kδ

l
j (6.1)

where (, ) : End(P) ⊗ End(P)∗ → C is the bilinear pairing between both.

The symmetry operators satisfying conditions 1–5 of Section (3) span a
finite dimensional subspace A =

⊕
x Ax of the space End(P) of endomor-

phisms of paths on G. The subspaces Ax being the one spanned by the
solution x to the CC.

A basis of the subspaces Ax is given by the {T x
αβ}, the dual basis {Eαβ

x }
in (A∗

x) is defined by

(T x
αβ , Eγδ

x ) = δγ
α δδ

β (6.2)

The elements T x
αβ of End(P) can be expressed in the {ξi ⊗ ξj} basis as

T x
αβ =

∑

ij

(T x
αβ , ξi ⊗ ξj)ξi ⊗ ξj (6.3)

which can be compared with (3.6). Also in End(P)∗, we have

Eαβ
x =

∑

ij

(ξi ⊗ ξj , Eαβ
x )ξi ⊗ ξj (6.4)

compatibility with (6.2) implies

∑

ij

(T x
αβ , ξi ⊗ ξj)(ξi ⊗ ξj , Eγδ

x ) = δγ
α δδ

β (6.5)

A product · in A∗ directly related to the concatenation product � in End(P)
will be defined. The point is that the concatenation product does not close
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in A∗. A projection is therefore employed

Eαβ
x · Eγδ

y = P (Eαβ
x � Eγδ

y ) (6.6)

where the projector P : End(P)∗ → A∗ is given by

P =
∑

z

Pz, Pz =
∑

αβ

Eαβ
z ⊗ T z

αβ , P 2 = P (6.7)

thus, we have

Eαβ
x · Eγδ

y = P (Eαβ
x � Eγδ

y )

=
∑

z

Pz

∑

ijkl

(ξi ⊗ ξj , Eαβ
x )(ξk ⊗ ξl, Eγδ

y )(ξi ⊗ ξj) � (ξk ⊗ ξl)

=
∑

zηρ

Eηρ
z

∑

ijkl

(T z
ηρ, (ξ

i ⊗ ξj) � (ξk ⊗ ξl))(ξi ⊗ ξj , Eαβ
x )(ξk ⊗ ξl, Eγδ

y )

=
∑

zηρ

Eηρ
x

∑

ijkl

(T z
ηω, ξi ⊗ ξj)(ξi ⊗ ξj , Eαβ

x )(T z
ωρ, ξ

k ⊗ ξl)(ξk ⊗ ξl, Eγδ
y )

=
∑

zηρ

Eηρ
x (T z

ηω, Eαβ
x )(T z

ωρ, E
γδ
y )

=
∑

zηρ

Eηρ
x δzxδzyδ

α
η δβ

ωδγ
ωδδ

ρ = δxyδ
βγEαδ

x (6.8)

where we have used (6.4) in writting the second equality, (6.7) for the third
equality, (3.9) in the fourth, (6.5) in the fifth and (6.2) in the sixth. The
above multiplication is matrix multiplication for the matrix units Eαδ

x ’s.

This product gives A∗ the structure of a C∗-algebra. Considering linear
forms ω : A∗ → C we can study representations of this C∗-algebra via the
GNS construction [11]. The positive definite normalized linear form ωx :
A∗

x → C associated to the pure solution x defined by

ωx(Eαβ
y ) = δxyδ

αβ (6.9)

is pure and therefore is associated to a irreducible representation of A∗ [11].
The algebra A∗ is generated by the Eαβ

x with the product (6.8). The scalar
product is given by the GNS definition

< Eαβ
x |Eγδ

x >= ωx((Eαβ
x )∗ · Eγδ

x ) = ωx(Eβα
x · Eγδ

x ) = δαγωx(Eβδ
x ) = δαγδβδ

(6.10)
This can be repeated for all the pure solutions of the consistency condi-
tions. The direct sum of the representation spaces for each irreducible rep-
resentation gives a total Hilbert space. From results related to the GNS
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construction, we have the product law between objects in different irreps,

Eαβ
x · Eγδ

y = δxyδβγEαδ
x (6.11)

and the corresponding scalar product,

< Eαβ
x |Eγδ

y >= δxyδ
αγδβδ (6.12)

Dual to the composition product in End(P), there exists a coproduct in
End(P)∗. This coproduct in the basis of elementary paths is defined by

((ξi ⊗ ξj) ◦ (ξk ⊗ ξl), ξm ⊗ ξn) = ((ξi ⊗ ξj) ⊗ (ξk ⊗ ξl), ∆(ξm ⊗ ξn)) (6.13)

from which one obtains

∆(ξm ⊗ ξn) =
∑

p

(ξm ⊗ ξp) ⊗ (ξp ⊗ ξn) (6.14)

This coproduct, being the dual of the composition product in End(P)
corresponds to the solutions considered in Proposition 4.8. In fact, they
correspond to the tensor product representations of the algebra A∗.

Comparison of equations (6.4), (6.5), (6.10), (6.11) and (6.14) with (3.1),
(3.5), (4.3), (3.14) and (3.15) of ref. [8] leads to the following theorem.

Theorem 6.1. The algebra A∗ is a weak Hopf algebra isomorphic to the
one of ref. [8].

6.2 The role of essential paths

The subspace of essential paths E of the space of paths P on the graph G is
defined as follows.

Definition 6.2. Essential subspace. It is formed by the linear span of paths
ξ such that

ei ξ = 0, ∀i (6.15)

Next the vector space of length preserving endomorphisms of essential
paths Endgr(E) is considered. Recall that A is the linear span of the oper-
ators Tαβ and denote by AE its restriction to End(E). The following result
is important.

Proposition 6.3. Endgr(E) and A are isomorphic as vector spaces.

Proof. From Proposition 3.3 of ref. [8], there is a 1–1 correspondence between
AE and A. From equation (3.5), it is clear that AE ⊂ Endgr(E). Next we
show that all elements in Endgr(E) satisfy conditions 1–5 of Section 3.
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Condition 1 holds for any element in Endgr(E) by definition.

Condition 2 follows from the following argument. Take paths ξi, ξm, ξn ∈
E such that ξi = ξm � ξn (thus #ξi = #ξm + #ξn) and paths ξj , ξp, ξq ∈
E such that ξj = ξp � ξq (thus #ξj = #ξp + #ξq) and #ξj = #ξi, #ξm =
#ξp, #ξn = #ξq, then,

ξj ⊗ ξi(ξi) = ξp ⊗ ξm(ξm) � ξq ⊗ ξn(ξn) (6.16)

Condition 3 is the assertion that the corresponding set of operators is
selfadjoint, this follows from

(ξi ⊗ ξj)† = ξj ⊗ ξi ξi, ξj ∈ E (6.17)

In order to show that condition 4, holds in Endgr(E), first note that
E is closed under the involution involved in equation (3.4). Furthermore
Endgr(E) is closed under ∗ ⊗ ∗ : Endgr(E) → Endgr(E). Next note that

ξk ⊗ ξl(ξ∗) = (ξ∗
k ⊗ (ξl)∗(ξ))∗ (6.18)

and equation (6.18) is (3.4).

The validity of condition 5 follows from

ei(ξk ⊗ ξl)(ξ) = (ξk ⊗ ξl)ei(ξ), ∀i (6.19)

with ξk ⊗ ξl ∈ Endgr(E) and ξ ∈ P. Consider the l.h.s. of (6.19). There
are two possibilities, either ξ ∈ E or not. If ξ ∈ E , then its image by ξk ⊗ ξl

would be in E and the application of ei will make the l.h.s. vanish. On the
contrary, if ξ /∈ E , the l.h.s. would also vanish because ξk ⊗ ξl ∈ Endgr(E).
Now for the r.h.s., if ξ is essential then it vanishes. If ξ /∈ E , then P =
ei(ξ) /∈ E because ei(P ) = e2

i (ξ) = ei(ξ) = P , thus the image of P by ξk ⊗
ξl ∈ Endgr(E) vanishes. �

Appendix A

Related graph theory

Definition A.1 (Finite (oriented)graph). A finite (oriented) graph G is
a triple G = (V, A, ϕ), where V and A are finite sets (whose elements are
respectively called vertices and edges) and ϕ : A → V × V is a map that
assigns to each edge in A a (ordered) pair of vertices in V .
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Note that to every oriented graph G, it is possible to associate an unori-
ented one Gu = (V, A, ϕu) obtained from G by disregarding the ordering of
pairs in the image of ϕ.

Definition A.2 (Grade of a vertex). The grade of a vertex in a graph G
is the number of edges in the associated unoriented graph Gu that contains
this vertex in their image by ϕu.

Definition A.3 (Border vertex). A border vertex v ∈ V of a graph
G = (V, A, ϕ) is a vertex of grade one.

We will be dealing with bioriented graphs.

Definition A.4 (Bioriented graph). A graph G = (V, A, ϕ) is bioriented iff
ϕ(a) = v1 × v2, a ∈ A implies that there exists a edge a∗ such that ϕ(a∗) =
v2 × v1.

Definition A.5 (Nearest neighbours). A pair of vertices in a finite graph
G = (V, A, ϕ) are said to be nearest neighbours iff they are the image by ϕ
of some edge in A.

Definition A.6 (Subgraph). A graph G′ = (V ′, A′, ϕ′) is said to be a sub-
graph of a graph G = (V, A, ϕ) iff

(i) V ′ ⊂ V ;
(ii) A′ ⊂ A;
(iii) ϕ′ is the restriction of ϕ to A′.

Definition A.7 (Path). A path of length n in a graph G = (V, A, ϕ) is an
alternated succession of vertices and edges (v0, a0, v1, a1, . . . , an−1, vn) vi ∈
V, ai ∈ A such that the vertex appearing before and after any edge the image
of that edge by ϕ.

Definition A.8 (Connected graph). It is a graph a such that for every
pair of vertices v, v′, there exists a path γ = (v0, a0, v1, a1, . . . , an−1, vn) with
v0 = v and vn = v′ for some n.

Definition A.9 (Cycle). It is a path (v0, a0, v1, a1, . . . , an−1, vn) such that
v0 = vn and all the vertices (v0, v1, . . . , vn−1) are different and a∗

n−1 �= a0 .

Definition A.10 (Tree graph). It is a graph without cycles.
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Note that for a bioriented tree graph, a pair of nearest neighbour vertices
defines an edge uniquely. Thus a path in a bioriented tree graph can be
determined by giving only a succession of nearest neighbours.

Definition A.11 (n-colourability). A graph G is n-colourable if n is the
minimum number of colours required to colour the vertices of G in such a
way that no nearest neighbours have the same colour.

Now we enunciate three propositions without proof.

Proposition A.12. Any connected bioriented tree graph(CTG) has at least
two border vertices.

Proposition A.13. Any connected subgraph of a CTG is a CTG.

Proposition A.14. Any tree graph is 2-colourable.

Definition A.15 (Adjacency matrix). One can characterize a bioriented
tree graph G by its adjacency matrix M . This matrix has size |V | × |V |. Its
(v1, v2) matrix element is 1 if vertex v1 is connected to vertex v2, otherwise
it vanishes.

Definition A.16 (Perron–Frobenius eigenvector). The normalized (set a
smallest component to be equal to 1) eigenvector with maximum eigenvalue
β of the adjacency matrix M is called the Perron–Frobenius eigenvector,
and its components will be denoted by µvi , i = 0, . . . , |V | − 1.

The following result is employed in the proof of Theorem (4.2).

Proposition A.17. For every finite bioriented tree graph G with |A| edges,
there exists a family of subgraphs Ga, a = 1, . . . , |A| and G|A| = G such that
Ga has a edges and G1 ⊂ G2 ⊂ G3 · · · ⊂ G|A|.

Proof. Due to Proposition A.12, G has at least two endpoints. Consider a
subgraph G|A|−1 obtained from G by eliminating one of its endpoints and
the corresponding edge. Due to Definition A.6, G|A|−1 will be a subgraph
of G|A|. Furthermore, due to Proposition A.13, this is also a bioriented
tree graph. Repeat this procedure with G|A|−1 to obtain G|A|−2 and so on.
Since G is finite, this procedure will end up giving the required family of
subgraphs. �
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Appendix B

The value of connections for An graphs

The aim of this appendix is to provide the value of connections for the An

graphs for any of the irreps of the corresponding double triangle algebras.
To do so, we first study the solutions to the consistency conditions, then
we give a general formula for the modulus of connections with length one
horizontal paths for each of the above mentioned solutions and finally we
give a choice of phases for these connections. These results will be presented
in three propositions. Outlines for their proof are provided.

The consistency equations for the graphs An for n odd are

µn−1

µv

n − 1

v�
− µn−2

µv′

n − 2

v′�
· · · +

µ2

µv

2

v�
− µ1

µv′

1

v′�
+

µ0

µv

0

v�
= 0 (B.1)

For n even,

µn−1

µv

n − 1

v�
− µn−2

µv′

n − 2

v′�
· · · − µ2

µv′

2

v′�
+

µ1

µv

1

v�
− µ0

µv′

0

v′�
= 0 (B.2)

where v, v′ can be any pair of nearest neighbours vertices in An.

The components µj of the Perron–Frobenius eigenvector for An are given
by

µj = [j + 1]q =
qj+1 − q−j−1

q − q−1 =
sin (π(j + 1)/(n + 1))

sin (π/(n + 1))
, q = expiπ/(n+1)

(B.3)
Regarding the pure and normalized solutions to equations (B.1) and (B.2),
we have the following result.

Proposition B.1. For each l = 0, 1, . . . , n − 1, there is a pure and nor-
malised solution to equations (B.1) and (B.2) for An given by

v1

v2

l
�

= 1 if v1 can be connected to v2 by a path of length l on An (B.4)

except for the cases
p − 2

l − p

l
�

= 0 =
n − 1 − (p − 2)

n − 1 − (l − p)
l
�

, p = 2, 3, 4, . . . , n − 1 (B.5)

whenever the values of the vertex indices appearing in (B.5) make sense for
the graph An.
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This last assertion can be verified by replacing the solutions (B.4) and
(B.5) in equations (B.1) and (B.2).

Regarding the value of the modulus of cells with length one horizontal
paths the following result holds.

Proposition B.2.

√
µpµp−1

µv′µv

∣∣∣∣∣∣∣

p − 1 p
• 1�•

l
•� �•�
v′ v

∣∣∣∣∣∣∣

2

=
µp−1

µv′

p − 1

v′
l
�

− µp−2

µv

p − 2

v

l
�

+ · · · − (+)
µ0

µv(v′)

0

v(v′)
l
�

(B.6)
where v, v′ are any pair of nearest neighbours in An, p = 1, . . . , n − 1 and
the values in parenthesis holding for the case p even and the others for p
odd.

Equation (B.6) is obtained in the same way as in the case of A3, equa-
tion (4.2).

Regarding the choice of phases for these cells, we have the following.

Proposition B.3. For any An, the phases can be chosen to be +1 or −1.
For the cells involved in the previous proposition, we have

Phase

⎛

⎜⎝

p p + 1
• 1 �•

l
•� �•�
v v + 1

⎞

⎟⎠ = 1, Phase

⎛

⎜⎝

p − 1 p
• 1 �•

l
•� �•�
v v − 1

⎞

⎟⎠ = (−1)p−1 (B.7)

where v = p, p ± 2, . . . , p ± l for l even and v = p ± 1, p ± 3, . . . , p ± l for l
odd. Equations (B.6) are valid for p such that the vertex indices appearing
in (B.4) make sense for the graph An.

The first assertion is obtained using the general form of An connections
appearing in Appendix A of ref. [8] and performing adequate gauge transfor-
mations. The second assertion follows from replacing (B.7) in equation (3.15)
for v0 �= v2.
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dimensional quantum groupöıd, Lect. Notes Pure Appl. Math. 209
(2000), 189–220, mathQA/9808054.

[14] D. Nikshych and L. Vainerman, A Characterisation of depth 2 sub-
factors of II1 factors, J. Funct. Anal. 171(2) (2000), 278–307,
math.QA/981002.

[15] D. Nikshych and L. Vainerman, Finite quantum groupöıds and their
applications, in ‘New directions in Hopf algebras’, Cambridge Uni-
versity Press, Cambridge, 43, 2002, Math. Sci. Res. Inst. Publ.,
mathQA/0006057, pp. 211–262.

[16] F. Nill, Axioms for weak bialgebras, math.QA/9805104.



QUANTUM SYMMETRIES OF FACE MODELS 75

[17] A. Ocneanu, Quantised groups, string algebras and Galois theory for
algebras, ed. in ‘Operator algebras and applications’, Warwick (1987),
Lond. Math. Soc. Lect. Note Ser. 136, Cambridge University Press,
1988.

[18] A. Ocneanu, Paths on Coxeter diagrams: from Platonic solids and sin-
gularities to minimal models and subfactors, (Rajarama Bhat et al.
eds.), (Notes taken by S. Goto), Fields Institute Monographs, AMS,
1999.

[19] A. Ocneanu, Quantum symmetries for SU(3) CFT-models in ‘The
classification of subgroups of quantum SU(N)’, (R. Coquereaux, A.
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fication des systèmes conformes à 2D, PhD thesis (available in French
and in Portuguese), UP (Marseille) and UFRJ (Rio de Janeiro),
September 2003.

[24] J.-B. Zuber, CFT, ADE and all that (R. Coquereaux, A. Garćıa
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