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1 Introduction

The central topic of this paper is Dijkgraaf–Witten (DW) invariants of
closed, oriented n + 1-manifolds based on a compact abelian gauge group,
A. These may be defined as follows.

The “space of fields” on an n + 1-manifold, W , is taken to be the moduli
space FW of isomorphism classes of A-bundles with flat connection. Since
A is abelian there are identifications

FW
∼= Hom(π1(W ), A)/conj ∼= Hom(π1(W ), A)
∼= Hom(H1(W ; Z), A) ∼= H1(W ; A).

The last isomorphism is an easy consequence of the universal coefficient
theorem. If β is the first Betti number of W , we then see that

FW
∼= Aβ × Tors,

where, Tors is a discrete abelian group of torsion and that we may therefore
identify FW with a compact abelian Lie group. Denote the normalized
Haar measure on this group by µW . Note that FW can also be identified
with [W, KA], the set of based homotopy classes of maps from W to the
Eilenberg–Mac Lane space KA = K(A, 1).

The “action” of the theory is defined by a cohomology class [θ] in the
cohomology group Hn+1(KA; U(1)) by

FW −→ U(1)
ν �→ 〈ν∗([θ]), [W ]〉,

where [W ] is the fundamental class of W and 〈−,−〉 is the evaluation pairing.
Here we have ν∗: Hn+1(KA; U(1)) → Hn+1(W ; U(1)), thinking of ν as a
homotopy class of maps from W to KA.

If the action is integrable with respect to the measure µW , the DW-
invariant of W based on [θ] is defined to be

Z
[θ]
A (W ) =

∫
ν∈FW

〈ν∗([θ]), [W ]〉dµW . (1.1)

Our interest in such invariants stems from the following. In general, a
topological quantum field theory (TQFT) is either defined in a geometrically
meaningful way via a non-rigorous path integral, or combinatorially, where
the link to the underlying geometry is less clear. It has been a main goal
of the subject for years to bring these two points of view closer together.
DW TQFT, which begins with invariants defined by formula (1.1) where A
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is replaced with a (not necessarily abelian) finite group G, is rigourously
accessible from both perspectives because the path integral is a finite sum
over [W, BG] ∼= Hom(π1W, G). With this in mind one would like to extend
DW theory to compact Lie groups, but in general the path integral becomes
undefined. For the case of a compact abelian Lie group, however, the theory
can still be approached from both points of view1 .

Another reason why DW theories for continuous groups are interesting
is that they can be viewed as state sum models in which the set of states
over which one must sum to obtain the invariants is no longer finite or even
discrete, but still finite-dimensional. Because of this, the path integral in
these theories is at an intermediate level of difficulty between the finite sums
of conventional state sum models and the infinite dimensional integrals that
usually occur in non-topological models.

The original motivation for DW-invariants [4] is that they arise as the
partition functions of Chern–Simons theories with finite gauge group. The
physical states correspond to equivalence classes of principal G-bundles,
and Dijkgraaf and Witten show that H3(K(G, 1); U(1)) classifies possible
actions. The partition function is only one aspect of a full TQFT lying
behind. One central feature of TQFTs is locality: a global invariant can
be built up from local contributions. Locality and the problems associated
with patching local information together make the rigorous construction of
DW TQFT highly non-trivial. This programme was carried out by Freed
and Quinn in [7] (and there is related work on U(1)–Chern–Simons theory
by Manoliu in [10]). Turaev [17] has also recast the pre-path-integral struc-
ture arising in Freed and Quinn’s work into a different axiomatic framework
with his homotopy quantum field theories. This set-up is not specific to
dimension 2+1, but works for any dimension.

It can immediately be seen from (1.1) that the DW-invariants only depend
on the homotopy type of the manifold W . It is interesting to ask how good
these invariants are as homotopy invariants. From a purely homotopical
point of view locality is rather unnatural: the homotopy theory of local bits
will overlook aspects of the global homotopy theory. If one is to proceed to
understand the full theory, great care must be taken to work with respect
to prescribed boundary conditions (on the local pieces) and then carefully
analyse how to fit the pieces together. Nonetheless, the invariants them-
selves, being homotopy invariants, should be computable in a more natural

1For non-abelian gauge groups we would not get a group structure on FW , hence no
Haar measure. The existence of a good measure on FW (and on other spaces of field
configurations to be defined later) is the main reason that we will look only at abelian
groups. Most of the results that do not involve these measure theoretical problems are
also valid for non-abelian gauge groups.
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way from the point of view of classical techniques in algebraic topology. In
this paper, we wish to follow something of a middle road, constructing a
theory which is both simple and natural with regard to homotopy theory, at
the expense of sacrificing full locality for a restricted version. The restriction
is that we will only allow decompositions along connected submanifolds.

We adopt the formalism of Turaev’s homotopy quantum field theories
(HQFTs) and begin by recalling some background about these. The idea of
integrating an HQFT to give a TQFT, is briefly discussed. Beginning with a
compact abelian Lie group A and an HQFT of a certain type, we construct a
version of DW theory based on A. We refer to this as abelian homotopy DW
theory both to indicate the link with HQFT and to distinguish our theory
from the Freed–Quinn formulation. Such a thing will consist of the following
assignments.

• To each closed, oriented n-manifold M and α ∈ FM we assign a line
LM,α.

• To each cobordism W with incoming (resp. outgoing) boundary M0
(resp. M1) and (α0, α1) ∈ FM0 × FM1 we assign a linear map

KW (α0, α1) : LM0,α0 → LM1,α1 .

A notable feature is that the construction works in any dimension. We
examine properties of such theories, in particular we prove a decomposition
formula (Theorem 4.1) and examine invariants of products (Theorem 4.7).
We devote the final section to calculations using both decomposition and
product formulae but also showing how the more familiar combinatorial
picture emerges for explicit calculation. We show for example in Theorem 5.3
that the DW-invariants with group A = U(1) separate lens spaces up to
homotopy type.

2 Background on HQFTs

2.1 What is an HQFT?

An HQFT may be seen as an axiomatic formulation of the “action” in a
TQFT in which the spaces of fields on a closed n + 1-manifold W , is the set
of homotopy classes of maps from W to some auxiliary space X. Typically,
X will be an Eilenberg-Mac Lane space for a discrete group and, hence, the
spaces of fields is related to the moduli space of flat bundles with connection.
This is, in fact, the motivating example and is a formulation of the “extended
action” found in Freed and Quinn’s work on Chern–Simons theory for finite
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gauge group [7]. HQFTs were defined by Turaev in [17] (and in a special
case in [2] and further discussion of the connection between the two can be
found in [14]).

To formulate the theory one considers smooth, oriented, closed
n-manifolds and their diffeomorphisms and cobordisms between such. An
n + 1-dimensional cobordism (or n + 1-cobordism for short) is a triple
(M0, W, M1) where W is a smooth oriented n + 1-manifold whose bound-
ary is a disjoint union of n-manifolds, M0 and M1, such that M1 has the
induced orientation and M0 the opposite orientation to the induced one.
Now consider all manifolds and cobordisms to come equipped with charac-
teristic maps, that is to say, maps to some auxiliary “background space” X.
(Such manifolds and cobordisms are called X-manifolds and X-cobordisms,
respectively.) Given a X-cobordism (M0, W, M1) note that by reversing the
orientation of W we get a X-cobordism (M1,W , M0). It will sometimes be
convenient to write σ for the characteristic map of this opposite cobordism,
where σ : W → X is the characteristic map of (M0, W, M1).

The key ingredients of an HQFT are assignments as follows. To each n-
manifold, M with characteristic map γ : M → X, one assigns a finite dimen-
sional vector space VM,γ , and to each diffeomorphism one assigns an isomor-
phism of these vector spaces. To each cobordism (M0, W, M1) with charac-
teristic map σ, one assigns a linear map VM0,γ0 → VM1,γ1 , where γ0 and γ1
are the characteristic maps induced on the boundary. These assignments are
subject to a list of axioms and the reader is asked to consult [17] for details.
Key among the axioms is that the linear maps associated to X-cobordisms
are invariant under homotopies of the characteristic map. It is also worth
noting that Turaev’s axiom 1.2.7 has a somewhat special status. (Here and
elsewhere Turaev’s axioms refer to the axioms in [17, Section. 1.2].) For a
general background space it may be undesirable to impose this axiom as it
reduces the theory to the one based on an Eilenberg–Mac Lane space. In
this paper, the background space will be an Eilenberg–Mac Lane space and
we will make use of this axiom.

2.2 Examples

The following class of examples is due to Turaev, cf. [17, Section. 1.3]. They
are rank one in the sense that all vector spaces associated to n-manifolds
are one-dimensional.

Example 2.1. (Turaev) Primitive cohomological HQFTs
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Let X be any topological space and let θ ∈ Cn+1(X; U(1)). For γ : M →
X set

LM,γ = C{a ∈ CnM | [a] = [M ]}/a ∼ γ∗θ(e)b.

In the earlier expression, e ∈ Cn+1M such that ∂e = −a + b. For σ : W →
X define a homomorphism

EW,σ : LM0,γ0 → LM1,γ1

on generators by
a0 �→ σ∗θ(f)a1,

where f ∈ Cn+1W satisfies ∂f = −a0 + a1 and is a representative of the
fundamental class in Hn+1(W, ∂W ). Turaev shows that this construction
is independent of any choices and that it indeed gives rise to an HQFT.
Moreover, cohomologous cocycles give equivalent theories.

The following lemma is immediate from the definition just given.

Lemma 2.2. A primitive cohomological HQFT satisfies

EW,σ = E−1
W,σ.

In the next section, we will restrict to the case where X is an Eilenberg–
Mac Lane space K(A, 1) for a compact abelian Lie group A. Sometimes it
will be convenient to consider group cocycles instead of singular cocycles
which we can do using the fact that the cohomology of the space K(A, 1)
is isomorphic to the group cohomology of the (discrete) group A. Recall
that a group n-cochain with coefficients in U(1) is a function ω : An → U(1)
and such functions form a group Kn under pointwise multiplication. The
coboundary operator δ : Kn → Kn+1 is defined by

δω(x1, . . . , xn+1) = ω(x2, . . . , xn+1)ω−1(x1, x2x3, x4, . . . , xn+1) . . .

. . . ω(−1)n+1
(x1, . . . , xnxn+1)ω(−1)n+2

(x1, . . . , xn).

We have δ2 = 0 and the group cohomology is defined as the homology of
this cochain complex. A group n-cocycle ω is normalized if the function ω
takes the value 1, whenever at least one entry is the identity.

Thus given θ ∈ Hn+1(K(A, 1); U(1)) we may choose a corresponding
group cocycle ω. This group cocycle is not necessarily normalized, but
within the cohomology class of θ one can always choose a normalized repre-
sentative. Conversely, given a group cocycle one can choose a corresponding
singular cocycle representing the same cohomology class.
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Example 2.3. Taking A = U(1) we define a 3-cocycle θk ∈ C3(K(U(1), 1);
U(1)) and the corresponding group cocycle ωk : U(1)3 → U(1) for any inte-
ger k.

Noting that H1(K(U(1), 1); U(1)) = [K(U(1), 1), K(U(1), 1)] pick a
1-cocycle representing the identity map. Lift this to a real cochain
η:C1(K(U(1), 1); Z) → R. This is not a cocycle but δη takes integer values.
Now consider the real valued 3-cochain η ∪ δη which again is not a cocy-
cle, however δ(η ∪ δη) = δη ∪ δη which has integer values. We then define
θk ∈ C3(K(U(1), 1); U(1)) = Hom(C3(K(U(1), 1); Z), U(1)) by

θk = e2πikη∪δη.

Note that θk is independent of the lift η and is now a cocycle. To define the
cocycle ωk, let g1, g2, g3 ∈ A and write g1 = e2πia, g2 = e2πib and g3 = e2πic

with 0 ≤ a, b, c < 1. Then set

ωk(g1, g2, g3) = e2πika(b+c−[b+c]), (2.1)

where the square bracket means addition modulo 1.

Example 2.4. When A = U(1) × U(1), we have the cocycles associated to
the individual U(1) factors, defined earlier, but we also get a second type
of cocycles. These cocycles are also labelled by an integer l ∈ Z and we will
call them ζl. The definition of ζl is very similar to that of θk. First, we
define 1-cocycles corresponding to the identity maps of the first and second
factors of K(U(1) × U(1), 1) ∼= K(U(1), 1) × K(U(1), 1). Then we lift these
to real cochains η1, η2 and we note that the boundaries of these cochains
take integer values. As a consequence, the same is true for the boundary of
the real cochain η1 ∪ δη2 and hence we may define the 3-cocycles ζl by

ζl = e2πilη1∪δη2 .

To write down the corresponding group cocycles ψl, we introduce a similar
notation to the one used in formula (2.1). Let g1, g2, g3 ∈ A = U(1) × U(1)
and write g1 = (e2πia1 , e2πia2), g2 = (e2πib1 , e2πib2) and g3 = (e2πic1,2πic2) with
0 ≤ ai, bi, ci < 1. Then ψl is given by

ψl(g1, g2, g3) = e2πila1(b2+c2−[b2+c2]), (2.2)

where the square bracket means addition modulo 1 as in (2.1).

Clearly, we might also have reversed the roles of the first and second U(1)
factors in Example 2.4.
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2.3 TQFTs and matrix elements

To obtain a TQFT from an HQFT one should perform some kind of inte-
gration. Although this may not be rigourously defined it is useful to keep it
in mind and in the following brief digression we give an outline of the idea.

Recall that a rank one HQFT assigns a (complex) line LM,γ to each
X-manifold (M, γ). One should think about the collection of these as a
line bundle LM over Map(M, X), the space of fields of M . The Hilbert
space associated to M is the space of sections of this line bundle. The time
evolution UW along a cobordism W , denoted UW is defined on a section ψ
of LM0 by

UW (ψ)(γ1) =
∫

γ0∈Map(M0,X)
KW (γ0, γ1)(ψ(γ0)) dγ0,

where γ1 ∈ Map(M1, X) and the KW (γ0, γ1) are the “matrix elements” of
the theory. In this context, a matrix element is a linear map KW (γ0, γ1) :
LM0,γ0 → LM1,γ1 defined by

KW (γ0, γ1)(x) =
∫

σ∈Map(W,X;γ0,γ1)
EW,σ(x) dµ,

where Map(W, X; γ0, γ1) consists of maps W → X agreeing with the given
γ0 and γ1 on the incoming and outgoing boundaries.

The reader should not require much convincing that in general much of
this is ill defined. It is, however, worth noting that since the homomor-
phisms EW,σ are homotopy invariant, the “measure” dµ needs only defining
on homotopy classes rather than the full mapping space, which may simplify
the situation.

The fundamental property of locality can be expressed in terms of the
matrix elements as follows. Suppose that W can be decomposed along M
as W = W ′ ∪M W ′′. Then locality is the requirement

KW ′∪W ′′(γ0, γ1)(x) =
∫

γ∈Map(M,X)
(KW ′′(γ, γ1) ◦ KW ′(γ0, γ))(x) dγ.

Numerical invariants of closed manifolds arise in the usual way: regard a
closed, oriented n + 1-manifold W as a cobordism from ∅ to ∅ in which case
KW (∅, ∅)(1) ∈ C defines a numerical invariant of W .
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3 The definition of abelian homotopy DW theory

We now turn to the central topic of the paper. For the remainder of the
paper, A will denote a compact abelian Lie group and KA will denote the
Eilenberg–MacLane space K(A, 1). The space KA may be considered as
the classifying space of A regarded as a discrete group. We note that A is
isomorphic to the product of a torus and a finite abelian group (see e.g., [3,
Corollary I.3.7]). We will freely use the fact that

H1(W ; A) ∼= [W, KA] ∼= Hom(H1(W ; Z), A),

where the square bracket refers to based homotopy classes of maps.

Given an n-manifold M set

FM = H1(M ; A)

and similarly for an n + 1-cobordism (M0, W, M1) set

FW = H1(W ; A).

These are the “fields” of the theory and can be identified with isomorphism
classes of principal A-bundles with flat connection. There is a natural topol-
ogy on FW arising from the identification H1(−; A) ∼= Hom(H1(−; Z), A),
which shows that FW can be identified with the product of a number of
copies of A and a discrete abelian group of torsion.

For any submanifold M of W the inclusion i : M → W induces a restric-
tion map i∗ : FW → FM which we will denote rW

M .

Lemma 3.1. The restriction map rW
M : FW → FM is continuous.

Proof. It suffices to show that composition with the projection p onto each
factor in FM = Al × TorsM is continuous. Let B be such a factor and Z
be the corresponding cyclic group factor in H1(M ; Z) i.e., B = Hom(Z, A).
Then p ◦ r : FW = Ak × TorsW → B maps (a1, . . . , ak, b1, . . . , bq) to an1

1 · · ·
ank

k bm1
1 · · · bmq

q , where the map

Z → H1(M ; Z) → H1(W ; Z) = Z
k × Z/p1 × · · · × Z/pq

takes 1 to (n1, . . . , nk, m1, . . . , mq). Since multiplication in A is continuous
this shows that p ◦ r is continuous. �

For a cobordism (M0, W, M1) we will need to consider fields with pre-
scribed boundary conditions. For a given pair (α0, α1) ∈ FM0 × FM1 of
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boundary fields we set

Fα0,α1
W = {ν ∈ FW | rW

M0
(ν) = α0 and rW

M1
(ν) = α1}.

By Lemma 3.1, Fα0,α1
W is a closed, hence compact subset of FW (perhaps

empty).

3.1 An HQFT-like construction

Suppose we are given a primitive cohomological HQFT in dimension n + 1
with background space KA = K(A, 1). Let M be an n-manifold and let
γ, γ′ : M → KA.

Proposition 3.2. If γ is homotopic to γ′ then LM,γ is canonically isomor-
phic to LM,γ′.

Proof. Let h : M × I → KA be a homotopy. Regarding this as the charac-
teristic map of a cobordism, the HQFT gives rise to an isomorphism

EM×I,h : LM,γ → LM,γ′ .

Given another homotopy h′ : M × I → KA consider the map

h ∪ h′ : M × I → KA

defined by h on the first half of the cylinder and by h′ on the second half.
This map satisfies h ∪ h′|0 = γ and h ∪ h′1 = γ so by the axioms of HQFTs
(and in particular Turaev’s axiom 1.2.7 which holds since, our background
space is an Eilenberg–Mac Lane space) we have

EM×I,h′ ◦ EM×I,h = EM×I,h∪h′ = Id.

Using Lemma 2.2 we conclude

EM×I,h = E−1
M×I,h

= EM×I,h′ .

Hence the isomorphism given earlier is independent of the choice of homo-
topy finishing the proof. �

This proposition means that given α ∈ FM we can define a one-
dimensional vector space LM,α by identifying the LM,γ given by the HQFT
using the canonical isomorphisms earlier, i.e., denoting the isomorphisms
earlier by ∼ set

LM,α =
⊕

{γ|[γ]=α}
LM,γ/ ∼ .
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Next, given α0 ∈ FM0 , α1 ∈ FM1 and ν ∈ Fα0,α1
W we wish to define

EW,ν : LM0,α0 → LM1,α1 .

Suppose that σ : W → KA, γ0 : M0 → KA and γ1 : M1 → KA are maps rep-
resenting ν, α0 and α1, respectively. Suppose, moreover that γ0 = σ|M0 and
γ1 = σ|M1 . Courtesy of the HQFT we have a map

EW,σ : LM0,γ0 → LM1,γ1 ,

which induces a map

LM0,α0 → LM1,α1 .

Proposition 3.3. The induced map given earlier depends only on the homo-
topy class of σ.

Proof. Let σ′ be another choice with σ′|M0 = γ′
0 and σ′|M1 = γ′

1. To prove
the proposition, we must show that the following diagram commutes.

LM0,γ0

EW,σ ��

cγ0,γ′
0

��

LM1,γ1

cγ1,γ′
1

��
LM0,γ′

0 EW,σ′
�� LM1,γ′

1

(the vertical maps are the canonical isomorphisms earlier). Let H be a
homotopy from σ to σ′ and let h0 = H|M0×I and h1 = H|M1×I . Note that
h0 is a homotopy from γ0 to γ′

0 and that h1 is a homotopy from γ1 to γ′
1.

Consider

W ′ = (M0 × I) ∪M0 W ∪M1 (M1 × I)

and let g : W ′ → KA be defined by g = h0 ∪ σ′ ∪ h−1
1 . Using the HQFT and

its properties we get

EW ′,g = EM1×I,h−1
1

◦ EW,σ′ ◦ EM0×I,h0 = c−1
γ1,γ′

1
◦ EW,σ′ ◦ cγ0,γ′

0
.

Hence, in order to show that the previous diagram commutes, we need to
show that EW,σ = EW ′,g.

Define H0 : M0 × I × I → KA by H0(x, s, t) = h0(x, s(1 − t)) and define
H1 : M1 × I × I → KA by H1(x, s, t) = h1(x, (1 − s)(1 − t)). Note that H0
provides a homotopy between h0 and κγ0 , where the latter is defined by
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κγ0(x, s) = γ0(x). Similarly, H1 provides a homotopy between h−1
1 and κγ1 .

Now define a map

H : W ′ × I = ((M0 × I) ∪M0 W ∪M1 (M1 × I)) × I → KA

by H = H0 ∪ H−1 ∪ H1. This map provides a homotopy between g and
f = κγ0 ∪ σ ∪ κγ1 . Moreover, it is readily checked that on the boundary H
is κγ0 � κγ1 which is independent of t. Thus H provides a homotopy rel ∂W ′

from g to f and hence, by the properties of an HQFT (see Turaev’s axiom
1.2.8) we have

EW ′,g = EW ′,f .

There is a diffeomorphism T : W ′ → W making the following diagram com-
mute.

W ′ T ��

f ����
��

��
��

W

σ����
��

��
��

KA

Hence, by Turaev’s axiom 1.2.4 the following diagram commutes.

LM0,γ0

EW ′,f ��

id
��

LM1,γ1

id
��

LM0,γ0 EW,σ

�� LM1,γ1

Thus, EW,σ = EW ′,f = EW ′,g which finishes the proof. �

Given α0 ∈ FM0 , α1 ∈ FM1 and ν ∈ Fα0,α1
W , the earlier proposition shows

that we have a well-defined map

EW,ν : LM0,α0 → LM1,α1

defined by EW,ν = EW,σ, where σ is any representative of the class ν. As a
corollary of Lemma 2.2 we have

EW,ν = E−1
W,ν . (3.1)

If W is a closed manifold and σ ∈ FW then σ : W → KA may be considered
as the classifying map of a principal A-bundle. The invariant EW,σ(1) ∈ C

×

should correspond to Turaev’s invariant τC(W, σ) constructed (via surgery)
in [18], where C is the modular A-category constructed from the cocycle θ.
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3.2 Measures and abelian homotopy DW theory

In order to construct our analogue of matrix elements we need to integrate
and in order to integrate we need to put measures on our spaces of fields.

We have identified FW as the product of a number of copies of A and a
discrete abelian group of torsion. Thus, we can equip FW with the normal-
ized Haar measure which we denote by µW . Since, A is the product of a torus
and a finite abelian group we have that FW is also the product of a torus T
and a finite abelian group B and it follows by the defining properties of the
Haar measure that the Haar measure on FW is nothing but the product of
the Lebesgue measure on T and the counting measure on B (normalized).
For details on the Haar measure and the associated Haar integral we refer to
[9, Chap. VIII], [11] and [12, Chap. 6]. Let us just remark here that the left
invariant Haar measures on a Lie group G (which all differ by a scalar) are
Borel measures, i.e., they are measures on the σ-algebra of all Borel sets of
G. Moreover, if G is abelian or compact then the normalized left and right
invariant Haar measures coincide and are just called the normalized Haar
measure on G (see e.g., [9, Corollary 8.31] or [11, p. 81]).

Let us now define a measure on each of the spaces Fα0,α1
W . It is tempting

to define this measure using the restriction of the measure on FW , but we
will not do this because it would yield the zero measure, whenever Fα0,α1

W
has measure zero in FW . Instead, we will use the group structure of FW to
define a normalized measure on each of the Fα0,α1

W . Firstly, note that F0,0
W

is a subgroup of FW and being closed it is in fact a compact Lie subgroup
of FW , hence we can endow F0,0

W with its normalized Haar measure, which
we will denote by µ0,0

W .

The set Fα0,α1
W is either empty or a coset of F0,0

W , hence the measure µ0,0
W

induces a normalized measure µα0,α1
W on Fα0,α1

W , namely µα0,α1
W is nothing but

the image measure of µ0,0
W under the translation with an arbitrary element

of Fα0,α1
W . That is

µα0,α1
W (S) = µ0,0

W (S − ν)

for any ν ∈ Fα0,α1
W . (By translation invariance of the Haar measure this

does not depend on the choice of ν.) We use here and in the following the
standard definition of image measures. That is, given a measurable function
f : X → Y between two measurable spaces and given a measure µ on X, we
define the image measure of µ under f to be the measure ν on Y given by
ν(S) = µ(f−1(S)) for any measurable subset S of Y . It is then a standard
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result in integration theory that if g : Y → C is measurable, then
∫

y∈Y
g(y) dν =

∫
x∈X

g(f(x)) dµ (3.2)

in the sense that if one of the integrals exists, then so does the other and
the two integrals are equal.

If the measure of F0,0
W in FW is non-zero, then it follows from the defining

properties of the Haar measure that the measure µ0,0
W is nothing but the

normalization of the measure obtained by restriction, hence the same is true
for the measures µα0,α1

W in that case.

We now define homomorphisms

KW (α0, α1) : LM0,α0 → LM1,α1

by

KW (α0, α1)(a0) =
∫

ν∈Fα0,α1
W

EW,ν(a0)dµ
α0,α1
W . (3.3)

By convention, if Fα0,α1
W = ∅, we take KW (α0, α1) to be the zero map. Of

course, for the integral in the definition to make sense, we must insist that
the function Fα0,α1

W → LM1,α1 given by ν �→ EW,ν(a0) is integrable. If all
such functions are indeed integrable (and hence the KW (α0, α1) are defined)
we will refer to the defining primitive cohomological HQFT as integrable.

So, we start with a primitive cohomological HQFT based on a cocycle
θ ∈ Cn+1(KA; U(1)) and define the associated abelian homotopy DW theory
to consist of the assignments above. Namely,

• to each closed, oriented n-manifold M and α ∈ FM , we assign the line
LM,α,

• to each n + 1-cobordism (M0, W, M1) and (α0, α1) ∈ FM0 × FM1 , we
assign the linear map

KW (α0, α1) : LM0,α0 → LM1,α1 .

3.3 Invariants of closed manifolds

A closed oriented n + 1-manifold may be regarded as a cobordism from ∅
to ∅ and thus KW (∅, ∅) is a map from C to C. The DW-invariant of W is
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defined to be the image of 1 i.e.,

KW (∅, ∅)(1) =
∫

ν∈FW

EW,ν(1) dµW .

Note that for a given σ : W → KA the map EW,σ : C → C is given by 1 �→
σ∗θ(f), where f ∈ Cn+1W is a fundamental cycle for W . It follows that
EW,σ(1) is a function of the cohomology class of θ only. Thus writing 〈−,−〉
for the evaluation map Hn+1(W ; U(1)) ⊗ Hn+1(M ; Z) → U(1) we get

KW (∅, ∅)(1) =
∫

ν∈FW

〈ν∗([θ]), [W ]〉 dµW .

Writing Z
[θ]
A (W ) for KW (∅, ∅)(1) this is the expression (1.1) in the introduc-

tion. If we are given a group cocycle we will sometimes use the notation
Z

[ω]
A instead.

Note that if W and W ′ are two closed, oriented n + 1-manifolds then

Z
[θ]
A (W � W ′) = Z

[θ]
A (W )Z [θ]

A (W ′).

Example 3.4. Spheres. Let θ ∈ Cn+1(KA; U(1)) be a cocycle. For n > 0
we have FSn+1 = H1(Sn+1; A) = {0} and so

Z
[θ]
A (Sn+1) =

∫
ν∈FSn+1

〈ν∗([θ]), [Sn+1]〉 dµSn+1

= 〈0∗([θ]), [Sn+1]〉 = 〈1, [Sn+1]〉 = 1.

For n = 0 suppose we have a corresponding group cocycle ω : A → U(1).
Noting that FS1 = A we have

Z
[θ]
A (S1) =

∫
ν∈FS1

〈ν∗([θ]), [S1]〉 dµS1 =
∫

ν∈FS1

〈θ, ν∗[S1]〉 dµS1

=
∫

a∈A
ω(a) dµS1 .

Note here that the 1-cocycle ω is just a one-dimensional representation of A.
Hence, the integral equals 0 unless ω is the trivial representation, in which
case the integral equals 1.
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4 Properties of abelian homotopy DW theory

4.1 Decompositions

In this section, we discuss the restricted version of locality satisfied by
abelian homotopy DW theory. Suppose that we can decompose an n + 1-
cobordism (M0, W, M1) into two pieces W ′ and W ′′ along a connected n-
manifold, M . Given such a decomposition and given a pair (α0, α1) ∈
FM0 × FM1 , we define the space of supporting fields to be

Fα0,α1
M = {α ∈ FM | Fα0,α

W ′ × Fα,α1
W ′′ �= ∅}.

Note that this depends on the decomposition. In this subsection, we con-
struct a measure µα0,α1

M on the space of supporting fields and we prove the
following theorem.

Theorem 4.1. Suppose we can decompose W as W = W ′ ∪M W ′′, where
M is a connected n-manifold and W ′ ∩ W ′′ = M . Then for α0 ∈ FM0 and
α1 ∈ FM1 we have

KW (α0, α1)(x) =
∫

α∈Fα0,α1
M

KW ′′(α, α1) ◦ KW ′(α0, α)(x)dµ̄α0,α1
M .

Before proving this theorem, we need to construct the measure µα0,α1
M on

Fα0,α1
M . The connectedness of M which will be essential in the proof of this

theorem will not be needed for the construction of the measure, so to begin
with, we will not assume that M is connected.

By Lemma 3.1, we have a continuous (restriction) map rW
M : FW → FM ,

which restricts to a continuous surjection r = rα0,α1 : Fα0,α1
W → Fα0,α1

M . To
see that r is surjective, apply the Mayer–Vietoris sequence for the triad
(W ; W ′, W ′′), i.e., the exact sequence

· · · −→ H̃0(M) −→ H1(W ) a−→ H1(W ′) ⊕ H1(W ′′) b−→ H1(M) −→ · · · ,
(4.1)

where a(ν) = (rW
W ′(ν), rW

W ′′(ν)) and b(ν ′, ν ′′) = rW ′
M (ν ′) − rW ′′

M (ν ′′) (all coho-
mology groups having coefficients in A). In particular, Fα0,α1

M is a closed
subset of FM . Given α ∈ Fα0,α1

M we will denote r−1(α) ⊂ Fα0,α1
W by Fα0,α,α1

W .
We note that F0,0,0

W is a compact Lie subgroup of F0,0
W .

As with the measures on the spaces Fα0,α1
W it turns out that one should

not take the measure induced from the obvious inclusion (in this case into
FM ). To begin, let us instead note that F0,0

M is a Lie subgroup of FM (as
a closed subgroup of FM ). We therefore let µ0,0

M be the normalized Haar
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measure on F0,0
M . Next observe that Fα0,α1

M is either empty or a coset of
F0,0

M , hence we can (similar to the construction of µα0,α1
W in Section. 3.2)

define µα0,α1
M to be the image measure of F0,0

M under the translation by any
element of Fα0,α1

M .

Thinking about this quiet differently let π = r0,0 : F0,0
W → F0,0

M , which is
a surjective Lie group homomorphism, which in turn induces a Lie group
isomorphism π̄ : F0,0

W /F0,0,0
W → F0,0

M . Let µ̄ be the normalized Haar measure
on the quotient F0,0

W /F0,0,0
W . Then µ̄ is also the image measure of µ0,0

W under
the canonical projection and µ0,0

M is the image measure of µ̄ under π̄ and
also the image measure of µ0,0

W under π. We use here the obvious fact that
if f : G → H is a surjective Lie group homomorphism and if µG and µH are
the normalized left invariant Haar measures on respectively G and H, then
µH equals the image measure of µG under f .

By (3.2) we then get∫
Fα0,α1

M

fdµ̄α0,α1
M =

∫
ν∈F0,0

W

f(π(ν) + ρα0,α1) dµ0,0
W , (4.2)

for an integrable function f on Fα0,α1
M , where ρα0,α1 is an arbitrary element

of Fα0,α1
M . Moreover, if f is an integrable function on F0,0

W we have
∫

F0,0
W

f dµ0,0
W =

∫
p(g)∈F0,0

W /F0,0,0
W

(∫
h∈F0,0,0

W

f(g + h) dµ0,0,0
W

)
d̄µ, (4.3)

where p is the canonical projection and µ0,0,0
W the normalized Haar measure

on F0,0,0
W . We write things additively since we deal with abelian groups. The

identity (4.3) simply follows by noting that both sides define a normalized
integral which is left-invariant on the class of continuous functions (see also
[3, Proposition I.5.16] and [9, Theorem 8.36] for a more general result).

Before proving the decomposition theorem we need one more result. To
establish this result we must assume that M is connected. Let a : FW →
FW ′ × FW ′′ be the continuous restriction map from the Mayer–Vietoris
sequence (4.1).

Lemma 4.2. Assume that M is connected. The map a restricts to a bijec-
tion

Fα0,α,α1
W

∼= Fα0,α
W ′ × Fα,α1

W ′′

for any α0 ∈ FM0, α1 ∈ FM1 and α ∈ Fα0,α1
M . In particular, we have a Lie

group isomorphism
F0,0,0

W
∼= F0,0

W ′ × F0,0
W ′′ .
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Proof. Let α0 ∈ FM0 and α1 ∈ FM1 be fixed. The map a clearly maps
Fα0,α,α1

W into Fα0,α
W ′ × Fα,α1

W ′′ . Consider the Mayer–Vietoris sequence (4.1).
Since M is connected, a injects. Assume (ν ′, ν ′′) ∈ Fα0,α

W ′ × Fα,α1
W ′′ . Then

rW ′
M (ν ′) = α = rW ′′

M (ν ′′) so (ν ′, ν ′′) ∈ Ker(b). Hence there exists a ν ∈ FW

such that a(ν) = (ν ′, ν ′′), and by the very definition of Fα0,α,α1
W we see that

ν ∈ Fα0,α,α1
W . �

The bijections in the above lemma will all be denoted by a. We now prove
Theorem 4.1.

Proof of Theorem 4.1. There is only something to prove in case Fα0,α1
W , is

non-empty, so this we assume in what follows. Let us start by introduc-
ing some notation. The statement of the theorem is for the linear maps
KW (α0, α1), but we can choose fixed basis vectors in the lines associated
with M0, M1 and M and then replace these linear maps by their matrix
elements kW , kW ′ , kW ′′ , which are just functions of the boundary configura-
tions α0, α and α1. Similarly, we introduce the notation eW , eW ′ and eW ′′

for the matrix elements of the linear maps EW,σ that are integrated to give
the maps KW . This means eW is a function on FW and analogously for
eW ′ and eW ′′ . With this notation, we have (letting ρα0,α1 be an arbitrary
element of Fα0,α1

W )

kW (α0, α1) =
∫

ν∈Fα0,α1
W

eW (ν) dµα0,α1
W =

∫
ν∈F0,0

W

eW (ν + ρα0,α1) dµ0,0
W

=
∫

p(ν)∈F0,0
W /F0,0,0

W

(∫
σ∈F0,0,0

W

eW (σ + ν + ρα0,α1) dµ0,0,0
W

)
d̄µ,

where the final equality follows by (4.3). Next we apply our Lie group
isomorphism a from Lemma 4.2 to get

∫
σ∈F0,0,0

W

eW (σ + ν + ρα0,α1) dµ0,0,0
W

=
∫

(σ′,σ′′)∈F0,0
W ′×F0,0

W ′′

eW (a−1(σ′, σ′′) + ν + ρα0,α1) dµ0,0
W ′ ⊕ µ0,0

W ′′

noting that the product measure µ0,0
W ′ ⊕ µ0,0

W ′′ is the normalized Haar measure
on the product Lie group F0,0

W ′ × F0,0
W ′′ , hence the image measure of µ0,0,0

W
under a. Using the map a : FW → FW ′ × FW ′′ to write (ν ′, ν ′′) = a(ν) ∈
F0,αν

W ′ × Fαν ,0
W ′′ for ν ∈ F0,0

W and (ρ′
α0,α1

, ρ′′
α0,α1

) = a(ρα0,α1) ∈ Fα0,β
W ′ × Fβ,α1

W ′′ ,
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where β = rW
M (ρα0,α1) and αν = rW

M (ν), we get

eW (a−1(σ′, σ′′) + ν + ρα0,α1) = eW ′(σ′ + ν ′ + ρ′
α0,α1

)eW ′′(σ′′ + ν ′′ + ρ′′
α0,α1

)

by the HQFT gluing property, hence

kW (α0, α1) =
∫

p(ν)∈F0,0
W /F0,0,0

W

(∫
σ′∈F0,0

W ′

eW ′(σ′ + ν ′ + ρ′
α0,α1

) dµ0,0
W ′

)

×
(∫

σ′′∈F0,0
W ′′

eW ′′(σ′′ + ν ′′ + ρ′′
α0,α1

) dµ0,0
W ′′

)
dµ̄,

by Fubini’s theorem. Here∫
σ′∈F0,0

W ′

eW ′(σ′ + ν ′ + ρ′
α0,α1

) dµ0,0
W ′ =

∫
x∈Fα0,αν+β

W ′

eW ′(x) dµα0,αν+β
W ′

= kW ′(α0, αν + β)

and∫
σ′′∈F0,0

W ′′

eW ′′(σ′′ + ν ′′ + ρ′′
α0,α1

) dµ0,0
W ′′ =

∫
x∈Fαν+β,α1

W ′′

eW ′′(x) dµαν+β,α1
W ′′

= kW ′′(αν + β, α1).

Therefore, since αν = π̄(p(ν)),

kW (α0, α1) =
∫

p(ν)∈F0,0
W /F0,0,0

W

kW ′(α0, β + π̄(p(ν)))kW ′′(β + π̄(p(ν)), α1) dµ̄.

By (3.2) and the remarks above (4.2) we then get

kW (α0, α1) =
∫

α∈F0,0
M

kW ′(α0, β + α)kW ′′(β + α, α1) dµ̄0,0
M

=
∫

α∈Fα0,α1
M

kW ′(α0, α)kW ′′(α, α1) dµ̄α0,α1
M

which is the desired result. �

We end this section with an important corollary to Theorem 4.1.

Corollary 4.3. In the set up of Theorem 4.1 suppose that n > 1 and more-
over that H1(M ; Z) = {0}. Then either KW (α0, α1) is trivial or

KW (α0, α1) = KW ′′(0, α1) ◦ KW ′(α0, 0).

Proof. Follows immediately from the fact that Fα0,α1
M ⊂ FM = {0}. �
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4.2 Connected sums

The decomposition theorem of the previous section allows us to calculate
invariants of connected sums. First we need the following.

Lemma 4.4. If D is an n + 1-disk with ingoing boundary sphere then

KD(∅, 0) ◦ KD(0, ∅) = Id .

Proof. Let a be a (representative of a) generator of LSn,0 and note that since
D is contractible F0,∅

D = {0}. Thus KD(0, ∅)(a) = ED,σ(a), where [σ] = 0
and similarly KD(∅, 0)(1) = ED,σ(1). Thus using Lemma 2.2 we have

KD(∅, 0)(KD(0, ∅)(a)) = KD(∅, 0)(ED,σ(a)) = ED,σ(ED,σ(a)) = a.

�

Now for the result on connected sums.

Proposition 4.5. If W ′ and W ′′ are closed, oriented connected n + 1-
manifolds then

Z
[θ]
A (W ′#W ′′) = Z

[θ]
A (W ′)Z [θ]

A (W ′′).

Proof. Let (∅, V ′, Sn) be the n + 1-cobordism obtained from W ′ by remov-
ing an n + 1-disk D (creating a new outgoing boundary component), and
similarly let (Sn, V ′′, ∅) be the cobordism obtained from W ′′ again by remov-
ing an n + 1-disk (this time creating a new incoming boundary component).
We can then write W ′#W ′′ = V ′ ∪Sn V ′′.

Also note that W ′ = V ′ ∪Sn D. For this decomposition observe that
F∅,∅

Sn = {0}. This is immediate for n > 1 and for n = 1 we note that V ′

has the homotopy type of a wedge of circles and that the restriction map to
FS1 is given by a commutator map which is trivial, since A is abelian and
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thus F∅,α
V ′ is only non-empty when α = 0. Using this we see

Z
[θ]
A (W ′) = KV ′∪SnD(∅, ∅)(1) = KD(0, ∅) ◦ KV ′(∅, 0)(1).

Similarly, Z
[θ]
A (W ′′) = KV ′′(0, ∅) ◦ KD(∅, 0)(1). Thus by applying

Theorem 4.1 we have

Z
[θ]
A (W ′#W ′′) = KV ′∪SnV ′′(∅, ∅)(1)

=
∫

α∈F∅,∅
Sn

KV ′′(α, ∅) ◦ KV ′(∅, α)(1) dµ∅,∅
Sn

= KV ′′(0, ∅) ◦ KV ′(∅, 0)(1) since F∅,∅
Sn = {0}

= KV ′′(0, ∅) ◦ Id ◦KV ′(∅, 0)(1)

= KV ′′(0, ∅) ◦ KD(∅, 0) ◦ KD(0, ∅) ◦ KV ′(∅, 0)(1)

= Z
[θ]
A (W ′)Z [θ]

A (W ′′).

The second to last equality is courtesy of Lemma 4.4. �

4.3 Invariants of products

In this section, we discuss the calculation of the invariants of the product of
two closed manifolds. Let W and W ′ be closed, oriented and connected of
dimensions m + 1 and n + 1, respectively.

Lemma 4.6. There is an identification of measure spaces

FW×W ′ ∼= FW × FW ′ .

Proof. This follows from the fact that H1(W × W ′; Z) ∼= H1(W ; Z)⊕
H1(W ′; Z) and from the fact that all of these field spaces are given the
normalized Haar measure. �

Since KA is a H-space there is a Pontrjagin slant product

\ : Hm+n+2(KA; U(1)) ⊗ Hm+1(KA; Z) → Hn+1(KA; U(1)).

If [W ] ∈ Hm+1(W ; Z) is the fundamental class then given ν ∈ FW , we have
ν∗[W ] ∈ Hm+1(KA; Z).

Theorem 4.7. Let [θ] ∈ Hm+n+2(KA; U(1)). Then

Z
[θ]
A (W × W ′) =

∫
ν∈FW

Z [θ]\ν∗[W ](W ′) dµW .



342 S. K. HANSEN, J. K. SLINGERLAND, AND P. R. TURNER

Proof. First recall that the slant product satisfies

〈a, b • c〉 = 〈a \ b, c〉,

where • denotes the Pontrjagin product. Thus for v = (ν, ν ′) ∈ FW×W ′ ∼=
FW × FW ′ we have

〈v∗[θ], [W ] × [W ′]〉 = 〈[θ], ν∗[W ] • ν ′
∗[W

′]〉
= 〈[θ] \ ν∗[W ], ν ′

∗[W
′]〉 = 〈ν ′∗([θ] \ ν∗[W ]), [W ′]〉.

Hence

Z
[θ]
A (W × W ′) =

∫
v∈FW×W ′

〈v∗[θ], [W ] × [W ′]〉 dµW×W ′

=
∫

ν∈FW

∫
ν′∈FW ′

〈ν ′∗([θ] \ ν∗[W ]), [W ′]〉 dµW ′dµW

=
∫

ν∈FW

Z [θ]\ν∗[W ](W ′) dµW .

�

Example 4.8. The product M × N where M is simply connected. Let
M and N be closed manifolds of dimension m and n, respectively, and let
θ ∈ Cm+n(KA; U(1)) be a cocycle. For 0 ∈ Hm(KA; Z), we have [θ] \ 0 trivial
so

Z
[θ]
A (M × N) =

∫
ν∈FM

Z
[θ]\ν∗[M ]
A (N)dµM = Z

[θ]\0
A (N) = 1.

Example 4.9. The product S1 × M . Let M be an n-manifold and let
ω : An+1 → U(1) be a group cocycle corresponding to θ ∈ Cn+1(KA; U(1)).
Noting that H1(KA; U(1)) ∼= A the slant product takes the form

\ : Hn+1(KA; U(1)) ⊗ A → Hn(KA; U(1))

and may be described in terms of group cohomology as follows. For a ∈ A
the slant product ω \ a : An → U(1) is given by

(ω \ a)(g1, . . . , gn) =
n∏

i=0

ω(g1, . . . , gi, a, gi+1, . . . , gn)(−1)λi . (4.4)

In the previous expression λi is the sign of the permutation taking
(g1, . . . , gn, a) to (g1, . . . , gi, a, gi+1, . . . , gn). This arises by using the
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Eilenberg–Zilber map given by shuffle product. Thus we have

Z
[ω]
A (S1 × M) =

∫
a∈A

Z
[ω\a]
A (M) dµ (4.5)

and we can calculate an expression for the integrand using the expression
(4.4) given earlier.

5 Calculations

Formulae such as that occurring in Theorems 4.1 and 4.7 are good tools for
calculations. For example, we can fully compute all invariants in dimen-
sion 1 + 1 with almost no further effort. Suppose, we have been given a
normalized group 2-cocycle ω corresponding to the defining cocycle θ ∈
C2(KA; U(1)). We have already computed the invariant for S2. For T 2

we have

Z
[ω]
A (T 2) = Z

[ω]
A (S1 × S1) =

∫
a∈A

Z
[ω\a]
A (M) dµ by (4.5)

=
∫

a∈A

∫
b∈A

(ω \ a)(b) dµ by Example 3.4

=
∫

(a,b)∈A×A
ω(a, b)ω(b, a) dµ by (4.4).

Finally, since a surface Σg of genus g is the connected sum of g tori, we use
Proposition 4.5 to get

Z
[ω]
A (Σg) = Z

[ω]
A (T 2)g.

One also needs to be able to make explicit calculations based on explicit
choices of the various cycles and cocycles in the definitions. This takes
us closer to the combinatorial view, but it is important to remember that
from the point of view of this paper these are to be deduced not taken
as definitions. This is in fact the way Dijkgraaf and Witten introduced
their invariants: the path integral definition came first, followed by the
combinatorial formulae used to make explicit calculations.

5.1 ∆-complexes

Everything in this section can be found elsewhere, but for convenience we
reproduce the essentials. It is convenient for us to work with ∆-complexes, as
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defined by Hatcher [8], rather than simplicial complexes, since ∆-complexes
will allow us to model manifolds with far fewer simplices.

Definition 5.1. Suppose we have a collection of simplices {∆i}, together
with an ordering (or numbering) of the vertices of each simplex. As a result,
we also get orderings on the sets of vertices in the faces of the simplices ∆i.
We can now form a topological space by first taking the disjoint union of
the ∆i and then identifying certain chosen subsets Fj of the faces of the
∆i using the canonical linear homeomorphisms that preserve the orderings
of the vertices (all faces in a given set Fj are assumed to be of the same
dimension). A space which is constructed in this way is called a ∆-complex.

Most of the “triangulations” of manifolds used in the existing literature
on DW-invariants are in fact ∆-complexes rather than simplicial complexes.
The same will apply in this paper, i.e., when we talk about a triangulation
of a manifold M , we mean a ∆-complex homeomorphic to M . The main
difference between a ∆-complex and a simplicial complex is that not every
simplex of a ∆-complex has to be uniquely determined by the set consisting
of its vertices. The numbering of the vertices in each simplex is needed to
remove resulting ambiguities. Any simplicial complex can be turned into
a ∆-complex by choosing an ordering of the vertices (this will induce an
ordering of the vertices of each simplex). Conversely, any ∆-complex is
homeomorphic to a simplicial complex, which can be constructed by subdi-
vision of the simplices in the ∆-complex.

Homotopy classes of maps from a ∆-complex T to an Eilenberg–Mac Lane
space can be understood in combinatorial terms as follows. A colouring of
T by the group A is a map g from the set of oriented edges of T to A. If E
is the oriented edge from the vertex labelled a to the vertex labelled b (with
a < b), then we denote g(E) also as gab. We will use the convention that
gab = g−1

ba for all pairs of vertices a, b which are connected by an edge. Also,
we impose a flatness condition, which requires that, for any triangle in T , the
product of the colours on the boundary is unity. More precisely, denoting
the vertices of the triangle by a, b and c, we require that gabgbc = gac, or
equivalently gabgbcgca = e. We define a gauge transformation to be a map h
from the set of vertices of T into G. We will often write ha for h(a). Gauge
transformations form a group under pointwise multiplication (in fact this
group is isomorphic to GV , where V is the number of vertices in T ). The
group of gauge transformations has an action on the set of colourings, given
by

(h · g)ab = hbgab(ha)−1. (5.1)
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The next proposition describes homotopy classes of maps from a ∆-
complex to an Eilenberg–Mac Lane space KA = K(A, 1). Although it is
well-known, we include a proof for completeness.

Proposition 5.2. Let W be a manifold and T a triangulation of W , then
the orbits of colourings of T under gauge transformations are in one to one
correspondence with homotopy classes of maps from W into KA. Moreover,
homotopy classes of based maps from W to KA are in one-to-one corre-
spondence with orbits of colourings of T under gauge transformations which
send a chosen vertex x0 of T to the unit element of A.

Proof. Start with a map σ : W → KA. After a suitable homotopy we can
assume that σ maps all vertices of T to the same point of KA. Hence all
edges of T become loops in KA, and since π1(KA) ∼= A we can color each
edge of T with an element of A. All colourings of T induced in this way
satisfy a flatness condition because the image of any triangle in KA, and
hence also the image of the loop which forms its boundary, is contractible.
One should note that one may obtain different colourings of T from the
same homotopy class of maps. It is easy to see why this happens. Suppose
that we have two homotopic maps σ and σ′ from W to KA which both
send all vertices of T to the base point for π1(KA). Although σ and σ′ are
homotopic, the homotopy between them may move the vertices of T around
non-contractible loops in KA. If the vertex v gets moved around the loop
labelled by h ∈ A, then the group elements of the edges of T which end at v
get multiplied by h from the left, while the group elements on edges which
begin at v get multiplied by h−1 from the right. This is exactly the effect of
a gauge transformation at the vertex v. Thus, we do not get a well-defined
map from homotopy classes of maps to colourings of T , but we do get a well-
defined map from homotopy classes of maps to gauge orbits of colourings of
T . This map is in fact invertible. To see injectivity, suppose that two maps
σ and σ′ induce the same gauge class of colourings of T . Then these maps
are certainly homotopic on the 1-skeleton of T and, using the fact that KA

has trivial higher homotopy, we may extend the homotopy on the 1-skeleton
to a homotopy on all of T , or W . For surjectivity, take any colouring of
T satisfying the flatness condition. We may always construct a map from
the 1-skeleton of T into KA which induces this colouring and, because KA

has trivial higher homotopy, this map extends to a map from all of W to
KA. The statement about based maps follows in a similar way if we identify
the base point of W with the chosen vertex x0 of T . This vertex can now
no longer be moved around KA by homotopies and hence colourings, which
differ by a non-trivial gauge transformation at x0, do not correspond to the
same homotopy class of based maps. �
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5.2 A formula for explicit calculation

We will assume that the HQFT defining the abelian homotopy DW theory is
integrable (see Section. 3.2) and that we have a group cocycle ω correspond-
ing to the defining singular cocycle θ. Given α0 ∈ FM0 and α1 ∈ FM1 , we
need to determine the effect of the maps EW,ν : LM0,α0 → LM1,α1 occurring
in (3.3), where ν ∈ Fα0,α1

W . To do this, we must make some choices:

• choose a representative σ : W → KA of the class ν,
• choose fundamental cycles ai ∈ CnMi for i = 0, 1 (giving generators of

LMi,γi , where γi = σ|Mi),
• choose f ∈ Cn+1W representing the fundamental class in Hn+1(W, ∂W ).

Armed with these choices, we then compute σ∗θ(f) and hence are able to
determine EW,σ(a0) = σ∗θ(f)a1.

Let us now suppose that T is a triangulation of W , which induces trian-
gulations T0 and T1 of M0 and M1. Since T , T0 and T1 are ∆-complexes,
they immediately give canonical representatives f , a0 and a1 for the funda-
mental classes of W , M0 and M1 and moreover these satisfy ∂f = a1 − a0.
Explicitly, for i = 0, 1 we have

ai =
∑
t∈Ti

εt[t], (5.2)

where the sum runs over the n-simplices of Ti and [t] denotes the inclusion
map of the n-simplex t into Ti (i.e., the inclusion map into the set of dis-
joint simplices followed by the identification map). The signs εt express the
orientation of the simplices when compared with that of the whole mani-
fold. Note that the orientation of a simplex can be described in terms of the
ordering of its vertices. Hence, the signs εt are fixed by the orientation of
M and the chosen ∆-complex structure. Similarly, we have

f =
∑
t∈T

εt[t], (5.3)

where here the sum is over the n + 1-simplices of T .

Next, given ν ∈ FW , we use Proposition 5.2 to choose a colouring of T (in
general there may be many such colourings). Now define a map σ : W → KA

such that [σ] = ν as follows. Choose representatives for the elements of the
fundamental group of KA, or more precisely, for every g ∈ A fix a map lg
from the standard 1-simplex onto a loop in KA which corresponds to the
element g ∈ π1(KA) ∼= A. Using these, we can define σ on the 1-skeleton of
the triangulation by mapping an edge labelled g into KA by lg. To fix σ on
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the 2-skeleton, one introduces standard maps from any coloured 2-simplex
to KA, such that these maps reduce to the standard maps for 1-simplices
on the coloured boundary. One continues in this way for the higher skeleta
until σ is defined (these map extensions are possible because KA has trivial
higher homotopy). It is clear by the proof of Proposition 5.2 that [σ] = ν.

If t is an n + 1-simplex in T then σ∗θ(t) is a function of the colouring
chosen earlier and we can assume that θ and ω are related so that

σ∗θ(t) = ω(gσ
t,1, . . . , g

σ
t,n+1),

where gσ
t,1, . . . , g

σ
t,n+1 are the group elements which colour n + 1 edges which

does not lie in the same face (flatness then determines the others). We will
take these n + 1 edges to be the edges which connect the vertices of the
simplex in ascending order2 . Thus (using multiplicative notation for the
group operation in U(1)) we have

σ∗θ(f) = σ∗θ

(∑
t∈T

εt[t]

)
=

∏
t∈T

σ∗θ(t)εt =
∏
t∈T

ω(gσ
t,1, . . . , g

σ
t,n+1)

εt .

When W is closed, the number σ∗θ(f) does not depend on the chosen tri-
angulation of W (which corresponds to a choice of f) or on the choice of gσ

in its gauge orbit. If W is not closed, then we will still have the same for-
mula as above, but, since f has non-zero boundary in this case, the number
σ∗θ(f) will now depend on the choice of σ, as well as on the choice of f ,
that is, of the triangulation. Nevertheless, one may check that any choice
would still determine the same map EW,ν .

If we choose the same a0, a1 and f for each ν ∈ Fα0,α1
W then KW (α0, α1)

is described by

KW (α0, α1)(a0) =

(∫
ν=[σ]∈Fα0,α1

W

∏
t∈T

ω(gσ
t,1, . . . , g

σ
t,n+1)

εt dµα0,α1
W

)
a1.

(5.4)
For a closed n + 1-manifold we get

Z
[θ]
A (W ) =

∫
ν=[σ]∈FW

∏
t∈T

ω(gσ
t,1, . . . , g

σ
t,n+1)

εt dµW . (5.5)

Note that there is nothing in the above depending on any special property of
the group A. As long as a good measure on the space of homotopy classes of
based maps FW = [W ; K(A, 1)] is available, the above formulae can be used

2Note that if we were only given σ, the procedure described here gives a way of deter-
mining a suitable ω.
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to calculate the invariants. The reason for restricting to compact abelian
Lie groups A is that we have good measures available as already stated in
the introduction. Of course for finite A one also has a measure (the counting
measure) available in case A is not abelian, and in the state sum approach
one actually starts with the above formulae (5.4) and (5.5) for the invariants.

5.3 Dimension 2 + 1

In this last section we take A = U(1) and at level k we use the group cocycle
ωk defined in (2.1). We will write Zk(W ) to mean Z

[ωk]
U(1)(W ) and by the

“U(1) homotopy DW-invariants” of a closed 3-manifold W , we mean the
collection of numerical invariants {Zk(W )}k≥0. We will prove the following
theorem.

Theorem 5.3. The U(1) homotopy DW invariants distinguish homotopy
equivalence classes of lens spaces.

Before proving this, let us recall certain facts about lens spaces. Lens
spaces are a class of 3-manifolds parametrized by pairs of coprime integers
(p, q), the lens space labelled by (p, q) being denoted L(p, q). Since we are
interested here in oriented and not only orientable lens spaces a bit of care is
needed. Our orientation convention will be the standard one, i.e., L(p, q) is
the closed oriented 3-manifold obtained by surgery on S3 along the unknot
with surgery coefficient −p/q, where L(p, q) is given the orientation induced
by the standard right-handed orientation on S3. We note that

• The lens spaces L(p, q) and L(p′, q′) are homeomorphic if and only if p
is equal to p′ and q = ±q′ mod p or qq′ = ±1 mod p.

• L(p, q) and L(p′, q′) are homotopy equivalent if and only if p = p′ and
qq′ = ±a2 mod p for some integer a.

The first fact was proved by Reidemeister, cf. [13], and the second fact is
due to Whitehead [19]. For a more recent source, see for instance [15, 16].
In all cases, the minus sign corresponds to a reversal of the orientation. We
will be interested in homotopy classes of lens spaces using only orientation
preserving homeomorphisms, since the DW-invariants depend on the orien-
tation (e.g., they can have different values for, say, L(p, q) and L(p, p − q)).
Therefore, in the rest of the paper, when we say that two lens spaces L(p, q)
and L(p, q′) are homotopy equivalent, this means that qq′ = +a2 mod p for
some a ∈ Z. We note that L(0,±1) = S2 × S1 with fundamental group Z.
All the abelian homotopy DW-invariants of this manifold are trivial by (4.5)



ABELIAN HOMOTOPY DIJKGRAAF–WITTEN THEORY 349

c1 c

cc

4

32

b

a

Figure 1: The polyhedron from which L4,1 is formed by identification of
each face on the front with the next face on the back.

and Example 3.4 (alternatively use Example 4.8). From now on we assume
that p �= 0. Note then that the fundamental group of L(p, q) is Z/p and the
other homotopy groups are isomorphic to those of the 3-sphere. Hence, the
homotopy groups of a lens space do not determine its homotopy type.

The lens space L(p, q) has a nice triangulation consisting of p tetrahedra
with vertices ai, bi, ci and di, i = 1, . . . , p, illustrated for p = 4 in figure 1.
The tetrahedra are first glued together along the abc–faces, i.e., we make
the identification (ai, bi, ci) ≡ (ai+1, bi+1, ci+1) for all i with the convention
that ap+1 = a1, etc.

After these identifications there is one point corresponding to all the ai,
which we will call a and there is similarly one point corresponding to the bi

denoted b. To get the lens space Lp,q from this polyhedron, one identifies
each face on one side with the face which lies q steps clockwise removed on
the other side, i.e., one makes the identification (a, ci, di) ≡ (b, ci+q, di+q),
again with cp+1 = c1, etc. The path ab has now become a loop and one
may easily check that it is a generator of the fundamental group. One may
number the vertices such that the signs εt, which occur in the formula for
the fundamental cycle, are all positive.

For the U(1) homotopy DW theory the space of fields is

FL(p,q) = H1(L(p, q); U(1)) = Hom(Z/p, U(1)) = {ζ ∈ U(1) | ζp = 1} =: Λp.

Colourings of the above triangulation were studied by Altschuler and
Coste [1] (for finite groups which is sufficient here as Λp

∼= Z/p). Given ν ∈
Λp they provide a particularly nice colouring corresponding to ν by colouring
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the three independent edges (in ascending order) in the j’th tetrahedron tj
with the group elements ν, νjq̄ and ν q̄, respectively, where q̄ is the inverse of
q modulo p. Using (5.5) we then have

Zk(L(p, q)) =
∫

ν∈FL(p,q)

p∏
j=1

ωk(ν, νjq̄, ν q̄) dµL =
1
p

∑
ν∈Λp

p∏
j=1

ωk(ν, νjq̄, ν q̄).

For u ∈ U(1) let 〈u〉 be the unique number in the interval [0, 1) such that
u = e2πi〈u〉. It is easy to see that

∑p
j=1〈νjq̄〉 =

∑p
j=1〈ν q̄(j+1)〉 and so we can

write
p∏

j=1

ωk(ν, νjq̄, ν q̄) =
p∏

j=1

e2πik〈ν〉(〈νjq̄〉+〈ν q̄〉−〈ν q̄(j+1)〉)

= e2πik〈ν〉
∑p

j=1(〈νjq̄〉+〈ν q̄〉−〈ν q̄(j+1)〉)

= e2πik〈ν〉p〈ν q̄〉

= e
2πikq̄l2

p ,

where in the last equality we have written ν = e
2πil

p for some l = 1, . . . , p.
Thus, we have

Zk(L(p, q)) =
1
p

p∑
l=1

e
2πikq̄l2

p . (5.6)

Let us recall formulas for the involved Gauss sums. For r, N relatively prime,
let us write

G(r, N) :=
N∑

l=1

e
2πirl2

N . (5.7)

Dirichlet [5, 6] proved that

G(r = 1, N) =

⎧⎪⎪⎨
⎪⎪⎩

(1 + i)
√

N, N = 0 mod 4,√
N, N = 1 mod 4,

0, N = 2 mod 4,

i
√

N, N = 3 mod 4.

(5.8)

Futhermore, when N is an odd prime, there is a closed formula for G(r, N)
for all r,

G(r, N) =
{

( r
N )

√
N, N = 1 mod 4,

i( r
N )

√
N, N = 3 mod 4,

(5.9)

where (r/N) is the Legendre symbol for r modulo N , that is, (r/N) equals
1 if r is a square modulo N and −1 otherwise. Before proving Theorem 5.3,
we require the following lemma.
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Lemma 1. Let p = 2kpk1
1 pk2

2 . . . pkm
m be the prime decomposition of p (the

pi are odd primes, k is non-negative and the ki are positive) and consider
homotopy classes of lens spaces L(p, q). We distinguish three cases.

• k = 0 or k = 1. There are 2m homotopy classes which we can label by
the string of signs (( q

p1
), . . . , ( q

pm
)).

• k = 2. There are 2m+1 homotopy classes which may be labelled by q mod
4 and the signs

( q
pi

)
. (Note that q mod 4 equals 1 or 3.)

• k > 2. There are 2m+2 homotopy classes labelled by q mod 8 and the
signs ( q

pi
). (Note that q mod 4 equals 1, 3, 5 or 7.)

Proof. Recall that Z
∗
p, the multiplication group modulo p, decomposes as

Z
∗
p = Z

∗
2k × Z

∗
p

k1
1

× . . . × Z
∗
pkm

m
. (5.10)

Hence, if x is an element of Z
∗
p we may write x = (x0, x1, . . . , xm) with

xi ∈ Z
∗
p

ki
i

(with p0 = 2, k0 = k). In fact, we can take xi = x mod pki
i . From

this decomposition it is clear that x will be a square modulo p if and only if
x is a square modulo pki

i for i = 0, 1, . . . , m. Furthermore, it is not difficult
to show that x is a square modulo 2k if and only if x = 1 mod 8 and x is a
square modulo pki

i if and only if x is a square modulo pi, i = 1, . . . , m. To
find the homotopy classes of lens spaces we must therefore find out which
elements of Z

∗
n give a square when they are multiplied together, n being any

odd prime. Obviously the product of two squares is always a square. Also,
using the fact that Z

∗
n is cyclic, one sees that the product of two non-squares

is a square in the Z
∗
n, while the product of a square and a non-square in Z

∗
n

is never a square. Finally we note that two elements multiply to a square
in Z

∗
2k only if they are equal modulo the minimum of 8 and 2k. �

Proof of Theorem 5.3. For any lens space L(p, q) we have from (5.6) that
Z0(L(p, q)) = 1. The next value of k for which Zk(L(p, q)) = 1 occurs when
k = p (essentially this is the triangle inequality for complex numbers), so
this determines p.

Now fix p and write its prime decomposition as in Lemma 1. We need to
show that the invariants Zk determine the labels of the homotopy classes
given in that lemma. Let pi be one of the odd prime factors (if there are
no odd prime factors, we only need to determine q mod 4 or q mod 8, see
further on for that) and consider k = p/pi. Filling in (5.6), we get

Zp/pi(L(p, q)) =
1
p

p∑
l=1

exp
(

2πiq̄l2

pi

)
=

1
pi

pi∑
l=1

exp
(

2πiq̄l2

pi

)
(5.11)
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and using (5.9), we see that

Zp/pi(L(p, q)) =

{
1√
pi

( q
pi

), pi = 1 mod 4,
i√
pi

( q
pi

), pi = 3 mod 4.
(5.12)

Thus these invariants determine the Legendre symbols
( q

pi

)
. This means

they separate homotopy classes of lens spaces with p odd or p = 2 mod 4,
the first case in Lemma 1. To settle the second case (p = 4 mod 8), we need
to determine q mod 4. This is accomplished by taking k = p/4. We have

Zp/4(L(p, q)) =
1
4

4∑
l=1

e
2πiq̄l2

4 =
1
2
(1 + iq̄) =

{
1
2(1 + i), q = 1 mod 4,
1
2(1 − i), q = 3 mod 4.

(5.13)
To deal with the final case (p = 0 mod 8), we have to determine q mod 8.
This can be done using k = p/8:

Zp/8(L(p, q)) =
1
8

8∑
l=1

e
2πiq̄a2

8

=
1
4
(1 + (−1)q̄ + 2e

πiq̄a2

4 ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
2eiπ/4, q = 1 mod 8,
1
2e3iπ/4, q = 3 mod 8,
1
2e5iπ/4, q = 5 mod 8,
1
2e7iπ/4 q = 7 mod 8.
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