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Abstract

We consider the effective superpotentials of N = 1 SU(Nc) and
U(Nc) supersymmetric gauge theories that are obtained from the N =
2 theory by adding a tree-level superpotential. We show that several
of the techniques for computing the effective superpotential are implic-
itly regularized by 2Nc massive chiral multiplets in the fundamental
representation, i.e the gauge theory is embedded in the finite theory
with nontrivial UV fixed point. In the maximally confining phase we
obtain explicit general formulae for the effective superpotential, which
reduce to previously known results in particular cases. In order to
study N = 1 and N = 2 theories with fundamentals, we explicitly fac-
torize the Seiberg-Witten curve for 0 ≤ Nf < 2Nc and use the results
to rederive the N = 1 superpotential. N = 2 gauge theories have an
underlying integrable structure, and we obtain results on a new Lax
matrix for Nf = Nc.
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1 Introduction

Over the past few years there has been significant progress in the under-
standing of effective superpotentials for gauge theories with N = 1 super-
symmetry, particularly N = 1 theories that can be obtained from an N = 2
theory by the addition of a gauge-invariant superpotential for some of the
N = 1 superfields so as to break supersymmetry.

There are now at least four known techniques for computing the effec-
tive superpotentials in this class of theory. The recent work goes back to
[1, 2] who used string theory to motivate the computation of the superpo-
tential in terms of period integrals of the factorized Seiberg-Witten curve.
By restricting to topological string theory, it was demonstrated by Dijkgraaf
and Vafa [3, 4, 5] that the evaluation of the superpotential reduces to a
0-dimensional matrix integral. The reduction to matrix models was under-
stood in field theory as a consequence of the generalized Konishi anomalies
[6] and the perturbative cancellation of non-zero-momentum Feynman dia-
gram contributions to the effective superpotential [7, 8]. In certain cases the
superpotential can also be calculated using the known connection of N = 2
Yang-Mills theories with integrable systems [9, 10, 11].

In this paper we will explore the links between field theory, the geometry
of Riemann surfaces, and integrable systems, in computing effective superpo-
tentials for N = 1 Yang-Mills theories with adjoint and fundamental matter.

We begin by revisiting the theory with a single adjoint chiral superfield Φ
and no fundamental matter, which can be obtained by deforming the N = 2
pure gauge theory via the addition of a tree-level superpotential W (Φ). The
technique of [1] involves computing period integrals of (a reduction of) the
factorized Seiberg-Witten curve of the N = 2 theory; this period integral
is log-divergent and can be regularized by imposing a cut-off. In previous
discussions the effects of the cut-off have been ignored, because they are
suppressed in the limit where it is taken to infinity. We evaluate the effects
of the cut-off when it is kept finite, and find that the corrections to the
effective superpotential have the physical interpretation of adding Nf = 2Nc

massive chiral superfields in the fundamental representation, which regulate
the UV divergences of the computational procedure by embedding the gauge
theory in a UV-finite theory. By giving a vev to these quarks, the low-energy
gauge theory contains Higgs vacua in addition to the confining vacua of the
Nf = 0 theory we begin with.

We explicitly evaluate the period integrals of the N = 1 curve in maxi-
mally confining vacua (where the gauge symmetry is classically unbroken),
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and derive a general formula for the effective superpotential of the theory
with 0 ≤ Nf ≤ 2Nc and arbitrary W (Φ), which generalizes previously known
results. By comparing to the matrix model associated to the Nf �= 0 theo-
ries, we verify that this formula amounts to enumerating the planar diagrams
of the theory with 0 and 1 boundary. It is interesting to see the theory with
Nf = 2Nc emerge from the Nf = 0 calculation; as mentioned above, this
means that the Nf = 0 period integral and string theory/matrix model cal-
culations are implicitly regularized by a model with Nf = 2Nc, in the limit
of large quark mass, which has a nontrivial conformal fixed point in the deep
UV.

We are thus lead to study the N = 2 theory with massive fundamental
hypermultiplets. In section 3.5 we consider the Seiberg-Witten curves of
these theories and solve the problem of factorizing the curve to the locus
where all monopoles are massless. The expression for the factorized curve
generalizes the Nf = 0 result and is written in terms of Chebyshev polyno-
mials. Restricting to Nf = Nc, the form of the factorized curve simplifies,
and we evaluate the moduli of the factorized curve for general Nc.

After breaking to N = 1 by the addition of a tree-level W (Φ), the
massless monopoles condense, and the effective superpotential is given by
W =

∑
gp〈up〉 where up are the moduli of the factorized Seiberg-Witten

curve. Factorizing the curve therefore directly gives us the effective su-
perpotential, and for Nf = Nc we verify the equivalence to the expression
obtained from period integrals of the N = 1 curve.

In section 4 we consider the relationship between N = 1 superpotentials
and integrable systems. For Nf = 0, the combinatorial formulae for 〈uk〉
may be summarized by taking traces of powers of a single matrix, namely
the scalar component of the adjoint field Φ, evaluated in the vacuum of
interest, which is identified with the Lax matrix of the periodic Toda chain.
In a sense, since the Lax pair completely characterizes the integrable system,
this demonstrates how the integrable system emerges from the gauge theory.
We obtain a simple proof of the equivalence of the algorithm of [10] with the
period integral and factorization calculations, for Nf = 0.

The integrable system associated to N = 2 SQCD was uncovered in
[12, 13], and is a particular spin chain system. However the known Lax pair
of this system is written in transfer matrix form as a chain of 2×2 matrices,
and does not seem to have a direct physical meaning in the gauge theory.
Therefore, it would be useful to find another Lax pair for this system that
takes the form of a single matrix and can be identified with the vev of Φ,
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similar to the Nf = 0 case1. In section 4.1 we find the Nc × Nc matrix
〈Φ〉 that encodes the 〈uk〉 in the maximally-confining vacua of the Nf = Nc

theory, which is identified with a particular equilibrium value of the Lax
matrix for the associated spin chain.

2 Effective superpotentials from geometry

2.1 Computing the superpotential

Consider pure N = 2 Yang-Mills theory broken to N = 1 via a tree-level
superpotential of the form:

Wtree ≡
n+1∑
p=1

gp

p
Tr
(
Φp
) ≡

n+1∑
p=1

gp up . (1)

In [1], string theory arguments were given for the computation of the effective
superpotential for the gaugino bilinear superfield S, in terms of periods of
the differential form (“resolvent”):

ω(x) =
1
2

(
W ′(x) −

√
(W ′(x))2 + fn−1(x)

)
dx

≡ 1
2
(W ′(x) − y(x))dx (2)

which is single-valued on the genus n − 1 Riemann surface (the “N = 1
curve”)

y2 = W ′(x)2 + fn−1(x) (3)

depicted in figure 1. In section 3.5 we will rederive this curve by factorizing
the Seiberg-Witten curve of the associated N = 2 theory obtained when
Wtree = 0, and discarding the repeated roots of the curve that correspond
to condensed monopoles.

The compact A-periods yield the gaugino bilinear superfields, Si, while
the non-compact B-periods, Πi yield the derivatives of the free energy ∂F

∂Si
.

We choose the branches of the square root so that on the first sheet ω(x)
vanishes in the classical limit fn−1 → 0; therefore on the second sheet ω(x) →
W ′(x).

1Since a given integrable system may have more than one Lax pair, and the matrices
may even be of different rank, we should not be discouraged from looking for a new Lax
formulation.
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Figure 1: The complex curve that encodes the gauge theory effective
superpotential. It is a branched double cover of the complex plane,
where the cuts are the projections of the S3 cycles of the Calabi-
Yau. The A contours are compact cycles, and the B contours Bi =
B−

i + B+
i are non-compact and run from a point at infinity on the

lower sheet, through the ith cut to the point at infinity on the upper
sheet. The B contours have been regularized by a cutoff Λ0.

In this paper we will focus on the maximally-confining phase of the the-
ory (the vacua with classically unbroken gauge group U(N)), for which the
resolvent degenerates:

y(x) =
√

(W ′(x))2 + fn−1(x) dx = Gn−1(x)
√

(x − c)2 − µ2 dx , (4)

for some polynomial, Gn−1(x) of degree (n − 1). For U(N) theories, it is
convenient to use the freedom to shift x so as to set c = 0; this is not allowed
for SU(N), for which the center of the cut is not a free parameter, but the
SU(N) results may be obtained from the U(N) at the end of the calculation
by decoupling the overall U(1) trace (we will come back to this point later).
The gaugino bilinear is then given by:

S =
1

2πı

∮
A

ω(x) = ± 1
4πı

∮
A

y(x) = ± 1
2πı

∫ µ

−µ
Gn−1(x)

√
x2 − µ2 dx

(5)
where the sign depends on the orientation of the contour. The B-period
is given by integrating along a contour from infinity on the second sheet,
through the cut to infinity on the first sheet, see figure 1. The logarithmic
divergence of this integral needs to be regularized, and this is usually done
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by a introducing a UV cut-off:

ΠB =
∫

B
ω =

∫ x+=Λ0

x−=Λ0

ω = −
∫ Λ0

µ
Gn−1(x)

√
x2 − µ2 dx , (6)

where x− and x+ denote the values of x on the lower and upper sheets
respectively. The effective superpotential is then given by:

Weff = N ΠB + NW (Λ0) + τ S (7)

where τ is the bare gauge coupling, and the second term is added to cancel
the contribution from the upper limit of the integral in ΠB . The effect of the
τ term is to combine with the log-divergent piece of ΠB to give the (finite)
dynamical scale of the theory [1].

In computing the effective superpotential by this method, the approach
taken in the recent literature is to send Λ0 → ∞, causing its effects to
decouple from the theory. However, we will obtain physical insight into the
nature of the computation by keeping the cut-off finite. We will henceforth
take the cut-off Λ0 to be large but finite, and investigate the effects on the
low-energy gauge theory; this amounts to keeping the O(1/Λ0) terms in ΠB

and subsequent calculations.

2.2 Example: U(2)

Before analyzing the general case, consider the simplest example of U(2)
with a tree-level mass: W = 1

2mTrΦ2. The effective 1-form is

y(x) = m
√

x2 − µ2 (8)

which is single-valued on a two-sheeted Riemann surface with a cut between
x = ±µ. The gaugino bilinear is given by the A-period:

S =
1

4πı

∮
A

y(x)dx =
1

2πı

∫ µ

−µ
y(x)dx =

1
4
mµ2 (9)
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and the B semi-period is

ΠB = −
∫ Λ0

µ
y(x)dx

= −m

2

⎛
⎝±Λ2

0

√
1 − µ2

Λ2
0

+ µ2 log

⎛
⎝ µ

Λ0

(
1 ±

√
1 − µ2

Λ2
0

)
⎞
⎠
⎞
⎠

= ∓mΛ2
0

2

√
1 − 4S

mΛ2
0

− S log

⎛
⎜⎝ S

mΛ2
0

2

(
1 ±

√
1 − 4S

mΛ2
0

)
− S

⎞
⎟⎠

(10)

where the integral is evaluated using hyperbolic functions, and the two
branches come from

sinh(x) = ±
√

cosh2(x) − 1 (11)

(this amounts to a choice of contour, i.e integrating to the point above Λ0 on
one of the two sheets). As mentioned in the previous section, the role of τ
in (7) is to replace the N log(mΛ2

0) term in ΠB by the finite scale N log(Λ3).
This may be implemented in practice by setting τ = N log( Λ3

mΛ2
0
) in (7).

We find

W = N

(
S
(
1 − log(

S

Λ3
)
)
− S2

mΛ2
0

− 2S3

2(mΛ2
0)2

− 5S4

3(mΛ2
0)3

− 14S5

4(mΛ2
0)4

− . . .

)
(12)

Therefore in the limit Λ0 → ∞ (equivalently, keeping Λ0 finite and consid-
ering energies m << Λ0) the infinite correction series tends to zero and the
effective superpotential (12) reduces to the usual Veneziano-Yankielowicz
superpotential.

The form of the series (12) is the same as that obtained for U(2), Nf = 4,
with Λ0 identified with the quark mass: the known formula for W (S) with
tree-level superpotential W = 1

2mTrΦ2 +
∑Nf

i=1 µQ̃iQ
i + Q̃iΦi

jQ
i is [14, 15]

W (S) = NcS(1 − log(
S

mΛ2
0

)) − NfS log(
µ

Λ0
)

−NfS

(
1
2

+
√

1 − 4αS − 1
4αS

− log(
1 +

√
1 − 4αS

2
)
)

(13)

with α = 1/(mµ2) (we will derive this expression in section 3.2). Setting
Nc = 2, Nf = 4, µ = Λ0 and performing the series expansion, we recover the
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expression in (12). We will show in Section 3.2 that this feature remains
true for general Nc and W (Φ), and the corrections obtained by keeping the
cut-off dependence in the period integral indeed have the physical interpre-
tation of Nf = 2Nc massive quark superfields, which serve to regularize the
divergences of the calculation.

Choosing the other branch of ΠB we obtain the negative of (12). This
branch describes a Higgs branch [15], where the gauge symmetry is broken by
giving a vev to the scalar component of the quark superfields (an arbitrary
Higgs vacuum can be obtained by writing W = τS +

∑N
i=1 ΠB and choosing

the branch of ΠB termwise, i.e for each period integral we choose whether
to integrate along a contour on the first or second sheet).

If instead of U(N) gauge theory we considered SU(N), the foregoing
discussion would be modified by the need to ensure “quantum tracelessness”
of the vacuum, i.e that 〈u1〉 = 0. This may be achieved by taking the tree-
level superpotential W = 1

2mTrΦ2 + λTrΦ and proceeding with the above
analysis, treating λ as a Lagrange multiplier to enforce 〈u1〉 = 〈TrΦ〉 = 0.
Instead of repeating the calculation for SU(2), we will defer until later when
we consider the general U(N) and SU(N) cases.

2.3 Evaluation of the period integral for general W

The period integrals, (5) and (6), are elementary but one can obtain a simple
closed form in terms of Wtree. This can be evaluated and gives a combinato-
rial formula for the moduli uk which can be compared to other techniques.
Make the change of variables2:

x =
1
2

µ (ξ + ξ−1) , (14)

and define series expansions:

W
(1
2

µ (ξ + ξ−1)
)

= b0 +
n+1∑
k=1

bk (ξk + ξ−k) , (15)

W ′(1
2

µ (ξ + ξ−1)
)

= c0 +
n∑

k=1

ck (ξk + ξ−k) (16)

2We again assume that x has been centered on the cut.
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Note that the series take this form because of the symmetry of (14) under
ξ → ξ−1. Under this change of variables the integrand may be written:

1
2

µ (ξ − ξ−1)Gn−1

(1
2

µ (ξ + ξ−1)
)

= Gn−1(x)
√

x2 − µ2 , (17)

= W ′(x)

√
1 +

fn−1(x)
(W ′(x))2

(18)

= W ′(x) + O(ξ−1) . (19)

The left-hand side is manifestly odd under ξ → 1/ξ, while the right-hand
side shows that all the non-negative powers in the ξ-expansion are given by
(16). It therefore follows that under the change of variables, one has

√
(W ′(x))2 + fn−1(x) = Gn−1(x)

√
(x2 − µ2) =

n∑
k=1

ck (ξk − ξ−k) .

(20)
Note in particular that the left-hand side of (17) is manifestly odd under
ξ → 1/ξ, therefore c0 = 0 in (16).

Define [. . . ]− to mean: discard all the non-negative powers of ξ in [. . . ].
We may then write the last equation as:

√
(W ′(x))2 + fn−1(x) = W ′

(1
2

µ (ξ + ξ−1)
)

− 2
[
W ′

(1
2

µ (ξ + ξ−1)
)]

−
.

(21)
One can now easily perform the integrals (5) and (6). The former is simply
given by taking ξ = eıθ for 0 ≤ θ ≤ π, and it picks out the ξ-residue:

S =
µ

2
c1 (22)

To perform the second integral first note that:

d

dξ

[
W
(1
2

µ (ξ + ξ−1)
)]

−

= − 1
2

µ c1 ξ−1 +
1
2

µ (1 − ξ−2)
[
W ′(1

2
µ (ξ + ξ−1)

)]
−
(23)

and therefore:∫ √
(W ′(x))2 + fn−1(x) dx = −µ c1 log(ξ) + W (x) − 2

[
W (x)

]
−
(24)

= −µ c1 log(ξ) + b0

+
n∑

k=1

bk (ξk − ξ−k) , (25)
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where x = 1
2 µ (ξ + ξ−1). To obtain Π, we must evaluate this between ξ = 1

and ξ = ξ0, where

ξ0 ≡ ξ(Λ0) =
Λ0

µ

(
1 +

√
1 −

( µ

Λ0

)2
)

. (26)

This yields:

Π = b0 + µ c1 log(ξ0) −
(
W (Λ0) − 2

[
W (x)

]
−
∣∣∣
ξ=ξ0

)
, (27)

where the definite integral has been evaluated using (24) at ξ = Λ0 and using
(25) at ξ = 1.

In the limit of large Λ0 the last term in (27) vanishes since it only involves
negative powers of ξ0 ∼ Λ−1

0 . Taking this limit, and using (22) one obtains:

Π = b0 + 2S log
(2Λ0

µ

)
− W (Λ0) . (28)

Therefore

Weff(S) = Nb0 + 2NS log
(2Λ

µ

)
(29)

We will show in section 3.3 that for general Wtree(Φ), (29) can be extremized
with respect to S by taking µ = 2Λ, and we recover the previously known
result [1]

Wlow(gk,Λ) = Nc

�n+1
2

�∑
p=1

g2p

2p

(
2p
p

)
Λ2p (30)

where we have evaluated the coefficients b0 in the series expansion (15).

The engineering of N = 1 gauge theories from string theory [1] involves
D-branes on generalized conifold geometries. From the string theory per-
spective it is tempting to also interpret the cut-off of the period contour in
terms of branes. That is, it is really only physically natural to terminate
the period integral on another brane. Having a stack of M branes at Λ0

would mean that one started with a larger (product) gauge group and that
the original SU(N) theory is actually coupled to M bi-fundamental matter
multiplets with a (gauged) SU(M) “flavour” group (see [16] for an analysis of
this theory). However, when the second set of branes become non-compact,
their associated gauge coupling tends to zero, and the SU(M) gauge factor
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becomes a global SU(M) flavour symmetry. Thus, string theory suggests
that keeping the UV cut-off terms should yield the superpotential associ-
ated with the coupling to fundamental matter multiplets. This is indeed
what we find in explicit calculations.

If one also recalls that the canonical form of the B-period integral, (6),
involves an integral from the lower to the upper sheet of the Riemann surface,
then this extra term may be thought of arising from Nc branes (or anti-
branes) at each limit. Thus one can also extract the results for Nf = Nc by
regulating the upper and lower limits independently. We will develop and
extend this observation in the next section.

3 Effective superpotentials for SQCD with one ad-

joint and Nf fundamental quarks

In this section we consider the N = 1 theories with matter content of N = 2
SYM with massive fundamental hypermultiplets, i.e a single adjoint Φ and
Nf fundamental quark and antiquark multiplets.

It was shown in [7, 8] that for the class of N = 1 gauge theories con-
sidered here, contributions to the effective superpotential come only from
the zero-momentum planar diagrams of the theory, which are counted by an
associated matrix integral. In this section we use this matrix model to derive
the generating function of planar diagrams for the theory with Nf massive
quarks, and recover the known expression for the quark contributions to the
superpotential in terms of period integrals of the spectral curve. It is then
easy to see how taking Nf = 2Nc fundamental quarks causes the divergences
of the Nf = 0 period integral to cancel, and therefore the massive quarks
regularize the superpotential computation.

Thus, the matrix model gives a perturbative gauge theory context to
this result; we see that the combinatorics of planar Feynman diagrams with
one quark boundary subtracts the short-distance divergences of the effective
superpotential calculation.

3.1 Effective superpotentials from matrix models

The effective superpotential W (S) has been studied using matrix models in
a large number of papers. In particular, the U(N) theory with tree-level
superpotential
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Wtree = WΦ(Φ) + µQ̃Q + gQ̃ΦQ (31)

where Q is a fundamental chiral superfield and Q̃ its conjugate, has been
studied for WΦ(Φ) = 1

2mTrΦ2 in [14, 15]. We will derive the solution to the
matrix model for a general WΦ using the combinatorics of planar diagrams,
focusing on the contributions of the quarks to the effective superpotential.

It was shown in [14] that perturbative contributions to the gauge theory
effective superpotential come from planar diagrams of the large-N matrix
model with 0 and 1 quark boundary:

W (S) = Nc
∂Fχ=2

∂S
+ NfFχ=1 (32)

Contributions to the first term come only from Φ self-interactions, so their
combinatorics are the same as for the theory without quarks. Diagrams with
one external boundary can be counted by decomposing the counting problem
into two parts: the combinatorics of the Φ diagrams on the interior of the
disc, and the combinatorics of the boundary of the disc.

The first problem is equivalent to counting the planar n-point Green’s
functions Gn(gi) of the theory without quarks (i.e planar Φ diagrams –
possibly disconnected – with n external Φ legs). This problem was solved in
[17], as follows:

By definition,

Gn(gi) = 〈TrΦn〉 =
∫ b

a
dλ y(λ)λn (33)

where the second equality follows from the change of variables from the ma-
trix integral to the eigenvalue basis and a, b are the endpoints of the eigen-
value branch cut. In other words, the sum of the planar Greens functions at
each order are given by the corresponding moment of y(λ).

The resolvent of the matrix model is given by

ω(λ) =
1
2
(W ′(λ) −

√
W ′(λ)2 + fn−1(λ)) (34)

Consistency with the classical limit requires that it has asymptotic behavior
ω(x) ∼ S/x as x → ∞. In terms of the eigenvalue density ρ(λ), the resolvent
can be rewritten as

ω(x) = gs

∫ ∞

−∞

ρ(λ)dλ

λ − x
(35)
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which implies that

ρ(λ) =
1

2πigs
(ω(λ + i0) − ω(λ − i0)) =

1
4πigs

(y(λ + i0) − y(λ − i0)). (36)

i.e the eigenvalue density is given by the discontinuity of the resolvent across
its branch cuts.

The generating function for the Greens functions is

φ(j) =
∞∑

k=0

jkGk =
1
j
ω(

1
j
) (37)

where we have summed the geometric series in λ coming from (33), and
converted the integral to a contour integral, making use of (35) and (36).

To include the combinatorics of the boundary requires multiplying by
(k−1)!

k! = 1
k at order k in the expansion of G, to take into account the (k−1)!

distinct ways to connect a boundary quark with a leg of the internal Greens
function3, and the 1

k! coming from the expansion of eS to order k. The factor
1
k can be incorporated into (37) simply by integrating it:

Π(j) =
∫

1
j2

ω(
1
j
)dj

= −
∫

ω(x)dx

= −1
2

∫
(W ′(x) −

√
W ′(x)2 + fn−1(x))dx (38)

where we have changed variables x = 1
j and used the definition of ω(x).

The factors of j count the number of external legs of the Greens function;
therefore terms of order jk are associated to k powers of the Yukawa coupling
g, and k quark propagators 1

M to connect up the k external quarks on the
boundary. Therefore the one-boundary contribution to the matrix integral
is given by

Fχ=1 = −1
2

∫ Λ0

M
(W ′(x) −

√
W ′(x)2 + fn−1(x))dx

= −
∫ Λ0

M
ω(x)dx (39)

3At first sight, it looks like an arbitrary connection of a boundary leg to an internal leg
can make the overall graph non-planar, however we can always perform a corresponding
crossing operation on the internal part of the diagram to undo this non-planarity.
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where we have regularized the log-divergent integral by a cut-off Λ0. This is
the usual formula for the contribution of a fundamental field of mass M to
the effective superpotential [1, 18, 19], but we have derived it perturbatively
by counting the planar Feynman diagrams of the gauge theory with one
boundary.

3.2 UV cut-off as regularization by Nf = 2Nc fundamental
quarks

As mentioned in section 2.1, the effective superpotential for the Nf = 0
theory (in a maximally confining vacuum) is given by

W ∼ −2Nc

∫ ∞

µ
ω + τS (40)

where the integral is formally divergent and is usually cut off at a point Λ0.
As we showed in the previous section, introducing Nf fundamentals gives
the (again formally divergent) contribution

WNf
∼

Nf∑
i=1

∫ ∞

mi

ω (41)

However, when Nf = 2Nc, the contours combine and the integration do-
mains are now finite, so the divergence of the integrals have been regularized.
When all mi are equal we may write mi ≡ Λ0 and we can explicitly see the
role of the 2Nc fundamental fields in implementing the cut-off of the Nf = 0
integral: they act as regulators for the UV divergences of the calculation, by
removing the divergences of the integral. This is physically pleasing, since
the gauge theory with an adjoint chiral superfield and Nf = 2Nc funda-
mentals has vanishing beta function in the limit when all of the fields are
effectively massless, i.e at energy scales much greater than their mass. Thus,
the gauge theory has a nontrivial UV conformal fixed point, and is free from
short-distance singularities.

In terms of the additional microscopic degrees of freedom we are forced
to add, the tree level superpotential of the gauge theory is modified:

Wtree(Φ) → Wtree(Φ) +
2Nc∑
i=1

Λ0Q̃
iQi + Q̃iΦQi (42)
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where Qi are the new “quark” superfields, and Q̃i are their conjugate an-
tiquarks, and we have normalized the coefficient of the Yukawa interaction
to 1 (the Yukawa coupling can be absorbed into the mass parameters mi by
redefining the fields, since we are not interested in the kinetic terms).

Note that the same divergent integral (40) appears in the evaluation of
the Nf = 0 matrix model. Therefore, the matrix model is also implicitly
regularized by 2Nc quarks. It has been argued [8] that the matrix model
(and string theory) calculation is naturally embedded in U(N + k|k) (this
is the origin of the discrepancies that can appear in certain cases in the
matrix model compared to the gauge theory). This is an additional UV
completion that is not necessary from the field theory approach of taking
N = 2 Yang-Mills for a specific gauge group G = U(N), factorizing the
curve and deforming to N = 1. Since the matrix model calculation still
involves cutting off a log-divergent period integral, this is also implemented
physically by introducing Nf = 2Nc massive quarks. In other words, there
are two UV completions needed to make the matrix model well-defined in
the UV.

As we have seen in the example of U(2), when Λ0 is taken to be large
but finite, it gives finite (but small) corrections to the expression for the
effective superpotential W (S). Therefore, the vacuum expectation value
for the gaugino bilinears 〈Si〉 will be perturbed from that of the theory
we started with (N = 1 Yang-Mills theory with a massive adjoint and no
fundamental matter). In other words, in terms of the N = 1 curve (3), the
presence of the cut-off at a finite distance from the cuts cause the size and
center of the cuts to be perturbed. Because of this deformation, it will turn
out that this N = 1 curve cannot be obtained by factorizing the SW curve
of pure N = 2 Yang Mills.

Therefore, in regularizing the Nf = 0 theory by imposing a finite cut-off
on the divergent integral, we have gone off-shell (i.e the vacua of this theory
do not solve the equations of motion of the Nf = 0 theory). Physically,
this is because the presence of the cutoff is equivalent to introducing new
physical degrees of freedom that contribute to the gaugino condensates. This
amounts to embedding the Nf = 0 theory in a larger theory with Nf = 2Nc

massive quark flavors; it is only in the limit of infinite quark mass (infinite
cut-off) that the effects of the quarks on the vacuum structure of the theory
decouple and we approach the on-shell vacua of the Nf = 0 theory.

In practice we can think of the effective superpotential for 0 ≤ Nf ≤ 2Nc

fundamentals (as computed using the matrix model, or the technique of [1])
as always being generated by the UV-finite theory with 2Nc fundamental
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fields, with masses that are either kept finite or which are taken to infinity
at the end of the calculation and decouple from the theory. In other words,
if we have Ñf fundamental fields of finite mass, then the remaining 2Nc−Ñf

are of mass Λ0 � m. Therefore:

Weff ∼ −2Nc

∫ ∞

µ
ω +

Ñf∑
i=1

∫ ∞

mi

ω + (2Nc − Ñf )
∫ ∞

Λ0

ω

= −2Nc

(∫ ∞

µ
ω −

∫ ∞

Λ0

ω

)
−

Ñf∑
i=1

(∫ ∞

Λ0

ω −
∫ ∞

mi

ω

)

= −2Nc

∫ Λ0

µ
ω +

Ñf∑
i=1

∫ Λ0

mi

ω (43)

and all integrals are finite. We can then decouple the quarks of mass Λ0

by taking Λ0 → ∞, and using the results of section 2.3 and 3.1 we find the
following expression for Weff :

Weff = Nc

(
b0 + µc1 log(

2Λ0

µ
)
)

+

Nf∑
i=1

(
µc1

2

(
log(ξ(mi)) − log(

2Λ0

µ
)
)

+ [W (ξ(mi))]−
)

+ τS

= Ncb0 +
µc1

2
log

(
(2Λ0)2Nc−Nf

∏Nf

i=1 ξ(mi)
µ2Nc−Nf

)

+
Nf∑
i=1

[W (ξ(mi))]− + τS

= Ncb0 +
µc1

2
log

⎛
⎝(2Λ0)2Nc−Nf

∏Nf

i=1 mi

µ2Nc

Nf∏
i=1

(
1 +

√
1 − (

µ

mi
)2
)⎞⎠

+
Nf∑
i=1

[W (ξ(mi))]− + τS

= Ncb0 +
µc1

2
log

⎛
⎝22Nc−Nf Λ̃2Nc

µ2Nc

Nf∏
i=1

(
1 +

√
1 − (

µ

mi
)2
)⎞⎠

+
Nf∑
i=1

[W (ξ(mi))]− (44)
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where we used the scale-matching relation Λ̃2Nc = Λ2Nc−Nf
∏

i mi. Using
the definitions (15) and writing explicit expressions for the coefficients bk,
this can be written as:

Weff = Nc

�n+1
2

�∑
i=1

(
2i
i

)
g2i

2i

(µ

2

)2i

+S log

⎛
⎝22Nc−Nf Λ̃2Nc

µ2Nc

Nf∏
i=1

(
1 +

√
1 − (

µ

mi
)2
)⎞⎠

+
Nf∑
i=1

n+1∑
k=1

gk

k

(µ

2

)k
k∑

l=�k/2�+1

(
k
l

)
ξ(mi)k−2l (45)

An explicit general expression for S = S(gk, µ) can be similarly obtained,
but we will not need it here.

3.3 Extremizing the superpotential

In order to find the physical vacua, we need to extremize (45) with respect to
S. This will fix µ, the size of the cut, and give the vacuum superpotential in
terms of physical quantities. Varying with respect to S, this can be achieved
by setting

∂µ

∂S
= 0 (46)

log

⎛
⎝22Nc−Nf Λ̃2Nc

µ2Nc

Nf∏
i=1

(
1 +

√
1 − (

µ

mi
)2
)⎞⎠ = 0 (47)

i.e

µ2Nc = (2Λ̃)2Nc

Nf∏
i=1

⎛
⎝1 +

√
1 − ( µ

mi
)2

2

⎞
⎠ (48)

Thus, the logarithmic term in (45) does not contribute in the vacuum, and
the extremal superpotential is found by solving (48) to find 〈µ〉. Note that
when Nf = 0 the solution to (48) is given by taking µ = 2Λ̃ ≡ 2Λ, as claimed
in section 2.3.

When all quark masses are taken equal, mi ≡ m, (48) can be written in
the simplified form

(µ2)2Nc/Nf − (4Λ̃2µ2)Nc/Nf +
µ2

4m2
(4Λ̃2)2Nc/Nf = 0 (49)



158 EFFECTIVE SUPERPOTENTIALS, GEOMETRY AND. . .

Note that this condition is polynomial in µ2 when Nc is a multiple of Nf .

3.4 Examples

We turn now to some other examples (in all cases the quark masses are set
equal for simplicity).

3.4.1 Quadratic tree-level superpotential

The simplest tree-level superpotential of the form (42) contains a mass term
for the adjoint chiral superfield Φ:

W (Φ) =
M

2
TrΦ2 (50)

We consider arbitrary values of Nc and Nf . The gaugino bilinear takes the
simple form

S =
M

4
µ2 (51)

and we can eliminate µ from Weff(m,M,Λ, µ) to write the effective super-
potential in terms of the physical parameters and gaugino bilinear:

Weff = Nc(S + S log(
MNcΛ̃2Nc

SNc
)) + NfS log(

1 +
√

1 − 4Sα

2
)

+NfS2α
1

1 − 2Sα +
√

1 − 4Sα

= NcS(1 + log(
MNcΛ̃2Nc

SNc
)) + NfS log(

1 +
√

1 − 4Sα

2
)

−NfS(
1
2

+
√

1 − 4Sα − 1
4αS

)

(52)

where α = 1
Mm2 . This is the previously claimed result (13), first obtained

by [14]. For the special case Nc = 2, Nf = 1 the extremization condition
(49) becomes

µ8 − (4Λ̃2µ2)2 +
µ2

4m2
(4Λ̃2)4 = 0 (53)

⇔ S4 − S2Λ̄6 + SΛ̄12α = 0 (54)
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where Λ̄3 = M Λ̃2 is the scale of the theory below the mass M of the adjoint.
Excluding the unphysical solution S = 0 (which would correspond to a
vacuum with unbroken chiral symmetry, and can be ruled out on general
grounds [6]), there are three remaining solutions. Taking the limit of infinite
quark mass, α → 0, (54) degenerates further:

S2(S2 − Λ̄6) = 0 (55)

i.e two solutions S = 0 are unphysical, and the two physical solutions are
S = ±Λ̄3. At energies much lower than the mass M of the adjoint field Φ,
the theory is described by N = 1 SU(2) Yang-Mills, and we indeed obtain
the correct value of the gaugino condensates of the Veneziano-Yankielowicz
superpotential.

Keeping the mass of the fundamental fields finite gives a series of correc-
tions to the pure N = 1 result:

〈S〉 =
{

Λ̄3 − 1
2αΛ̄6 − 3

8α2Λ̄9 − 1
2α3Λ̄12 − 105

128α4Λ̄15 + . . .

−Λ̄3 − 1
2αΛ̄6 + 3

8α2Λ̄9 − 1
2α3Λ̄12 + 105

128α4Λ̄15 + . . .
(56)

Wlow =
{

2Λ̄3 − 1
2αΛ̄6 − 1

4α2Λ̄9 − 1
4α3Λ̄12 − 21

64α4Λ̄15 + . . .
−2Λ̄3 − 1

2αΛ̄6 + 1
4α2Λ̄9 − 1

4α3Λ̄12 + 21
64α4Λ̄15 + . . .

(57)

This result agrees with that of [14] (although they only explicitly considered
one of the two vacua). It shows clearly how the presence of the finite-mass
quarks perturbs the vacua of the theory away from their Nf = 0 values.

Equation (54) encodes the exact form of the effective superpotential of
this theory. In this case a closed-form expression for 〈S〉 and Wlow could also
be obtained since the cubic branch of equation (54) may be solved explicitly;
for higher-rank gauge groups the polynomial will be of degree 2Nc − 1 in S,
and can always at least be evaluated as a series expansion to any desired
order.

3.4.2 Arbitrary tree-level superpotential with Nf = Nc

In this example the extremization constraint (49) becomes quadratic in µ2,
and can be trivially solved for arbitrary tree-level superpotential W (Φ):

µ4 − (4Λm − 4Λ2)µ2 = 0, (58)
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so µ2 = 4(Λm − Λ2) (the solution µ2 = 0 is again unphysical).

When the cut in the N = 1 curve is centered away from the origin,
centering the coordinate axes on the cut introduces a corresponding shift
in the quark masses, m �→ m + c. In the following section we will see that
factorizing the U(Nc) Seiberg-Witten curve for Nf = Nc fixes c = Λ, hence
µ2 = 4Λm, and µ = 2Λ̃. Moreover, the function ξ(m + c) simplifies when
evaluated at the extremal point:

ξ(m + Λ)|µ=2Λ̃ =
Λ̃
Λ

(59)

Therefore, the expression (45) for the vacuum superpotential becomes:

Weff = Nc

⎡
⎣�n+1

2
�∑

i=1

g2i

2i

(
2i
i

)
(
µ

2
)2i

+
n+1∑
i=1

gi

i
(
µ

2
)i

i∑
k=� i

2
�+1

(
i
k

)
ξ(m + Λ)i−2k

⎤
⎥⎦

= Nc

⎡
⎣�n+1

2
�∑

i=1

g2i

2i

(
2i
i

)
Λ̃2i

+
n+1∑
i=1

gi

i

i∑
k=� i

2
�+1

(
i
k

)
Λ̃2(i−k)Λ2k−i

⎤
⎥⎦ (60)

Note that by contrast to the previous example, the effective superpotential
now has the form of a finite series.

As we discuss in the next section, we should expect to recover this result
by factorizing the Seiberg-Witten curve for N = 2 Yang-Mills with Nf mas-
sive hypermultiplets. In section 3.6 section we will solve the factorization
problem for general Nf and verify the equivalence of the resulting vacuum
superpotential for the case Nf = Nc.

Other examples can be treated similarly by solving the extremization
condition (49) to find the extremal size of the cut in the spectral curve,
and substituting the result into (45). These equations are exact, in that
they receive no further quantum corrections, but in general they can only
be solved as a series expansion.
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3.5 Effective superpotentials from Seiberg-Witten theory

In previous sections we studied the vacua of the N = 1 gauge theory directly.
These results descend from the structure of the underlying N = 2 theory one
obtains by setting Wtree = 0, and we turn our attention now to the N = 2
U(N) gauge theories with Nf fundamental hypermultiplets.

As is well-known, the vacuum structure of N = 2 gauge theories are de-
scribed by a fibration of a Riemann surface (the Seiberg-Witten curve) over
the moduli space. At points in the moduli space where the curve degener-
ates, physical degrees of freedom (monopoles, dyons or W-bosons) become
massless.

For example, the Seiberg-Witten curve of N = 2 U(N) or SU(N) pure
gauge theory is the genus N − 1 hyperelliptic curve

y2 = PN (x)2 − 4Λ2N (61)

where PN (x) = xN +
∑N

i=1 six
N−k, with s1 = 0 for the SU(N) curve, and Λ

is the dynamically generated scale of the gauge theory.

Written in N = 1 language, the effective superpotential for the N = 2
theory in the neighborhood of a point where l monopoles simultaneously
become massless is [20, 21]

W (Mm, M̃m, up,Λ) =
l∑

m=1

M̃mMmaD,m(up,Λ) (62)

where Mm are the monopole hypermultiplets, aD,m are the periods of the
Seiberg-Witten curve that determine the monopole masses, and up are the
gauge-invariant curve moduli

up =
1
p
TrΦp (63)

that parameterise the vacua of the N = 2 theory. After breaking to N = 1
by the addition of a tree-level superpotential, the Intriligator-Leigh-Seiberg
linearity principle [22] implies that the exact superpotential becomes [1]

W (Mm, M̃m, up,Λ, gp) =
l∑

m=1

M̃mMmaD,m(up,Λ) +
∑

gpup (64)
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The equation of motion for the monopole fields imposes that aD,m = 0. This
is true iff the corresponding B-cycle of the Seiberg-Witten curve degenerates,
therefore the vacua of the gauge theory are associated to a “factorization
locus” in the moduli space of the Seiberg-Witten curve, where l cycles of the
Seiberg-Witten curve simultaneously pinch off to zero volume. The equation
of motion for the up then implies that there is a nonzero monopole condensate
in the confining N = 1 vacua, i.e confinement of the N = 1 theory is
associated to monopole condensation.

The maximally-confining vacua correspond to the point in the N = 2
moduli space where all N − 1 monopoles become massless, and the Seiberg-
Witten curve degenerates completely to genus 0.

After evaluating (64) at the factorization locus, the exact effective su-
perpotential then becomes

Wlow(gp, up,Λ) =
∑

gpup|{aD,m=0} (65)

Thus, evaluation of the effective superpotential is equivalent to solving the
factorization of the spectral curve. Once we know the moduli 〈up〉 at the
factorization locus we can immediately read off the effective superpotential
corresponding to any given Wtree using (65).

The factorized Seiberg-Witten curve can be written as

y2 = G2
l (x)F2(N−l)(x) (66)

where the l double roots of the factorization correspond to the collapsed
cycles. Since these collapsed cycles correspond to monopole fields that are
frozen to a particular vacuum expectation value, they are no longer dynam-
ical and the double roots can be dropped from the factorized curve, giving a
“reduced curve” that describes the remaining low energy N = 1 dynamics.
This curve is to be identified with the N = 1 curve y2 = W ′(x)2 − fn−1(x)
studied in section 2.1.

For N = 2 U(N) or SU(N) pure gauge theory, the factorization of the
curve is achieved as follows [23]:

y2 = PN (x)2 − 4Λ2N

= 4Λ2N (TN (x)2 − 1) (67)

where TN (x) are the Chebyshev polynomials of the first kind, defined by
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TN (x ≡ cos(θ)) = cos(Nθ)

=
N

2

�N
2
�∑

r=0

(−1)r

N − r

(
N − r

r

)
(2x)N−2r (68)

which gives the expansion of cos(Nθ) in terms of cos(θ). In other words, by
tuning the parameters sk of the curve (equivalently, the gauge-invariant mod-
uli uk = 1

kTrΦk, which are related to the sk via kuk+ksk+
∑k−1

i=1 iuisk−i = 0),
we can obtain

PN (x) = 2ΛNTN (
x

2Λ
) (69)

therefore

PN (x)2 − Λ2N = ΛN (cos2(Nθ) − 1) = ΛN (sin2(Nθ))

= ΛN

√
1 − x2

4Λ2
UN−1(

x

2Λ
)2 (70)

where UN (x) are the Chebyshev polynomials of the second kind, given by

UN (x) =
�n

2
�∑

r=0

(−1)r
(

n − r
r

)
(2x)n−2r (71)

From (68) and (69) one can read off the values of the sk in this vacuum.
To convert to uk we use the product form

TN (x) = 2N−1
N∏

k=1

(x − cos(
(2k − 1)π

2N
) ≡ 2N−1

N∏
k=1

(x − xk) (72)

with

uk =
1
k

N∑
i=1

xk
i (73)

Expanding the power sum for SU(N) gives

uk =

⎧⎨
⎩

0 k odd
1
k

(
k

k/2

)
Λk k even

(74)

and therefore we have the effective superpotential
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Wlow =
∑

gi〈ui〉

=
∑ g2k

2k

(
2k
k

)
Λ2k (75)

The result for U(N) may be obtained from (75) by shifting x → x +
u1/N = x−φ in (73) to account for the non-zero trace of Φ, where the equal-
ity follows since we are in a maximally-confining U(N) vacuum, for which
classically 〈Φ〉 = diag(φ, φ, . . . , φ). Explicitly, for the maximally-confining
U(N) vacua,

up =
N

p

�p/2�∑
q=0

(
p
2q

)(
2q
q

)
Λ2qφp−2q (76)

If we wish, we can rewrite this expression in terms of the gaugino bilinear
S, by performing a Legendre transformation with respect to the correspond-
ing source log(Λ2N ) (i.e“integrating in S”) [24]:

Weff(φ, gp, S,Λ2) =
∑
p≥1

gpup(φ,Λ2 = y) + S log(
Λ2N

yN
)

= N
∑
p≥1

gp

p

�p/2�∑
q=0

(
p
2q

)(
2q
q

)
yqφp−2q

+S log(
Λ2N

yN
) (77)

Of course, this form of Weff does not contain any additional information,
but it is useful for comparison with other techniques such as the matrix
model (where S is the fundamental variable of the matrix model perturbation
expansion), and the analysis using integrable systems of [10]. Indeed, we
will recover this expression from the Lax matrix of the affine Toda system
in section 4.

3.6 Factorization of the Seiberg-Witten curve for Nf > 0

The Seiberg-Witten curve for N = 2 gauge theory with 0 ≤ Nf < 2Nc

fundamental hypermultiplets is [25]
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y2 = PNc(x)2 − 4Λ2Nc−Nf

Nf∏
i=1

(x + mi) (78)

where mi are the bare hypermultiplet masses. When Nf ≥ Nc there is an
ambiguity in the curve, and a polynomial of order Nf −Nc in x (multiplied
by appropriate powers of Λ to have well-defined scaling dimension n) may be
added to PNc(x) without changing the N = 2 prepotential. For comparison
to the results of section 3.4, we will mainly be interested in the case Nf =
Nc for which the ambiguity in PNc(x) appears at constant order and is
proportional to ΛN .

The curve (78) can be scaled to recover the Nf = 0 curve (67) by taking
the limit

Λ → 0, mi → ∞, Λ2Nc−Nf
∏

mi ≡ Λ̃2Nc (79)

with Λ̃ finite. Note that the latter identification is the scale-matching relation
of the theories above and below the mass scale of the fundamentals.

We now show how the factorization using Chebyshev polynomials can be
generalized to the hypermultiplet curve (78) (this problem has been studied
indirectly using matrix models in [26]). Define the functions

PNc(θ) =
Nf∑
i=0

νicos((Nc − i)θ)

QNc(θ) = ı

Nf∑
i=0

νisin((Nc − i)θ) (80)

Then

P 2
Nc

− Q2
Nc

=
∑

i

ν2
i + 2

∑
i�=j

νiνj(cos(iθ)cos(jθ) + sin(iθ)sin(jθ))

=
∑

i

ν2
i + 2

∑
i�=j

νiνjcos((i − j)θ) ≡ RNf
(θ) (81)

Therefore the equation
P 2

Nc
− RNf

= Q2
Nc

(82)

gives the desired factorization of the Seiberg-Witten curve, by setting cos(θ) =
x
2Λ̃

for U(N), or cos(θ) = x−Λ
2Λ̃

for SU(N), where the shift is needed to cancel
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the xN−1 term in PN (x). The parameters νi are related to the fundamental
masses mi, although the relations are polynomial in general.

This expression simplifies dramatically when Nf = Nc,mi ≡ m, and we
find

PN =
N∑

i=0

(
N
i

)
βN−icos(iθ)

= (β + eıθ)N + (β + e−ıθ)N

QN = ı

N∑
i=0

(
N
i

)
βN−isin(iθ)

= (β + eıθ)N − (β + e−ıθ)N (83)

with β = Λ/Λ̃, where Λ is the scale of the theory with flavors, and Λ̃2 =
mΛ is the parameter defined above that corresponds to the dynamical scale
of the theory in the limit where the fundamentals have been scaled out
completely. If we choose a limit where the fundamental masses become very
large compared to the scale Λ, i.e such that β becomes a small parameter,
then the curve can be treated as a small deformation of the Nf = 0 curve.

After some algebra, we obtain the following expression for PN (x):

PN (x) = 2ΛN+
N∑

i=1

i

(
N
i

)
ΛN−iΛ̃i

� i
2
�∑

r=0

(−1)r

i − r

(
i − r

r

)
(x − ∆)i−2r

Λ̃
(84)

where ∆ = 0 for U(N) and ∆ = Λ for SU(N) to cancel the first subleading
power of x. We can re-sum this expression to extract the sk. For U(N) we
find

sN−j = ΛN−j

� i−j
2

�∑
r=0

(j + 2r)
(

N
j + 2r

)
(−1)r

j + r

(
j + r

r

)(
Λ̃
Λ

)2r

+2ΛNδj,0 (85)

and for SU(N) we find
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sN−j = ΛN−j
N∑

i=1

i

(
N
i

) � i−j
2

�∑
r=0

(−1)i−j−r

i − r

(
i − r

r

)(
i − 2r

j

)(
Λ̃
Λ

)2r

+2ΛNδj,0 (86)

We now compare to the results obtained in section 3.2 based on period
integrals of the N = 1 curve. Recall that for Nf = Nc we obtained the
expression (60)

Weff = Nc

⎡
⎢⎣
�n+1

2
�∑

i=1

g2i

2i

(
2i
i

)
Λ̃2i +

n+1∑
i=1

gi

i

i∑
k=� i

2
�+1

(
i
k

)
Λ̃2(i−k)Λ2k−i

⎤
⎥⎦
(87)

From this expression can be read off the values of the gauge-invariant moduli
〈uk〉 = ∂W

∂gk
. Note that our result has the form of a finite series expansion in

β, and in the limit β = 0 we recover the superpotential (30) of the Nf = 0
theory. The uk are related to the curve parameters sk via the Newton formula

kuk + ksk +
k−1∑
i=1

iuisk−i = 0 (88)

As in section 3.5, the SU(N) moduli ũk may be obtained from the U(N)
by shifting away the trace:

ũk =
N∑

i=1

(xi − u1

N
)k (89)

Expanding the powers in (89) one finds

ũk =
1
k

⎛
⎝ k∑

j=1

(
−u1

N
)k−jj

(
k
j

)
uj + N(

−u1

N
)k

⎞
⎠ (90)

We have verified in a number of cases that the uk associated to the
sk (85) obtained from the factorized Seiberg-Witten curve agree with the
values calculated from the superpotential (87), up to a physically irrelevant
sign Λ → −Λ (which can be absorbed into the conventions used to define
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the Seiberg-Witten curve (78)) and the ambiguity in the top modulus uN at
order ΛN .

For example, the factorization for the first few U(N) curves is achieved
by:

U(2):

P2(x) = x2 + 2xΛ − 2Λ̃2 + 2Λ2

u1 = −2Λ,

u2 = 2Λ̃2 (91)

U(3):

P3(x) = x3 + 3x2Λ + x(−3Λ̃2 + 3Λ2) − 6Λ̃2Λ + 2Λ3

u1 = −3Λ,

u2 = 3(Λ̃2 +
1
2
Λ2),

u3 = 3(−Λ̃2Λ − 2
3
Λ3) (92)

U(4):

P4(x) = x4 + 4x3Λ + x2(−4Λ̃2 + 6Λ2) + x(−12Λ̃2Λ + 4Λ3)
+2Λ̃4 − 12Λ̃2Λ2 + 2Λ4

u1 = −4Λ,

u2 = 4(Λ̃2 +
1
2
Λ2),

u3 = 4(−Λ̃2Λ2 − 1
3
Λ3),

u4 = 4(
3
2
Λ̃4 + Λ̃2Λ2) (93)

which can be compared to the uk read off from (87):

u1 = NΛ, u2 = N(Λ̃2 + 1
2Λ2), u3 = N(Λ̃2Λ + 1

3Λ3),
u4 = N(3

2 Λ̃4 + Λ̃2Λ2 + 1
4Λ4)

4 Effective superpotentials from integrable systems

We begin this section by proving that the superpotential calculation of [10]
using the integrable structure of the N = 2 gauge theory (see [27] for a
review), yields the same result in the maximally-confining phase as (30),
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(77) obtained from the Nf = 0 period integral and factorization calculations.
The integrable system associated to pure N = 2 Yang-Mills theory is the
periodic Toda chain, which has Lax matrix:

L =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

φ1 y1 0 . . . 0 z
1 φ2 y2 0 . . . 0

0
. . . . . . . . . . . . 0

0
. . . . . . . . . . . . 0

0
. . . . . . . . . . . . yN−1

yN/z 0 . . . 0 1 φN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(94)

where φi, yi are the dynamical position and momentum variables of the
integrable system, whose precise definition will not be important for us (see
[27]), and z is a “spectral parameter”, an auxilliary variable not associated
to the physical system. The conserved quantities (Hamiltonians) of the
Toda system Uk = 1

kTrLk are associated to the gauge-invariant polynomials
uk = 1

kTrΦk that parametrize the moduli space of the N = 2 gauge theory.
The spectral curve of the Lax system is defined by

det(x.I − L) ≡ PN (x) + (−1)N (z + Λ2Nz−1) = 0 (95)

where PN are the polynomials defined in section 3.5. Under the change of
coordinates

y = 2z + (−1)NPN (x) (96)

the spectral curve becomes

y2 = PN (x)2 − 4Λ2N (97)

which is the standard form of the Seiberg-Witten curve of N = 2 U(N)
Yang-Mills theory.

Therefore, when we deform the N = 2 theory by turning on a tree-level
superpotential

W =
n+1∑
i=1

giui (98)

the analogous quantity in the Toda system is the corresponding function
of the conserved quantities Ui. The essence of the proposal of [10] is that
evaluating W (L) gives the exact effective superpotential of the theory4. The

4When the superpotential Wtree contains terms of degree N or higher, the spectral
parameter z that appears in the Lax matrix (94) will appear in the Uk. However, in
the quantum N = 1 gauge theory these moduli are ambiguous because the operators
TrΦk, k ≥ N receive quantum corrections, and the resolution proposed in [10] was that all
occurrences of z in the Lax superpotential W (L) should be discarded at the end of the
computation (alternatively they can be supressed to arbitrarily high orders by embedding
U(N) ⊂ U(tN)).
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factorization of the spectral curve at the points corresponding to N = 1
supersymmetric vacua translates in the integrable system to equilibrium
configurations that are stationary under the Hamiltonian flows generated
by the Uk [11].

We will now obtain the explicit form of Wlax for a given Wtree and re-
cover the result in section 3.5. For this purpose the form of the Lax matrix
(94) is slightly awkward to work with, because the z entries are not on
the same footing as the other variables. To rectify this, conjugate L by
diag(1, z1/N , z2/N , . . . , zN−1/N ) to bring it into the form:

L ∼

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

φ y
z1/N 0 . . . 0 z1/N

z1/N φ y
z1/N 0 . . . 0

0
. . . . . . . . . . . . 0

0
. . . . . . . . . . . . 0

0
. . . . . . . . . . . . y

z1/N
y

z1/N 0 . . . 0 z1/N φ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= φI +
y

z1/N
S + z1/NS−1 (99)

where S is the N × N shift matrix, satisfying SN = I.

Therefore,

Tr(Lp) = Tr
( p∑

l=0

φp−l

(
p
l

)
I

l∑
m=0

( y

z1/N

)m
z−m/NS2m−l

(
l
m

))

= N

p∑
l=0

φp−l

(
p
l

) � l
2N

�∑
a=−� l

2N
�
y(Na+l)/2z−a

(
2l

Na+l
2

)
(100)

where in the second line we have used the fact that the terms can only appear
on the diagonal if 2m − l = Na, a ∈ Z. Suppressing powers of z whenever
they appear, we obtain

Wlax = N
∑
p≥1

gp

p

�p/2�∑
q=0

(
p
2q

)(
2q
q

)
φp−2qyq + S log(

Λ2N

yN
) (101)

which recovers the expressions (30), (77) obtained using exact field theory
techniques, and by evaluating period integrals.
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4.1 Results on a new Lax matrix for Nf = Nc

The connection between N = 2 gauge theories and integrable systems can be
summarized by identifying the matrix-valued field Φ of the quantum gauge
theory with a Lax matrix for the integrable system. Therefore, if we can
evaluate 〈Φ〉 in a given vacuum, we know the value of the Lax matrix in
an equilibrium configuration of the integrable system. Knowing the values
of the moduli 〈uk〉 in the particular N = 2 vacuum gives Nc equations for
the matrix 〈Φ〉, which is enough in principle to determine 〈Φ〉 up to gauge
transformations.

In the previous section, we showed how evaluating the Toda Lax matrix in
a particular equilibrium configuration (all position and momentum variables
equal, i.e φi ≡ φ, yi ≡ y ≡ Λ̃2) allows us to recover the 〈uk〉 of the factorized
Seiberg-Witten curve. Conversely, given the 〈uk〉, we can reconstruct the
Lax matrix of the periodic Toda chain: the 〈uk〉 may be obtained from the
single matrix5

〈Φ〉 =

⎛
⎜⎜⎜⎜⎜⎝

φ Λ̃2 0 . . . 0
1 φ Λ̃2 . . . 0
...

. . . . . . . . .
...

0 . . . 1 φ 2Λ̃2

0 . . . 0 1 φ

⎞
⎟⎟⎟⎟⎟⎠ (102)

One can explicitly see from this expression how the classical value of
Φ = diag(φ1, . . . , φN ) is deformed by quantum effects, specifically the in-
teraction with the background magnetic field of the condensed monopoles,
which generates the off-diagonal terms (this can most easily be derived via
compactification to 3 dimensions, where the four-dimensional monopoles re-
duce to 3-dimensional instantons [28]).

We follow the same philosophy for the Nf = Nc vacua studied in section
3.6, and look for the matrix Φ from which the expectation values of the
moduli 〈uk〉 in the maximally-confining vacua may again be obtained by
taking the trace of powers (recall that in this case the moduli took the form
of a finite series). We therefore have a candidate for an Nc ×Nc Lax matrix
of the associated integrable system, which in these examples are spin chains
[12, 13].

5The entry with coefficient 2 exists because (102) does not contain the spectral param-
eter z (which does not have a physical meaning in the gauge theory), so we can absorb
the entry Λ̃2/z of (94) into this entry.
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We find for SU(Nc), Nf = Nc and all quark masses equal, that the moduli
〈uk〉 of the maximally confining vacuum may be obtained from the matrix

〈Φ〉 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 Λ̃2 ΛΛ̃2 Λ2Λ̃2 . . . ΛN−2Λ̃2 NΛN−1Λ̃2

1 0 Λ̃2 ΛΛ̃2 . . . ΛN−3Λ̃2 (N − 1)ΛN−2Λ̃2

0 1 0 Λ̃2 . . . ΛN−4Λ̃2 (N − 2)ΛN−3Λ̃2

. . . . . . . . . . . .
...

0 0 0 1 0 Λ̃2 3ΛΛ̃2

0 0 0 0 1 0 2Λ̃2

0 0 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(103)

Note that this reduces to the Toda Lax matrix (102) in the appropriate
scaling limit Λ → 0 (here φ = 0 for the SU(N) vacua to ensure tracelessness).
It remains an open problem to generalize this matrix to a general vacuum
and to better understand the relationship with the degrees of freedom of the
spin chain system.

5 Conclusions

We have shown that the technique of [1] for computing effective superpoten-
tials in terms of period integrals of the reduced Seiberg-Witten (or matrix
model) curve is regularized by embedding the gauge theory within the UV-
finite theory with 2Nc fundamental quarks; this implements the cut-off of
the period integral that is required to regularize the divergences of the in-
tegral. We can therefore obtain the effective superpotential for any value of
Nf < 2Nc in a uniform way by taking the mass of the unwanted quarks to
infinity and decoupling them from the low-energy theory.

The enumeration of planar diagrams with boundary (associated to gauge
theory Feynman diagrams with quark propagators) reproduces the expres-
sion for the effective superpotential in terms of contour integrals on the
N = 1 curve, in agreement with existing geometrical techniques: the inte-
gral (39) is the generating function of planar diagrams with one boundary.
Since the matrix model diagrams are in 1-1 correspondence with Feynman
diagrams of the gauge theory, this gives a perturbative gauge theory expla-
nation of the contribution to the superpotential of fundamental quarks, and
of the period integral cutoff.

We showed explicitly how to factorize the Seiberg-Witten curve for theo-
ries with fundamental hypermultiplets, in terms of Chebyshev polynomials;
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this generalizes the known Nf = 0 result. In certain cases the form of the
factorized curve is particularly simple, and we obtain formulae for the moduli
of the factorized curves.

The underlying structure of the N = 2 quantum gauge theories we have
studied (and the superpotentials of the related N = 1 theories) is that
the scalar component of the adjoint chiral superfield Φ parametrizes the
vacua of the theory, and is identified with a Lax matrix of an associated
integrable system. We generalized the Lax matrix of the periodic Toda
chain (associated to N = 2 pure gauge theory) to the theory with Nf =
Nc fundamental hypermultiplets of equal mass, in the maximally confining
vacua. It remains an open problem to generalize this new Lax matrix to
arbitrary vacua of the Nf = Nc theory.
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