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1 Introduction

Recently it has become clear that holomorphic or F-term information in
N = 1 supersymmetric gauge theories can be exactly computed using per-
turbation theory, when these terms are considered as a function of the glue-
ball superfield S [1] (for earlier work see among others [2],[3],[4],[5],[6],[7]).
Furthermore, for a large class of theories that allow a large N expansion
à la ’t Hooft [8], the field theory Feynman diagrams, computed in a back-
ground super gauge field, can be seen to reduce directly to the diagrams of
a zero-dimensional bosonic matrix model, where the matrix model poten-
tial is given by the gauge theory tree-level superpotential [9]; for a recent
alternative derivation of this fact using anomalies see [10].

One such holomorphic quantity is the effective superpotential Weff(S)
that is given by summing just the planar diagrams, even for a finite rank
gauge theory. Non-planar diagrams will in general contribute to gravitational
corrections [1]. In particular, diagrams with genus one topology, that give
the leading 1/N2 correction F1 to the matrix model free energy, contribute
to an effective curvature term of the form

1
16π2

∫
d4x F1(S)Tr R+ ∧ R+, (1.1)

with R+ the self-dual part of the Riemann curvature tensor. This induced
gravitational correction measures the back-reaction of the field theory when
it is placed in a curved background. The actual derivation along the lines
of [9] of the matrix model Feynman rules, directly from the gauge theory
Lagrangian in a curved superspace, will be presented elsewhere [11].

For exactly solvable matrix models the summation of the diagrams, of
any fixed topology, in closed form can be done in principle, although the
techniques become progressively cumbersome for high genus. One can thus
try to compare these exact answers to known properties of four-dimensional
supersymmetric gauge theories.

In this note we will compare the results for a single matrix model to the
gravitational corrections that have been computed for topological field the-
ories that are twisted versions of N = 2 supersymmetric Yang-Mills theories
[12],[13],[14],[15]. These topological field theories are used to compute the
Donaldson and Seiberg-Witten invariants of four-manifolds. The gauge the-
oretic results have been derived making use of the Seiberg-Witten solution
[16] and holomorphy and duality arguments. In this paper we will demon-
strate how these terms can also be computed using loop equations of matrix
models.
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The genus one correction is simpler for many reasons. Being a first order
correction to a semi-classical evaluation it is given by a fluctuation deter-
minant, also in the matrix model. If the matrix model is exactly solvable,
this gets often reflected in an emergent geometry, that in terms of topolog-
ical string theory arises from a geometrical transition from an open string
to a closed string description. General arguments tell us that such a dual
geometry takes the form of a non-compact Calabi-Yau three-fold. Topolog-
ical closed strings propagating on such a CY three-fold give rise to a genus
one partition function F1 that can be expressed as a generalized Ray-Singer
analytic torsion [17]

F1 =
3∑

p,q=0

p q (−1)p+q log det∆p,q, (1.2)

where ∆p,q = {∂, ∂
†} is the Laplacian acting on (p, q) forms. In the simple

class of matrix models that we consider in this paper the effective geometry
is essentially given by an affine algebraic curve, and therefore we expect for
general reasons an expression of the form

F1 = −1
2

log det ∆0

with ∆0 the (scalar) Laplacian on the algebraic curve acting on the collective
bosonic field. We will verify this is indeed the case in some cases by explicit
computation. This relation between matrix models and two-dimensional
conformal collective field theory is a much more general feature, see e.g.
[18].

The plan of this paper is the following. In section 2 we state the precise
relation between the matrix model and the gauge theory quantities relevant
for gravitational corrections. In section 3 we consider gravitational couplings
in N = 2 super Yang-Mills theories obtained by a topological twist, and make
a comparison to the matrix model result for SU(2). Then in section 4 we
analyze the general matrix model answer in terms of a collective conformal
field theory. We find that the genus one contribution can be described in
terms of twist field correlation functions with extra dressing to match the
loop equations. This will allow us to make a precise identification for general
SU(N) gauge group.

After this note was finished [19] appeared that discusses similar issues.
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2 Superpotentials and gravitational couplings

Let us first briefly review the main results of [6],[1] for the prototypical case
of a U(N) gauge theory coupled to single chiral matter field Φ in the adjoint
representation. We start with a tree-level superpotential∫

d4xd2θ Tr W (Φ), (2.1)

where the polynomial W has n distinct critical points. If we consider a
classical vacuum where one distributes Ni of the eigenvalues of Φ in the ith
critical point of W , we have a classical breaking pattern

U(N) → U(N1) × · · · × U(Nn).

The strong coupling dynamics of the corresponding quantum vacuum is cap-
tured by the effective superpotential Weff(Si) as a function of the glueball
superfields

Si =
1

32π2
TrSU(Ni)W2

α.

According to the prescription of [1] this effective superpotential is given by

Weff(S) =
∑

i

[
Ni

∂F0

∂Si
+ 2πτ0 Si

]
, (2.2)

where τ0 is the bare coupling and F0(Si) is the free energy of the corre-
sponding matrix model, obtained in a semi-classical expansion around the
classical vacuum.

This matrix model takes the form of an integral over a Ñ × Ñ matrix
Φ (here we carefully distinguish between Ñ , the rank of the matrix model,
and N , the rank of the gauge theory)

1

vol U(Ñ )

∫
dΦ exp

[
− 1

gs
Tr W (Φ)

]
= exp

⎡
⎣−∑

g≥0

g2g−2
s Fg(Si)

⎤
⎦ , (2.3)

with the identification Si = gsÑi in the ’t Hooft limit gs → 0, Ñi → ∞.
More precisely, we have

F0(S) =
1
2
S2 log(S/Λ3

0) + Fpert
0 (S). (2.4)

The first term gives rise to the Veneziano-Yankielowicz effective action of
the pure Yang-Mills theory [20],

Weff(S) = NS log(S/Λ3). (2.5)



R. DIJKGRAAF, A. SINKOVICS, M TEMÜRHAN 1159

In the matrix model this contribution to (2.4) is reproduced as the large Ñ
volume of the unitary group [5].

The second term in (2.4) is given by a sum over planar diagrams that
appear in the perturbative expansion of the matrix model. (See [21] for a
careful description of this expansion around a vacuum with a spontaneous
broken gauge symmetry.) A diagram with � index loops comes with a factor
of S�. The actual physical values of Weff and the condensates Si in the
quantum vacua are given by extremizing (2.2) with respect to the glueball
fields Si.

As we mentioned in the introduction this relation is not restricted to
planar diagrams. There is an elegant interpretation of the higher genus
diagrams that give the corrections Fg’s in terms of the coupling to a su-
pergravity background [1]. In particular, the induced gravitational effective
action obtained by putting the field theory on a curved space-time contains
the F-term

1
16π2

∫
d4x F1(S)Tr R+ ∧ R+. (2.6)

where R+ is the self-dual part of the Riemann tensor. (There is of course a
similar anti-holomorphic term F1 multiplying Tr R− ∧ R−.)

If we consider the partition function on a Euclidean four-manifold M4,
then this gravitational coupling induces a term

expF1(S)
(1
2
χ − 3

4
σ
)
, (2.7)

with χ the Euler number and σ the Hirzebruch signature of M .

Evaluating the term F1(S) in perturbation theory, one finds that it is
given exactly by the sum of diagrams with topology genus one, i.e. the
diagrams that give the leading 1/Ñ2 corrections in the large Ñ limit of the
matrix model. More precisely, F1(S) is given as

F1(S) = − 1
12

∑
i

log(Si/Λ3
0) + Fpert

1 (S). (2.8)

This expression is the gravitational analogue of (2.4). Assuming confine-
ment, so that the only the field accounted for is S, the first term has an
interpretation as an integrated form of the gravitational contribution to the
U(1) R-anomaly,

∂µJµ
5 =

1
16π2

[
1
2
TrU(Ni)F ∧ F − 1

12
Tr R ∧ R

]
. (2.9)
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Figure 1: The simplest genus one, non-planar diagram in a cubic theory —
the leading perturbative contribution to F1. The •’s indicate insertions of
the background gauge field Wα.

If one assumes that the low energy dynamics of the gauge system is
described by an effective action in which the glueball superfields Si can be
treated as elementary fields, the anomalous behaviour under the R-symmetry

S → eiθS

is reproduced by the combination of the Veneziano-Yankielowicz contribu-
tion NS log S to Weff(S) — recall that the top component of S is Tr F+∧F+

— together with the − 1
12 log S multiplying the gravitational correction. In-

cluding the complex conjugated term that muliplies log S, we see that we
pick up precisely the anomaly (2.9).

The perturbative contribution Fpert
1 to (2.8) is given by summing all

genus one diagrams. For example, in a cubic theory, with superpotential
W (Φ) = mΦ2 + gΦ3 the leading diagram is given by Figure 2 and this gives

Fpert
1 (S) =

1
2

g2

m3
S + O(S2)

Of course in the physical vacua all these expressions for F1 have to be
evaluated for those values of the Si that minimize the effective superpotential
given by the planar contribution. 1

1The genus zero diagrams can also contribute, but their contribution can be shown to
cancel at the critical point.
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3 Matrix models and N = 2 theories

Matrix model methods can be used in particular to find the celebrated solu-
tion to the pure N = 2 super Yang-Mills theory of Seiberg and Witten [16].
To describe the SU(N) gauge theory one breaks the supersymmetry down
to N = 1 by introducing a degree N + 1 tree-level superpotential Tr W (Φ)
of the adjoint chiral multiplet Φ and picks the breaking pattern

U(N) → U(1)N ,

by distributing the N eigenvalues of Φ equally among the N critical points of
W ; that is, one chooses all Ni = 1. One further decouples the diagonal U(1)
by putting the overall bare coupling τ0 = 0. The effective superpotential
then simplifies to

Weff(S) =
∑

i

∂F0

∂Si
.

In this case the planar diagrams can be exactly summed and the solution
can be written in terms of period integrals on the associated hyperelliptic
Riemann surface [6]

y2 = P (x)2 + f(x), P (x) = W ′(x) =
N∑

i=0

uix
N−i.

In this case the definition of the variables S1, . . . , SN is subtle, since they are
defined in terms of the traceless piece of a U(1) gauge field. Classically they
vanish but as operators they make sense quantum mechanically [10]. The
dependence on the Si is implicit in terms of the quantum deformation f(x),
a polynomial of degree N − 1. After solving the constraint dWeff(S) = 0,
this curve takes the familiar SW form

y2 = P (x)2 − Λ2N . (3.1)

By the introduction of the bare superpotential we have effectively localized
to a particular point of the Coulomb branch of the N = 2 theory.

To obtain the original N = 2 model one can now scale the tree-level
superpotential as W → εW and take the limit ε → 0. There are two obvious
quantities that by a scaling argument do not depend on ε and can therefore
be straightforwardly extracted from the N = 1 solution2. First, there is the

2For the cubic potential W = mΦ2 + gΦ3 this can be explicitly checked by scaling
m → εm, g → εg, S → εS. Note that in the matrix model S = gsN and therefore
gs → εgs.
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coupling matrix

τij =
∂2F0

∂Si∂Sj

of the U(1)N low-energy effective Abelian theory. Geometrically this is given
by the period matrix of the curve (3.1). The second ε-invariant quantity is
the genus one free energy F1 that gives the gravitational correction (2.6).

3.1 Gravitational coupling from topological field theory

On flat spacetime the N = 2 SU(2) gauge theory is described by the Seiberg-
Witten solution. Putting the theory on a curved manifold additional gravi-
tational terms appear in the low energy effective action. This gravitational
correction has been directly computed in the N = 2 theory — more precisely,
in a topological twisted version of the theory that computes Donaldson in-
variants. In the twisted version one modifies the action of the Lorentz group

SO(4) ∼= SU(2)+ × SU(2)−.

One replaces SU(2)+ with the diagonal subgroup of SU(2)+×SU(2)R, where
the last factor is the N = 2 internal R-symmetry group [22].

In the twisted topological theory considered on a curved four-manifold
M these interactions are restricted to the topological R ∧ R∗ and R ∧ R
terms (with R± = 1

2(R ± R∗)) proportional to the Euler number χ(M) and
the Hirzebruch signature σ(M) respectively. The gravitational couplings
contribute to the partition function with the factor

exp [b(u)χ + c(u)σ] , (3.2)

where b(u) and c(u) are functions of the parameter u on the gauge theory
moduli space.

The precise form of the functions b(u), c(u) can be inferred from ana-
lyzing the modular transformation properties of the quantum theory on the
curved manifold. Cancellation of the modular anomaly and additional input
from the singularity structure of Seiberg-Witten moduli space determines
the measure contribution [12],[13],[14],[15].

To connect these computations in topological field theory to the physical
theory we recall that for manifolds with metrics of SU(2) holonomy (hyper-
Kähler manifolds) the topological twist is invisible since there is no holonomy
in SU(2)+. We can therefore directly compare to the physical gauge theory.
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In that case the metric is pure self-dual, and we have

σ = −2
3
χ.

For example one could take M = K3 for which χ = 24 and σ = −16. So the
overall contribution to the path-integral is

exp
[(

b(u) − 2
3
c(u)

)
χ

]
.

If we compare this to (2.7), where we use that for a self-dual geometry
1
2χ− 3

4σ = χ, we have the following identification between the matrix model
and gauge theory quantities

F1(S) = b(u) − 2
3
c(u).

We will now check this relation in a number of cases. We will for convenience
put χ = 1.

3.2 The N = 2 SU(2) theory

In this case the Seiberg-Witten geometry can be described by deforming the
N = 2 theory with a tree level superpotential,

W ′(Φ) = ε(Φ2 − u). (3.3)

(For more details about the perturbative derivation of this particular case
see [21].) As described above, extremization of the effective glueball super-
potential gives the Seiberg-Witten curve for SU(2)

y2 = (x2 − u)2 − 1. (3.4)

Here the scale Λ is set to one for convenience and the factor ε is absorbed.
As we mentioned the physical quantities F1 and the coupling matrix τij are
independent of the deformation parameter ε. The curve has four branch
points at

xi = ±√
u ± 1. (3.5)

It is described by the two-cut solution of the matrix model with the potential
W (Φ) given by (3.3).

The genus one free energy for two-cut solutions in matrix models have
been explicitly computed. Here we use the relevant solution of Akemann
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[23], which is an elaboration of the methods of [24],

F1 = − 1
24

4∑
i=1

log Mi − 1
2

log |K(k)|

− 1
12

∆ +
1
4

log |(x1 − x3)(x2 − x4)|.
(3.6)

This solution was derived by an iterative genus expansion of the loop equa-
tion; we discuss this further in the next section. Here ∆ is the discriminant
of the elliptic curve (3.4)

∆ =
∏
i<j

(xi − xj)2 = 64(u2 − 1), (3.7)

and K(k) is the complete elliptic integral, where the nome k is expressed
in the modulus τ of the SW curve. The solution also depends on the first
moments of the potential that are generally defined as

Mi =
1

2πi

∮
C∞

dx
W ′(x)

(x − xi)
√∏4

i=1(x − xi)
. (3.8)

For the simple potential (3.3) the contour can be deformed to infinity, and
one gets Mi = ε.

For comparison with the gauge theory result it is useful to express F1 in
terms of the parameter of SU(2) moduli space u. The elliptic parametriza-
tion of the SW curve (3.4) can be written in terms of Jacobi θ functions
as

u =
θ4
2 + θ4

3

2(θ2θ3)2
, u2 − 1 =

θ8
4

4(θ2θ3)4
,

where the definition of the θ functions is as usual

θ2 =
∑

n∈Z q
1
2
(n+ 1

2
)2

θ3 =
∑

n∈Z q
1
2
n2

θ4 =
∑
b∈Z

(−1)nq
1
2
n2

with q = e2πiτ . A useful identity they satisfy is θ4
2 + θ4

4 = θ4
3. The complete

elliptic integral K(k) can also be expressed in θ functions as

K(k) =
π

2
θ2
3.

With these elliptic parametrization the matrix model answer for the two-cut
solution to F1 can be written as

F1 = −1
6

log ε +
1
4

log
4

π(θ2θ3)2
− 1

12
log

16 θ8
4

(θ2θ3)4
. (3.9)

The factor log ε can be absorbed in the measure.
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3.3 Comparison to the gauge theory

We now have to compare this result to the topological field theory answer
that reads [12],[13]

eb(u) = α

(
(u2 − 1)

dτ

du

)1/4

,

ec(u) = β(u2 − 1)1/8,

(3.10)

where α and β are constant coefficients. This contribution to the partition
function should match with the matrix theory computation for the corre-
sponding genus one contribution. To check this, it helps to rewrite the
gauge theory contribution as

Zgauge = eb(u)− 2
3
c(u) = A−1/2∆−1/12, (3.11)

with
A =

da

du
, ∆ = 64(u2 − 1).

Here

(u2 − 1)
dτ

du
=

i

4π

(
du

da

)2

is rewritten in terms of the “electric” period of the Seiberg-Witten curve
a. Substituting the modular parametrization of the curve in terms of θ
functions we find

∆ =
16θ8

4

(θ2θ3)4
, A =

da

du
=

1
2
θ2θ3,

Comparing with the matrix theory contribution (3.9) we find perfect agree-
ment.

3.4 SU(N) generalization

The gauge theory computation for the partition function can be generalized
for the SU(N) theory. The generalization is based on a similar analysis of
anomalies as for the SU(2) case.

At a generic point on the Coulomb branch, where the gauge symmetry is
broken to U(1)N−1, the SU(N) theory can be described by the hyperelliptic
curve

y2 = P (x)2 − 1 =
∏2N

i=1(x − xi), P (x) =
N∑

i=0

uix
N−i,

N∑
i=1

ui = 0.
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Here the ui’s are the symmetric polynomials of the roots of P (x), and xi are
the branch points of the curve. The hyperelliptic curve is a Riemann surface
of genus g = N − 1.

For a genus g Riemann surface one takes a basis of 2g homology cycles
(Ai, Bi) with canonical intersection product. The periods of the curve are
then related to a set of dual holomorphic one-forms ωi = xi−1dx/y as (we
choose the homology basis slightly different then in [14],[15] in order to make
contact with the matrix model basis)

Aij =
∮

Ai

ωj =
∂ai

∂uj+1
, Bij =

∮
Bi

ωj =
∂aD,i

∂uj+1
.

The period (or coupling) matrix τij is given as

τij =
∂aD,i

∂aj
= (BA−1)ij .

The partition function for SU(N) is a direct generalization of the corre-
sponding SU(2) contribution [14],[15]. We will write it as (discarding overall
constants)

Zgauge = A−χ/2∆σ/8, (3.12)

with

A = detAij , ∆ =
2N∏
i<j

(xi − xj)2.

Putting a self-dual metric and χ = 1 we get

Zgauge = A−1/2∆−1/12. (3.13)

To compare this result to the genus one free energy of the matrix model
we first have to explain how matrix model results can be computed using
conformal field theory.

4 Multicut solutions and conformal field theory

4.1 Loop equations and Virasoro constraints

For the one-loop free-energy for the SU(N) theory we have to solve the
corresponding matrix model with the tree-level superpotential W (Φ) with
W ′(Φ) = εP (Φ) and with the maximum number of cuts. The most efficient
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way to derive multicut solutions for matrix models is by using loop equations
and conformal field theory techniques. The method of using loop equations
to obtain the 1/N corrections in matrix models was developed in [24]. Here
we will follow closely [18] that gives a good general exposition of the relation
of these methods to conformal field theory.

We start from the partition function of the associated matrix model

Z =
1

vol U(Ñ )

∫
dΦ exp

[
− 1

gs
Tr W (Φ)

]
,

for the Ñ × Ñ matrix Φ with a general potential W (Φ). The reparametriza-
tion invariance of this integral leads directly to the so-called loop equation3.
The simplest way to derive the loop equation is taking a shift Φ → δ

(x−Φ)
where δ is a small number. This gives the equation for the loop correlator〈

ω(x)2 − 1
gs

Tr
(

W ′(Φ)
x − Φ

)〉
= 0,

where

ω(z) = Tr
1

x − Φ
=

Ñ∑
I=1

1
x − λI

is the loop operator and λI the eigenvalues of the matrix Φ. For a general
potential with coupling constants tn

W (Φ) = −
∞∑

n=1

tnΦn,

the loop equation can be rewritten as∮
dx′

2πi

1
x − x′

〈
T (x′)

〉
= 0,

where the contour includes all eigenvalues λI but excludes the point x. Here
we introduce the stress-tensor T (x) of the collective field ϕ(x)

T (x) = 1
2(∂ϕ(x))2, ϕ(x) = W (x) − 2gs Tr log

(
1

x − Φ

)
.

The loop equation can be reformulated as the Virasoro constraints [25],[26]

LnZ = 0, n ≥ −1,

Ln =
n∑

k=0

∂

∂tk

∂

∂tn−k
+

∞∑
k=0

ktk
∂

∂tn+k

3These loop equations have been recently given a gauge theoretic interpretation in [10].
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where the operators Ln satisfy (half of) the Virasoro algebra

[Ln, Lm] = (m − n)Lm+n.

The loop equation can be solved iteratively order by order making a 1/Ñ
expansion. The planar limit is usually not so hard to solve, but for the next
order solution one needs special techniques.

4.2 Planar solution and effective geometry

To solve the loop equation in the Ñ → ∞ limit, it is simplest to rewrite it
in terms of the polynomial

f(x) = 4gs

〈
Tr

W ′(Φ) − W ′(x)
Φ − x

〉

If W (x) is of degree n + 1 then the polynomial f(x) is of degree n − 1.
Denoting the classical average of the loop operator as

ωc(x) =
1

Ñ
〈ω(x)〉,

in the large Ñ limit the loop equation becomes quadratic

ωc(x)2 − 1

gsÑ
W ′(x)ωc(x) +

1

4g2
s Ñ2

f(x) = 0.

In terms of the bosonic collective field ϕ(x) we can say that this obtains a
large vacuum expectation value in the planar limit, which is the solution for
the classical Virasoro constraint. The current ∂ϕ(x) takes its classical value

∂ϕc(x) = W ′(x) − 2gsÑωc(x)

= W ′(x) − 2gsÑ
x + O (

1
x2

)
.

For our solution we have with y = ∂ϕc(x)

y2 = W ′(x)2 + f(x).

We can write this as the hyperelliptic curve

y2 =
2N∏
i=1

(x − xi). (4.1)

Since the classical field ϕ(x) changes sign around the branch points, the
expectation values of the bosonic field are given by two branches of y(x).
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Then ϕ(x) can be thought of as a single bosonic field defined on the branched
covering given by the hyperelliptic curve (4.1). The classical value of the
collective field is given as

∂ϕc(x) =
∏

i

(x − xi)1/2. (4.2)

4.3 Subleading corrections and twist fields

The subleading term F1 in the free energy is given by the Gaussian fluctua-
tions around the classical solution. As we mentioned in the introduction, by
general arguments this term is equal to −1

2 log det∆0, the Laplace operator
on the Riemann surface, and additional (dressing) terms arising from the
fluctuation of the branch points.

Instead of thinking of ϕ(x) as a field living on the hyperelliptic Riemann
surface (4.1), we can also think of it on the complex x-plane in the presence
of twist operators σ(xi) associated with the branch points xi. In the neigh-
bourhood of such a twist field the current ∂ϕ(x) is no longer single-valued
but has a branch cut in its operator product

∂ϕ(x) · σ(xi) ∼ (x − xi)−1/2τ(xi).

Here σ(x) and τ(x) are conformal fields of dimension 1/16 and 9/16 respec-
tively. A naive expression for the genus one contribution to the matrix model
would now be given by

Ztwist =
〈 2N∏

i=1

σ(xi)
〉
.

The chiral4 twist field correlation function is well-known [27],[28],[29]

Ztwist = A− 1
2

∏
i<j

(xi − xj)−1/8. (4.3)

Here
A = det(Aij)

is the determinant of the period matrix, related to the integral of the one-
forms ωi over the A-cycles

Aij =
∮

Ai

xj−1dx

y
. (4.4)

4In this expression the chiral projection is done by putting the loop momenta of the
field ϕ(x) to zero.
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For example, in the case of a two-point function we get the familiar result〈
σ(x1)σ(x2)

〉
= (x1 − x2)−1/8

expressing the fact that the conformal dimension of a Z2 twist field is 1/16.

Formula (4.3) also can be expressed as the chiral determinant of the
Laplace operator ∆0 of the twisted boson on the hyperelliptic curve

Ztwist =
(
det ∆0

)−1/2
.

4.4 Star operators

However, (4.3) is not the full answer, since as it stands this expression does
not solve the Virasoro constraints. An elegant solution to this has been given
by Kostov in terms of star operators [18].

We can associate a Hilbert space with the local complex variable near
each branch point and solve the Virasoro constraint in the vicinity of the
branch point. We have to look for an operator which creates a conformally
invariant state near the branch point. The twist operator itself does not
satisfy all the Virasoro constraints, in particular it does not satisfy L−1.
Therefore we will look for a new operator which satisfies all constraints.
Such operators are called star operators [30], and they are constructed from
the modes of the twisted bosonic field near the branch point5.

The twisted bosonic current near the branch point xi is now decomposed
into a classical and quantum part

∂ϕ(x) = ∂ϕc(x) +
∑

r∈Z+ 1
2

αr(x − xi)−r−1.

The expansion of the classical current (4.2) is

∂ϕc(x) =
∑
r≥ 1

2

µr(xk) · (x − xk)r−1.

This defines the coefficients µr(xi). The Fock vacuum for such a twist field
is defined as

|0i〉 = σ(xi)|0〉,
and it satisfies

αr|0i〉 = 0, r > 0.
5We would like to thank I. Kostov for sharing with us some unpublished work on the

construction of the star operators.



R. DIJKGRAAF, A. SINKOVICS, M TEMÜRHAN 1171

Since it depends on the position of the branch points it is not translationally
invariant. To make it invariant, one introduces the star operator

S(xi) = es(xi)σ(xi)

and assume it is defined perturbatively by a mode expansion

s(xi) =
∑
n≥0

1
n!

∑
r1...rn

sr1...rn(xi)α−r1 . . . α−rn .

The coefficients in the mode expansion are determined by imposing the con-
ditions of conformal invariance

Ln es(xi)|0i〉 = 0, n ≥ −1.

Up to 1/Ñ2 correction one finds simply an extra multiplicative factor [18]

S(xi) =
[
µ3/2(xi)

]−1/24
σ(xi).

The full genus one contribution to the free energy, obtained by solving
the loop equation including the order 1/Ñ2 corrections, is therefore given by
the correlation function of star operators, not the twist operators,

F1 = log
〈 2N∏

i=1

S(ai)
〉

= − 1
24

2N∑
i=1

log µ3/2(xi) + log Ztwist,

(4.5)

where Ztwist is the correlation function of the 2N twist fields (4.3). From
the expansion of the classical current ∂ϕc(z) we get

− 1
24

2N∑
i=1

log µ3/2(xi) = − 1
24

log
∏
i<j

(xi − xj)

So the final result for Zmatrix is then6

Zmatrix = eF1 = A−1/2∆−1/12 (4.6)

This result is in complete agreement with the gauge theory partition function
Zgauge (3.13).
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[15] M. Marino and G. W. Moore, “Integrating over the Coulomb branch
in N = 2 gauge theory,” Nucl. Phys. Proc. Suppl. 68, 336 (1998)
[arXiv:hep-th/9712062]; “The Donaldson-Witten function for gauge
groups of rank larger than one,” Commun. Math. Phys. 199, 25
(1998) [arXiv:hep-th/9802185]; “Donaldson invariants for non-simply
connected manifolds,” [arXiv:hep-th/9804104].

[16] N. Seiberg and E. Witten, “Electric-magnetic duality, monopole con-
densation, and confinement in N = 2 supersymmetric Yang-Mills the-
ory,” Nucl. Phys. B 426, 19 (1994) [Erratum-ibid. B 430, 485 (1994)]
[arXiv:hep-th/9407087].

[17] M. Bershadsky, S. Cecotti, H. Ooguri and C. Vafa, “Kodaira-Spencer
theory of gravity and exact results for quantum string amplitudes,”
Commun. Math. Phys. 165, 311 (1994) [arXiv:hep-th/9309140].

[18] I. K. Kostov, “Conformal field theory techniques in random matrix
models,” arXiv:hep-th/9907060.

[19] A. Klemm, M. Marino, and S. Theisen, “ Gravitational corrections in
supersymmetric gauge theory and matrix models,”JHEP 0303 (2003)
051 [arXiv:hep-th/0211216].

[20] G. Veneziano and S. Yankielowicz, “An Effective Lagrangian For The
Pure N = 1 Supersymmetric Yang-Mills Theory,” Phys. Lett. B 113,
231 (1982).

[21] R. Dijkgraaf, S. Gukov, V.A. Kazakov, C. Vafa, “Perturbative Analysis
of Gauged Matrix Models,” Phys. Rev. D 68 (2003) 045007 [arXiv:hep-
th/0210238].

[22] E. Witten, “Topological quantum field theory,” Commun. Math. Phys.
117 (1988) 353.

[23] G. Akemann, “Higher genus correlators for the Hermitian matrix
model with multiple cuts,” Nucl. Phys. B 482, 403 (1996) [arXiv:hep-
th/9606004].

[24] J. Ambjorn, L. Chekhov, C. F. Kristjansen and Y. Makeenko, “Matrix
model calculations beyond the spherical limit,” Nucl. Phys. B 404, 127
(1993) [Erratum-ibid. B 449, 681 (1995)] [arXiv:hep-th/9302014].

[25] R. Dijkgraaf, H. Verlinde and E. Verlinde, “Loop Equations And Vi-
rasoro Constraints In Nonperturbative 2-D Quantum Gravity,” Nucl.
Phys. B 348, 435 (1991).



1174 MATRIX MODELS AND GRAVITATIONAL CORRECTIONS

[26] M. Fukuma, H. Kawai and R. Nakayama, “Continuum Schwinger-Dyson
Equations And Universal Structures In Two-Dimensional Quantum
Gravity,” Int. J. Mod. Phys. A 6, 1385 (1991).

[27] L. J. Dixon, D. Friedan, E. J. Martinec and S. H. Shenker, “The Con-
formal Field Theory Of Orbifolds,” Nucl. Phys. B 282, 13 (1987).

[28] A. B. Zamolodchikov, “Conformal Scalar Field On The Hyperelliptic
Curve And Critical Ashkin-Teller Multipoint Correlation Functions,”
Nucl. Phys. B 285, 481 (1987).

[29] M. A. Bershadsky and A. O. Radul, “Conformal Field Theories With
Additional Z(N) Symmetry,” Sov. J. Nucl. Phys. 47, 363 (1988) [Yad.
Fiz. 47, 575 (1988)].

[30] G. W. Moore, “Matrix Models Of 2-D Gravity And Isomonodromic
Deformation,” lectures at 1990 Cargese Workshop on Random Surfaces,
Quantum Gravity and Strings, Prog. Theor. Phys. Suppl. 102, 255
(1990).


