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POSTNIKOV-STABILITY VERSUS SEMISTABILITY OF SHEAVES∗

GEORG HEIN† AND DAVID PLOOG‡

Abstract. We present a novel notion of stable objects in a triangulated category. This
Postnikov-stability is preserved by equivalences. We show that for the derived category of a projec-
tive variety this notion includes the case of semistable sheaves. As one application we compactify a
moduli space of stable bundles using genuine complexes via Fourier-Mukai transforms.
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Introduction. Let X be a polarized, normal projective variety of dimension n
over an algebraically closed field k. Our aim is to introduce a stability notion (called
Postnikov stability) for complexes, i.e. for objects of Db(X), the bounded derived
category of coherent sheaves on X .

We mention some applications of this theory: First, the purely homological defi-
nition of Postnikov stability for objects means stability is obviously conserved under
equivalences (Theorem 1). Thus we get a more conceptual framework for what is
called ‘preservation of stability’. See Section 2 for details and Subsection 2.1 for a
detailed example.

Second, the framework can produce new compactifications: while our initial Post-
nikov data C• will always consist of sheaves, by applying an equivalence φ we obtain
new Postnikov data (φ(C•)) which are in general complexes. As an example, we
mention elliptic K3 surfaces in Subsection 2.3; the Postnikov-stability approach has
been used in [4] to answer a question of Friedman [8]. Subsection 2.4 deals with
compactifications of moduli spaces of instantons.

Our first clue has been Faltings’ observation that semistability on curves can be
phrased as the existence of non-trivial orthogonal sheaves [7]. Additionally, there
is a more recent result by Álvarez-Cónsul and King showing that every Gieseker
semistable sheaf possesses a non-trivial orthogonal object, regardless of dimension [1].
This result together with the homological sheaf condition (Proposition 6) and the
homological criterion for purity (Proposition 8) yields a purely homological condition
(Theorem 12) for a complex to be isomorphic to a Gieseker semistable sheaf of given
Hilbert polynomial.

It seems only fair to point out that the results of this article in all probability
bear no connection with Bridgeland’s notion of t-stability on triangulated categories
(see [6]). His starting point about (semi)stability in the classical setting is the Harder-
Narasimhan filtration whereas, as mentioned above, we are interested in the possibility
to capture semistability in terms of Hom’s in the derived category. Our approach is
much closer to, but completely independent of, Inaba (see [15]).

On notation. We deviate slightly from common usage by writing ei for the i-th
cohomology sheaf of an object e ∈ Db(X). Derivation of functors is not denoted by
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a symbol: e.g. for a proper map f : X → Y , we denote by f∗ : D
b(X) → Db(Y ) the

exact functor obtained by deriving f∗ : Coh(X) → Coh(Y ).

Given objects a, b of a k-linear triangulated category, set Homi(a, b) :=
Hom(a, b[i]) and homi(a, b) := dimk Hom

i(a, b). For e ∈ Db(X), we put Hi(e) :=
Homi(OX , e) and hi(e) := dimHi(e). The Hilbert polynomial of e is denoted by pe;
it is defined by pe(l) = χ(e(l)) :=

∑
i(−1)ihi(e⊗OX(l)). If Z ⊂ X is a closed subset,

then e|Z := e⊗OZ denotes the derived tensor product. For a line bundle L on X , the
notation Ln will mean the n-fold tensor product of L, except for the trivial bundle,
where On

X denotes the free bundle of rank n.

P-stability. Let T be a k-linear triangulated category for some field k; we think
of T = Db(X), the bounded derived category of a normal projective varietyX , defined
over an algebraically closed field k. A Postnikov-datum or just P-datum is a finite
collection Ca, Ca−1, . . . , C0, . . . , Cb+1, Cb ∈ T of objects together with nonnegative
integers N i

j (for i, j ∈ Z) of which only a finite number are nonzero. We will write
(C•, N) for this.

Recall the notions of Postnikov system and convolution (see [9], [3], [23], [16]):
given finitely many objects Ci (suppose a ≥ i ≥ 0) of T together with morphisms
di : Ci → Ci−1 such that d2 = 0, a diagram of the form
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(where the upper triangles are commutative and the lower ones are distinguished) is
called a Postnikov system subordinated to the Ci and di. The object T0 is called the
convolution of the Postnikov system.

Definition. An object A ∈ T is P-stable with respect to (C•, N) if
(i) homi

T (Cj , A) = N i
j for all j = a, . . . , b and all i.

(ii) For j > 0, there are morphisms dj : Cj → Cj−1 such that d2 = 0 and that the
complex (C•≥0, d•) admits a convolution T0.

(iii) T0 is orthogonal to A, i.e. Hom∗
T (T0, A) = 0.

Remark.

(a) Convolutions in general do not exist, and if they do, there is no uniqueness in
general, either. There are restrictions on the Homk(Ci, Cj)’s which ensure the
existence of a (unique) convolution. For example, if T = Db(X) and all Cj are
sheaves, then the unique convolution is just the complex C• considered as an
object of Db(X).
We are using Postnikov systems only to have a notion for abstract triangulated
categories. If T is an algebraic triangulated category, i.e. comes from a dg
category, then the total complex can be formed.

(b) Note that the objects Cj with j < 0 do not take part in forming the Postnikov
system. We call the conditions enforced by these objects via (i) the passive
stability conditions. They can be used to ensure numerical constraints, like
fixing the Hilbert polynomial of sheaves. In some cases, it is useful to specify
only some of the N i

j . We will do this a few times — the whole theory runs
completely parallel, with a slightly more cumbersome notation.
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(c) In many situations there will be trivial choices that ensure P-stability. This
should be considered as a defect of the parameters (like choosing non-ample
line bundles when defining µ-stability) and not as a defect of the definition.

By the very definition of P -stability, the following statement about preservation
of stability under fully faithful functors (e.g. equivalences) is immediate.

Theorem 1. Let Φ: T → S be an exact, fully faithful functor between k-linear
triangulated categories T and S, and (C•, N) a P -datum in T . Then, an object
A ∈ T is P-stable with respect to (C•, N) if and only if Φ(A) is P-stable with respect
to (Φ(C•), N).

This shifts the viewpoint from preservation of stability to transformation of stabil-
ity parameters under Fourier-Mukai transforms. See Proposition 13 for an example.
The main result of this article is the following theorem: P-stability contains both
Gieseker stability and µ-stability.

Comparison Theorem. Let X be a smooth projective variety and H a very am-
ple divisor on X. Fix a Hilbert polynomial p. Then there is a P-stability datum (C•, N)
such that for any object E ∈ Db(X) the following conditions are equivalent:

(i) E is a µ-semistable sheaf with respect to H of Hilbert polynomial p
(ii) E is P-stable with respect to (C•, N).

Likewise, there is a P-stability datum (C′
•, N

′) such that for any object E ∈ Db(X)
the following conditions are equivalent:

(i’) E is a Gieseker semistable pure sheaf with respect to H of Hilbert polynomial p
(ii’) E is P-stable with respect to (C′

•, N
′).

The proof of this theorem occupies the next section. The actual statements are
slightly sharper; see Theorems 11 and 12. The case of surfaces was already treated in
[12].

Acknowledgements. We would like to thank Alistair King for useful comments
and the referee for valuable remarks which improved the article considerably. This
work has been supported by SFB/TR 45 “Periods, moduli spaces and arithmetic of
algebraic varieties” and by DFG-SPP 1388 “Representation theory”.

1. Proof of the Comparison Theorem. The proof proceeds in the following
steps:
1. Euler triangle and generically injective morphisms.
2. Homological conditions for a complex to be a sheaf.
3. Homological conditions for purity of a sheaf.
4. Homological conditions for semistability on curves.
5. P-stability implies µ-semistability.
6. P-stability implies Gieseker semistability.

1.1. The Euler triangle.

Lemma 2. Let U and W be k-vector spaces of finite dimension. Consider a
morphism ρ : U ⊗OPn → W ⊗OPn(1) with nonzero kernel K = ker(ρ). Then for any
integer m ≥ (dim(U)− 1)n we have H0(K(m)) 6= 0.

Proof. Write u := dim(U) and w := dim(W ) in this proof. Denoting I := im(ρ)
and C := coker(ρ), there are two short exact sequences 0 → I → W⊗OPn(1) → C → 0
and 0 → K → U ⊗OPn → I → 0. Their long cohomology sequences yield h0(I(m)) ≤
h0(W ⊗OPn(m+ 1)) = w

(
n+m+1

n

)
and h0(K(m)) ≥ h0(U ⊗OPn(m))− h0(I(m)).
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First assume w < u. This implies h0(I(m)) ≤ (u − 1)
(
n+1+m

n

)
. Since h0(U ⊗

OPn(m)) = u
(
n+m
n

)
, we get h0(U ⊗OPn(m)) > h0(I(m)) for all m ≥ (u− 1)n. Thus,

we obtain h0(K(m)) > 0 for m ≥ (u− 1)n.
Now assume w ≥ u. Then C has rank at least w−u+1, as the rank ofK is positive

by assumption. Hence there exists a subspaceW ′ ⊂ W of dimension w−u+1 such that
the resulting morphism W ′ ⊗OPn(1) → C is injective in the generic point, and hence
injective. Thus, the image of the injective morphism H0(I(m)) → H0(W ⊗OPn(m+
1)) is transversal to H0(W ′ ⊗OPn(m+1)). This implies h0(I(m)) ≤ (u− 1)

(
n+1+m

n

)

and we proceed as before.

Construction 3. The Euler triangle and objects Sm(V, a, b).

For any two objects a, b of a k-linear triangulated category T and some subspace
V ⊂ Hom(a, b) of finite dimension we define a distinguished (Euler) triangle

Sm(V, a, b) → Symm+1(V )⊗ a
θ

−→ Symm(V )⊗ b → Sm(V, a, b)[1]

where tensor products of vector spaces and objects are just finite direct sums, and θ
is induced by the natural map Symm+1(V ) → Symm(V )⊗Hom(a, b), f0 ∨ · · · ∨ fm 7→∑

i(f0 ∨ · · · f̂i · · · ∨ fm)⊗ fi. If Hom(a, b) is finite-dimensional, we use the short hand
Sm(a, b) := Sm(Hom(a, b), a, b). For any c ∈ T , there is a long exact sequence

Homk−1(b, c)⊗ Symm(V ∨) // Homk−1(a, c)⊗ Symm+1(V ∨) // Homk−1(Sm(V, a, b), c)

rrdddddd
dddddd

dddddd
dddddd

dddddd
dd

Homk(b, c)⊗ Symm(V ∨) // Homk(a, c)⊗ Symm+1(V ∨) // Homk(Sm(V, a, b), c).

Remark. In the special case where T = Db(Pn
k
) is the bounded derived category

of the projective space Pn
k
and a = OPn , b = OPn(1), V = Hom(a, b) = H0(OPn(1))

and m = 0, the above triangle comes from the Euler sequence 0 → ΩPn(1) → On+1
Pn →

OPn(1) → 0.

Lemma 4. Let T be a triangulated k-linear category with finite-dimensional
Hom’s, a, b, c ∈ T objects with Hom−1(a, c) = 0 and let V ⊂ Hom(a, b) be a sub-
space. Then the following conditions are equivalent:

(i) The natural morphism ̺v : Hom(b, c) → Hom(a, c) is injective for general v ∈
V .

(ii) Hom−1(Sm(V, a, b), c) = 0 holds for some m ≥ (dim(V )− 1)(hom(b, c)− 1).

Proof. We consider the morphism Hom(b, c) → V ∨ ⊗ Hom(a, c). Together with
the natural surjection V ∨ ⊗ OP(V ∨) → OP(V ∨)(1), this gives a morphism of sheaves
on P(V ∨):

̺ : Hom(b, c)⊗OP(V ∨) → Hom(a, c)⊗OP(V ∨)(1) .

The injectivity of ̺ is equivalent to the injectivity at all stalks, i.e. of ̺v : Hom(b, c) →
Hom(a, c) for all v ∈ V ; since ker(̺) is a subsheaf of a torsion free sheaf, the injectivity
for just one v ∈ V is enough. By Lemma 2 this is equivalent to the injectivity of

H0(̺⊗OP(V ∨)(m)) : H0(Hom(b, c)⊗OP(V ∨)(m)) → H0(Hom(a, c)⊗OP(V ∨)(m+ 1))

for m = (dim(V ) − 1)(hom(b, c) − 1). Since Hom−1(a, c) = 0, the long exact co-
homology sequence of the triangle from Construction 3 gives that the kernel of
H0(̺⊗OP(V ∨)(m)) is Hom−1(Sm(V, a, b), c).
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1.2. Sheaf conditions. Let X be a projective variety over k (in this subsection,
we only need k to be infinite) and OX(1) a line bundle corresponding to the very ample
divisor H . Let V = H0(OX(1)) the space of global sections and P := P(V ∨) = |H |
the complete linear system for H .

Our aim is to find conditions on a complex e ∈ Db(X) in terms of the Hom’s from
finitely many test objects, ensuring that e is isomorphic to a sheaf, i.e. a complex
concentrated in degree 0. These conditions only depend on the Hilbert polynomial pe
with respect to OX(1).

The numerical data. Fix non-negative integers n and v. For a polynomial
function p ∈ Q[t] with integer values, its derivative is defined as p′(t) := p(t) − p(t−
1). We also set symv(m) :=

(
m+v−1
v−1

)
, which is the dimension of Symm(V ) for a

v-dimensional vector space V .
Call a sequence (m1, . . . ,mn) of integers (p, n)-admissible if mk+1 ≥ (pk(−l) −

1)(v − 1) for l = 1, . . . , n − k where the polynomials p0, . . . ,pn−1 are defined by
p0 = p and pk+1 = symv(mk+1) · p

′
k + symv−1(mk+1 + 1) · pk. One can easily define

a (p, n)-admissible sequence by recursion: set mk+1 := max{(pk(−l)− 1)(v − 1) | l =
1, . . . , n− k}, the polynomials being defined by the above formula in each step.

Suppose that (m1, . . . ,mn) is a (p, n)-admissible sequence and that pk(−l) ≥ 0 for
all l, k ≥ 0 with l + k ≤ n. Then (m1, . . . ,mn−1) is a (p′, n− 1)-admissible sequence,
as follows from induction and unwinding the definitions. In this case, if the auxiliary
polynomials for the (p, n)-sequence are denoted p0, . . . , pn as above, then those for
the (p′, n− 1)-sequence are just p′0, . . . , p

′
n−1.

The vector bundles Gm and Sm and Fk. We denote the standard projections
by p : P × X → P and q : P × X → X . The identity in V ⊗ V ∨ = H0(OX(H)) ⊗
H0(OP(1)) = Hom(q∗OX(−H), p∗OP(1)) yields a natural morphism α : q∗OX(−H) →
p∗OP(1). The cokernel G of α is the universal divisor, i.e. G|{D}×X = OD for allD ∈ P.
We can consider q∗OX(−H) and p∗OP(1) and G as Fourier-Mukai kernels on P×X .
Then we obtain, for any object a ∈ Db(P), an exact triangle FMq∗OX(−H)(a) →
FMp∗OP(1)(a) → FMG(a). In particular, we set Gm := FMG(OP(m)). The projection
formula and base change show that the above triangle reduces to the short exact
sequence 0 → Symm(V ∨) ⊗ OX(−H) → Symm+1(V ∨) ⊗ OX → Gm → 0. Hence in
this case, Gm = R0q∗(G ⊗ p∗OP(m)) is a vector bundle and the higher direct images
vanish. The exact sequence also yields pGm⊗e = symv(m) · p′e + symv−1(m+ 1) · pe.

Let Sm := G∨
m; note that Sm = Sm(V,OX ,OX(1)) using Construction 3. As a

consequence of Lemma 4, we collect the next statement.

Corollary 5. For e ∈ Db(X) with H−1(e) = 0 and m ≥ (v−1)(h0(e(−1))−1),
the following conditions are equivalent:
(i) H−1(e|D) = 0 for general D ∈ |H | with e|D := e⊗OD (derived tensor product)
(ii) Hom−1(Sm, e) = 0
(iii) H−1(e⊗Gm) = 0.

Finally, we define another series of vector bundles by F0 := OX and Fk := Fk−1⊗Gmk
.

Proposition 6. Let X be a projective variety of dimension n and OX(1) a very
ample line bundle. Let V = H0(OX(1)) and v = dim(V ). Let p ∈ Q[t] be an integer
valued polynomial with deg(p) ≤ n. Suppose that (m1, . . . ,mn) is a (p, n)-admissible
sequence with auxiliary polynomials p1,. . . ,pn.

Assume that e ∈ Db(X) is an object such that for all l, k ≥ 0 with l + k ≤ n we
have h0(Fk(−l)⊗ e) = pk(−l) and hi(Fk(−l)⊗ e) = 0 for all i 6= 0. Then e ∼= e0 is a
sheaf with Hilbert polynomial p. Furthermore, e is 0-regular.
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Proof. We proceed by induction on the dimension n. The start n = 0 is trivial.
Let n > 0. We divide the proof into steps.

Step 1: The complex e|D is a 0-regular sheaf for general D ∈ |H |.
Let us begin by pointing out that (m1, . . . ,mn−1) is a (p′, n− 1)-admissible sequence.
Next, the graded vector spacesH∗(Fk(−l)⊗e) vanish by assumption outside of degree
0, where k, l ≥ 0 and k + l ≤ n. Hence, H∗(Fk(−l)⊗ e|D) can be nontrivial at most
in degrees 0 and −1 (where k + l < n).

We have: H−1(Fk(−l)⊗e) = 0 and H−1(Gmk+1
⊗Fk(−l)⊗e) = 0 by assumption

on e (recall Gmk+1
⊗Fk = Fk+1); alsomk+1 ≥ (v−1)(pk(−l−1)−1) with pk(−l−1) =

h0(Fk(−l− 1)⊗ e). Hence we get H−1(Fk(−l)⊗ e|D) = 0 for general D ∈ |H |, using
implication (iii)⇒(i) of Corollary 5. Thus, H∗(Fk(−l)⊗e|D) is concentrated in degree
0 and of the correct dimension h0(Fk(−l)⊗ e|D) = pk(−l)− pk(−l− 1) = p′k(−l). By
induction, e|D is a 0-regular sheaf for a general divisor D.

Step 2: The Eilenberg-Moore spectral sequence for Hi(e).
We fix a divisor D in the linear system |H | such that e|D is a sheaf. We conclude
that all homology sheaves ei in degrees i 6= 0 either vanish or have 0-dimensional
support. (Support of dimension one or higher would be detected by the ample divisor
D.) Looking at the Eilenberg-Moore spectral sequence for k = 0 and 0 ≤ l ≤ n

Ep,q
2 = Hq(e−p(−l)) ⇒ Ep+q

∞ = Hp+q(e(−l)),

we see that it has non-zero E2 terms at most in the row q = 0 and the upper column
p = 0, q ≥ 0. By assumption, we know that the E∞ terms vanish for all p+ q 6= 0.

Step 3: We have Hi(e0(−l)) = 0 for all integers i ≥ 2 and l ≤ 1.
We include Mumford’s argument [22, §14] for completeness. Recall that a sheaf E is
r-regular ifHi(E(r−i)) = 0 for all i > 0. This implies that E(r) is globally generated.
An r-regular sheaf is s-regular for s ≥ r. Both properties will be used tacitly.

Consider the short exact sequence 0 → e0(−1) → e0 → e0|D → 0. The sheaf e0|D
is 0-regular; this gives isomorphisms Hi(e0(−l − 1)) ∼= Hi(e0(−l)) for all i ≥ 2, and
l ≤ 1. The claim follows from Hi(e0(−l)) = 0 for l ≪ 0.

Step 4: The cohomology sheaves e−p vanish for all integers p /∈ {0, 2}.
We apply the last step to the Eilenberg-Moore spectral sequence: all E0,q

2 vanish
except for q ∈ {0, 1}. From Ep+q

∞ = 0 unless p + q = 0 we conclude H0(e−p) = 0
unless p ∈ {0, 2}. However, the cohomology sheaves e−p are 0-dimensional for all
p 6= 0, so we get e−p = 0 for p /∈ {0, 2}.

Step 5: We have an equality h1(e0) = h1(e0(−1)) = h0(e−2).
We consider the d2 map of our spectral sequence which gives the following exact
sequence

0 = H1(e(−l)) → H1(e0(−l))
d2−→ H0(e−2(−l)) → H2(e(−l)) = 0

for l ∈ {0, 1}. Therefore d2 is an isomorphism. Since e−2 is 0-dimensional, we have
e−2 = e−2(−1), hence h1(e0) = h0(e−2) = h0(e−2(−1)) = h1(e0(−1)).

Step 6: We have H1(e0) = 0 = H1(e0(−1)).
Again we can follow Mumford’s proof on regularity [22, page 102]. Consider for all
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l ≤ 0 the following commutative diagram

V ⊗H0(e0(−l))
α0 //

β0

��

V ⊗H0(e0(−l)|D)
α1 //

β1

��

V ⊗H1(e0(−l − 1))

β2

��

H0(e0(−l + 1))
γ0 // H0(e0(−l+ 1)|D)

γ1 // H1(e0(−l))

where the horizontal maps are induced from the triangles e0(−l − 1) → e0(−l) →
e0(−l)|D (top row) and e0(−l) → e0(−l + 1) → e0(−l + 1)|D (bottom row) and
the vertical maps correspond to composition with V = Hom(OX ,OX(1)). The 0-
regularity of e0|D implies that β1 is surjective for all l ≤ 0.

By induction we now show H1(e0(−l − 1)) ∼= H1(e0(−l)) for l ≤ 0. The start
l = 0 was done in the previous step. Given such an isomorphism for some −l, we
deduce α1 = 0. Hence α0 is surjective, so γ0 is as well. This implies γ1 = 0, so the
map H1(e0(−l)) → H1(e0(−l+1)) is injective. Its cokernel H1(e0(−l+1)|D) vanishes
by 0-regularity of e0|D, and the resulting isomorphism H1(e0(−l)) → H1(e0(−l+ 1))
keeps the induction going.

We conclude H1(e0(−1)) = H1(e0) = H1(e0(1)) = · · · = H1(e0(−l)) = 0 for
l ≪ 0.

Step 7: Conclusion: e is a sheaf, and e0 is 0-regular.
¿From the last two steps we see h0(e−2) = 0. Thus by step 4, the only cohomology
sheaf which is not zero is e0. Now we can read off the 0-regularity by definition, since
our spectral sequence degenerates and we have hi(e(−l)) = hi(e0(−l)).

1.3. Purity conditions. In this subsection, we formulate a homological purity
condition for 0-regular sheaves on a projective variety X with very ample polarization
OX(1) = OX(H). Since this condition is needed only for the Gieseker stability part
of the Comparison Theorem, the reader interested exclusively in slope stability may
skip this subsection.

Our key result for detecting 0-dimensional subsheaves is:

Lemma 7. Let E be a sheaf on a projective variety X with very ample polarization
OX(1) = OX(H). Let M = h0(E) and denote by E0 ⊂ E the maximal subsheaf of
dimension zero. Then, E0 = 0 if and only if h0(E(−M)) = 0.

Proof. If E0 6= 0, then we have h0(E(k)) 6= 0 for all k ∈ Z. So we only need
to show that h0(E(−M)) > 0 implies E0 6= 0. We consider the decreasing sequence
M = h0(E), h0(E(−1)), . . . , h0(E(−M)). If h0(E(−M)) > 0, then there is an integer
k with h0(E(−k)) = h0(E(−k − 1)) > 0. Let E′ be the image of the morphism
H0(E(−k)) ⊗ OX → E(−k). The sheaf E′ is globally generated and satisfies the
condition h0(E′(−1)) = h0(E′). A general hyperplane D ∈ |H | meets the associated
locus of E′ transversally, and thus yields a short exact sequence 0 → E′(−1) → E′ →
E′|D → 0. Since E′ is globally generated, the sections of E′ also generate E′|D.
However, all these sections come from E′(−1). Thus E′|D = 0. We conclude that the
support of E′ is of dimension zero.

Now let E be a coherent sheaf on X with Hilbert polynomial p = pE of degree d.
Assume that E is 0-regular, i.e. Hi(E(−i)) = 0 for i > 0. By [22], this implies that
E(l) is globally generated for l ≥ 0 and also that Hi(E(l)) = 0 for all i > 0, l ≥ 0.
Set M := p(0) = h0(E). We consider the dimension filtration of E

0 = E−1 ⊂ E0 ⊂ E1 ⊂ · · · ⊂ Ed = E with Ek/Ek−1 pure of dimension k.
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As E is globally generated, it gives a closed point in a Quot scheme Q := QuotpX(OM
X )

of finite type which parameterizes all 0-regular sheaves with Hilbert polynomial p.
In particular, given a coherent sheaf F on X , there exists a universal upper bound

B (depending only on F , p and H) such that B ≥ h1(F ⊗E ⊗OH1
⊗ · · · ⊗ OHm

) for
all E ∈ Q, m ∈ {0, . . . , d− 1} and Hi ∈ |H |.

Proposition 8. Let OX(1) = OX(H) and p be as above. There exists a vector
bundle F on X depending only on p and OX(1) such that for any 0-regular sheaf E
on X with Hilbert polynomial pE = p holds: E is pure if and only if Hom(F,E) = 0.

Proof. Restriction of E to a general hyperplane Hi ∈ |H | commutes with the
dimension filtration: (E|Hi

)k = Ek+1|Hi
. Coupled with Lemma 7, this shows that E

is pure if and only if H0(E(−M)⊗OH1
⊗ · · ·⊗OHm

) = 0 for all m = 0, . . . , d− 1 and
general hyperplanes Hi ∈ |H |. This condition can be checked using Lemma 4, as done
in the proof of Proposition 6: We define sequences of integers (m1,m2, . . . ,md−1) and
of vector bundles F0, F1, . . . , Fd−1 recursively by
(i) F0 := OX

(ii) m̃k ≥ h1(Fk−1⊗E(−M −1)⊗OH1
⊗· · ·⊗OHm

) for all sheaves [E] ∈ Q,
all m ∈ {0, . . . d− 1}, and all hyperplanes Hi ∈ |H |.

(iii) mk = (h0(OX(1))− 1)(m̃k − 1)
(iv) Fk = Fk−1 ⊗Gmk

where Gmk
is the vector bundle from Subsection 1.2.

(We only need condition (ii) for generic hyperplanes. Note that for almost all choices
of the Hi, the tensor product is underived, thus just a sheaf supported on an m-
codimensional complete intersection.)

Proceeding as in the proof of Proposition 6, the vanishing ofH0(E(−M)⊗F0), . . . ,
H0(E(−M)⊗Fd−1) is equivalent to the vanishing ofH

0(E(−M)), H0(E(−M)⊗OH1
),

. . . , H0(E(−M)⊗OH1
⊗· · ·⊗OHd−1

) for general hyperplanes H1, H2, . . . Hd−1 in the
linear system |H |. By Lemma 7, the last condition is equivalent to Ed−1 = 0. Setting
F := (F∨

0 ⊕ · · · ⊕ F∨
d−1)⊗OX(M) yields the required vector bundle.

1.4. Semistability on curves. Let X be a smooth projective curve of genus g
over k. Fix integers r > 0 and d. Let OX(1) be a fixed line bundle of degree one.

Theorem 9. For a coherent sheaf E on X of rank r and degree d, the following
conditions are equivalent:

(i) E is a semistable vector bundle.

(ii) There is a sheaf 0 6= F with E ∈ F⊥, i.e. Hom(F,E) = Ext1(F,E) = 0.
(iii) There exists a sheaf F on X with det(F ) ∼= OX(rd − r2(g − 1)) and

rk(F ) = r2 such that Hom(F,E) = Ext1(F,E) = 0.

Proof. The equivalence (i) ⇐⇒ (ii) is Faltings’ characterization of semistable
sheaves on curves [7]. One direction is easy: For E′ ⊂ E with µ(E′) > µ(E), we have
µ(E′ ⊗ F∨) > µ(E ⊗ F∨), hence by Riemann-Roch χ(E′ ⊗ F∨) > χ(E ⊗ F∨) = 0.
But then h0(E′ ⊗ F∨) > 0, contradicting h0(E ⊗ F∨) = 0. The refinement (i) ⇐⇒
(iii) is the content of Popa’s paper [24, Theorem 5.3].

Based on this result, we can give two Postnikov data for semistable bundles on
X . Introduce the slope µ := d/r and some further semistable vector bundles and
integers:

A := OX(r2(⌊µ⌋ − µ− 2g − 1) + ⌊µ⌋ − 3g), m1 := r(r2 + 1) (µ− ⌊µ⌋+ 2g + 1) ,

B := Or2+1
X (⌊µ⌋ − 3g), m2 := (hom(A,B)− 1)(m1 − 1) .
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Proposition 10. Let X be a smooth projective curve, (r, d) two integers and
A, B, m1, and m2 as above. For an object E ∈ Db(X) the following conditions are
equivalent:
(i) E is a semistable vector bundle of rank r and degree d.
(ii) The object E satisfies the following Postnikov conditions:

(1) hom(A,E) = hom(B,E) = m1, hom
i(A,E) = homi(B,E) = 0

for i 6= 0.
(2) There is a cone A → B → C in Db(X) with Hom∗(C,E) = 0.

(iii) The object E satisfies the following Postnikov conditions:

(1) hom(A,E) = hom(B,E) = m1, hom
i(A,E) = homi(B,E) = 0

for i 6= 0.

(2) Hom−1(Sm2(A,B), E) = 0.

Proof. (i)⇒(ii) E is semistable of degree d and rank r, hence by Theorem 9
there exists a sheaf F with det(F ) ∼= OX(rd − r2(g − 1)) and rk(F ) = r2 such that
Hom∗(F,E) = 0. This implies that F is also a semistable bundle. Thus (see [11,
Lemma 2.1]), it appears in a short exact sequence 0 → A → B → F → 0. Since
µ(E) − µ(A) > 2g − 2, we see that Homi(A,E) = 0 for i 6= 0. Using the Riemann-
Roch Theorem, we deduce that hom(A,E) = m1. The same works with B instead
of A. We eventually conclude that (1) holds. Setting C = F we obtain the object
required in condition (2).

(ii)⇒(i) The conditions (1) and (2) imply that the morphism A → B is not zero.
Since A is a line bundle, this morphism is injective; hence the distinguished triangle
of (2) corresponds to a short exact sequence of sheaves 0 → A → B → C → 0. As
the global dimension of a smooth curve is one, we have E ∼=

⊕
Ei[−i]. The condition

Hom∗(C,E) = 0 implies that all the Ei are semistable of slope d/r. If Ei 6= 0, then
Homi(A,E) 6= 0. So from condition (1) we deduce that E is a sheaf object. As
the slopes of A and B differ, we can read off the Hilbert polynomial of E0 from the
dimensions hom(A,E) and hom(B,E). Altogether, E0 is of rank r and degree d.

(ii) ⇐⇒ (iii) Any morphism α : A → B gives a distinguished triangle as in (ii).
The total homomorphism space Hom∗(C,E) is zero if and only if Hom(B,E) →
Hom(A,E) is a bijection. Because we work with finite-dimensional k-vector spaces,
this is equivalent to the injectivity of Hom(B,E) → Hom(A,E). Thus, by Lemma 4
we are done.

For a more detailed description and the relation to the Theta divisor and its base
points see [11, Theorems 2.12 and 3.3] of the first author.

1.5. P-stability implies µ-semistability.

Theorem 11. (Comparison theorem for Mumford-Takemoto semistability) For
a polarized normal projective Gorenstein variety (X,OX(1)) and for a polynomial p of
degree n = dim(X), there exist sheaves C−m, C−m+1, . . . , C2n−1 on X, and integers
N i

j such that for an object E ∈ Db(X) the following two conditions are equivalent:

(i) E is a µ-semistable sheaf concentrated in degree zero of Hilbert polyno-
mial p.

(ii) homi(Cj , E) = N i
j for all i = −m, . . . ,−1 and all j, and there exist

homomorphisms di ∈ Hom(Ci, Ci+n) for i = 0, . . . , n − 1 such that for

the complex T0 =
⊗n−1

i=0 (Ci
di−→ Ci+n) we have Hom∗(T0, E) = 0, that is

E ∈ T⊥
0 .
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Remark. Condition (ii) of the theorem states that E is P-stable for the P-datum

(C−m, . . . , C−1, B0, . . . , Bn, N) with Bk =
⊕

M∈Sn,k

n−1⊗

i=0

Ci+n·χM (i),

where Sn,k is the set of subsets of {0, . . . , n−1} with k elements; and χM (i) = 1 when
i ∈ M and zero otherwise. However, we need the morphisms between the Bk to be of
“tensor type” (i.e. as the total complex of the tensor double complex).

The sheaves C0, . . . , C2n−1 only depend on the numerical invariants whereas
the homomorphisms di ∈ Hom(Ci, Ci+n) depend on the sheaf E. However, semi-
continuity implies that if a complex T0 is orthogonal to E, then it is orthogonal to
all semistable sheaves in a Zariski open subset of the moduli space. Also, with the
construction given, the general complex T0 is a sheaf supported on a curve, and this
curve depends on E, too.

Proof. The objects C−m, . . . , C2n−1 are defined in the proof of (i)⇒(ii), in a
manner independent of E.

(i)⇒(ii) Suppose that E is a µ-semistable vector bundle with given Hilbert poly-
nomial p := pE . As semistability implies that E appears in a bounded family, there is
an integer l1 (depending only on p) such that E is l1-regular. Hence by Proposition 6
there are sheaves C−m, C−m+1, . . . , C−1 and integers N i

j such that homi(Cj , E) = N i
j

forces E to be a l1-regular sheaf of Hilbert polynomial p.
By Langer’s effective restriction theorem [19, Theorem 5.2], there is a constant

l2 such that E is µ-semistable ⇐⇒ the restriction E|Y is semistable for Y = H1 ∩
H2 ∩ · · · ∩ Hn−1 a general complete intersection of hyperplanes Hi ∈ |l2H |. By
Bertini’s theorem, we may take Y to be a smooth curve, embedded by ι : Y → X .
We set Ci := OX(−l2), and Ci+n = OX for i = 1, . . . , n − 1. The morphisms
di : OX(−l2) → OX are picked such that their cokernels are OHi

. The semistability
of ι∗E can be expressed (see Proposition 10 and its proof) by Hom∗(F, ι∗E) = 0 for
some coherent sheaf F on Y . Moreover, as shown by Popa (see Theorem 9 (iii)), we
may choose the orthogonal object F to have any determinant of a certain degree d.
As F ∈ ⊥ι∗E implies F⊕m ∈ ⊥ι∗E for any m 6= 0, and the latter direct sum has
degree m · d, we can assume that the determinant of the object orthogonal to ι∗E is
the restriction of OX(l) to Y for some integer l. By abuse of notation we write F
for a sheaf on Y with F ∈ ⊥ι∗E and det(F ) = i∗OX(l). Then the class of [F ] in the
Grothendieck group K0(Y ) can be selected from the image of ι∗ : K0(X) → K0(Y ).
Thus we find F in a short exact sequence

0 → ι∗OX(l5) → ι∗Ol3
X(l4) → F → 0.

Note, that this short exact sequence lives on Y . However, we can replace the surjection
ι∗Ol3

X(l4) → F with ι∗Ol3
X(l4 − k) → F for any k ∈ N and doing so changes the kernel

to ι∗OX(l5 − l3 · k). Hence the difference l4 − l5 can be chosen to be arbitrarily large.
Eventually (and abusing notation again), we may require that ι∗OX(l5) → ι∗Ol3

X(l4)

is the pull-back of a morphism d′0 : OX(l5) → Ol3
X(l4). Applying Serre duality (twice),

adjunction and ωY = ι∗(ωX(n− 1)), we get

0 = Hom∗
Y (F, ι

∗E) = Hom∗
Y (ι

∗E,ωY ⊗ F )∗ = Hom∗(E, ι∗(ωY ⊗ F ))∗

= Hom∗
X(ι∗(ωY ⊗ F )⊗ ω−1

X , E) = Hom∗
X(ι∗(ι

∗(ωX(n− 1))⊗ F )⊗ ω−1
X , E)

= Hom∗
X(ι∗F (n− 1), E),
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i.e. F ′ := ι∗F (n − 1) is orthogonal to E. Setting C0 := OX(l5 + n − 1), and Cn :=
Ol3

X(l4 + n− 1), and d0 := d′0 ⊗OX(n− 1): C0 → Cn, we find that F ′ is represented

by the tensor product complex
⊗n−1

i=0 (Ci
di−→ Ci+n) as claimed.

(ii)⇒(i) If E is a complex satisfying the conditions of (ii), then E is a d1-regular
sheaf by Proposition 6 and the choice of C−m, . . . C−1. Assume that there exists a

T0 =
⊗n−1

i=0 (Ci
di−→ Ci+n) such that Hom∗(T0, E) = 0. By semicontinuouity this holds

also for the general choice of di ∈ Hom(Ci, Ci+n). However, for such a general choice
the tensor product is a vector bundle on a smooth complete intersection curve C such
that the restriction E|C is a vector bundle. As we have seen before this implies that
E|C is semistable on C. Since this holds for the general curve, E is µ-semistable.

1.6. P-stability implies Gieseker semistability.

Theorem 12. (Comparison theorem for Gieseker semistability) For a polarized
projective variety (X,OX(1)) and for a given polynomial p there exist sheaves C−m,
C−m+1, . . . , C0, C1, and F on X, and integers N i

j such that for an object E ∈ Db(X)
the following three conditions are equivalent:

(i) E is concentrated in degree zero, and a Gieseker semistable sheaf of
Hilbert polynomial p.

(ii) homi(Cj , E) = N i
j , Hom(F,E) = 0 and there exists a distinguished

triangle C → C0 → C1 → C[1] in Db(X) such that Hom∗(C,E) = 0,
that is E ∈ C⊥.

(iii) homi(Cj , E) = N i
j , Hom(F,E) = 0 and Hom−1(Sm(C0, C1), E) = 0

for m ≫ 0.

Proof. (i) ⇐⇒ (ii) By Proposition 6 we can choose sheaves C−m, C−m+1, . . . , C−1

andN i
j ∈ N with j = −m, . . . ,−1 such that any object E satisfying homi(Cj , E) = N i

j

is a sheaf with Hilbert polynomial p. By Proposition 8 there exists a sheaf F such
that Hom(F,E) = 0 is equivalent to the purity of E.

Assuming these conditions on E, [1, Theorem 7.2] implies that there are objects
C0, C1 ∈ Db(X) such that the existence of the above C is equivalent to the semista-
bility of E.
(ii) ⇐⇒ (iii) Here we use that the sheaves C0 and C1 are direct sums of OX(−Ni) for
Ni ≫ 0. So Hom∗(Ci, E) is concentrated in degree zero. Now we can argue as in the
proof of (ii) ⇐⇒ (iii) in Proposition 10.

Remark. The above system of sheaves (F,C−m, . . . , C1) is a P-datum. It is
worth pointing out that the active part only consists of a single morphism, by virtue
of the theorem of Álvarez-Cónsul and King.

On the other hand, our treatment of the purity conditions in Subsection 1.3 can
be used to improve the statement of [1], as their explicit hypothesis of ’pure’ sheaf
can be phrased in homological terms.

2. Preservation of stability. The classical approach to preservation of stability
is this: let X and Y be smooth, projective varieties and consider a moduli space
MX(v) of semistable sheaves onX with fixed Mukai vector v ∈ H∗(X). If furthermore
we are given a Fourier-Mukai transform Φ: Db(X) ∼→ Db(Y ), then one might ask if
a sheaf E ∈ MX(v) is mapped under Φ to a shifted sheaf (i.e. the complex Φ(E) ∈
Db(Y ) has cohomology only in a single degree i, in which case E is called WITi; the
sheaf is called ITi if the single cohomology sheaf is even locally free). Assuming this,
one might next wonder if the resulting sheaf on Y is itself semistable with respect to
suitable numerical constraints v′ ∈ H∗(Y ) and some polarization on Y .
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The hope is to produce (possibly birational) maps Φ: MX(v) 99K MY (v
′) —

a hope that is often founded: if the Fourier-Mukai transform is of geometric origin
(given by a universal bundle, for example), then there is a plethora of results stating
that stability is preserved in this sense.

Our point is that the restriction to WIT sheaves is unnatural in the context of
derived categories. It would be much more appealing if there was a notion of stability
which is preserved by equivalences on general grounds. This would make the classical
results about preservation of stability the special case where sheaves happen to be
mapped to (shifted) sheaves again. Our notion of P-stability provides this. The
Comparison Theorem shows that semistable sheaves in MX(v) can be encoded via a
P-datum; it is then tautological that the objects of Φ(MX(v)) will be P-stable with
respect to the transformed P-datum. Hence we shift our point of view to the following
question: in which cases is the transformed P-datum of classical origin, i.e. induced
by Gieseker or µ-semistability?

2.1. Abelian surfaces. Here is a typical example, see [2, Theorem 3.34]. Let
(A,H) be a polarized Abelian surface, Â the dual Abelian surface and P ∈ Pic(A×Â)
the Poincaré bundle. This bundle gives rise to the classical Fourier-Mukai transform
FMP : Db(A) ∼→ Db(Â) of [21]. Then Ĥ = −c1(FMP(OA(H))) is a polarization for Â.

Theorem 13. If E is a µ-stable locally free sheaf on A with µ(E) = 0 and rank
r > 1, then E is IT1 and FMP(E)[1] is a µ-semistable vector bundle with respect to
Ĥ.

Proof. We are going to use the following characterization of µ-semistable sheaves
on an abelian surface (cf. [10, Theorem 3.1])

E is µ-semistable ⇐⇒ E ⊗OC is semistable for m ≫ 0, and some C ∈ |mH |

⇐⇒ Hom∗(E,F ) = 0 for some coherent sheaf F on C as above.

The first equivalence is deduced from the restriction theorem of Mehta and Ra-
manathan (see [20] or also [13], or for effective bounds the results of Langer in [19]).
The second equivalence follows from Theorem 9. For F , we can use a torsion sheaf
supported on C with a resolution by prescribed vector bundles, as in the proof of
Theorem 11. Since this C-vector bundle F is itself semistable it is an element in an
irredicible moduli space. For the general element there we have H∗(F ) = 0. Thus,
we can assume Hom∗(E,F ) = 0 and Hom∗(OA, F ) = 0. This defines a P-datum on
Db(A). We will show that the image under FMP is a P-datum on Db(Â) containing
µ-semistability for sheaves of degree 0.

For this, suppose that FMP(E)[1] is a sheaf. Fix a sheaf F as above such that
Hom∗(E,F ) = 0 = Hom∗(OA, F ). Then, FMP(F )[1] is a sheaf concentrated on a
divisor in |m rkC(F )Ĥ |. Since this sheaf is orthogonal to FMP(E)[1] this shows the µ-
semistability of the latter object. Thus, the conditions µ(E) = 0 and E µ-semistable
force FMP(E)[1] to be µ-semistable with respect to the dual polarization Ĥ.

It remains to show the vanishing of the cohomologies FMP(E)0 (step 1) and
FMP(E)2 (step 2) of the complex FMP(E). After that we prove that FMP(E)1 is
torsion free (step 3), and locally free (step 4).

Step 1: If FMP(E)0 6= 0, then we have Hom(O
Â
(−mĤ),FMP(E)0) 6= 0

for m ≫ 0. This implies Hom(O
Â
(−mĤ),FMP(E)) 6= 0 (replace FMP(E)

by a complex concentrated in non-negative degrees and use the Eilenberg-Moore
spectral sequence). Applying the inverse Fourier-Mukai transform FM

−1
P , we get
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Hom(FM−1
P (O

Â
(−mĤ)), E) 6= 0. By [21, Theorem 2.2], the inverse is FM

−1
P =

(−1)∗FMP [2]. As (−1)∗FMP(OÂ
(−mĤ))[2] is a semistable vector bundle with posi-

tive first Chern class (see [21, Proposition 3.11]), FMP(E)0 6= 0 would contradict the
semistability of E.

Step 2: Now suppose FMP(E)2 6= 0. We choose a point P ∈ supp(FMP(E)2) and
obtain a morphism FMP(E)2 → k(P ). As before this gives a morphism FMP(E) →
k(P ), and a morphism E → L−1

P on A where LP is the line bundle parameterized by
the point P . This morphism contradicts the µ-stability of E.

Step 3: By what was already proven, we know that FMP(E)[1] is µ-semistable.
Thus, to show that this sheaf is torsion free, it is enough to exclude the existence of a
subsheaf T ⊂ FMP(E)[1] with 0-dimensional support. If T 6= 0 we have H0(T ) 6= 0.
We deduce Hom(O

Â
,FMP(E)[1]) 6= 0. Applying the inverse Fourier-Mukai transform

we obtain Ext1(k(0), E) 6= 0. However, this Ext group vanishes because E was locally
free at 0 ∈ A. So we derive that T = 0.

Step 4: Finally we show that the torsion free sheaf FMP(E)[1] is a vector bun-
dle. If it was not locally free, there would be a proper inclusion FMP(E)[1]

ι
−→

(FMP(E)[1])∨∨. If P ∈ supp(coker(ι)), then we have Ext1(k(P ),FMP(E)[1]) 6= 0,
or, after application of FM−1

P , that Hom(L−1
P , E) 6= 0. But this contradicts the µ-

stability of E.

Remark. In the proof of the above theorem the µ-stability of E can be replaced
by the following weaker condition: E is µ-semistable and for all line bundles L in
Pic0(A) we have Hom(L,E) = Hom(E,L) = 0.

Fix integers r and s and let MA(r, 0, s) be the moduli space of µ-semistable
sheaves E on A of rank r > 1 and c1(E) = 0, c2(E) = s. By Theorem 13, FMP(E)[1]
is a µ-semistable (and in fact µ-stable) sheaf for µ-stable E. Hence, FMP provides an
injective map U →֒ M

Â
(s, 0, r) where U ⊂ MA(r, 0, s) is the open subset of µ-stable

sheaves. Using the inverse transform FM
−1
P provides a derived compactification which

in the case at hand is nothing but the standard compactification using µ-semistable
sheaves.

2.2. Birational moduli spaces via reversed universal bundles. Let X
and X̂ be Fourier-Mukai partners, i.e. there is an equivalence Φ: Db(X) ∼→ Db(X̂).
Assume furthermore, that M = MX(v) is a fine moduli space of stable sheaves with
given numerical invariants on X . By the Comparison Theorem we can phrase this
stability in terms of a P-datum (C•, N). Let v̂ be the transform Φ(v) of the numerical
invariants. We obtain equivalent conditions for a coherent sheaf E with numerical
invariants v from our comparison theorems and since Φ is an equivalence:

E is semistable ⇐⇒ E is P-stable for (C•, N) ⇐⇒ Φ(E) is P-stable for (Φ(C•), N).

The universal family E on X × M yields a universal family Φ(E) ∈ Db(X̂ × M).
This way, M becomes also the fine moduli space M

X̂
(v̂) with respect to the P-datum

(Φ(C•), N). Note that a sheaf E is simple if and only if Φ(E) is simple. If Φ(E)
corresponds to a sheaf for some [E] ∈ M , then this will hold on a open subset and we
obtain a birational map Φ: MX(v) 99K M

X̂
(v̂) between moduli spaces of sheaves. To

sum up:

Proposition 14. Let Φ: Db(X) ∼→ Db(X̂) be an equivalence, and MX(v) be
a fine moduli space of stable sheaves on X with numerical invariants v. If for a
point [E] ∈ MX(v) the complex Φ(E) is a sheaf, then Φ gives a birational morphism
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MX(v) 99K M
X̂
(v̂) between moduli spaces of sheaves. For an open subset U ⊂ MX(v)

the universal bundle EU on X × U gives rise to a universal bundle ÊU = Φ(EU ).

2.3. Elliptic K3 surface. Let π : X → P1 be an elliptic K3 surface with a
section σ : P1 → X . Due to the presence of the section, the relative Jacobian of π is
isomorphic to X itself. In particular, there is a relative Poincaré bundle P onX×P1X .
We will use the associated Fourier-Mukai transform Φ := FMP : Db(X) ∼→ Db(X)
which is an equivalence by standard arguments [14] or [2].

We have two divisor classes at our disposal: the fiber f = [π−1(p)] (of any point
p ∈ P1) and the section σ. They intersect as f2 = 0, f.σ = 1 and σ2 = −2; the latter
because σ ⊂ X is a smooth, rational curve.

The divisor H = σ+3f is big and effective, hence ample as X is a K3 surface. We
consider two moduli spaces of µ-semistable sheaves (with respect to H) on X . One
is the Hilbert scheme M1 := Hilb2(X) of 0-dimensional subschemes of length 2 (or
rather ideal sheaves of such); it is the moduli space of semistable sheaves of rank 1,
c1 = 0 and c2 = 2. The other is the moduli space M2 = MX(2,−σ, 0) of µ-semistable
sheaves with prescribed Chern character. For a decomposable subscheme Z ⊂ X of
length 2 supported on distinct fibers, Φ maps the twisted ideal sheaf OX(2σ)⊗IZ to
a µ-stable sheaf in M2; see [2, §6].

In this way, we obtain an isomorphism between the open set of points of Hilb2(X)
with support in different fibers and the locus Ms

2 of stable sheaves. Φ also identifies
the boundaries. An easy computation shows that for subschemes Z supported on a
single fiber, Φ(OX(2σ)⊗IZ) is a complex with nonzero cohomology in degrees 0 and
1. In other words, Φ provides a compactification of Ms

2 using genuine complexes.
In this roundabout example, the compactification coming from M1 turns out to

be the same as the classical one by coherent sheaves with a singular point. This
point of view is treated much more thoroughly in [4]. In particular, it is shown there
that birational moduli spaces MX(2, σ − tf, 1) and Hilbt(X) are not isomorphic for
t = 4. This answers a question of Friedman who had shown in [8] that the spaces are
isomorphic for t = 1 and t = 2, and posed the question for a general t.

2.4. Instanton compactifications. We follow the presentation of Bondal and
Orlov [5, §2] to certain moduli spaces of instantons. Let Q1 and Q2 be two quadrics in
P5 such that X := Q1 ∩Q2 is a smooth threefold. We consider the pencil of quadrics
spanned by Q1 and Q2; this is a projective line P1 which contains six special points
corresponding to degenerate quadrics. Let C → P1 be the covering ramified over those
six points. In [5] it is shown that C is the moduli space of odd spinor bundles and
that the Fourier-Mukai transform with kernel the universal spinor bundle give rise to
a fully faithful functor Db(C) →֒ Db(X). The right orthogonal complement Db(C)⊥

is generated by the exceptional objects OX and OX(1).
On the other hand, certain bundles of rank two and degree 0 on the curve C give

via this transform instantons. Let MC(2, 0) denote the coarse moduli space of all
such bundles and U the nonempty open subset parametrising instantons. As before,
we choose a P-datum capturing µ-stability on C and transport it via Db(C) →֒ Db(X)
to X . We obtain a natural compactification of the space U of instantons by genuine
complexes. Such compactifications are a subject of much research; our framework
provides a homological approach.

This is related to Kuznetsov’s work in [17]. A similar construction, leading to
a fully faithful functor with Db(C) replaced by a 2-Calabi-Yau category (sometimes,
but not always, coming from a K3 surface) is given in [18]
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