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DIFFERENTIAL GERSTENHABER ALGEBRAS OF GENERALIZED

COMPLEX STRUCTURES∗

DANIELE GRANDINI† , YAT-SUN POON‡ , AND BRIAN ROLLE§

Abstract. Associated to every generalized complex structure is a differential Gerstenhaber
algebra (DGA). When the generalized complex structure deforms, so does the associated DGA. In
this paper, we identify the infinitesimal conditions when the DGA is invariant as the generalized
complex structure deforms. We prove that the infinitesimal condition is always integrable. When
the underlying manifold is a holomorphic Poisson nilmanifolds, or simply a group in the general,
and the geometry is invariant, we find a general construction to solve the infinitesimal conditions
under some geometric conditions. Examples and counterexamples of existence of solutions to the
infinitesimal conditions are given.
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1. Introduction. A few years ago, the second author computed the weak Frobe-
nius structure on the moduli space of the Barannikov-Kontsevich’s extended defor-
mation [2] of the complex structure on a primary Kodaira surface [26]. Among other
observations, one could see from [26, Table (45)] that the restriction of the weak
Frobenius structure to the even part of the extended moduli space is trivial. The
parameter space of the even part of the extended moduli at the unperturbed point is
contained in

(1) ⊕k=evenH
k
J , where Hk

J = ⊕p+q=kH
q(M,∧pT 1,0)

and T 1,0 is the holomorphic tangent bundle of the complex manifold M . The com-
putation in [26] dwells in the fact that the primary Kodaira surface was chosen to be
a nilmanifold and the complex structure he worked with is invariant. Along the line
of thoughts in [25] [16], the Dolbeault cohomology could be computed by means of
algebraic methods.

Thanks to the work of Hitchin [18] and Gualtieri [17], it is now well known that the
degree-2 portion of the extended deformation is realized by deformation of generalized
geometry. While we will provide further details on generalized geometry in Section 2,
at this stage we simply note that the parameter space of generalized deformation is
the degree-2 portion of extended deformation.

(2) H2
J = H0(M,∧2T 1,0)⊕H1(M,T 1,0)⊕H2(M,O)

where O is the structure sheaf of the complex manifold M .
The key ingredient in constructing the weak Frobenius structure on extended

deformation is a variation of the exterior product structure when the concerned coho-
mology spaces vary. However, it is also known that the differential geometric object
controlling the extended deformations is the differential Gerstenhaber algebras (DGA)
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associated to each (extended) complex structure [5] [23] [24]. We will provide neces-
sary details on the construction of DGAs in Section 3. This structure contains the
exterior differential algebra as a sub-structure. In this context, we could paraphrase a
result of [26] in a context of generalized complex geometry, and say that the exterior
differential algebras along a generalized deformation of a primary Kodaira surface
is rigid, meaning that all the exterior differential algebras are quasi-isomorphic to
the unperturbed one. From this perspective, we seek a general understanding of the
rigidity of the full differential Gerstenhaber algebra structures.

Question 1. Suppose that M is a manifold with generalized complex structure
J . Let DGA(0) be the associated differential Gerstenhaber algebra. Suppose that Γ(t)
is a family of deformation of J along generalized complex structure with parameter t,
with associated differential Gerstenhaber algebra DGA(t). Under what condition will
DGA(t) be quasi-isomorphic to DGA(0)?

The infinitesimal counter-part of Γ(t) is Γ1, which represents an element in the
cohomology space H2

J . If there is a quasi-isomorphism Φ(t), depending on t, we
consider its infinitesimal version φ. The pair Γ1 and φ will be addressed as a compatible
pair. Together, they have to satisfy a set of constraints as given in Definition 1.
The main result in Section 3 is Theorem 2, which states essentially that compatible
pairs are always integrable. Therefore, answers to Question 1 above are reduced to
infinitesimal level.

In identity (2), we see that there are three special kinds of deformations to analyze.
Those from H1(M,T 1,0) are due to classical complex deformation theory. Those from
H2(M,O) are due to B-field transformations if the underlying complex structure
is Kählerian [17]. Therefore, we focus on those in the component H0(M,∧2T 1,0).
As we will explain later, this class of deformation is due to holomorphic Poisson
structures, objects under investigation from various perspectives [13] [15] [19] [20]. If
the holomorphic Poisson structure has full rank everywhere, it leads to a deformation
from a classical complex structure J to a symplectic structure Ω. If the induced
differential Gerstenhaber algebras along this deformation is rigid, then DGA(J) and
DGA(Ω) are quasi-isomorphic. It presents the complex manifold (M,J) and the
symplectic manifold (M,Ω) as a weak mirror pair in the sense of Merkulov [24]. An
investigation on such possibility also motivates this paper. Therefore, in Section 4 we
refine our analysis in Section 3 to holomorphic Poisson manifolds, and illustrate our
theory with a computation on a Hopf surface.

For nilmanifolds, i.e. the compact quotient of simply connected nilpotent Lie
groups, it is known for a very long time that the de Rham cohomology is given
by invariant elements [25]. From our current perspective, the invariant DGA with
an invariant symplectic structure on a nilmanifold is quasi-isomorphic to the full
DGA of the symplectic structure. For a large class of nilmanifolds examples, we
also know that the invariant DGA theory for invariant complex structures is quasi-
isomorphic to the DGA of the corresponding nilmanifolds [10] [16] [26] [28]. Therefore,
we reduce the theory in the previous sections in terms of invariant objects on Lie
algebras and develop a method to construct compatible pairs on a class of holomorphic
Poisson algebras in Section 5. Finally, in Section 6 we analyze all non-trivial real four-
dimensional examples. Among other observations, we conclude that the differential
Gerstenhaber algebra structures are rigid when one deforms the complex structure on
a Kodaira surface by a holomorphic Poisson structure. It extends the results in [26] on
weak Frobenius structures, at least along the degree-2 direction of the extended moduli
space. On the other hand, we also discover an example of holomorphic symplectic
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algebra on which there is no compatible pair. Therefore, a solution to Question 1 is
non-trivial.

In this notes, we assume that readers are familiar with the concepts of Lie alge-
broids and Lie bialgebroids. Otherwise, [21] and [22] are our references. On Differ-
ential Gerstenhaber algebras, we rely on [22] and [26] for their formal aspects. For
generalized complex structures, our references are [18] and [17]. Much of the computa-
tion in Section 5 and Section 6 could be found in the third author’s thesis. Therefore,
our presentation will be relatively sketchy.

2. Generalized complex structures. LetM be a smooth connected manifold
without boundary. Denote its tangent and cotangent bundle respectively by T and
T ∗. If V is a vector bundle on M , we denote its space of sections by C∞(V ). Generic
vector fields will be denoted by X and Y . One-forms are denoted by α and β. On
the bundle T ⊕ T ∗, there is a natural pairing defined by

(3) 〈X + α, Y + β〉 =
1

2
(α(Y ) + β(X)).

As this pairing is non-degenerate, it identifies the bundle T ⊕ T ∗ to its dual. We
choose the identification to be

(4) σ : T ⊕ T ∗ → (T ⊕ T ∗)∗, σ(X + α)(Y + β) = 2〈X + α, Y + β〉.

The Courant bracket [21] is the real bilinear map on C∞(T ⊕ T ∗) defined by

(5) [[X + α, Y + β]] = [X,Y ] + LXβ − LY α−
1

2
d(ιXβ − ιY α).

The Courant bracket, the non-degenerate pairing above, together with the natural
projection on the tangent component make T ⊕ T ∗ a standard example of a Courant
algebroid [11] [21].

An almost generalized complex structure is a real bundle map J : T⊕T ∗ → T⊕T ∗

such that J ◦ J = −identify and J∗ = −J . Let L be the bundle of +i-eigenvectors
with respect to J and over the complex numbers. With respect to the non-degenerate
pairing, L is maximal isotropic. So is its conjugate bundle L. The choice of the
tensorial object J with the given prescription is equivalent to the choice of maximal
isotropic subbundle L such that L ∩ L is trivial [17].

An almost generalized complex structure is said to be integrable if and only if
the space C∞(L) is closed under the Courant bracket. By complex conjugation, it
is of course equivalent to C∞(L) being closed. In such case, the structure J , or
equivalently, either the bundle L or the bundle L is said to be a generalized complex
structure. It is now well known that complex structures in the classical sense are
generalized complex. So are symplectic structures. For classical complex structure,
the complexified tangent bundle splits into the direct sum of type (1, 0) and type (0, 1)
vectors. Their related bundles are denoted by T 1,0 and T 0,1 respectively. Their dual
bundles are denoted by T ∗(1,0) and T ∗(0,1). Then the corresponding bundles L and
L∗ are

L = T 1,0 ⊕ T ∗(0,1), L∗ ∼= L = T 0,1 ⊕ T ∗(1,0).

If ω is a symplectic form on the manifold M , then the pair

L = {X − iιXω : X ∈ T }, L∗ ∼= L = {X + iιXω : X ∈ T }



194 D. GRANDINI, Y.-S. POON, AND B. ROLLE

represents an example of a generalized complex structure.
Since L is isotropic, the restriction of the Courant bracket on L makes it a Lie

algebroid whenever the generalized complex structure is integrable. As such, it has a
Lie algebroid differential acting on the exterior algebra of the dual bundle [22].

(6) ∂ : C∞(∧nL∗) → C∞(∧n+1L∗).

Using the identification as given in (4), we identify L = L∗. Then

(7) ∂ : C∞(∧nL) → C∞(∧n+1L).

Similarly, L ∼= L∗ is also a Lie algebroid. Its Lie algebroid differential is precisely the
conjugation of the above operator:

(8) ∂ : C∞(∧nL) → C∞(∧n+1L).

As noted in [21, Theorem 2.6], (L,L) forms a Lie bialgebroid. It means that for any
sections ℓ1 and ℓ2 of the bundle L,

(9) ∂[[ℓ1, ℓ2]] = [[∂ℓ1, ℓ2]]− [[ℓ1, ∂ℓ2]].

Making use of [22, Theorem 7.5.2], we deduce that the space of sections of the ex-
terior algebra generated by L, C∞(∧•L) carries the structure of a differential Gersten-
haber algebra structure, with the Courant bracket, exterior product and Lie algebroid
differential of L ∼= L∗. We denote it by

(10) DGA(J) := (C∞(∧•L), [[−,−]],∧, ∂).

In this context, the bracket on C∞(∧•L) is known as Schouten bracket [22].
The integrability implies that the restriction of the Courant bracket on C∞(L∗)

satisfies the Jacobi identity. In terms of the operator ∂, it is equivalent to ∂ ◦ ∂ = 0.
Therefore, ∂ : C∞(∧nL) → C∞(∧n+1L) determines a differential complex, and hence
generates cohomology spaces. i.e. for all k ≥ 1,

Hk
J =

ker ∂ : ∧kL→ ∧k+1L

Image ∂ : ∧k−1L→ ∧kL
.

Given the identity (9), the cohomology spaces inherit a Gerstenhaber algebra struc-
ture.

When the generalized complex structure is a classical complex structure, one
could verify that if ω is a type (0, k)-form, then ∂ω is the classical ∂-operator in
complex analysis on Cn [28]. On the other hand, if Z is a (1, 0)-vector field and X is
a (0, 1)-vector field, then

(11) ∂XZ = [Z,X ]1,0.

This is precisely the Cauchy-Riemann operator [14] [27]. The cohomology of degree-k
in this case is

(12) Hk
J = ⊕p+q=kH

q(M,∧pT 1,0).

Using Dolbeault theory, the elements in these cohomology spaces are represented by
∂-closed (0, q)-forms with coefficients in holomorphic (p, 0)-vector fields.
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On the other hand, if a generalized complex structure is defined by a symplectic
form ω, then

(13) ∂(X − iιXθ) = −2idιXθ

for all X in C∞(TC) [27]. In particular, the k-th cohomology of this complex is the
k-th complexified de Rham cohomology of the manifold M .

As a subbundle of (T ⊕ T ∗)C, the bundle L has a natural projection ρ onto the
direct summand TC. The type of a generalized complex structure at a point of the
manifold M is defined to be the complex co-dimension of the projection of L in TC
over the concerned point [17]. From the description above, one sees that the type
of a classical complex structure on a real 2n-dimensional manifold is equal to n. All
symplectic structures are type-0 generalized complex structures.

3. Deformation of generalized complex structures. A deformation of a
generalized complex structure is given by a section Γ of ∧2L [21] [17]. To be more
precise,

(14) LΓ = {ℓ+ Γ(ℓ) : ℓ ∈ L}, and LΓ = {ℓ+ Γ(ℓ) : ℓ ∈ L}.

LΓ ∩ LΓ = {0} if and only if Γ ◦ Γ does not have non-trivial fixed points [27]. The
deformed generalized complex structure (LΓ, LΓ) is integrable if and only if Γ satisfies
the Maurer-Cartan equation [21, Theorem 6.1]:

(15) ∂Γ +
1

2
[[Γ,Γ]] = 0.

The infinitesimal version of the Maurer-Cartan equation is simply ∂Γ1 = 0.
Therefore, it represents an element in the second cohomology H2

J of the differential
Gerstenhaber algebra of the unperturbed generalized complex structure J .

3.1. Deformation of associated DGA. Let δ be the Lie algebroid differential
of LΓ. Due to our natural pairing (3), it acts on the conjugate bundle LΓ. Therefore,
we have the new differential Gerstenhaber algebra

(16) DGA(JΓ) = (∧•LΓ, [[−,−]],∧, δ).

Meanwhile, for Γ sufficiently close to zero, L and LΓ are also transversal in (T ⊕
T ∗)C. By [21, Theorem 2.6], L and LΓ form a Lie bialgebroid. We could denote
the Lie algebroid differential of the Lie algebroid LΓ acting on L by ∂Γ. Since LΓ is
simply the graph of the map Γ, there is a natural map from L to LΓ. It enables one to
identify the differential ∂Γ. The computation below is a consequence of [21, Theorem
2.6] and [21, Theorem 6.1]. It should be well known to experts. We outline a proof
here for completeness. A complete proof for a case most relevant to this paper could
be found in [27].

Proposition 1. The pair L and LΓ forms a Lie bialgebroid. The Lie algebroid
differential ∂Γ for the deformed Lie algebroid LΓ acting on L is given by ∂ + [[Γ,−]].
i.e. for any section ℓ of L,

∂Γℓ = ∂ℓ+ [[Γ, ℓ]].
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Proof. By definition, the vector bundle LΓ is maximally isotropic in the Courant
algebroid (T ⊕T ∗)C. Since Γ satisfies the Maurer-Cartan equation, it follows that the
space of sections of LΓ is closed with respect to the Courant bracket. To find a more
precise description, we follow the computation in [21].

For σ ∈ C∞(L), ℓ1, ℓ2 ∈ C∞(L), define a Lie derivative by

(Lℓ1σ)ℓ2 = ρ(ℓ1)(σ(ℓ2))− σ([[ℓ1, ℓ2]]),

where ρ is the natural projection from (T ⊕ T ∗)C onto TC. The property of the Lie
derivative in algebroid theory could be found in [22]. Follow [21, Identity (23)], for
any ℓ1, ℓ2 ∈ C∞(L) define

(17) [[ℓ1, ℓ2]]Γ = LΓℓ1
ℓ2 − LΓℓ2

ℓ2 + ∂(ℓ1(Γℓ2)).

As noted in the proof of [21, Theorem 6.1], Γ satisfies the Maurer-Cartan equation if
and only if

[[ℓ1 + Γℓ1, ℓ2 + Γℓ2]] = [[ℓ1, ℓ2]] + [[ℓ1, ℓ2]]Γ + Γ
(
[[ℓ1, ℓ2]] + [[ℓ1, ℓ2]]Γ

)
.

Now we are ready to compute the Lie algebroid differential of LΓ with L as its
dual. For every ℓ ∈ C∞(L) and ℓ1, ℓ2 ∈ C∞(L),

(
∂Γℓ
)
(ℓ1 + Γℓ1, ℓ2 + Γℓ2)

= ρ(ℓ1 + Γℓ1)(ℓ(ℓ2))− ρ(ℓ2 + Γℓ2)(ℓ(ℓ1))− ℓ([[ℓ1 + Γℓ1, ℓ2 + Γℓ2]])

= ρ(ℓ1 + Γℓ1)(ℓ(ℓ2))− ρ(ℓ2 + Γℓ2)(ℓ(ℓ1))

−ℓ
(
[[ℓ1, ℓ2]] + [[ℓ1, ℓ2]]Γ + Γ

(
[[ℓ1, ℓ2]] + [[ℓ1, ℓ2]]Γ

))
.

Since the image of a section in L under Γ is a section of L and L isotropic, the above
is equal to

= ρ(ℓ1 + Γℓ1)(ℓ(ℓ2))− ρ(ℓ2 + Γℓ2)(ℓ(ℓ1))− ℓ
((
[[ℓ1, ℓ2]] + [[ℓ1, ℓ2]]Γ

))

=
(
∂ℓ
)
(ℓ1, ℓ2) + ρ(Γℓ1)(ℓ(ℓ2))− ρ(Γℓ2)(ℓ(ℓ1))− ℓ

(
[[ℓ1, ℓ2]]Γ

)
.

The proof of this proposition is completed if we could show that

[[Γ, ℓ]](ℓ1, ℓ2) = ρ(Γℓ1)(ℓ(ℓ2))− ρ(Γℓ2)(ℓ(ℓ1))− ℓ
(
[[ℓ1, ℓ2]]Γ

)
.

It is now a matter of definition of Lie derivative to show that the right hand side of
the above is equal to

ℓ2
(
[[Γℓ1, ℓ]]

)
− ℓ1

(
[[Γℓ2, ℓ]]

)
− ρ(ℓ)

(
ℓ1(Γℓ2)

)
.

Finally, the following identity always hold for any section Γ of ∧2L, ℓ of L and ℓ1, ℓ2
of L.

(18) [[Γ, ℓ]](ℓ1, ℓ2) = ℓ2
(
[[Γℓ1, ℓ]]

)
− ℓ1

(
[[Γℓ2, ℓ]]

)
− ρ(ℓ)

(
ℓ1(Γℓ2)

)

See [27] for a detailed proof for (18). Therefore, the proof of the proposition is
completed.

As far as analyzing the deformation of associated differential Gerstenhaber alge-
bras is concerned, the above observation reduces an analysis to one on deformation
of differentials. As the bundle structure could remain constant, we now focus on the
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variation from ∂ to ∂Γ, and hence denote the respective differential Gerstenhaber
algebras by DGA(∂) and DGA(∂Γ).

To compare DGA(∂Γ) with DGA(∂), we identify the constraints for them to be
homomorphic. If the homomorphism induces an isomorphism at cohomology level,
these two DGAs are said to be quasi-isomorphic. In such case, the generalized complex
structure J and the deformed one are also said to form a weak mirror pair [24], [6],
[7]. Let

Φ : L→ L

be a vector bundle homomorphism depending on Γ. It induces a homomorphism of
the exterior algebra generated by L. That is

(19) Φ(A ∧B) := Φ(A) ∧ Φ(B)

for any A,B ∈ C∞(∧•L).
It is a homomorphism of graded Lie algebras if for any A,B in C∞(∧•L),

(20) [[Φ(A),Φ(B)]] = Φ([[A,B]]).

If in addition, when the following diagram is commutative for all 0 ≤ k ≤ n,

(21)
∧kL

∂Γ−→ ∧k+1L
Φ ↓ ↓ Φ

∧kL
∂

−→ ∧k+1L,

we have a homomorphism of differential Gerstenhaber algebras

Φ : (∧•L, [[−,−]],∧, ∂Γ) → (∧•L, [[−,−]],∧, ∂).

In general, if the bundle homomorphism intertwines the differentials as in (21)
and satisfies (19), then the map Φ is an exterior differential algebra homomorphism.
If the bundle homomorphism intertwines the differentials as in (21) and satisfies (20),
the map Φ is a graded differential algebra homomorphism.

The diagram (21) above is equivalent to

(22) Φ ◦ ∂Γ = ∂ ◦ Φ.

By Proposition 3.1, that means for any section A of the bundle ∧•L,

(23) Φ(∂A+ [[Γ, A]]) = ∂(ΦA).

Suppose that Ω is a closed 2-form and L is a generalized complex structure, then

LΩ = {X + α+ ιXΩ : X + α ∈ L}

is again a generalized complex structure. This is because the closedness of Ω and its
skew-symmetry imply that the map

X + α 7→ X + α+ ιXΩ

is an automorphism of the Courant bracket [[−,−]] in (5) and the non-degenerate
bilinear pairing 〈−,−〉 in (3). This map is known as a B-field transformation by the
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closed 2-form Ω. It naturally defines an isomorphism between the DGA of the bundle
L and the DGA of the B-field transformation of L.

On infinitesimal level, deformation theory of generalized complex structures is
elliptic and a copy of Kuranishi theory follows [17]. In the spirit of Kuranishi theory,
let φ be the infinitesimal version of Φ. It is now an endomorphism from the vector
bundle L to L. The infinitesimal version of (23) becomes

(24) φ(∂A) + [[Γ1, A]] = ∂(φA),

where Γ1 is the infinitesimal deformation, representing an element in the second co-
homology H2

J . The infinitesimal version of (20) is

(25) [[φA,B]] + [[A, φB]] = φ[[A,B]].

In these expressions, the map φ is an infinitesimal version of a homomorphism of
exterior algebras. Therefore, it is an endomorphism with following property.

(26) φ(A ∧B) = (φA) ∧B +A ∧ (φB).

Now we treat φ as an element in L∗⊗L = End(L). More generally, it is a section
of End(∧nL). On the other hand, Γ1 is a section of ∧2L.

Now we summarize the above discussion with a concept and its implication to
variation of the structure of associated differential Gerstenhaber algebras.

Definition 1. Suppose thatM is a manifold with a generalized complex structure
J , whose +i-eigenbundle is L. A section Γ1 ∈ C∞(∧2L) and a section φ ∈ C∞(L∗⊗L)
form a compatible pair if ∂Γ1 = 0 and

∂(φA) − φ(∂A) = [[Γ1, A]];(27)

[[φA,B]] + [[A, φB]] = φ[[A,B]];(28)

φ(A ∧B) = (φA) ∧B +A ∧ (φB).(29)

Note that if Γ1 is in the center of the Gerstenhaber algebra, i.e. [[Γ1, A]] = 0 for
all A ∈ C∞(∧•L), then φ = 0 is an obvious solution for the above three identities.
For future reference, we note the following

Proposition 2. Suppose that M is a manifold with a generalized complex struc-
ture J , whose +i-eigenbundle is L. Let Γ1 ∈ C∞(∧2L) be a closed section: ∂Γ1 = 0.
Then (Γ1, φ = 0) form a compatible pair if and only if Γ1 is central: [[Γ1, A]] = 0 for
all A ∈ C∞(∧•L).

Theorem 1. Suppose that M is a manifold with a generalized complex structure
J , whose +i-eigenbundle is L. Suppose that Γ is an integrable deformation with
infinitesimal deformation Γ1. If there is a homomorphism Φ of the bundle L to itself
such that it generates a homomorphism from the differential Gerstenhaber algebra
of the deformation generalized complex structure to the un-perturbed one, then there
exists a compatible pair Γ1 and φ such that ∂Γ1 = 0, and up to first order, Γ is equal
to Γ1 and Φ is equal to 1 + φ.
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3.2. Integrability of compatible pairs. Given a compatible pair Γ1 and φ,
an immediate issue is whether they actually come from a deformation Γ and a homo-
morphism of DGAs. In this section, we apply the principles of Kuranishi’s recursive
method to prove that this is the case. We will divide the proof of the following theorem
in several steps.

Theorem 2. Suppose that M is a manifold with a generalized complex structure
J , whose +i-eigenbundle is L. Let Γ1 ∈ C∞(∧2L) and φ ∈ C∞(L∗⊗L) be a compatible
pair. Let t be a real variable. Define

(30) Γ(t) =

∞∑

n=1

(−1)n−1 1

n!
tnφn−1Γ1, Φ(t) =

∞∑

n=1

1

n!
tnφn.

Then Γ(t) satisfies the Maurer-Cartan equation. Moveover, if DGA(Γ(t)) represents
the Differential Gerstenhaber algebra (∧•L, [[−,−]],∧, ∂Γ(t)), then Φ(t) is a homomor-
phism from DGA(Γ(t)) to DGA(Γ(0)).

The Maurer-Cartan equation at degree-1 with respect to the variable t is simply
∂Γ1 = 0. For n ≥ 2, it is

(31) (−1)n−1 1

n!
∂(φn−1Γ1) +

1

2

∑

j+k=n

[[(−1)k−1 1

k!
φk−1Γ1, (−1)j−1 1

j!
φj−1Γ1]] = 0.

Let the binomial coefficients be

Cn
k =

n!

k!(n− k)!
.

Then the above equation is equivalent to

(32) ∂(φn−1Γ1) =
1

2

n−1∑

k=1

Cn
k [[φ

k−1Γ1, φ
n−k−1Γ1]].

Similarly, Φ(t) is a homomorphism of [[−,−]] and ∧ if and only if for degree n, and
for any sections A and B of L,

(33)
1

n!
φn[[A,B]] =

∑

k+j=n

[[
1

k!
φkA,

1

j!
φjB]],

1

n!
φn(A∧B) =

∑

k+j=n

(
1

k!
φkA∧

1

j!
φjB).

It is equivalent to

(34) φn[[A,B]] =

n∑

k=1

Cn
k [[φ

kA, φn−kB]], φn(A ∧B) =

n∑

k=1

Cn
k (φ

kA ∧ φn−kB).

Finally, Φ(t) intertwines ∂Γ(t) if and only if they satisfy the identity (23). Assum-
ing that Φ(t) is a homomorphism of the Courant bracket on ∧•L, we need to show
that for any section A of ∧•L,

(35) Φ(t)(∂A) + [[Φ(t)Γ(t),Φ(t)A]] = ∂(Φ(t)A).

Consider the infinite product Φ(t)Γ(t). Its degree-n term is equal to

∑

k+j=n

1

j!
φj(−1)k−1 1

k!
φk−1Γ1 =


 ∑

k+j=n

(−1)k−1 1

j!k!


φn−1Γ1.
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On the other hand, consider the power series

g =
∞∑

k=1

(−1)k
1

k!
xk−1 and ex =

∞∑

k=1

1

k!
xk.

We have 1− xg = e−x. Therefore, ex − xexg = 1. i.e. ex(xg) = ex − 1. Equating the
n-th order terms for n ≥ 1, we find that

∑

k+j=n

(−1)k−1 1

j!k!
=

1

n!
.

Therefore, Φ(t)Γ(t) =
∑

n≥1
1
n! t

nφn−1Γ1. Then the identity (35) at degree n becomes

1

n!
φn∂A+

∑

k+j=n

[[
1

k!
φk−1Γ1,

1

j!
φjA]] =

1

n!
∂φnA.

Equivalently, it is

(36) ∂φnA− φn∂A =

n∑

k=1

Cn
k [[φ

k−1Γ1, φ
n−kA]].

To complete a proof of Theorem 2, we need to prove that the identities (32), (34)
and (36) hold.

Lemma 1. Suppose that Γ1 and φ form a compatible pair, then identity (32)
holds.

Proof. Using the fact that ∂Γ1 = 0 and equation (27), we get a telescopic sum

∂φn−1Γ1 = ∂(φn−1Γ1)− φ∂φn−2Γ1

+ φ∂φn−2Γ1 − φ2∂φn−3Γ1 + φ2∂φn−3Γ1 − φ3∂φn−4Γ1

+ . . . . . . · · ·+ φn−2∂φΓ1 − φn−1∂Γ1

=

n−2∑

h=0

φh[[Γ1, φ
n−2−hΓ1]].

Since φ satisfies (28) and the Schouten bracket is commutative when restricted to
section of Λ2L, we rewrite the above identity as

∂φn−1Γ1 =
n−2∑

h=0

h∑

k=0

Ch
k [[φ

kΓ1, φ
n−2−kΓ1]] =

n−1∑

h=1

h∑

k=1

Ch−1
k−1 [[φ

k−1Γ1, φ
n−1−kΓ1]]

=
n−1∑

k=1

(
n−1∑

h=k

Ch−1
k−1

)
[[φk−1Γ1, φ

n−1−kΓ1]]

=

n−1∑

k=1

Cn−1
k [[φk−1Γ1, φ

n−1−kΓ1]].

Performing the index substitution k 7→ n − k and using the commutativity of the
Schouten bracket again, we get

∂φn−1Γ1 =
1

2

n−1∑

k=1

(
Cn−1

k + Cn−1
k−1

)
[[φk−1Γ1, φ

n−1−kΓ1]]

=
1

2

n−1∑

k=1

Cn
k [[φ

k−1Γ1, φ
n−1−kΓ1]].



DGA OF GENERALIZED COMPLEX STRUCTURES 201

Lemma 2. Suppose that Γ1 and φ form a compatible pair, then the two identities
in (34) hold.

Proof. It is an elementary induction. The proof for both cases are identical. We
work only through the case with Schouten bracket. When n = 1, the equation (34)
is precisely the equation (28), which is satisfied by assumption. Assuming that the
equation (34) holds for all k ≤ n. We next compute φn+1[[A,B]], which we take as
φ(φn[[A,B]]). By induction hypothesis, it is equal to

n∑

k=0

Cn
k φ([[φ

n−kA, φkB]])

=

n∑

k=0

Cn
k ([[φ

n+1−kA, φkB]] + [[φn−kA, φk+1B]])

= [[φn+1A,B]] +
n∑

k=1

Cn
k [[φ

n+1−kA, φkB]]

+
n−1∑

k=0

Cn
k [[φ

n−kA, φk+1B]] + [[A, φn+1B]]

= [[φn+1A,B]] +

n∑

k=1

(Cn
k + Cn

k−1)[[φ
n+1−kA, φkB]] + [[A, φn+1B]]

=

n+1∑

k=0

Cn+1
k [[φn−kA, φkB]].

Lemma 3. Suppose that Γ1 and φ form a compatible pair, then identity (36) holds
for all n ≥ 1.

Proof. Since ∂Γ1 = 0, we substitute A by Γ1 in (27) to see that identity (36)
holds when n = 1. Assume that (36) holds for all k ≤ n. We next prove that it holds
for n+ 1. Since

∂φn+1A− φn+1∂A

= ∂φn(φA) − φn(∂φA) + φn
(
(∂φA) − φ∂A

)
,

by induction hypothesis, the above is equal to

n∑

k=1

Cn
k [[φ

k−1Γ1, φ
n+1−kA]] + φn[[Γ1, A]].

By Lemma 2, it is equal to

n∑

k=1

Cn
k [[φ

k−1Γ1, φ
n+1−kA]] +

n∑

k=0

Cn
k [[φ

kΓ1, φ
n−kA]]

=
n∑

k=1

(
Cn

k + Cn
k−1

)
[[φk−1Γ1, φ

n+1−kA]] + [[φnΓ1, A]].



202 D. GRANDINI, Y.-S. POON, AND B. ROLLE

By Pascal Identity, it is equal to

n∑

k=1

Cn+1
k [[φk−1Γ1, φ

n+1−kA]] + [[φnΓ1, A]] =
n+1∑

k=1

Cn+1
k [[φk−1Γ1, φ

n+1−kA]].

4. Holomorphic Poisson manifolds. On a complex manifold (M,J), L =
T 1,0 ⊕ T ∗(0,1) and L = L∗ = T 0,1 ⊕ T ∗(1,0). Therefore, the exterior bundle has a
decomposition

∧•L = ⊕k

(
⊕p+q=k ∧

p T 1,0 ⊗ ∧qT ∗(0,1)
)
.

We will use the notations T p,0 = ∧pT 1,0 and T ∗(0,q) = ∧qT ∗(0,1). Sections of T p,0 are
addressed as (p, 0)-vectors, more generally polyvector fields.

4.1. Type decomposition of deformations. The cohomology of DGA(J) de-
composes into the direct sum of classical Dolbeault cohomology with the sheaf of
exterior product of the holomorphic tangent bundle as coefficients.

(37) Hk
J = ⊕p+q=kH

q(M,T p,0).

If Γ1 is in H2
J it has three components:

(38) Γ1 = Λ+ Γ̂1 +Ω ∈ H0(M,T 2,0)⊕H1(M,T 1,0)⊕H2(M,O),

where Λ is a (2,0)-bivector field, Ω is a (0,2)-form, and Γ̂1 is a classical infinitesimal
complex deformation. Similarly,

L∗ ⊗ L = End(L,L)

= End(T 1,0, T 1,0)⊕ End(T ∗(0,1), T ∗(0,1))

⊕End(T 1,0, T ∗(0,1))⊕ End(T ∗(0,1), T 1,0).

If φ is a section of L∗⊗L, we represent its decomposition by φ = φ1+φ2+φ3+φ4
such that

φ1 ∈ C∞(End(T 1,0, T 1,0)), φ2 ∈ C∞(End(T ∗(0,1), T ∗(0,1))),

φ3 ∈ C∞(End(T 1,0, T ∗(0,1))), φ4 ∈ C∞(End(T ∗(0,1), T 1,0)).

Proposition 3. A pair Γ1 ∈ C∞(M,∧2L) and φ ∈ C∞(M,L∗⊗L) is compatible

if and only if the pairs (Λ, φ4), (Ω, φ3) and (Γ̂1, φ1 + φ2) are compatible.

Proof. This proposition is an inspection of type decompositions. For example,

∂Γ1 = ∂Λ + ∂Γ̂1 + ∂Ω.

Since ∂Λ ∈ C∞(M,T 2,0 ⊗ T ∗(0,1)), ∂Γ̂1 ∈ C∞(M,T 1,0 ⊗ T ∗(0,2)), and ∂Ω ∈
C∞(M,T ∗(0,3)), each component has to vanish individually if ∂Γ1 = 0. i.e.

∂Λ = 0, ∂Γ̂1 = 0, ∂Ω = 0.
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Next, for all Z ∈ C∞(M,T 1,0) and ω ∈ C∞(M,T ∗(0,1)),

[[Λ, Z]] ∈ C∞(T 2,0), [[Λ, ω]] ∈ C∞(T (1,0) ⊗ T ∗(0,1));

[[Γ̂1, Z]] ∈ C∞(T ∗(0,2)), [[Γ̂1, ω]] = 0;

[[Ω, Z]] ∈ C∞(T 1,0 ⊗ T ∗(0,1)), [[Ω, ω]] ∈ C∞(T ∗(0,2)).

On the other hand,

∂(φ1(Z))− φ1(∂Z) ∈ C
∞(T 1,0

⊗ T
∗(0,1)), ∂(φ1(ω))− φ1(∂ω) = 0,

∂(φ2(Z))− φ2(∂Z) = −φ2(∂Z) ∈ C
∞(T 1,0

⊗ T
∗(0,1)), ∂(φ2(ω))− φ2(∂ω) ∈ C

∞(T ∗(0,2)),

∂(φ3(Z))− φ3(∂Z) ∈ C
∞(T ∗(0,2)), ∂(φ3(ω))− φ3(∂ω) = 0,

∂(φ4(Z))− φ4(∂Z) = −φ4(∂Z) ∈ C
∞(T 2,0), ∂(φ4(ω))− φ4(∂ω) ∈ C

∞(T 1,0
⊗ T

∗(0,1)).

By equating the types, we arrive at the conclusion of this proposition.
In view of the last proposition and the decomposition of H2

J , one should focus an
initial analysis of deformations on the simple types, namely those whose infinitesimal
deformations are contained in a unique summand of the decomposition of H2

J .

Infinitesimal deformations given by a ∂-closed section Γ̂1 of T 1,0 ⊗ T ∗(0,1) could
always be represented and analyzed as classical complex deformation theory.

If one considers a ∂-closed 2-form representing an element in H2(M,O), then by
definition of Courant bracket [[Ω,Ω]] = 0. Therefore, Ω satisfies the Maurer-Cartan
equation, and

LΩ = {X + α+ ιXΩ : X + α ∈ L}

is a generalized complex structure. The issue of integrability is trivial. However, this
deformation does not change the type of the generalized complex structure. It is still
type-n where n is the complex dimension of the manifold M . If the (0, 2)-form Ω is
not only ∂-closed but also closed, then this deformation is trivial within the realm of
generalized complex structures because the deformation is only the result of a B-field
transformation [17].

4.2. Holomorphic bivector fields. Suppose that Γ is a deformation whose
first order term is a bivector field Λ with ∂Λ = 0. Let Γ2 be its second order term.
As Γ satisfies the Maurer-Cartan equation, up to second order term, we have

∂(tΛ + t2Γ2) +
1

2
[[tΛ + t2Γ2, tΛ + t2Γ2]] = 0.

It yields

∂Γ2 +
1

2
[[Λ,Λ]] = 0.

Since Λ is a bivector, [[Λ,Λ]] is a (3, 0)-vector field. On the other hand, ∂Γ2 must
have a components with (0, 1)-forms. Therefore, the only solution is when [[Λ,Λ]] = 0.
It follows immediately that Λ is a solution of the Maurer-Cartan equation and Γ2

could be chosen to be zero. Therefore, a bivector field Λ representing an element in
H0(M,T 2,0) is an infinitesimal deformation of an integrable deformation if and only
if [[Λ,Λ]] = 0.

Definition 2. A (2, 0)-vector field is a holomorphic Poisson structure on a
complex manifold if ∂Λ = 0 and [[Λ,Λ]] = 0. In such case, we call Λ a holomorphic
Poisson vector field.
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Given such a Λ, suppose that φ ∈ C∞(End(T ∗(0,1), T 1,0)) is compatible with Λ.
By Theorem 2, Φ =

∑
1
n!φ

n is a DGA homomorphism. However, as an endomorphism
from the bundle L to L, its kernel contains at least T 1,0. Therefore, φΛ = 0 and
φ ◦ φ = 0. Therefore, we could conclude that the homomorphism Φ is simply 1 + φ.
Furthermore, given a section X+α of T 1,0⊕T ∗(0,1), Φ(X+α) = X+φ(α)+α. As the
vector part is X+φ(α) and the form part is α, X+α is in the kernel of Φ if and only
if it is identically zero. Therefore, Φ as a bundle map from L to L is an isomorphism.
It is extended to an isomorphism from the exterior bundle ∧•L to ∧•L. Therefore,
Φ is not only a DGA homomorphism, but also an isomorphism. We summarize our
observation below.

Theorem 3. Let M be a complex manifold with a holomorphic Poisson vector
field Λ. Suppose that φ is a section of End(T ∗(0,1), T 1,0) compatible with the Λ in the
sense of Definition 1. Then Λ defines a family of generalized complex deformation of
the complex structure onM with tΛ. Moreover, if DGA(tΛ) represents the DGA of the
deformed complex structure, then they are all isomorphic to DGA(0), the differential
Gerstenhaber algebra of the complex structure on the manifold M .

Although from the viewpoint of deformation of DGAs, the presence of a compat-
ible pair on a holomorphic Poisson manifold makes the deformation of DGAs trivial,
on the geometric level, it is non-trivial. Recall that

LΛ = {X + α+ ιαΛ : X + α ∈ T 1,0 ⊕ T ∗(0,1)}.

As ιαΛ is a (0,1)-vector, the type of the generalized complex structure LΛ is different
from the un-deformed one L. If Λ as a bundle map from T ∗(0,1) to T 1,0 is everywhere
non-degenerate, then LΛ is a type-0 generalized complex structure. By a Gualtieri’s
lemma [17], there exists a symplectic structure Ω on the manifold M such that the
complexified DGA of ω is isomorphic to that of DGA(Λ) via a B-field transformation.
Since DGA(Λ) is isomorphic to DGA(0). We obtain the following result.

Theorem 4. LetM be a manifold with complex structure J . Denote its associated
DGA by DGA(J). Suppose that Λ is a non-degenerate holomorphic Poisson structure.
If there exists a section of T 1,0 ⊗ T 0,1 compatible with Λ in the sense of Definition
1, then there exists a symplectic structure Ω in the deformation family of J such that
DGA(Ω) is isomorphic to DGA(J).

In the sense of Merkulov, the pair (M,J) and (M,Ω) form a weak mirror pair [6]
[7] [24].

4.3. Rational surfaces. In this section, we compute the first cohomology of
some well known holomorphic Poisson manifolds to demonstrate that for many holo-
morphic Poisson structures, Theorem 3 does not have solution.

Assume that we have a compact holomorphic Poisson manifold. Denote the Pois-
son bivector field by Λ. Consider Z a section of T 1,0 and ω a section of T ∗(0,1). Then
Z +ω is a section of L = T 1,0⊕T ∗(0,1). By Proposition 1, it represents an element of
the first cohomology of DGA(∂Λ) if and only if ∂Λ(Z + ω) = 0. That is

∂Λ(Z + ω) = ∂Z + [[Λ, Z]] + ∂ω + [[Λ, ω]]

= [[Λ, Z]] + ∂Z + [[Λ, ω]] + ∂ω = 0.

The terms above are sections of ∧2L = T 2,0 ⊕ T 1,0 ⊗ T ∗(0,1) ⊕ T ∗(0,2). As each
component in this decomposition has to vanish, we conclude that

(39) [[Λ, Z]] = 0, ∂Z + [[Λ, ω]] = 0, ∂ω = 0.
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In particular the (0,1)-form ω is ∂-closed. To push this computation further, assume
that the Dolbeault cohomology H1(M,O) vanishes. It follows that the (0,1)-form
is ∂-exact, and there is a smooth function f on the manifold M such that ω = ∂f .
Consider the vector field V = [[Λ, f ]]. Since ∂Λ = 0,

∂V = ∂[[Λ, f ]] = [[∂Λ, f ]]− [[Λ, ∂f ]] = −[[Λ, ω]].

With (39) above, we conclude that ∂(Z −V ) = 0. Therefore, Z −V is a holomorphic
vector field on the manifold M . By Jacobi identity of Gerstenhaber algebras,

[[Λ, [[Λ, f ]]]] + [[Λ, [[f,Λ]]]] + [[f, [[Λ,Λ]]]] = 0.

Since [[Λ,Λ]] = 0, the above is reduced to

[[Λ, V ]] = [[Λ, [[Λ, f ]]]] = 0.

Combined with the first identity in (39), we conclude that

[[Λ, Z − V ]] = 0.

Let W = Z − V , then Z = W + V = W + [[Λ, f ]] such that ∂W = 0 and [[Λ,W ]] = 0.
Moreover, the section

Z + ω =W + [[Λ, f ]] + ∂f =W + ∂Λf.

Since ∂Λf is ∂Λ-exact, W and Z + ω represent the same cohomology class in H1
∂Λ

.

Proposition 4. Suppose thatM is a holomorphic Poisson manifold with Poisson
vector field Λ. If H1(M,O) vanishes, then

H1
∂Λ

= {W ∈ H0(M,T 1,0) : [[Λ,W ]] = 0}.

On the other hand, the first cohomology of DGA(∂) is equal to

H0(M,T 1,0)⊕H1(M,O).

Given the assumption of Proposition 4, it is equal to H0(M,T 1,0). It is easy to find
example on which there exists non-trivial holomorphic Poisson structures but it does
not admit compatible pairs due to the difference between H0(M,T 1,0) and H1

∂Λ

. For

instance, there is a classification of compact complex surfaces admitting holomorphic
Poisson structures [3]. Among them, the minimal rational surfaces are all holomorphic
Poisson manifolds with vanishing irregularity. Except when the surface is a complex
projective plane, they are rational ruled surfaces.

For the complex projective plane Λ is an element in H0(CP2,O(3)). It could be
identified to a homogeneous polynomial of degree-3 in the homogeneous coordinates
of the complex projective plane. Meanwhile the space of holomorphic vector fields
H0(CP2, T 1,0) is the complex algebra sl(3,C), treated as the set of 3 × 3-matrices
acting on of C3 by natural matrix multiplications. From this perspective, for any W
in H0(CP2, T 1,0), the action [[W,−]] on H0(CP2,O(3)) is the induced representation
of sl(3,C) on the third symmetric product S3C3. Then for each Λ 6= 0, one could
find a W such that [[W,Λ]] 6= 0. Therefore, for each holomorphic Poisson structure
on the complex projective plane, H1

∂Λ

is strictly smaller then H1
∂
= H0(CP2, T 1,0) =

sl(3,C). It shows that DGA(CP2, ∂) and DGA(CP2, ∂Λ) for any holomorphic Poisson
structure could never be quasi-isomorphic.
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4.4. Hopf surfaces. In this section, we compute H1
∂Λ

when the underlying man-

ifold M is the Hopf surface, and demonstrates that it does admit compatible pairs.
Consider C

2 with coordinates z = (z1, z2). Let λ > 1 be a real number. It
generates a one-parameter group of automorphism on C2. The quotient of C2\{0}
with respect this group is diffeomorphic to the Lie group M = U(1) × SU(2). The
complex structure on C2 descends onto M to define an integrable complex structure,
invariant of the left-action of the Lie group. In this section, by Hopf surface, we mean
this particular complex structure. The classical complex deformation theory of this
complex structure was analyzed by Dabrowski [12]. We focus on the deformations
generated by its holomorphic Poisson structures. Consider

X0 =
1

2
(z1

∂

∂z1
+ z2

∂

∂z2
), X1 =

i

2
(z1

∂

∂z1
− z2

∂

∂z2
)

X2 =
i

2
(z2

∂

∂z1
+ z1

∂

∂z2
), X3 =

1

2
(−z2

∂

∂z1
+ z1

∂

∂z2
),

and

σ = ∂ ln |z|2 =
z1dz1 + z2dz2
|z1|2 + |z2|2

.

The cohomology spaces for the DGA(J) are given below. The computation of these
cohomology spaces are not new. We do not present any details.

H1(M,O) = 〈σ〉, H0(M,T 1,0) = 〈X0, X1, X2, X3〉 ∼= u(1)⊕ sl(2),(40)

H1(M,T 1,0) = 〈X0 ∧ σ,X1 ∧ σ,X2 ∧ σ,X3 ∧ σ〉,(41)

H0(M,T 2,0) = 〈X0 ∧X1, X0 ∧X2, X0 ∧X3〉,(42)

H1(M,T 2,0) = 〈X0 ∧X1 ∧ σ,X0 ∧X2 ∧ σ,X0 ∧X3 ∧ σ〉.(43)

In addition,

[[X0, X1]] = 0, [[X0, X2]] = 0, [[X0, X3]] = 0,(44)

[[X1, X2]] = −X3, [[X2, X3]] = −X1, [[X3, X1]] = −X2.(45)

Set f = ln |z|2, then LX0
f = 1

2 . For j = 1, 2, 3, define fj = LXj
f , then

f1 =
i

2|z|2
(z1z1 − z2z2), f2 =

i

2|z|2
(z2z1 + z1z2), f3 =

1

2|z|2
(−z2z1 + z1z2).

The functions f1, f2, f3 are invariant of the group of actions generated by (λz1, λz2),
and hence they are globally defined on the quotient space M . Then we have

(46) [[X0, σ]] = 0, [[X1, σ]] = ∂f1, [[X2, σ]] = ∂f2, [[X3, σ]] = ∂f3.

Whenever A = a1X1 + a2X2 + a3X3 is a holomorphic vector field in the sl(2) compo-
nent of H0(M,T 1,0),

[[A, σ]] = a1[[X1, σ]] + a2[[X2, σ]] + a3[[X3, σ]] = ∂(a1f1 + a2f2 + a3f3).

We use the notation fA to denote the function a1f1 + a2f2 + a3f3. By (46),

(47) [[A, σ]] = ∂fA.
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Since X0 commutes with Xj for j = 1, 2, 3, LX0
fj = LXj

LX0
f = LXj

1
2 = 0. Then for

all A

(48) LX0
fA = 0.

Given the above preparation, we begin to compute the first cohomology of
DGA(∂Λ) where Λ is any holomorphic Poisson structure on M . Let A = a1X1 +
a2X2+a3X3 be a holomorphic vector field, then Λ = X0∧A is a holomorphic Poisson
structure. As noted in (42), by choosing the complex numbers (a1, a2, a3), we exhaust
all holomorphic Poisson structure.

Now we calculate the first cohomology with respect to ∂Λ = ∂ + [[Λ,−]]. Suppose
that Z is a smooth (1,0)-vector field and ω is a smooth (0,1)-form. ∂Λ(Z + ω) = 0 if
and only if Z and ω satisfy the constraints (39). Once again, they are

(49) ∂ω = 0, [[Λ, Z]] = 0, ∂Z + [[Λ, ω]] = 0.

Since the cohomology H1(X,O) is spanned by σ, there exists a function ψ and a
unique complex number a such that

ω = aσ + ∂ψ.

Let V be the vector field [[Λ, ψ]]. Since ∂Λ = 0,

∂V = ∂[[Λ, ψ]] = [[∂Λ, ψ]]− [[Λ, ∂ψ]] = −[[Λ, ∂ψ]]

= −[[Λ, ω − aσ]] = −[[Λ, ω]] + a[[Λ, σ]].

By definition of Λ, (46) and (47), this is equal to

−[[Λ, ω]] + aX0 ∧ [[A, σ]] = −[[Λ, ω]] + aX0 ∧ ∂fA = −[[Λ, ω]]− a∂(fAX0).

It follows from (49) that

(50) ∂(V − Z + afAX0) = 0.

Next, consider the Schouten bracket. By (49),

[[Λ, V − Z + afAX0]]

= [[Λ, [[Λ, ψ]]]]− [[Λ, Z]] + [[X0 ∧ A, afAX0]]

= [[Λ, [[Λ, ψ]]]] + aX0 ∧ [[A, fAX0]]− aA ∧ [[X0, fAX0]]

= [[Λ, [[Λ, ψ]]]] + aX0 ∧ [[A, fA]]X0 + afAX0 ∧ [[A,X0]]− aA ∧ [[X0, fA]]X0.

Due to (44) and (48), this is equal to [[Λ, [[Λ, ψ]]]]. By the Jacobi identity for Gersten-
haber algebra and the fact that [[Λ,Λ]] = 0, [[Λ, V − Z + afAX0]] = 0. Define

(51) W = −V + Z − afAX0 = −[[X0 ∧ A,ψ]] + Z − afAX0.

Then [[Λ,W ]] = 0. However, by (49) and the identity above,

(52) [[Λ,W ]] = [[X0 ∧ A,W ]] = X0 ∧ [[A,W ]].

As ∂W = 0, it is a linear combination of X0, X1, X2, X3. Therefore, [[Λ,W ]] is equal
to zero if and only if there exist constants b and c such thatW = bX0+cA. Therefore,

(53) Z = V +W + afAX0 = [[Λ, ψ]] + bX0 + cA+ afAX0.
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As we have already resolved the first two constraints in (49), we could now substitute
Z in the last constraint to check that it does not generate additional conditions. So,
Z+ω is ∂Λ-closed for Λ = X0∧A if and only if there exist a function ψ and constants
a, b, c such that

ω = aσ + ∂ψ,

Z = [[Λ, ψ]] + bX0 + cA+ afAX0 = [[Λ, ψ]] +W + afAX0.

Since

Z + ω = [[Λ, ψ]] + bX0 + cA+ afAX0 + aσ + ∂ψ = bX0 + cA+ afAX0 + aσ + ∂Λψ,

Z+ω and bX0+ cA+afAX0+aσ represent the same element in the first cohomology
space H1(M,∂X0∧A). Therefore, we have

(54) H1(X, ∂X0∧A) = 〈X0, A, fAX0 + σ〉 ∼= C
3.

On the other hand, it is noted in (40) that the first cohomology of DGA(J) is a
five-dimensional space.

H1(M,∂) = H1(M,O)⊕H0(M,T 1,0) = 〈σ〉 ⊕ 〈X0, X1, X2, X3〉.

Therefore, along the deformation given by holomorphic Poisson vector field Λ = X0 ∧
A, the first cohomology jumps and hence Λ could not be part of any compatible pair.

5. Holomorphic symplectic algebras. In an explicit computation in [26],
part of the result in Theorem 4 has been observed on the Kodaira-Thurston surface.
It was possible to do an explicit computation due to the fact that the manifold is a
low-dimension nilmanifold.

If H is a simply-connected nilpotent Lie group and K is a co-compact subgroup,
then the quotient manifold M = H/K is said to be a nilmanifold. Let h be the Lie
algebra of the group H , the Chevalley-Eilenberg differential d determines a complex

d : ∧kh∗ → ∧k+1h∗.

It is known for a long time that the inclusion h∗ as invariant section of T ∗ induces an
isomorphism on the cohomology level [25]. If the nilmanifold has an invariant sym-
plectic structure Ω, one could therefore consider this inclusion as a quasi-isomorphism
from the differential Gerstenhaber algebra with invariant objects DGA(h,Ω) to the
manifold level DGA(H/K,Ω).

There were a series of attempt to attain a similar result for Dolbeault cohomology
[8] [9] [10] [28]. This body of research generates a collection of examples of nilmanifolds
for which the inclusion of invariant sections in the space of sections of the bundle
L = T 1,0 ⊕T ∗(0,1) induces a quasi-isomorphism of DGAs. Kodaira-Thurston surfaces
is a prominent example with small dimension. To illustrate the theory of the past few
chapters, we now focus on DGA(h, J) for some Lie algebra h.

In our subsequent computation, we do not restrict h to being nilpotent, but will
construct algebras on which there is a good collection of geometric objects as in [7].

5.1. Pseudo-Kähler structures. Let (g, ω) denote a real Lie algebra equipped
with a symplectic structure ω. Let V denote the underlying vector space of g. We
seek a linear map γ : g → End(V ) such that for all x, y, z ∈ g,

γ(x)y − γ(y)x = [x, y];(55)

ω(γ(x)y, z) + ω(y, γ(x)z) = 0;(56)

γ([x, y]) = γ(x)γ(y)− γ(y)γ(x).(57)
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The last condition requires γ to be a representation. The second condition means
that it is a symplectic representation.

If one uses γ as a operator of vector fields on the Lie group of the algebra g, the
last condition is equivalent to require γ to be a flat connection. Condition in (56) is
to require the connection to be symplectic. The condition in (55) is to require the
connection to be torsion-free.

Given the representation γ, one obtains a semi-direct product Lie algebra h :=
g⋉ V with a Lie bracket defined by

(58) [[(x, 0), (y, 0)]] = ([x, y], 0) [[(x, 0), (0, v)]] = (0, γ(x)v),

for all x, y ∈ g and v ∈ V . Here we denote a generic element in g⋉ V in terms of the
decomposition (x, u) ∈ g⊕ V .

On the semi-direct product, consider the linear map.

(59) J(x, y) = (−y, x).

This is an almost complex structure. The (1, 0) vectors are given by

(60) h1,0 = {(x,−ix) ∈ (g⊕ V )C : x ∈ g}.

J is an integrable complex structure due to (55) because

[[x− iJx, y − iJy]] = [[(x,−ix), (y,−iy)]] = ([x, y],−i(γ(x)y − γ(y)x)).

The symplectic structure ω induces three different symplectic forms on the semi-direct
product h.

Ω1((x, u), (y, v)) := −ω(x, v)− ω(u, y),(61)

Ω2((x, u), (y, v)) := ω(x, y)− ω(u, v),(62)

Ω3((x, u), (y, v)) := ω(x, y) + ω(u, v).(63)

With respect to the complex structure J , Ωc = Ω1 + iΩ2 is a closed (2,0)-form. It is
non-degenerate in the sense that the contraction map

V 7→ Ωc(V, ), Ωc : h
1,0 → h∗(1,0)

is non-degenerate. The pair (Ωc, J) is called a complex symplectic structure on the
algebra h. Let Λ be the inverse mapping of Ωc.

Λ : h∗(1,0) → h1,0.

It is a matter of definition that Λ ∈ ∧2h1,0 = h2,0. Therefore, it could play the role of
an invariant holomorphic Poisson structure. Indeed we have the following

Lemma 4. Let Λ be the inverse of Ωc, then it satisfies the following.
• For any α, β ∈ h∗(1,0), Λ(α, β) = −Ωc(Ω

−1
c (α),Ω−1

c (β)).
• [[Λ,Λ]] = 0.
• ∂Λ = 0.

Proof. Beyond tracing definitions, the first identity is an elementary application
of the algebraic properties of Gerstenhaber algebra. The second identity is equivalent
to dΩc = 0. The last is another application of the algebraic properties of Gerstenhaber
algebra combined with a type decomposition argument.
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The last lemma leads to the next.

Lemma 5. Given a symplectic algebra (g, ω) with a flat torsion-free symplectic
connection on the underlying vector space V of g, then the semi-direct product h =
g⋉ V has a holomorphic Poisson structure (J,Λ = Ω−1

c ).

Given the above holomorphic Poisson structure, we consider the generalized de-
formation generated by the holomorphic Poisson vector field Λ. It yields

(64) LΛ = h1,0 ⊕ {ζ + Λζ : ζ ∈ h∗(0,1)}.

Since Λ : h∗(0,1) → h1,0 is an isomorphism with Ωc as its inverse,

LΛ = h1,0 ⊕ {Ωc(Y ) + Y : Y ∈ h(0,1)}.

Since Ωc is a (0,2)-form, for any (1,0)-vector X , Ωc(X) = 0. Therefore, the above is
equal to

= {X +Ωc(X) + Y +Ωc(Y ) : X ∈ h1,0, Y ∈ h0,1}

= {V +Ωc(V ) : V ∈ h1,0 ⊕ h0,1} = {V +Ω1(V )− iΩ2(V ) : V ∈ hc}

= eΩ1{V − iΩ2(V ) : V ∈ hc}.

The last equality means that the deformed generalized complex structure LΛ is the
B-field transformation by the closed 2-form Ω1 of the generalized complex structure
defined by the symplectic form Ω2. In conclusion, we have

Proposition 5. Given a symplectic algebra (g, ω) with a flat torsion-free sym-
plectic connection on the underlying vector space V of g, then up to the B-field trans-
formation with respect to the closed 2-form Ω1, the generalized deformation of the
classical complex structure by holomorphic Poisson structure Λ = (Ω1 + iΩ2)

−1 is the
the symplectic structure Ω2. In particular, DGA(LΛ) is isomorphic to DGA(Ω2).

5.2. Compatible pairs. A different perspective in understanding DGA(LΛ) is
in terms of compatible pair. That is to identify an element φ in h0,1 ⊗ h1,0 so that
(Λ, φ) forms a compatible pair.

As Ω3 is a (1,1)-form and its contraction map is non-degenerate

Ω3 : h1,0 → h∗(0,1),

its inverse map

Ω−1
3 : h∗(0,1) → h1,0

is a natural candidate to form a compatible pair with Λ.
On the other hand, if g is a non-degenerate symmetric bilinear form the algebra

g, it induces a non-degenerate form on g⋉ V by

∆((x, u), (y, v)) = g(x, y) + g(u, v).

Then its fundamental form is a (1,1)-form:

Ω4((x, u), (y, v)) = ∆(J(x, u), (y, v)) = ∆((−u, x), (y, v)) = g(x, v)− g(y, u).
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Therefore, Ω−1
4 is also a candidate to match with Λ as a compatible pair. It is a

natural question to ask when Ω4 is closed. It amounts to asking the pair J and ∆ to
form a pseudo-Kähler structure.

Lemma 6. The pair (J,∆) on h forms a pseudo-Kähler structure if and only if

g(γ(x)y, w) − g(γ(y)x,w)− g(x, γ(y)w) + g(y, γ(x)w) = 0

for all x, y, w ∈ g.

Proof. For any (x, u), (y, v), (z, w) ∈ g⋉V , expand dΩ4((x, u), (y, v), (z, w)). Since
γ is torsion-free, it is equal to

−g(γ(x)y, w) + g(γ(y)x,w) + g(x, γ(y)w)− g(y, γ(x)w)

−g(γ(z)x, v) + g(γ(x)z, v) + g(z, γ(x)v)− g(x, γ(z)v)

−g(γ(y)z, u) + g(γ(z)y, u) + g(y, γ(z)u)− g(z, γ(y)u).

Since the last three lines are cyclic permutations of (x, u), (y, v) and (z, w), if one of
these lines is equal to zero, all three equal to zero and therefore dΩ4 = 0. Conversely,
if dΩ4 = 0, set z = u = v = 0. Then the last two lines equal to zero, and the lemma
follows.

Suppose that (Ωc, J) is a holomorphic symplectic structure on the semi-direct
product h = g ⋉ V as above. Let Ω3 and ∆ be the natural symplectic and pseudo-
metric structure on h. Assume that (∆, J) is pseudo-Kähler. Both Ω−1

3 and Ω−1
4 are

candidates to be compatible with Λ = Ω−1
c , so are their linear combinations. Below

is a key technical result in this section.

Proposition 6. Suppose that (Ωc, J) is a holomorphic symplectic structure on
the semi-direct product h = g ⋉ V as above. Let Ω3 and ∆ be the natural symplectic
and (pseudo-)metric structure on h. Assume that (∆, J) is pseudo-Kähler structure.
If there is a real number µ such that

(65) (g−1ω)(γ(a)b) = −4µγ((g−1ω)(a))((g−1ω)(b))

for all a, b ∈ g, then

(66) φ = −
i

4
Ω−1

3 + µΩ−1
4

and Λ = Ω−1
c forms a compatible pair.

In the expression (65), we consider the contractions with ω and g as maps from
the underlying vector space V of g to its dual. Therefore,  = g−1ω is a map from V
to V . The following are used frequently in our proof of Proposition 6 above.

Lemma 7. Recall that h1,0 = {(a,−ia) ∈ (g⊕ V )C : a ∈ g}.
• As (0,1)-forms, Ω3((a,−ia),−) = −iΩ4(((a),−i(a)),−).
• As (1,0)-forms, Ω3((a, ia),−) = iΩ4(((a), i(a)),−).
• As (1,0)-forms, Ωc((a,−ia),−) = −2Ω4(((a), i(a)),−).
• [[(a,−ia), (b, ib)]]1,0 = (−γ(b)a, iγ(b)a).
• [[(a,−ia), (b, ib)]]0,1 = (γ(a)b, iγ(a)b).

To prove Proposition 6, we consider a generic linear combination of Ω−1
3 and Ω−1

4 ,
φ = λΩ−1

3 + µΩ−1
4 .
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Note that we first extend both Ω−1
3 and Ω−1

4 by zeroes on h1,0. Then they are
extended as endomorphisms defined on h1,0 ⊕ h∗(0,1) to endomorphisms defined on
the exterior product ∧•(h1,0 ⊕ h∗(0,1)) through the identity (29), by linearity φ also
satisfies (29). Therefore, we will determine the coefficients λ and µ by solving the
non-trivial constraints in (27) and (28).

In the current context, the constraint (27) is equivalent to requiring that for all
ℓ1, ℓ2 ∈ h1,0 ⊕ h∗(0,1),

(67) φ([[ℓ1, ℓ2]]) = [[φℓ1, ℓ2]] + [[ℓ1, φℓ2]].

Since h1,0 is annihilated by φ, and it is closed with respect to Schouten bracket, if
both ℓ1 and ℓ2 are in h1,0, then the identity (67) is trivially satisfied, and hence does
not pose any constraint on λ and µ.

If ℓ1 ∈ h1,0, then there exists a ∈ g such that ℓ1 = (a,−ia). If ℓ2 ∈ h∗(0,1), then
there exists (b,−ib) ∈ h1,0 such that ℓ2 = Ω3((b,−ib),−). By Lemma 7,

ℓ2 = Ω3((b,−ib),−) = Ω4((−i(b),−(b)),−).

Since φℓ1 = 0, the constraint in (67) is reduced to φ[[ℓ1, ℓ2]] = [[ℓ1, φℓ2]]. Since both
sides of this identity are (1, 0)-vectors, to verify that they are identical, it suffices to
show that the evaluation of any (1, 0)-forms on these two vectors are identical. Since
Ω3 is non-degenerate, any (1, 0)-form has the form Ω3((n, in),−) for some (0, 1)-vector
(n, in). Then a proof of (67) is reduced to check whether the following holds:

Ω3((n, in), φ[[ℓ1, ℓ2]])− Ω3((n, in), [[ℓ1, φℓ2]]) = 0.

Making use of various definitions and Lemma 7, we reduce the above identity to

λΩ3((b,−ib), (γ(a)(n),−γ(a)(n)))− λΩ3((n, in), ([a, b],−i[a, b]))

+µΩ4((−i(b),−(b)), (iγ(n),−γ(a)(n)))

−µΩ4((i(n),−(n)), (−i[a, (b)],−[a, (b)])) = 0.

Using definition of Ω3 and Ω4 in terms of ω, the above is reduced to

−λω(γ(b)n, a) + iµg(γ((b))(n), a) = 0.

It is equivalent to

(68) λ(γ(b)n) = iµγ((b))((n))

for all b, n ∈ g. This identity is the first preliminary constraint on µ and λ.
Similarly, if ℓ1, ℓ2 ∈ h∗(0,1), choose (a,−ia) and (b,−ib) such that

(69) ℓ1 = Ω3((a,−ia),−), ℓ2 = Ω3((b,−ib),−).

Since [[ℓ1, ℓ2]] = 0, (67) is reduced to

(70) [[φℓ1, ℓ2]] + [[ℓ1, φℓ2]] = 0.

As both terms in the above sum are (0,1)-forms, then its evaluation on any (0,1)-vector
(n, in) is equal to zero. Substitute (69) into identity (70), evaluate on a (0,1)-vector
(n, in), and make use of Lemma 7, we get

−λΩ3((b,−ib), (γ(a)n, iγ(a)n)) + λΩ3((a,−ia), (γ(b)n, iγ(b)n))

−µΩ4((−i(b),−(b)), (−iγ((a))n, γ((a))n))

+µΩ4((−i(a),−(a)), (−iγ((b))n, γ((b))n)) = 0.
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Using definitions of Ω3 and Ω4, together with Lemma 7, The above identity is
reduced to

λω([a, b], n)− iµg([(a), (b)], n)

for all n ∈ g. That is

(71) λ([a, b]) = iµ[(a), (b)].

Since γ(a)b− γ(b)a = [a, b] for all a, b, the above is equivalent to

λ(γ(a)b)− λ(γ(b)a) = −µγ((a))(b) + µγ((b))(a).

This identity holds for all a, b ∈ g so long as (68) holds. Therefore, (68) is the only
constraint for solving (67).

Next, we need to find the constraints on λ and µ to satisfy the identify (28). This
is equivalent to requiring

(72) λ(∂Ω−1
3 (ℓ)− Ω−1

3 ∂ℓ) + µ(∂Ω−1
4 (ℓ)− Ω−1

4 ∂ℓ) = [[Λ, ℓ]]

for all ℓ ∈ h1,0 ⊕ h∗(0,1).
Since Ω−1

3 and Ω−1
4 are extended by zero on h1,0, when ℓ is an element in h1,0,

the constraint (72) is reduced to

(73) −λΩ−1
3 ∂ℓ− µΩ−1

4 ∂ℓ = [[Λ, ℓ]].

Let A,B be elements in h1,0, with identity (18) and the fact that dΩc = 0, one
could check that

[[Λ, ℓ]](ΩcA,ΩcB) = Ωc(ℓ, [[A,B]]).

If we set ℓ = (x,−ix), A = (a,−ia), B = (b,−ib) with x, a, b ∈ g, recall the definitions
of Ωc in terms of ω, then the above is further simplified to

(74) [[Λ, ℓ]](ΩcA,ΩcB) = 4iω(x, [a, b]).

In view of (11), the first term on the left-hand-side of the identity in (73) evaluated
on the ordered pair ΩcA,ΩcB is simplified to

−Ω−1
3 ∂ℓ(ΩcA,ΩcB)

= −2i (ΩcB([[(x,−ix), (a, ia)]]) − ΩcA([[(x,−ix), (b, ib)]])

= −2i
(
Ωc((b,−ib), [[(x,−ix), (a, ia)]]

1,0)− Ωc((a,−ia), [[(x,−ix), (b, ib)]]
1,0)
)
.

With Lemma 7 and various definitions, one could show that

(75) −Ω−1
3 ∂ℓ(ΩcA,ΩcB) = −8ω(x, [a, b]).

Similarly,

−Ω−1
4 ∂ℓ(ΩcA,ΩcB)

= −2 (ΩcA(−γ(b)x, iγ(b)x)− ΩcB(−γ(a)x, iγ(a)x)) .

By Lemma 7, it is equal to

2 (Ω4((−2a,−2ia), (−γ(b)x, iγ(b)x))− Ω4((−2b,−2ib), (−γ(a)x, iγ(a)x))) .
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By definition of Ω4, we have

−Ω−1
4 ∂ℓ(ΩcA,ΩcB) = 8g(i[a, b], x).

Since (68) is satisfied, (71) holds. Therefore,

−µΩ−1
4 ∂ℓ(ΩcA,ΩcB) = 8λg([a, b], x) = −8λω(x, [a, b]).

Combined the above identity with (75) and (74), we obtain

−16λω(x, [a, b]) = 4iω(x, [a, b])

for all x, a, b ∈ g. Therefore, λ = − i
4 . Further and similar calculations demonstrate

that this is the only constraint [27].
Substitute this constraint into (68), we find that µ is a real number and for all

a, b ∈ g,

(γ(a)b) = −4µγ(a)(b).

It concludes the proof of Proposition 6.

Let us analyze Proposition 6 further. If µ = 0, constraint (65) implies that
γ(a)b = 0 for all a, b ∈ g. Therefore, γ = 0. However, the connection γ is torsion-free.
This implies that [a, b] = 0. Therefore, the algebra h = g⋉V is trivial. In particular,
Λ is central in the Gerstenhaber algebra (∧•h,∧, [[−,−]]), and hence (Λ, φ = 0) forms
a compatible pair.

Therefore, whenever h is non-abelian, we may assume that µ 6= 0. In such case,
if one multiplies the non-degenerate bilinear form g on g by the constant −4µ, then
the inhomogeneity in equation (65) allows us to simplify this identity to

(76) (g−1ω)(γ(a)b) = γ((g−1ω)(a))((g−1ω)(b)).

Now we could apply Proposition 6 and Theorem 2 to conclude the following.

Theorem 5. Let g be a Lie algebra with an invariant symplectic structure ω and
non-degenerate bilinear form g. Let V be its underlying vector space. Let γ : g →
End(V ) be a torsion-free flat connection and h = g ⋉γ V the associated semi-direct
product. Then h has a natural complex structure J , a symplectic structure Ω and a
pseudo-metric ∆. If this triple forms a pseudo-Kähler structure and if

(g−1ω)(γ(a)b) = γ((g−1ω)(a))((g−1ω)(b)).

then there exists a deformation from the complex structure J to a symplectic structure
Ω2 such that DGA(J) is isomorphic to DGA(Ω2).

6. Low-dimension examples. According to Andranda [1], there are three non-
trivial four-dimensional complex symplectic algebras. Let e1, e2 be a basis of g and
v1, v2 be a basis for V such that

(77) Je1 = v1, Je2 = v2.

Let e1, e2 and v1, v2 be the dual bases. We choose the symplectic structure ω and the
pseudo-metric g on the algebra g to be

ω = e1 ∧ e2, g = e1 ⊗ e2 + e2 ⊗ e1.
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It follows that

 = g−1ω = e1 ⊗ e1 − e2 ⊗ e2.

The natural symplectic form and metric on g⋉ V are respectively

Ω = e1 ∧ e2 + v1 ∧ v2, ∆ = e1 ⊗ e2 + e2 ⊗ e1 + v1 ⊗ v2 + v2 ⊗ v1.

Moreover, let z1 = 1
2 (e1 − iv1) and z2 = 1

2 (e2 − iv2), z
1 = e1 + iv1, and z2 = e2 + iv2,

then

Ω1 = −e1 ∧ v2 − v1 ∧ e2 =
1

2i
(z1 ∧ z2 − z1 ∧ z2)(78)

Ω2 = e1 ∧ e2 − v1 ∧ v2 =
1

2
(z1 ∧ z2 + z1 ∧ z2)(79)

Ω3 = e1 ∧ e2 + v1 ∧ v2 =
1

2
(z1 ∧ z2 + z1 ∧ z2)(80)

Ω4 = e1 ∧ v2 − v1 ∧ e2 =
i

2
(z1 ∧ z2 − z1 ∧ z2) .(81)

In particular,

Ωc = Ω1 + iΩ2 = iz1 ∧ z2, Λ = Ω−1
c = iz1 ∧ z2,

Ω−1
3 = 2(z2 ∧ z1 + z2 ∧ z1), Ω−1

4 = 2i(z2 ∧ z1 − z2 ∧ z1).(82)

6.1. Example 1. When the two-dimensional Lie algebra g is abelian, the only
non-trivial object in constructing a four-dimensional semi-direct product in this case
is the torsion-free flat connection γ. It is determined by the identities,

γ(e1)v1 = v2, γ(e1)v2 = 0, γ(e2) = 0.

Equivalently, the only non-trivial structure equation for h = g⋉ V is

[[e1, v1]] = v2.

The dual structure equation is dv2 = −e1 ∧ v1. Therefore, it is apparent that Ω4 is
closed, and hence h has a natural pseudo-Kähler metric.

As e1 = e1 and e2 = −e2, Proposition 6 is solved when µ = 1
4 . By the expres-

sions in (82),

φ = −
i

4
Ω−1

3 +
1

4
Ω−1

4 =
1

4
(Ω−1

4 − iΩ−1
3 ) = iz1 ∧ z2.

Therefore by Theorem 5, for the complex structure J in (77) and the symplectic
structure Ω2 in (79), DGA(Ω2) and DGA(J) are isomorphic and they exist in one
generalized deformation class.

Indeed, for this particular example, the algebraic h is the covering space of the
Kodaira-Thurston surface. It is known that all the concerned cohomology spaces are
given by invariant objects. Therefore, we may also apply Theorem 4 on manifold
level, and recovers a key result obtained by ad hoc computation in [26].
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6.2. Example 2. In this example, the algebra g is solvable, with structure equa-
tion [e1, e2] = e2. The connection γ is given by

γ(e1)v1 = −v1, γ(e1)v2 = v2, γ(e2) = 0.

The structure equations for the semi-direct product h are equivalently given by

de2 = −e1 ∧ e2, dv1 = e1 ∧ v2, dv2 = −e1 ∧ v2.

It follows that Ω4 is closed. Further, µ = − 1
4 solves the constraint in Proposition 6,

and φ = −iz2 ∧ z1. Therefore, by Theorem 5 the complex structure J is deformed to
Ω2 via a holomorphic Poisson structure, and DGA(J) is isomorphic to DGA(Ω2).

6.3. Example 3. In this example, the algebra g is solvable: [e1, e2] = e2. The
connection γ is given by

γ(e1)v1 = −
1

2
v1, γ(e1)v2 =

1

2
v2, γ(e2)v1 = −

1

2
v2, γ(e2)v2 = 0.

On the semi-direct product the non-trivial structure equations become

(83) [e1, e2] = e2, [e1, v1] = −
1

2
v1, [e1, v2] =

1

2
v2, [e2, v1] = −

1

2
v2.

The dual equations are

(84) de2 = −e1 ∧ e2, dv1 =
1

2
e1 ∧ v1, dv2 = −

1

2
e1 ∧ v2 +

1

2
e2 ∧ v1.

It follows that dΩ4 = 2v1 ∧ e1 ∧ e2. In particular, Proposition 6 and Theorem 5 are
not applicable. In terms of complex frames, we have

[[z1, z2]] =
1

2
z2, dz1 = −

1

4
z1 ∧ z1, dz2 = −

1

4
(z1 + z1) ∧ z2 −

1

4
z1 ∧ (z2 + z2).

From the differentials, we further obtain that

(85) [[z1, z
1]] =

1

4
z1, [[z1, z

2]] = −
1

4
z2, [[z2, z

2]] =
1

4
z1.

Taking the complex conjugation, and then the dual expression is

∂z1 = −
1

4
z1 ∧ z1 −

1

4
z2 ∧ z2, ∂z2 =

1

4
z1 ∧ z2.

As an intermediate step, we put together the structure equation of DGA(J) on this
particular algebra:

[[z1, z2]] =
1

2
z2, [[z1, z

1]] =
1

4
z1, [[z1, z

2]] = −
1

4
z2, [[z2, z

2]] =
1

4
z1(86)

∂z1 = −
1

4
z1 ∧ z1 −

1

4
z2 ∧ z2, ∂z2 =

1

4
z1 ∧ z2, ∂z2 = −

1

2
z1 ∧ z2.(87)

On the other hand,

Ω2(e1) = e2, Ω2(e2) = −e1, Ω2(v1) = −v2, Ω2(v2) = v1.
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Then the linear isomorphism Ω2 take the Lie bracket on vectors in (83) to a Lie
bracket on forms.

[[e1, e2]] = −e1, [[e2, v2]] =
1

2
v2, [[e2, v1]] =

1

2
v1, [[e1, v2]] = −

1

2
v1.

With respect to these Lie algebra structures, the first derived subalgebra h1,0⊕h∗(0,1)

is the three-dimensional Heisenberg algebra spanned by e1, v1, v2 with v1 being its
center. In view of the exterior differential as given in (84), v1 is not closed in the
differential Gerstenhaber algebra of the symplectic structure Ω2.

On the other hand, from (86), we find that the first derived subalgebra in DGA(J)
is the three-dimensional Heisenberg algebra spanned by z2, z

1, z2 with z1 being its
center. In view of (87), z1 is ∂-closed.

Since the center of the derived subalgebra of DGA(J) is ∂-closed and that of
DGA(Ω2) is not d-closed, these two DGAs could not be quasi-isomorphic

Remark. Given the definition of Ω1 in (78), it is apparent that g and V are
Lagrangian with respect to Ω1. As Jg = V and JV = g, the complex structure J and
the complex symplectic structure is special Lagrangian in the sense of [7, Definition].

Let γ∗ be the dual representation of γ, then one obtains the dual semi-direct
product ĥ = g ⋉γ∗ V ∗. Through this space as an intermediate object, it is provided
in [7, Theorem 5.2] that there is a natural isomorphism from DGA(J) to DGA(Ω1).
See also [4]. Therefore, we have

DGA(Ω1) ∼= DGA(J) ∼= DGA(Ω2).
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