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EIGENVALUES OF HECKE OPERATORS ON HILBERT MODULAR

GROUPS∗

ROELOF W. BRUGGEMAN† AND ROBERTO J. MIATELLO‡

Abstract. Let F be a totally real field, let I be a nonzero ideal of the ring of integers OF of F ,
let Γ0(I) be the congruence subgroup of Hecke type of G =

∏d
j=1 SL2(R) embedded diagonally in

G, and let χ be a character of Γ0(I) of the form χ
(

a
b

c
d

)

= χ(d), where d 7→ χ(d) is a character of
OF modulo I.

For a finite subset P of prime ideals p not dividing I, we consider the ring HI , generated by the
Hecke operators T (p2), p ∈ P (see §3.2) acting on (Γ, χ)-automorphic forms on G.

Given the cuspidal space L
2,cusp

ξ

(

Γ0(I)\G, χ
)

, we let V̟ run through an orthogonal system of

irreducible G-invariant subspaces so that each V̟ is invariant under HI . For each 1 ≤ j ≤ d, let
λ̟ = (λ̟,j) be the vector formed by the eigenvalues of the Casimir operators of the d factors of G on

V̟ , and for each p ∈ P , we take λ̟,p ∈ Jp := [0, 1+N(p)) ∪ i
(

0,
√

1 + N(p)2
]

) so that λ2
̟,p −N(p)

is the eigenvalue on V̟ of the Hecke operator T (p2). If for some prime p the Hecke operator T (p)
can be defined then its eigenvalue on V̟ is real and equal to λ̟,p or −λ̟,p.

For each family of expanding boxes t 7→ Ωt, as in (3) in Rd, and fixed interval Jp in Jp, for each
p ∈ P , we consider the counting function

N(Ωt; (Jp)p∈P ) :=
∑

̟,λ̟∈Ωt : λ̟,p∈Jp ,∀p∈P

|cr(̟)|2 .

Here cr(̟) denotes the normalized Fourier coefficient of order r at ∞ for the elements of V̟ , with
r ∈ O′

F r pO′
F for every p ∈ P .

In the main result in this paper, Theorem 1.1, we give, under some mild conditions on the Ωt,
the asymptotic distribution of the function N(Ωt; (Jp)p∈P ), as t → ∞. We show that at the finite
places outside I the eigenvalues of the Hecke operator T (p2) are equidistributed compatibly with the
Sato-Tate measure, whereas at the archimedean places the eigenvalues λ̟ are equidistributed with
respect to the Plancherel measure.

As a consequence, if we pick an infinite place l and we prescribe λ̟,j ∈ Ωj for all infinite places
j 6= l and λ̟,p ∈ Jp for all finite places p in P for fixed sets Ωj and fixed intervals Jp ⊂ Jp with
positive measure and then allow λ̟,l to run over larger and larger regions, then there are infinitely
many representations ̟ in such a set, and their positive density is as described in Theorem 1.1.

Key words. Automorphic representations, Hecke operators, Hilbert modular group, Plancherel
measure, Sato-Tate measure.

AMS subject classifications. 11F41, 11F60, 11F72, 22E30.

1. Introduction and discussion of main results. We work with a totally real
number field F of degree d, the Lie group G = SL2(R)

d considered as the product of
SL2(Fj) for all archimedean completions Fj ∼= R of F . The group SL2(F ) is diagonally
embedded in G. We consider the congruence subgroup Γ = Γ0(I) with I a nonzero
ideal in the ring of integers OF = O of F , a character χ of (OF /I)

∗ inducing a

character χ
(
a
c
b
d

)
= χ(d) of Γ, and a compatible central character determined by

ξ ∈ {0, 1}d.
L2
ξ(Γ\G,χ) is the Hilbert space of classes of square integrable functions trans-

forming on the left by Γ according to the character χ, and transforming by the center
Z of G according to the central character determined by ξ. We work with a maximal
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orthogonal system {V̟}̟ of irreducible subspaces in the cuspidal Hilbert subspace
of L2

ξ(Γ\G,χ). For each ̟, there is an eigenvalue vector λ̟ = (λ̟,j)j ∈ Rd, where
λ̟,j is the eigenvalue of the Casimir operator of the factor SL2(R) at place j in the
product G = SL2(R)

d.

We normalize the Fourier terms of automorphic forms at the cusp ∞ as discussed
in §2.5. With this normalization, one obtains Fourier coefficients cr(̟) that are the
same for all automorphic forms in V̟. The order r of the Fourier terms runs through
the inverse different O′

F of OF .

In [9] (Theorem 4.5, Proposition 4.6 and Theorem 5.3) we prove that, under some
mild conditions on the family of compact sets t 7→ Ωt in Rd:

(1)
∑

̟,λ̟∈Ωt

|cr(̟)|2 =
2
√
|DF |Vol (Γ\G)

(2π)d
Pl(Ωt)

(
1 + o(1)

)
(t→ ∞) .

(In [9] the factor Vol (Γ\G) is not present. It is due to a different normalization of
measures discussed in §2.5.) The factor DF is the discriminant of F over Q, the cr(̟)
are Fourier coefficients, and Pl denotes the Plancherel measure given by Pl = ⊗jPlξj
on Rd, where

Pl0(f) =

∫ ∞

1/4

f(λ) tanh π
√
λ− 1

4 dλ(2)

+
∑

b≥2, b≡0 mod 2

(b− 1) f
(
b
2

(
1− b

2

))
,

Pl1(f) =

∫ ∞

1/4

f(λ) cothπ
√
λ− 1

4 dλ

+
∑

b≥3, b≡1 mod 2

(b− 1) f
(
b
2

(
1− b

2

))
.

In this paper we work with a family of the following type:

(3) Ωt = [−t, t]Q ×
∏

j∈E
[Aj , Bj ] ,

where {1, . . . , d} = Q ⊔ E is a partition of the archimedean places of F for which
Q 6= ∅. The end points Aj and Bj of the fixed interval with j ∈ E are not allowed to
lie in the set

{
b
2 (1− b

2 ) : b ≡ ξj , b > 1
}
, of discrete series eigenvalues. The variable

t tends to infinity. The set E can be empty, but the set Q has to contain at least one
place.

The asymptotic formula (1) shows that if the box
∏
j∈E [Aj , Bj ] has positive

Plancherel measure ⊗j 6=lPlξj , then there are infinitely many eigenvalue vectors λ̟
that project to this box.

If one of the factors [Aj , Bj ] has zero density for Plξj , which happens in particular
if [Aj , Bj ] ⊂

(
0, 14

)
, then the asymptotic formula has no meaning. For such a situation

it is better to use the following formulation:

(4)
∑

̟,λ̟∈Ωt

|cr(̟)|2 =
2
√
|DF |Vol (Γ\G)

(2π)d
Pl(Ωt) + o

(
V1(Ωt)

)
(t → ∞) ,
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where the reference measure V1 has product structure V1 = ⊗jV1,ξj with

∫
h dV1,0 =

1

2

∫ ∞

5/4

h(λ) dλ +
1

2

∫ 5/4

0

|λ− 1/4|−1/2 dλ(5)

+
∑

β>0 , β≡ 1
2
(1)

β h(1/4− β2) ,

∫
h dV1,1 =

1

2

∫ ∞

5/4

h(λ) dλ +
1

2

∫ 5/4

1/4

|λ− 1/4|−1/2 dλ

+
∑

β>0 , β≡0(1)

β h(1/4− β2) .

This measure V1 is positive on all sets in which eigenvalue vectors can occur, and is
comparable to Pl near points λ for which all coordinates stay a positive distance away
from

(
0, 14
)
. So the asymptotic formula does not exclude exceptional λ̟,j , but only

limits their density.
For congruence groups Γ0(I) over totally real number fields it is impossible, in

general, to define Hecke operators T (p) corresponding to the Hecke operators Tp for
congruence subgroups of SL2(Z). However, one can consider Hecke operators of the
form T (p2) for primes p not dividing I. If the prime ideal p = πpO is principal, then
the action of the Hecke operator T (p2) on (Γ, χ)-automorphic functions f on G (i.e.,
transforming on the left according to the character χ of Γ) is given by

f |T (p2)(g) = χ(πp)f

((
πp
0

0

1/πp

)
g

)
+
∑

b∈O/p
f

((
1

0

b/πp
1

)
g

)
(6)

+
∑

b∈O/p2

χ(πp)
−1f

((
1/πp
0

b/πp
πp

)
g

)
.

This does not depend on the choice of the generator πp. The Hecke operator in (6)
preserves (Γ, χ)-automorphy, square integrability and cuspidality. For non-principal
p ∤ I, we will show that there are also Hecke operators T (p2) with similar properties
(see §3.2). They generate a commutative algebra of symmetric bounded operators on
L2,cusp
ξ (Γ\G,χ). Furthermore, the orthogonal system {V̟} can be chosen in such a

way that each operator acts on V̟ by multiplication by a fixed scalar. One can show
that the eigenvalue λ̟,p2 of T (p2) on V̟ is a real number with absolute value at most
N(p)2 +N(p) + 1. (See §4.2.) Hence there is

(7) λ̟,p ∈ Jp :=
[
0, 1 + N(p)

]
∪ i
(
0,
√
1 + N(p)2

]

such that λ2̟,p −N(p) is the eigenvalue of T (p2) in V̟.
If the prime p ∤ I is of the form p = Oπp with totally positive πp for which

χ(πp) = 1, then one can define the Hecke operator T (p) by the formula

(8) (f |T (p)(g) = f

((√
πp
0

0
1√
πp

)
g

)
+
∑

b∈O/p
f

((
1√
πp

0

b√
πp√
πp

)
g

)
,

and T (p) satisfies T (p)2 = T (p2) + N(p). In such a situation we can further arrange
the system {V̟} to be such that T (p) has eigenvalue in

[
−1−N(p), 1+N(p)

]
on V̟.
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This eigenvalue is equal to λ̟,p or −λ̟,p, with λ̟,p as chosen above. In general, one
cannot define T (p) for all prime ideals p.

The Sato-Tate measure is the measure on R given by

(9)

f 7→ 2

π

∫ π

0

f
(
2
√
N(p) cosϑ

)
sin2 ϑ dϑ

=
1

2π
√
N(p)

∫ 2
√

N(p)

−2
√

N(p)

f(λ)
√
4N(p)− λ2 dλ .

See p. 106–107 of [12]. This is the measure one expects to describe the distribution
of the eigenvalues of the operators T (p) if they are defined. We have to deal with the
parameter λ̟,p ∈ Jp in (7), and use the following measure Φp on Jp, which is related
to the Sato-Tate measure:

(10) Φp(f) =
1

π
√
N(p)

∫ 2
√

N(p)

0

f(λ)
√
4N(p)− λ2 dλ .

The main goal of this paper is to prove the following distribution result:

Theorem 1.1. Let t 7→ Ωt be a family of compact sets in Rd as in (3) and let P
be a finite set of prime ideals in p ∈ OF , p ∤ I. For each p ∈ P let Jp be an interval
in [0,∞) ∪ i(0,∞). Then for any r ∈ O′

F such that r 6∈ pO′
F for every p ∈ P , we

have:
∑

̟,λ̟∈Ωt : λ̟,p∈Jp ,∀p∈P
|cr(̟)|2(11)

=
2
√
|DF |Vol (Γ\G)

(2π)d

(
Pl(Ωt)

∏

p∈P
Φp(Jp) + o

(
V1(Ωt)

))
.

(By an interval in [0,∞) ∪ i(0,∞) we mean a connected subset.)
The theorem shows that in the Hilbert modular case the parameters λ̟,p with

p ∤ I are equidistributed with respect to the measure Φp. We recall that λ̟,p2 =
λ2̟,p−N(p) is the eigenvalue of T (p2) in the space Vp. For those p ∈ P for which T (p)
can be defined, by the same method one can prove the result in Theorem 11 using
the eigenvalues ±λ̟,p of T (p), with Φp replaced with the Sato-Tate measure at these
places. In the case F = Q and I = Z that is Proposition 4.10 in [4]. (Since d = 1, the
set E has to be empty in this case.)

The theorem stays true for more general families t 7→ Ωt, as discussed in §B.1 in
the appendix.

Corollary 1.2. Let E be a set of archimedean places, with 0 ≤ #E < d, and let
S be a finite set of finite places outside I. Suppose that Jv ⊂ R is a bounded interval
for each v ∈ E ∪ S. Suppose that the Jj with j ∈ E satisfy the condition on the end
points mentioned below (3). If

∏

j∈E
Plξj (Jj)

∏

p∈S
Φp(Jp) > 0

then there are infinitely many representations ̟ such that λ̟,v ∈ Jv for all v ∈ S.
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According to the Ramanujan-Petersson conjecture one should have that

(12) λ̟,j 6∈ (0, 1/4), ∀ j , λ̟,p ∈ [0, 2
√
N(p)], ∀ p ∤ I .

In the language of representation theory this means that local factors ̟v of ̟ cannot
be in the complementary series for any place v of F outside I. Theorem 1.1 gives
support to this conjecture: If v = j is an archimedean place, then we take E = {j}
and [Aj , Bj ] ⊂

(
0, 14
)
. If v = p is a finite place not dividing I, we take S = {p} and

Jp such that Jp∩ [−N(p), 3N(p)] = ∅. We conclude from the theorem that exceptional
eigenvalues such that λ̟,j ∈ [Aj , Bj ] or λ̟,p ∈ Jp are relatively scarce: the sum in
the left hand side of (11) is o

(
V1(Ωt)

)
as t → ∞. The theorem gives more: the λ̟,v

are distributed according to the Plancherel measure if v is an archimedean place, and
according to the measure Φp, compatible with the Sato-Tate distribution if v is a
finite place outside I.

In these results we fix one finite unramified place (or finitely many), and consider
the distribution of the eigenvalues λ̟,p of the Hecke operators for this place p (or the
joint distribution of the Hecke eigenvalues for the finitely many fixed places), averaging
over an infinite set of automorphic representations ̟. That point of view is in some
sense orthogonal to results like those in [1], where an automorphic representation ̟
is fixed, and it is shown that the distribution of Hecke eigenvalues λ̟,p where p runs
over the (unramified finite) places, is given by the Sato-Tate distribution.

The paper is organized as follows. In §2 we introduce some notations and recall
some facts on automorphic forms. To handle Hecke operators it is convenient to work
in an adelic context recalled in §2.6. In §3 we discuss the Hecke algebra HI and the
relation of its eigenvalues to Fourier coefficients. In §4 we give the proof of the main
result, Theorem 1.1. To this end, we need to generalize the asymptotic result (4) to
a sum in which |cr(̟)|2 is replaced by a product of Fourier coefficients of possibly
different order and at possibly different cusps. This generalized asymptotic result
is Theorem B.1, proved by using the sum formula given in Theorem A.2. We have
included this auxiliary material in two Appendices to avoid interrupting the flow of
proof of the main result.

2. Preliminaries. In this section we will introduce some notations and recall
known facts on automorphic forms and Hecke operators in our context.

2.1. Notations. For any ring R we denote:

(13) n(x) =

(
1

0

x

1

)
for x ∈ R , h(t) =

(
t

0

0

t−1

)
for t ∈ R∗ .

In the case R = Rd we also use

a(y) =

((√
y1
0

0

1/
√
y1

)
, . . . ,

(√
yd
0

0

1/
√
yd

))
for y ∈ (0,∞)d(14)

k(ϑ) =

((
cosϑ1

− sinϑ1

sinϑ1
cosϑ1

)
, . . . ,

(
cosϑd

− sinϑd

sinϑd
cosϑd

))
for ϑ ∈ Rd

and write

N =
{
n(x) : x ∈ Rd

}
, A =

{
a(y) : y ∈ (0,∞)d

}
,(15)

K =
{
k(ϑ) : ϑ ∈ Rd

}
.
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The center Z of G is the set of h(ζ) with ζ ∈ {1,−1}d ⊂ Rd.

The function S : Rd → R given by S(x) =
∑
j xj extends TrF/Q : F → Q.

2.2. Cusps. As in §2.1.4 of [8] we choose a set P of representatives of the Γ-
equivalence classes of cusps. We take ∞ as representative of Γ∞. For each κ ∈ P we
choose gκ ∈ SL2(F ) such that κ = gκ∞. For κ = ∞ we can and do take g∞ = 1. We
use the notations Nκ = gκNg

−1
κ and P κ = gκNAZg

−1
κ , and we put ΓPκ := Γ ∩ P κ

and ΓNκ := Γ∩Nκ. So ΓPκ equals the subgroup of Γ fixing κ, and has ΓNκ as a normal
commutative subgroup of the form ΓNκ =

{
gκn(ξ)g

−1
κ ξ ∈ Mκ

}
for some fractional

ideal Mκ of F , which is a lattice in Rd, under the embedding of F in Rd. There is
the dual lattice M ′

κ consisting of all r ∈ Rd such that S(rx) ∈ Z for all x ∈ Mκ. So
M ′
κ is the fractional ideal O′M−1

κ , where O′ is the inverse of the different ideal. Note
that Mκ and M ′

κ depend on the choice of gκ, but ΓPκ and ΓNκ do not. For the cusp
∞ we have taken g∞ = 1, so M∞ = O and M ′

∞ = O′.
Pχ is the subset of κ ∈ P for which the fixed character χ of Γ is trivial on ΓNκ .

For κ ∈ Pχ, the dual lattice M ′
κ describes the characters of gκNg

−1
κ that are trivial

on ΓNκ . For general κ ∈ P we put

(16) M̃ ′
κ :=

{
r ∈ Rd : χ(gκn(x)g

−1
κ ) = e2πiS(rx) for every x ∈Mκ

}
.

Thus, M̃ ′
κ is a shift of M ′

κ inside Rd, and κ ∈ Pχ if and only if 0 ∈ M̃ ′
κ.

2.3. Automorphic functions and Fourier terms. By a (Γ, χ)-automorphic
function on G we mean any function on G that satisfies f(γg) = χ(γ)f(g) for all γ ∈ Γ
and g ∈ G. We call a (Γ, χ)-automorphic function an automorphic form if f is an
eigenfunction of the d Casimir operators of the factors of G = SL2(R)

d, and if it has a
weight q ∈ Zd, i.e., f(gk(ϑ)) = f(g)eiS(qϑ) for any ϑ ∈ Rd, where S(q, ϑ) =

∑
j qjϑj .

All automorphic forms on G are real-analytic functions.
Let f be a continuous (Γ, χ)-automorphic function on G. For each κ ∈ P the

function x 7→ f
(
gκn(x)g) on Rd transforms according to a character ξ 7→ e2πiS(rξ) of

Mκ for some r ∈ M̃ ′
κ. So it has an absolutely convergent Fourier expansion

f(gκg) =
∑

r∈M̃ ′
κ

Fκ,rf(g) ,(17)

(Fκ,rf)(g) =
1

Vol (Rd/Mκ)

∫

Rd/Mκ

e−2πiS(rx)f(gκn(x)g) dx .

In [8] and [9] we considered only the Fourier expansion at the cusp ∞. For the
relation with Hecke operators we need to consider in this paper Fourier expansions at
other cusps as well.

We call an (Γ, χ)-automorphic function cuspidal is all its Fourier terms of order
zero vanish. Since 0 ∈ M̃ ′

κ only if κ ∈ Pχ, the function f is cuspidal if Fκ,0f = 0 for
all κ ∈ Pχ.

2.4. Automorphic representations. Let L2(Γ0(I)\G,χ) denote the Hilbert
space of classes of functions transforming according to χ i.e. f(γg) = χ(γ)f(g) for
any γ ∈ Γ0(I) and g ∈ G. The group G acts unitarily on this Hilbert space by
right translation. This space is split up according to central characters, indicated by
ξ ∈ {0, 1}d. By L2

ξ(Γ0(I)\G,χ) we mean the subspace on which the center acts by

((
ζ1
0

0

ζ1

)
, . . . ,

(
ζd
0

0

ζd

))
7→
∏

j

ζ
ξj
j ,
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where ζj ∈ {1,−1}. This subspace can be non-zero only if the following compatibility
condition holds:

(18) χ(−1) =
∏

j

(−1)ξj .

We assume this throughout this paper.
There is an orthogonal decomposition

(19) L2
ξ(Γ0(I)\G,χ) = L2,cont

ξ (Γ0(I)\G,χ)⊕ L2,discr
ξ (Γ0(I)\G,χ).

The G-invariant subspace L2,cont
ξ (Γ0(I)\G,χ) can be described by integrals of Eisen-

stein series and the orthogonal complement L2,discr
ξ (Γ0(I)\G,χ) is a direct sum of

closed irreducible G-invariant subspaces. If χ = 1, the constant functions form an
invariant subspace. All other irreducible invariant subspaces have infinite dimension.
They are cuspidal and span the space L2,cusp

ξ (Γ0(I)\G,χ), the orthogonal complement

of the constant functions in L2,discr
ξ (Γ0(I)\G,χ).

We fix a maximal orthogonal system {V̟}̟ of irreducible subspaces in the Hilbert

space L2,cusp
ξ (Γ0(I)\G,χ). This system is unique if all ̟ are inequivalent. In general,

there might be multiplicities, due to oldforms.
In §3.2 we will discuss Hecke operators T (a2), which act in L2

ξ(Γ0(I)\G,χ) as
symmetric bounded operators. These operators commute with the Casimir operators
of the factors SL2(R) of G, and leave invariant the space L2,cusp

ξ (Γ0(I)\G,χ). (See
§4.2.) Then we can and will assume that the V̟ are invariant under these Hecke
operators T (a2).

Each irreducible automorphic representation ̟ of G =
∏
j SL2(R) is the tensor

product ⊗j̟j of irreducible representations of SL2(R). Here and in the sequel, j is
supposed to run over the d archimedean places of F .

The factor ̟j can (almost) be characterized by the eigenvalue λ̟,j of the Casimir
operator of SL2(R), and the central character, which is indicated by ξj .

The eigenvalues λ̟,j are known to be in the following subsets of R depending on
the central character ξj :

(20)

{
b
2 − b2

4 : b ≥ 2 even
}

∪
[
λ0,∞

)
if ξj = 0 ,

{
b
2 − b2

4 : b ≥ 3 odd
}

∪
[
1
4 ,∞

)
if ξj = 1 ,

where λ0 ∈
(
0, 14
]
. By a conjecture due to Selberg in the spherical case, it is expected

that one can take λ0 = 1
4 . The result 1

4 ≥ λ0 ≥ 1
4 −

(
1
9

)2
, due to Kim-Shahidi

and Kim-Shahidi-Sarnak, [11], has recently been improved to λ0 ≥ 1
4 −

(
7
64

)2
by

Blomer and Brumley, [2]. We call λ̟ = (λ̟,j) ∈ Rd the eigenvalue vector of the
representation ̟. As discussed in §1.1 of [9], spectral theory shows that the set of
eigenvalue vectors {λ̟} is discrete in Rd.

The correspondence between values of λ = λ̟,j and equivalence classes of unitary
representations of SL2(R) of infinite dimension is one-to-one if λ > 0 for ξ = ξj =

0, and if λ > 1
4 if ξ = 1. In the other cases, λ = b

2 − b2

4 with b ∈ Z≥1, b ≡
ξ mod 2. In these cases, there are two equivalence classes, one with lowest weight
b (holomorphic type), and one with highest weight −b (antiholomorphic type). If
b ≥ 2, representations of these classes occur discretely in L2

(
SL2(R)

)
, and are called
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discrete series representations. The representations in the case b = 1 are sometimes
called mock discrete series. They do not occur discretely in L2

(
SL2(R)

)
. All these

representations, discrete series or not, may occur as an irreducible component of
L2,cusp
ξ (Γ0(I)\G,χ).

2.5. Fourier coefficients. In the version in [9] of the asymptotic formula (1) the
factor Vol (Γ\G) is not present, due to a different choice of the norm in the Hilbert
space L2

ξ(Γ\G,χ). There we used ‖f‖2 =
∫
Γ\G |f |2 dg, with the Haar measure dg

indicated in §2.1 of [8]. Here we prefer to use the norm

(21) ‖f‖ =
( 1

Vol (Γ\G)

∫

Γ\G
|f |2 dg

)1/2
.

With this choice the norm ‖f‖ of f ∈ L2
ξ(Γ\G,χ) does not change if we consider f as

an element of L2
ξ(Γ1\G,χ) for a subgroup Γ1 of finite index in Γ.

As discussed in §2.3.4 in [8], the Fourier expansion of one automorphic form in V̟
determines the Fourier expansion of any automorphic form in V̟. This is valid at all
cusps, not only at the cusp ∞ considered in [8] and [9]. We review the choice of the
Fourier coefficients of an automorphic representation V̟, indicating the differences in
comparison with [8]. We put references to formulas and sections in [8] in italics.

Like in (2.27), we determine the Fourier coefficients cκ,r(̟), for κ ∈ P and
r ∈ M̃ ′

κ, by

(22) Fκ,rψ̟,q = cκ,r(̟) dr(q, ν̟)Wq(r, ν̟) .

Here dr(q, ν̟) is the factor with exponentials and gamma functions in (2.28), with

a choice of ν̟ = (ν̟,j)1≤j≤d ∈ (i[0,∞) ∪ (0,∞))
d
such that λ̟,j = 1

4 − ν2̟,j . The
“Whittaker function” Wq(r, ν̟) on G is a standard function on G, given in (2.12),
with weight q and the right transformation behavior for translations by elements of N
on the left. The weight q in (22) runs over all weights that occur in V̟. The ψ̟,q
form a basis of the space of K-finite vectors in V̟. They are related by the action
of the Lie algebra of G and have norms as indicated in (2.26). Then this determines
the Fourier coefficients cκ,r(̟), independent of the weight q. The difference with [8]
is the choice of the norm in (21), which can be summarized as follows:

f ∈ L2
ξ(Γ\G,χ) : ‖f‖here =

1√
Vol (Γ\G)

‖f‖there ,

ψ̟,q in (2.26) of [8]: ψhere
̟,q =

√
Vol (Γ\G)ψthere

̟,q ,

cr(̟) in (2.27) of [8]: c∞,r
here(̟) =

√
Vol (Γ\G) crthere(̟) .

As a consequence, we use now Fourier coefficients cr(̟) = c∞,r(̟) that are equal to√
Vol (Γ\G) times the corresponding coefficients in [8] and [9]. This causes the factor

Vol (Γ\G) in (1), which stayed hidden in the normalization used in [9]. The wish to
make the dependence on the ideal I in Γ = Γ0(I) explicit is our motivation to go over
to the norm in (21).

In the choice of the cκ,r(̟) there is for each ̟ the freedom of a complex factor
with absolute value one. In the result we work with absolute values, so these choices
do not influence the results of this paper.

In the case F = Q and ν̟ = ν ∈ i(0,∞) the function u : z = x + iy 7→
ψ̟,0

(√
y
0

x√
y

1√
y

)
is a Maass cusp form of weight zero. Each cusp κ of Γ0(N) can be
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described as κ = gκ∞ with now gκ ∈ SL2(Z) ⊂ SL2(Q), such that the subgroup of
Γ0(N) fixing κ is generated by gκ

(
1
0
w
1

)
g−1
κ for some w ∈ N. Then Mκ = wZ, and

M ′
κ = 1

wZ. There is ακ ∈ Q depending on χ such that M̃ ′
κ = ακ + 1

wZ. The Maass
form u has at the cusp κ the Fourier expansion

u
(
gκz
)

=
∑

r≡ακ mod 1/w

cκ,r(̟)√
2|r|Γ(12 + ν)

e2πirxW0,ν(4π|r|y) ,

where Wk,m is a Whittaker function. (If ακ ∈ 1
wZ the term with r = 0 should be

omitted.) If we apply to u the Maass weight raising and weight lowering operators
we get Maass forms of even weights q that are explicit multiples of ψ̟,q, with Fourier
expansions containingWq Sign (r)/2,ν(4π|r|y). The normalizing factors dr(q, ν) are such
that the same coefficients cκ,r(̟) occur in all these Fourier expansions.

2.6. Automorphic forms on the adele group. We now consider the embed-
ding of Γ = Γ0(I) ⊂ SL2(F ) in SL2(Af ), where Af is the group of finite F -adeles.

We recall that Af is the subset of
∏

p Fp of those a = (ap)p ∈ ∏p Fp such that
ap ∈ Op for all but finitely many primes p in O. By Op we denote the closure of O
in the completion Fp of F at place p. The ring Af contains the subring Ō =

∏
pOp,

which is the completion of O for the topology in which the system of neighborhoods
of 0 is generated by the non-zero ideals in O.

The local ring Op has maximal ideal p̄, which is the closure of p ⊂ O in Op. The
closure Īp of I in Op is equal to Op if p ∤ I, and is a nonzero ideal contained in p̄ if
p | I.

For each c ∈ SL2(F ) the group Γ ∩ cΓc−1 has finite index in Γ = Γ0(I). This
system of subgroups is cofinal with the system of all congruence subgroups of Γ. The
closure Γ̄ of Γ in SL2(Af ) is the completion of Γ in the topology for which the system
of neighborhoods of the unit element is generated by the congruence subgroups. There
is a decomposition as a direct product

Γ̄ =
∏

p

Γ̄p, where Γ̄p =

{
SL2(Op) if p ∤ I,{(

a
c
b
d

)
∈ SL2(Op) : c ∈ Īp

}
if p | I.

The isomorphism (O/I)∗ ∼=
∏

p|I(O/pvp(I))∗ implies that the character χ mod I can

be written uniquely as a product χ(x) =
∏

p|I χp(x) for x ∈ O relatively prime

to I, where χp is a character of (O/pvp(I))∗ ∼= (Ōp/Īp)
∗. In particular, χp induces a

character of O∗
p.

We now define a character χ̂ on the subgroup

{u ∈ A∗
f : up ∈ O∗

p, if p | I, and up ∈ F ∗
p if p ∤ I},

by setting χ̂(u) =
∏

p|I χp(up). If x ∈ O is relatively prime to I then, for the diagonal

embedding O ⊂ A∗
f , we have χ(x) = χ̂(x). Thus we have extended the character χ of

(O/I)∗.
Recall that we use the symbol χ also to denote the character χ

(
a
c
b
d

)
= χ(d) of Γ.

We may extend this character χ to the subgroup {g ∈ SL2(Af ) : gp ∈ Γ̄p, for p | I}
of SL2(Af ) by

(23) χ̂

(
a

c

b

d

)
=
∏

p|I
χp(d) = χ̂(d) .
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This character is trivial on SL2(Fp) for all p ∤ I. For all p | I, we denote by χ̂p the
restriction of χ̂ to Γ̄p.

The adele ring A of F is the direct product A∞ × Af , with A∞ = Rd. So
G = SL2(R)

d = SL2(A∞). The group SL2(F ) can be viewed as embedded discretely
in SL2(A). Any (Γ, χ)-automorphic function f on G determines uniquely a corre-
sponding function fa on SL2(A) by

(24) fa(c(g∞, u)) = χ̂(u)−1f(g∞) g∞ ∈ SL2(A∞), u ∈ Γ̄, c ∈ SL2(F ) .

Here we use that SL2(Af ) = SL2(F )Γ̄, a consequence of strong approximation for SL2.
So fa transforms on the right according to the character χ̂−1 of Γ̄, and is left-invariant
under SL2(F ). Square integrability of f on Γ\G is equivalent to square integrability
of fa on SL2(F )\SL2(A). At the finite places we normalize the Haar measure on
SL2(Fp) so that Γ̄p has volume 1.

3. Hecke algebra. One of the advantages of adele groups is the possibility to
view the classical Hecke operators as convolution operators. In this section we study
the structure of a ring of Hecke operators, locally in §3.1, globally in §3.2.

For Γ = Γ0(I) and the character χ, consider the convolution algebra H of com-
pactly supported functions ψ on SL2(Af ) satisfying ψ(u1gu2) = χ̂(u1)

−1 ψ(g) χ̂(u2)
−1

for u1, u2,∈ Γ̄ and g ∈ SL2(Af ). Convolution gives not only a multiplication on H,
but also an action of H on (Γ, χ)-automorphic functions fa:

(25) fa ∗ ψ(g) =

∫

SL2(Af )

fa(gx
−1)ψ(x) dx =

∫

SL2(Af )

fa(g∞, x)ψ(x
−1gf ) dx ,

with g = (g∞, gf ) ∈ SL2(A) = G × SL2(Af ). The support of a non-zero ψ ∈ H is
a non-empty compact subset of SL2(Af ) that satisfies Γ̄ supp (ψ) Γ̄ = supp (ψ). By
compactness, the set Γ̄\supp (ψ) is finite. Strong approximation allows us to pick
representatives of Γ̄\suppψ in SL2(F ). We normalize the Haar measure on SL2(Af )
by giving Γ̄ volume 1. Then we have for g∞ ∈ G:

(26)

fa ∗ ψ(g∞, 1) =
∑

ξ∈Γ̄\suppψ
fa(g∞, ξ

−1)ψ(ξ)

=
∑

ξ∈Γ\(SL2(F )∩suppψ)

fa
(
ξ−1(ξg∞, 1)

)
ψ(ξ)

=
∑

ξ∈Γ\(SL2(F )∩suppψ)

f(ξg∞)ψ(ξ) .

Thus we obtain the action of ψ in terms of a finite sum of left translates of the
(Γ, χ)-automorphic function f .

If fa ∈ L2
(
SL2(F )\SL2(A)

)
, then so is Fξ : g 7→ fa

(
g(1, ξ−1)

)
ψ(ξ) for all ξ ∈

SL2(Af ), and ‖Fξ‖2 = ‖fa‖2 |ψ(ξ)|. Hence the convolution operator fa 7→ fa ∗ ψ
defines a bounded operator on the Hilbert space L2

(
SL2(F )\SL2(A)

)
with norm at

most

(27) ‖ψ‖∞ ·#
(
Γ̄\suppψ

)
.

For each x ∈ SL2(Af ), right translation Rx given by (Rxf)(g) = f(gx) is a uni-

tary operator in L2
(
SL2(F )\SL2(A)

)
. We put ψ∗(x) = ψ(x−1). If ψ as above

satisfies ψ∗ = ψ, then convolution by ψ defines a symmetric bounded operator on
L2
(
SL2(F )\SL2(A)

)
.
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3.1. Local Hecke algebra. Before defining the subalgebra of H with which
we will work, we will consider some pertinent local convolution algebras, for primes
outside I. We recall that the character χ̂ is trivial on SL2(Fp) for all p ∤ I.

Definition 3.1. For each finite prime p not dividing I we denote by Hp the
convolution algebra of compactly supported locally constant functions on SL2(Fp)
that are left and right invariant under translation by elements of SL2(Op).

We recall the well known description of the structure of Hp. Let π̂p be a generator
of the maximal ideal p̄ of Op.

The unit element of Hp is the characteristic function εp of Γ̄p = SL2(Op).
A basis of Hp is given by the characteristic functions T (p2k) of the sets

(28) ∆(p2k) =
{
π̂−k
p g : g ∈M2(Op), det g = π̂2k

p

}
,

for k ∈ N0. So ∆(p0) = εp. We have

∆(p2k) =
2k⊔

l=0

⊔

b∈Op/p̄l

Γ̄p

(
π̂k−lp

0

bπ̂−k
p

π̂l−kp

)
(29)

=

2k⊔

l=0

⊔

β∈p̄l−2k/p̄2l−2k

Γ̄ph
(
π̂k−lp

)
n(β) ,

in the notations of §2.1. For k ≥ 1 we have the relation:

(30) T (p2k) ∗ T (p2) = T (p2k+2) + N(p)T (p2k) + N(p)2 T (p2k−2) .

This implies that Hp is a polynomial ring in the variable T (p2). Furthermore, (30)
allows us to check that Hp is isomorphic to the subring of the ring C[X2

p , X
−2
p ] of even

Laurent polynomials that are invariant under X2
p 7→ X−2

p , by sending T (p2k) to

(31) N(p)k
2k∑

j=0

X2k−2j
p .

Each character of Hp corresponds to a map Xp 7→ N(p)νp , where the parameter

(32) νp ∈ C mod
2πi

log N(p)
Z ,

is determined up to νp ↔ −νp. The quantity νp is related (but not equal) to the usual
Satake parameter.

Thus we have described the structure of Hp completely for primes p ∤ I. For
primes p dividing I the algebra Hp is the convolution algebra of compactly supported
functions on SL2(Fp) that transform on the left and on the right by the character χ̂−1

p

of Γ̄p. We do not go into its structure, and only note that its unit element εp is equal
to χ̂−1

p on Γ̄p and is zero outside Γ̄p.

3.2. Global Hecke algebra. We shall work with the following subring of H:

Definition 3.2. We denote by HI the convolution subalgebra of H of compactly
supported bi-χ̂−1-equivariant functions on SL2(Af ) spanned by

⊗
p∤I

ψp ⊗ ⊗
p|I
εp ,
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where ψp ∈ Hp for all p ∤ I, and ψp = εp for all but finitely many p.

We denote by ⊗pψp the function g 7→ ∏
p ψp(gp) on the group SL2(Af ). The

condition that ψp = εp for almost all p ensures that ⊗pψp makes sense. The algebra
HI is isomorphic to the (restricted) tensor product of the algebras Hp with p ∤ I. It
is a commutative algebra. In this way we restrict our attention to the places where
the local Hecke algebra is unramified.

Next we build elements of H from elements of Hp with p ∤ I. Since the character
χ̂ may be non-trivial this requires some care. We also describe the action of elements
of H on automorphic forms for Γ0(I).

We consider a nonzero ideal a in O prime to I. It has the form a =
∏

p∈P pkp ,
with P a finite set of prime ideals not dividing I, and positive kp. We define

(33) T (a2) =
⊗
p∈P

T (p2kp)⊗ ⊗
p6∈P

εp .

Thus defined, convolution by T (a2) satisfies T (a2)∗ = T (a2).
With a and P as above, we consider the action of T (a2) on automorphic forms,

first under the assumption that all p ∈ P are principal ideals in O.
So p = (πp). Then πp ∈ π̂pO∗

p, and πp ∈ O∗
q at all other finite places q. The

element π̂p embedded in A∗
f by taking 1 at all places not equal to p, satisfies χ̂

(
π̂p
)
= 1.

However, the representative πp ∈ F ∗ need not be in the kernel of χ, so we may have
χ̂(πp) 6= 0.

The Iwasawa decomposition of SL2(Fp) shows that we can choose representatives

x̂ of Γ̄\suppT (a2) of the form x̂ =
(
q
0

0
1/q

)(
1
0
β̂
1

)
∈ SL2(Af ), with

qp = π̂
kp−lp
p , β̂p ∈ p̄lp−2kp if p ∈ P ,(34)

qq = 1 , β̂q = 0 if q 6∈ P ,

where each lp runs from 0 to 2kp, and where β̂p runs through a system of repre-
sentatives of p̄lp−2kp/p̄2lp−2kp . The representatives x̂ need not be in SL2(F ). We
take

x =

(
qb
0

0

1/qb

)(
1

0

β

1

)
∈ SL2(F )

such that x ∈ Γ̄x̂ with b =
∏

p∈P plp , qb =
∏

p∈P π
kp−lp
p , and β in a system of

representatives of b a−2/b2 a−2. In this way for g ∈ SL2(A)

(35)
(
fa ∗ T (a2)

)
(g) =

∑

b|a2

∑

β∈ba−2/b2a−2

χ̂(qb)fa
(
g
(
1, n(β)−1h(qb)

−1
))
,

which becomes in terms of (Γ, χ)-automorphic functions on Γ\G:

(36)
(
f |T (a2)

)
(g∞) =

∑

b|a2

∑

β∈ba−2/b2a−2

χ̂(qb)f (h(qb)n(β)g∞) (g∞ ∈ G) .

If we can choose πp totally positive for all p ∈ P , a description of T (a) similar to
the latter formula is possible for all ideals a built with prime ideals in P .
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In general, not all prime ideals p ∈ P are principal, so we proceed as follows.
Taking β ∈ ba−2 ⊂ F , β ∈ β̂ + b2a−2, we have in the notations of (34):

h(q)n(β̂) ∈ Γ̄h(q)n(β) .

By strong approximation there exists gb ∈ SL2(F ) such that

(37) h(q)n(β̂) ∈ Γ̄gb

(
1

0

β

1

)
.

Indeed, for b such that a b−1 is principal, we may take gb to be a diagonal matrix, in
particular, gO =

(
1
0
0
1

)
. For other b we use that in any field we have

(
t

0

0

1/t

)
=

(
1

0

t

1

)(
1

−t−1

0

1

)(
1

0

t

1

)(
0

1

−1

0

)
(t 6= 0) .

For any ideal J there are elements ξ, η ∈ F and u, v ∈ J̄ , such that q = ξ + u,
q−1 = η+v for q as in (34). If we take J as the product of sufficiently high (depending
on q) powers of primes in P and I, we have

h(q) =

(

1

0

ξ + u

1

)(

1

−η − v

0

1

)(

1

0

ξ + u

1

)(

0

1

−1

0

)

∈ Γ̄

(

1

0

ξ

1

)(

1

−η

0

1

)(

1

0

ξ

1

)(

0

1

−1

0

)

,

so that h(q) ∈ Γ̄ · SL2(F ). This leads to the following description of convolution by
T (a2):

(38)
(
fa ∗ T (a2)

)
(g) =

∑

b|a2

χ̂(gb)
−1

∑

β∈ba−2/b2a−2

fa
(
g,
(
1, n(β)−1g−1

b

))
,

for any g ∈ SL2(A). Since the gbn(β) in this sum are elements of SL2(F ), we can go
over to the corresponding function on G, and obtain:

Proposition 3.3. Let a be a non-zero integral ideal in O prime to I. For
each integral ideal b dividing a there exists gb ∈ SL2(F ) such that for any (Γ, χ)-
automorphic function f on G, and for any g ∈ G:

(39)
(
f |T (a2)

)
(g) =

∑

b|a2

χ̂(gb)
−1

∑

β∈ba−2/b2a−2

f (gbn(β)g) .

In the sum, β runs over elements of ba−2 ⊂ F representing the classes modulo
b2a2. The elements gb are in SL2(F ). For b = O we can take gb = Id. If all prime
ideals dividing a are principal we can take all gb to be diagonal matrices satisfying (37).

In particular, the Hecke operators act in the space L2
ξ(Γ\G,χ) as bounded opera-

tors. (See (27).) The relation T (a2)∗ = T (a2) implies that T (a2) acts as a symmetric
bounded operator. Its norm is bounded by the number of terms in (39).

4. Distribution of eigenvalues of Hecke operators. It will be critical for
this paper to work out the relation between the eigenvalues of Hecke operators and
the Fourier coefficients of automorphic forms. In the first subsection we discuss the
action of Hecke operators on Fourier expansions (Propositions 4.3 and 4.4) and then
we apply these results to give an expression for the eigenvalues of Hecke operators
on automorphic cusp forms (Theorem 4.5). In the final subsection we give a proof
of our main result, Theorem 1.1 in several steps. The main tools in the proof are
Theorems B.1 and 4.5.
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4.1. Hecke operators and Fourier expansion.

Lemma 4.1. Let a be a non-zero integral ideal in O relatively prime to I, and let
b | a2. Then there is a unique κ ∈ P such that the element gb in Proposition 3.3 has
the form gb = γgκp with γ ∈ Γ and p = n(b)h(a) ∈ SL2(F ).

For each (Γ, χ)-automorphic function f on G the function

(40) fb : g 7→
∑

β∈ba−2/b2a−2

f(gb n(β) g)

is left-invariant under ΓN∞ . The Fourier terms of fb are given by

(41) F∞,rfb(g) =

{
N(b) χ(γ)Fκ,a−2rf(pg) for r ∈ b−1a2O′ ,

0 for other r ∈ O′ .

Proof. The element gb ∈ SL2(F ) is in Γ̄h(q) with q as in (34). Since gb ∞ is a
cusp, it is of the form γκ with γ ∈ Γ, for a unique κ ∈ P . Then g−1

κ γ−1gb ∈ SL2(F )
fixes ∞, and is hence of the form p = n(b)h(a) with b ∈ F , a ∈ F ∗.

We claim that

(42) a2b2a−2 = Mκ .

Indeed, the construction of the system of representatives in §3.2 implies that for
different β in a system of representatives of ba−2/b2a−2 the sets Γγbn(β) are disjoint,
and furthermore gbn(β)g

−1
b ∈ Γ if β ∈ b2a−2. Hence, for all β ∈ b2a−2 we have

gκpn(β)p
−1g−1

κ ∈ Γ, which implies that n(a2β) ∈ g−1
κ ΓNκgκ for all such β. This

shows that a2b2a−2 ⊂Mκ.
Conversely, if x ∈Mκ, then gκn(x)g

−1
κ ∈ Γ, and gbn(a

−2x)g−1
b ∈ γ−1Γγ = Γ. We

have gb = uh(q), with u ∈ Γ̄. Hence h(q)n(a−2x)h(q)−1 ∈ Γ̄, and q2a−2x ∈ Ō. Since

qŌ = āb̂−1, we have x ∈ a2b̂2ā−2 ∩ F = a2b2a−2.
Moreover, for β ∈ b2a−2, we have

χ
(
gκn(a

2β)g−1
κ

)
= χ̂(gκp)χ̂

(
n(β

)
χ̂(gκp)

−1 = 1 .

So χ is trivial on ΓNκ and M̃ ′
κ as defined in (16) is equal to M ′

κ = a−2b−2a2O′.
The set

⊔
β∈ba−2/b2a−2 Γgbn(β) is right-invariant under the group

{
n(ω) : ω ∈

ba−2
}
, which contains ΓN∞ . Hence fb in (40) is left-invariant under ΓN∞ . It has a

Fourier expansion with terms of order r ∈ O′, and the terms with r outside (ba−2)′ =
b−1a2O′ vanish. For r ∈ b−1a2O′:

F∞,rfb(g) =
1

Vol (Rd/ba−2)

∫

Rd/ba−2

e−2πiS(rx) fb (n(x)g) dx

=
1

Vol (Rd/ba−2)

∫

Rd/ba−2

∑

β∈ba−2/b2a−2

e−2πiS
(
r(x+β)

)
f (γgκpn(x+ β)g) dx ,

where we have written gb = γgκp, and have used that S(rβ) ∈ Z. The function x 7→
e−2πiS(rx)f (γgκpn(x)g) is a function on Rd/b2a−2. Hence the integration over x ∈
Rd/ba−2 and the summation over β ∈ βa−2/b2a−2 is replaced by integration over
x ∈ Rd/b2a−2:

F∞,rfb(g) =
1

Vol (Rd/ba−2)

∫

Rd/b2a−2

e−2πiS(rx) f (γgκpn(x)g) dx .
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Using also p = n(b)h(a) and the fact that f is (Γ, χ)-automorphic we obtain

F∞,rfb(g) =
χ(γ)

Vol (Rd/ba−2)

∫

Rd/b2a−2

e−2πiS(rx) f (gκn(b)h(a)n(x)g) dx

=
χ(γ)

Vol (Rd/ba−2)

∫

Rd/b2a−2

e−2πiS(rx) f
(
gκn(a

2x)pg
)
dx .

Next we carry out the substitution x 7→ a−2x:

F∞,rfb(g) =
χ(γ)

|N(a)|2 Vol (Rd/ba−2)

∫

Rd/a2b2a−2

e−2πiS(ra−2x) f (gκn(x)pg) .

We have seen in (42) that a2b2a−2 =Mκ. So we obtain the formula in (41) when we
show that

1
∣∣N(a)

∣∣2 Vol (Rd/ba−2)
=

N(b)

Vol (R2/Mκ)
.

This follows from the facts that Vol
(
Rd/bc

)
= N(b)Vol

(
Rd/c

)
and Vol

(
Rd/aΛ

)
=

|N(a)|Vol
(
Rd/Λ

)
, for all fractional ideals b and c, all lattices Λ, and all a ∈ F ∗.

Lemma 4.2. Suppose that κ = ∞ in the situation of Lemma 4.1. Then we can
choose gb = h(a), with a ∈ F ∗, and γ = 1. The Fourier terms of fb are given by

(43) F∞,rfb(g) =

{
N(b) F∞,a−2rf

(
h(a)g

)
if r ∈ b−1a2O′ ,

0 for other r ∈ O′ .

If b = a, then we can further take a = 1, while if b 6= a then a ∈ F ∗ rO∗.

Proof. We have gb = γn(b)h(a) ∈ Γ̄h(q) with q as in (34). This implies that
a = uq with u ∈ Ō∗, and hence the ideal q Ō = ab−1Ō is generated by a ∈ F ∗. So
ab−1 is a principal ideal, a is a generator of ab−1, and we can choose gb = h(a), γ = 1.
So p = h(a) and the formulas for the Fourier terms follow from (41) in the previous
lemma.

Proposition 4.3. Let a be a non-zero integral ideal in O relatively prime to I,
and let f be a (Γ, χ)-automorphic function on G. For each non-zero integral ideal
b dividing a there exist unique κ(b) ∈ P, p(b) = n

(
b(b)

)
h
(
a(b)

)
∈ SL2(F ), and

γ(b) ∈ Γ such that for all r ∈ O′

F∞,r

(
f |T (a2)

)
(g)(44)

=
∑

b|a2 , r∈b−1a2O′

N(b) χ̂
(
gκ(b)p(b)

)−1
Fκ(b),a(b)−2rf

(
p(b)g

)
.

If κ(b) = ∞, then either b = a, a(b) = 1, b(b) = 0, and γ(b) = 1, or b 6= a, and
a(b) ∈ F ∗ rO∗.

Proof. Replacing the inner sum on the right hand side of (39) in Proposition 3.3
by fb in (40) in Lemma 4.1, we obtain

(
f |T (a2)

)
=
∑

b|a2

χ̂(gb)
−1 fb(g) .
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Applying Lemma 4.1 for each b | a2 we obtain κ(b), p(b) and γ(b), now explicitly
depending on b. For a given b we obtain a non-zero contribution to the Fourier term
of order r ∈ O′ only if r ∈ b−1a2O′ (see (41) in Lemma 4.1), and that contribution is

χ̂(gb)
−1 N(b)χ

(
γ(b)

)
Fκ(b),a(b)−2rf

(
p(b)g

)

= N(b) χ̂
(
gκ(b)p(b)

)−1
Fκ(b),a(b)−2rf

(
p(b)g

)
.

The other statements follow from Lemma 4.2.

We recall that we defined cuspidality, after Proposition 3.3, as the vanishing of all
Fourier terms Fκ,0 with κ ∈ Pχ. So the following proposition tells us that the Hecke
operators T (a2) preserve cuspidality.

Proposition 4.4. Let f be a (Γ, χ)-automorphic continuous function on G for
which Fκ,0f = 0 for all κ ∈ Pχ. Then

Fκ,0
(
f |T (a2)

)
= 0 for all κ ∈ Pχ ,

for each non-zero ideal a in O that is relatively prime to I.

Proof. Let f and a be as in the proposition. Consider κ ∈ Pχ. Then

Fκ,0
(
f |T (a2)

)
(g) =

∑

b|a

χ̂(gb)
−1

Vol (Rd/Mκ)

·
∫

Rd/Mκ

∑

β∈ba−2/b2a−2

f(gbn(β)gκn(x)g) dx

=

∫

Rd/Mκ

∑

j

cj f(hjn(x) g) dx ,

where hj runs over a finite set of elements of SL2(F ), and cj ∈ C. We note that the
function x 7→ ∑

j cjf(hjn(x) g) on Rd is Mκ-periodic, but the individual terms may
not be Mκ-periodic. Since the finitely many hj are all in SL2(F ), there is a fractional
ideal Λ0 with finite index in Mκ such that the individual terms are Λ0-periodic.

Write hj = γjgκj
n(bj)h(aj) with gj ∈ Γ, κj ∈ P and pj =

(
aj
0

bj
1/aj

)
∈ SL2(F ).

Then for all fractional ideals Λ in Λ0 we have

(45)

∫

Rd/Λ

f
(
hjn(x)g

)
dx = χ(γj)

∫

Rd/Λ

f
(
gκj

n(bj)h(aj)n(x)g
)
dx

= χ(γj)
∣∣N(aj)

∣∣
∫

Rd/ajΛ

f
(
gκj

n(x)h(aj)g
)
dx .

For each κ′ ∈ P the fractional idealMκ′ contains a fractional ideal M̂κ′ on which χ
is trivial. (For κ′ ∈ Pχ we can take M̂κ′ =Mκ′ .) The assumptions of the proposition
imply that for all g ∈ G:

∫

Rd/M̂κ′
f
(
gκ′n(x)g

)
dx = 0 .

Taking for Λ ⊂ Λ0 a non-zero ideal in O divisible by all primes that contribute
denominators of the aj , we can arrange that ajΛ ⊂ M̂κj

for all j. Thus, we conclude
that the integral in (45) vanishes. So Fκ,0

(
f |T (a2)

)
= 0.
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4.2. Action on cusp forms. We turn to the action of the Hecke operators on
the cuspidal space L2cusp

ξ (Γ\G,χ), and define the eigenvalues of Hecke operators that
occur in Theorem 1.1.

Since all T (a2) act as self-adjoint bounded operators and they all commute with
the Casimir operators Cj , j = 1, . . . , d, we can arrange the orthogonal system {V̟}
of irreducible cuspidal subspaces so that V̟|H ⊂ V̟ for each ̟. Hence we have
for each ̟ a character χ̟ of H that gives the eigenvalue of the Hecke operators
on the irreducible space V̟. Since the convolution operator determined by T (a2) is
symmetric, the value χ̟

(
T (a2)

)
is real for all a prime to I. By (27), (28) and (33)

we have

(46)
∣∣χ̟

(
T (a2k)

)∣∣ ≤
∏

p∈P
#
(
Γ̄p\∆(p2kp)

)
=
∏

p∈P

2k∑

j=0

N(p)j .

In (32) we have assigned a parameter νp to each character of a local Hecke algebra
Hp. To χ̟ corresponds, at the place p outside I, a parameter νp ∈ C such that

λ̟,p = N(p)1/2
(
N(p)νp +N(p)−νp

)
. It satisfies

−N(p)− 2−N(p)−1 ≤ N(p)2νp +N(p)−2νp ≤ N(p) + N(p)−1 .

By (31) we have

(47) χ̟
(
T (p2k)

)
= N(p)k

2k∑

j=0

N(p)2(k−j)ν̟,p .

We note that if the operator T (p) can be defined, the system
{
V̟
}
can be rearranged

so that T (p) acts by ±λ̟,p · Id on V̟. In that case λ̟,p is real.
If a =

∏
p∈P pkp is prime to I then

(48) χ̟
(
T (a2)

)
=
∏

p∈P
Sp,2kp(λ̟,p) ,

where Sp,2k is the only even polynomial of degree 2k such that

(49) Sp,2k
(√

N(p) (X +X−1
)

= N(p)k
2k∑

j=0

X2(k−j) .

Now we are in a position to give the relation between the eigenvalues χ̟
(
T (a2)

)

and the Fourier coefficients of the cuspidal automorphic representation ̟:

Theorem 4.5. Let a be a non-zero integral ideal in O relatively prime to I, and
let r ∈ O′ r {0}. With the notations of Proposition 4.3 we have for each irreducible
cuspidal space V̟ invariant under the Casimir operators and the Hecke operators
T (p2) with p ∤ I the following relation for each non-zero ideal a in O prime to I:

χ̟
(
T (a2)

)
c∞,r(̟) =

∑

b|a2 , r∈b−1a2O′

N(b) χ̂
(
gκ(b)p(b)

)−1 |N(a(b))|(50)

·




∏

j

Sign
(
aj(b)

)ξj


 e2πiS(rb(b)/a(b)
3) cκ(b),r/a(b)

2

(̟) .
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Proof. We pick a weight q occurring in V̟ and use (22):

χ̟
(
T (a2)

)
c∞,r(̟) dr(q, ν̟)Wq(r, ν̟; g)

=
∑

b|a2 , r∈b−1a2O′

N(b) χ̂
(
gκ(b)p(b)

)−1
cκ(b),r/a(b)

2

(̟) dr/a(b)
2

(q, ν̟)

·Wq(r a(b)
−2, ν̟; p(b)g) .

Formulas (1.12) and (2.28) in [8] imply that this is equal to

∑

b|a2 , r∈b−1a2O′

N(b) χ̂
(
gκ(b)p(b)

)−1
cκ(b),r/a(b)

2

(̟)
∣∣N(a(b)))

∣∣

· dr(q, ν̟) e2πiS(rb(b)/a(b)
3)Wq(r, ν̟; g)

∏

j

Sign
(
aj(b)

)ξj
.

This yields statement (50) in the theorem.

Remark 4.6. This theorem generalizes the classical relation between eigenvalues
of Hecke operators Tp with p prime on a cuspidal eigenform and the Fourier coefficient
of order p of that form. In the classical context one uses the normalization of the
eigenform by taking its Fourier coefficient of order 1 equal to 1. This normalization
does not extend to the present situation in a straightforward way, since there is in
general no obvious Fourier term order r in O′ r {0} to play the role of 1. Hence we
give a formulation in which r ∈ O′ r {0} can be chosen freely.

4.3. Proof of Theorem 1.1. In this subsection, we give a proof of Theorem 1.1
in two steps. First we prove Proposition 4.8, which is a version of Theorem 1.1 with
the characteristic functions of the intervals Jp replaced by polynomials. Next, §4.3.2
gives the extension of this result to characteristic functions of intervals.

4.3.1. Asymptotic formula for polynomials.

Lemma 4.7. Let P be a finite set of primes of F . Then there are elements r ∈ O′

such that r 6∈ pO′ for all p ∈ P .

Proof. For any fractional ideal a with prime decomposition a =
∏

p p
ap the quo-

tient a/
(
a
∏

p∈P p
) ∼=

∏
p∈P

(
pap/pap+1

)
contains elements x such that xp + pap+1 6=

pap+1 for all p ∈ P .

Proposition 4.8. Let t 7→ Ωt be a family of sets in Rd as in (3). Let P be a finite
set of primes not dividing I, and let λ̟,p and Φ be as in (7) and (10) respectively.
Then, for any choice of even polynomials qp, p ∈ P , and any r ∈ O′ such that r 6∈ pO′

for each p ∈ P , we have as t→ ∞:

∑

̟,λ̟∈Ωt

∣∣c∞,r(̟)
∣∣2 ∏

p∈P
qp(λ̟,p)(51)

=
2
√
|DF |Vol (Γ\G)

(2π)d
Pl(Ωt)

∏

p∈P
Φp(qp) + o

(
V1(Ωt)

)
.
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Proof. Let a =
∏

p∈P pkp with kp ≥ 0. The sum in (50) is finite, so Theorems 4.5
and B.1 give for any r ∈ O′ r {0}:

∑

̟ , λ̟∈Ωt

χ̟
(
T (a2)

) ∣∣c∞,r(̟)
∣∣2 =

∑

b|a2, r∈b−1a2O′

N(b) χ̂
(
gκ(b)p(b)

)−1 |N(a(b))|

·




∏

j

Sign
(
aj(b)

)ξj


 e2πiS(r b(b)/a(b)
3) δ∞,κ(b) δκ(r, r/a(b)

2)

· 2
√
|DF |Vol (Γ\G)

(2π)d
Pl(Ωt) + o

(
V1(Ωt)

)
.

In the terms in the sum the factor δ∞,κ(b) is nonzero (and equal to 1) only if κ(b) = ∞.
Then either b = a and a(b) = 1, or a(b) ∈ F ∗ rO∗, by Lemma 4.2. Then we see in
§A.2.3 that δκ

(
r, r/a(b)2

)
= 0 if a(b) 6∈ O∗, and δκ

(
r, r/a(b)2

)
= 1 in the case b = a.

Thus, we arrive at

∑

̟ , λ̟∈Ωt

χ̟
(
T (a2)

) ∣∣c∞,r(̟)
∣∣2(52)

=

{
N(a)

2
√

|DF |Vol (Γ\G)

(2π)d Pl(Ωt) if r ∈ aO′

0 otherwise

+ o
(
V1(Ωt)

)
.

We use (48), and note that Sp,0 = 1, to find

∑

̟,λ̟∈Ωt

∣∣c∞,r(̟)
∣∣2 ∏

p∈P
Sp,2kp(λ̟,p)(53)

=

{
2
√

|DF |Vol (Γ\G)

(2π)d
Pl(Ωt)

∏
p∈P N(p)kp if r ∈ O′ ·∏p∈P pkp

0 otherwise

+ o
(
V1(Ωt)

)
.

We have to consider this for r ∈ O′ such that r 6∈ pO′ for any p ∈ P . That means
that we obtain only the term o

(
V1(Ωt)

)
except in the case that all kp vanish.

A computation shows that the measure Φp in (10) satisfies

(54) Φp(Sp,2k) =

{
1 if k = 0 ,

0 otherwise .

So we can replace the right hand side in (53) by that in (51) with qp = Sp,2k. Since
the Sp,2k, k ≥ 0, form a basis of the even polynomials in Xp, we have completed the
proof.

4.3.2. Asymptotic formula for characteristic functions. We complete the
proof of Theorem 1.1 by extension steps also used in [6] and [9].

For the families under consideration we can have Pl(Ωt) = 0 for all t. That occurs
if E 6= ∅ in (3), and Pl

(
[Aj , Bj ]

)
= 0 for at least one j ∈ E. In this case, equation

(11) follows directly from (83).
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For all other families under consideration we have Pl(Ωt) → ∞. Then we may
view (51) as a limit formula

(55) lim
t
µt(p) = µ(p) ,

for positive measures on the compact space
∏
p∈P Jp with Jp as in (7):

µt(f) =
1

Pl(Ωt)

∑

̟,λ̟∈Ωt

∣∣c∞,r(̟)
∣∣2f
(
(λ̟,p2)p∈P

)
,(56)

µ(f) =
2
√
|DF |Vol (Γ\G)

(2π)d

(⊗
p∈P

Φp

)
(f) .

Equation (51) gives (55) on tensor products of even polynomials. By the Stone-
Weierstrass theorem we get (55) for all continuous functions.

For p ∈ P let Jp be an interval contained in Jp, and denote by χ the characteristic
function of

∏
p∈P Jp. For a given ε > 0, there exist continuous functions c and C on

XP such that µ(C − c) ≤ ε, and 0 ≤ c ≤ χ ≤ C. From

µt(c) ≤ µt(χ) ≤ µt(C)
↓ ↓

µ(c) ≤ µ(χ) ≤ µ(C)

and µ(C) − µ(c) ≤ ε we conclude that

µ(χ)− 2ε ≤ lim inf
t

µt(χ) ≤ lim sup
t

µt(χ) ≤ µ(χ) + 2ε .

Since ε is arbitrary, then equation (55) holds for p = χ and the theorem now follows.

Appendix A. Kuznetsov sum formula. The proof of (4) in [9] is based on
the sum formula in [8]. Similarly, the proof of Theorem B.1 in §B will be based on a
generalization, Theorem A.2, of such a sum formula. In this section we discuss how
to adapt and extend the sum formula in [8] to our present requirements, showing how
the proof in loc. cit. can be modified to give Theorem A.2. We shall need an estimate
of generalized Kloosterman sums that is discussed in §A.1.3.

A.1. Kloosterman sums. The sum formula relates Fourier coefficients of au-
tomorphic representations to Kloosterman sums, which we discuss now.

A.1.1. Bruhat decomposition. It is well known that

SL2(F ) = PF ⊔ CF (Bruhat decomposition) ,(57)

PF =
{(∗

0

∗
∗
)
∈ SL2(F )

}
, CF =

{( ∗
6= 0

∗
∗

)
∈ SL2(F )

}
.

For κ, κ′ ∈ P we put

(58) κ′Cκ =
{
c ∈ F ∗ : ∃γ ∈ Γ : g−1

κ′ γgκ =
(∗
c

∗
∗
)}

,

and we let κ
′Sκ(c) denote a system of representatives of

ΓNκ′ \
(
Γ ∩ gκ′C(c)g−1

κ

)
/ΓNκ , C(c) =

{(∗
c

∗
∗
)}

.

Note that −κ′Cκ = κ′Cκ, and that we may use
(

−1
0

0
−1

)
· κ′Sκ(c) as a system of repre-

sentatives of ΓNκ′ \
(
Γ ∩ gκ′C(−c)g−1

κ

)
/ΓNκ .
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A.1.2. Kloosterman sums. For the present situation the Kloosterman sums
are defined, for κ, κ′ ∈ P , c ∈ κ′Cκ, r ∈ M̃ ′

κ, r
′ ∈ M̃ ′

κ′ , by:

(59) Sχ(κ, r;κ
′, r′; c) =

∑

γ∈κ′Sκ(c)

χ(γ)−1e2πiS(
r′a+rd

c
) ,

where gκ′γg−1
κ =

(
a
c
∗
d

)
. For the cusp ∞ this simplifies to a more familiar Kloosterman

sum:

Sχ(r, r
′; c) := Sχ(∞, r;∞, r′; c)

=
∑

a,d mod (c) , ad≡1 mod c

χ

(
a

c

b

d

)−1

e2πiS(
r′a+rd

c
) ,

with c ∈ I, c 6= 0, and r, r′ ∈ O′.

Since
(
κ′Sκ(c)

)−1
is a system of representatives for the double quotient space

ΓNκ\
(
Γ ∩ gκC(−c)g−1

κ′
)
/ΓNκ′ , we have

(60) Sχ(κ, r;κ′, r′; c) = Sχ(κ
′, r′;κ, r;−c) = χ(−1)Sχ(κ

′, r′;κ, r; c) ,

and we can use κ
′Sκ(c) as a system of representatives κSκ′

(c).

A.1.3. Weil type estimate. The proof of the sum formula in the form that we
will need requires a Weil type estimate for the Kloosterman sums occurring in the
formula. We will also need this estimate in the use of the sum formula, when we prove
the asymptotic formula in Theorem B.1.

Proposition A.1. For κ, κ′ ∈ P, r ∈ M̃ ′
κr {0}, r′ ∈ M̃ ′

κ′ r {0}, there is a finite

set S of prime ideals in OF such that, for each ε > 0 and for all c ∈ κ′Cκ:

(61) Sχ(κ, r;κ
′, r′; c) ≪F,I,κ,r,κ′,r′,ε

∏

p∈S
N(p)vp(c)




∏

p6∈S
N(p)vp(c)





1
2
+ε

,

where vp denotes the valuation at the prime p.

This estimate is weaker than what we may expect to be true. See for instance
the estimate stated in (13) in [13].

The proof of (61) is relatively easy. First one establishes a product formula,
reducing the task to estimating local Kloosterman sums. We put all places where
something special happens (places dividing I, places where Op ⊗O Mκ 6= Op, places
where gκ 6∈ SL2(Op), and similarly for κ′) into S, and estimate the corresponding
local Kloosterman sum trivially. At the remaining places the local Kloosterman sum
is a standard one and can be estimated in the usual way.

A.2. Sum formula. The sum formula in Theorem A.2 relates four terms, each
depending on a test function. We discuss first the test functions and the four terms.

A.2.1. Test functions. The class of test functions is the same as in [9], §2.1.1:
functions of product type ϕ(ν) =

∏
j ϕj(νj), where the factor ϕj is defined on a strip

|Re νj | ≤ τ with 1
4 < τ < 1

2 , and on the discrete set
1+ξj
2 +N0. The factor ϕj satisfies

on its domain ϕj(νj) ≪ (1 + |νj |)−a for some a > 2, and is even and holomorphic on
the strip |Re νj | ≤ τ .
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The νj occurring in this way are related to spectral data. The eigenvalues λ̟,j of
the Casimir operators in V̟ can be written as λ̟,j =

1
4 − ν2̟,j , which we can choose

in (0,∞) ∪ i[0,∞). So the test functions ϕ can be viewed as functions defined on a
neighborhood of the set of possible values of the vectors ν̟ = (ν̟,j)j .

A.2.2. Spectral terms. The sum formula is based on the choice of two pairs
(κ, r) and (κ′, r′) of cuspidal representatives κ and κ′ in C, and non-zero Fourier term
orders r and r′ at those cusps. In this paper, we need only the case that r/r′ is totally
positive.

Closely related to the counting function in (82) is the cuspidal term

(62) Ñκ,r;κ
′,r′(ϕ) =

∑

̟

cκ,r(̟) cκ
′,r′(̟)ϕ(ν̟) .

The Fourier coefficients of Eisenstein series enter into the Eisenstein term

Eisκ,r;κ
′,r′(ϕ) = 2

∑

λ∈P
cλ

∑

µ∈Λλ,χ

∫ ∞

0

Dκ,r
ξ (λ, χ; iy, iµ)(63)

·Dκ,r
ξ (λ, χ; iy + iµ)ϕ(iy + iµ) dy ,

with cλ > 0, and Λλ,χ as in §2.1.2 of [9]. (The cλ differ from those in [9] due to the
difference in normalization discussed in §2.5. Their actual value is not important for
the present purpose.)

A.2.3. Delta term. The delta term ∆κ,r;κ′,r′(ϕ) can be non-zero only if κ = κ′

and r/r′ satisfies a strong condition.
We put

δκ(r, r
′) = δκ(χ, ξ; r, r

′)(64)

=
1

2

∑

γ∈Γ
Pκ
/Γ

Nκ
, r/r′=ε2

χ(γ) e−2πiS(rβε)
∏

j

(Sign εj)
ξj ,

where γ = gκ

(
ε
0
β
ε−1

)
g−1
κ . If κ = ∞ the ε occurring in

(
ε
0
β
ε−1

)
∈ Γ are the units of

O. For other ξ ∈ C, the ε occurring in gκ

(
ε
0
β
ε−1

)
g−1
κ ∈ Γ form also a subgroup of F ∗

isomorphic to (Z/2)×Zd−1. Only if r/r′ is the square of an element of this subgroup
the sum in (64) is non-empty, and then consists of two equal summands.

The delta term is

(65) ∆κ,r;κ′,r′(ϕ) =
2Vol (Rd/Mκ)

(2π)d
δκ,κ′ δκ(r, r

′) P̃l(ϕ) ,

where P̃l = ⊗jP̃lξj is the Plancherel measure in (2) written in terms of the spectral
parameter ν:

∫
f dP̃l0 = 2i

∫ i∞

0

f(ν) tanπν ν dν(66)

+
∑

b≥2 , b≡0 mod 2

(b− 1) f
(
b−1
2

)
,

∫
f dP̃l1 = −2i

∫ i∞

0

f(ν) cotπν ν dν

+
∑

b≥3 , b≡1 mod 2

(b− 1) f
(
b−1
2

)
.
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A.2.4. Sum of Kloosterman sums. The Bessel transform Bs

ξ is the same as

in (34) of [9], with s ∈ {1,−1}d, sj = Sign (rj). For each test function ϕ it provides
a function Bsϕ on (R∗)d. The Kloosterman term in the formula is

(67) Kκ,r;κ
′,r′(Bsϕ) =

∑

c∈κ′Cκ

Sχ(κ
′, r′;κ, r; c)

|N(c)| Bsϕ
(

4π
√
rr′
c

)
.

We restrict ourselves to stating the formula in the equal sign case Sign (r) =
Sign (r′), since this is the case needed in this paper. With a different Bessel transform,
the formula goes through if Sign (r) 6= Sign (r′).

Theorem A.2. (Spectral sum formula) Let κ, κ′ ∈ P and r ∈ M̃ ′
κ r {0}, r′ ∈

M̃ ′
κ′ r {0} such that s = Sign (r) = Sign (r′). For any test function ϕ the sums and

integrals Ñκ,r;κ
′,r′(ϕ), Eisκ,r;κ

′,r′(ϕ), P̃l(ϕ) and Kκ,r;κ
′,r′(Bsϕ) converge absolutely,

and

Ñκ,r;κ
′,r′(ϕ) + Eisκ,r;κ

′,r′(ϕ)

Vol (Γ\G)

=
2Vol (Rd/Mκ)

(2π)d
δκ,κ′ δκ(r, r

′) P̃l(ϕ) + Kκ,r;κ
′,r′(Bsϕ) .

A.3. Proof of the sum formula. We shall go through the proof in §3 of [8],
indicating where changes are needed to deal with Fourier coefficients at cusps κ 6= ∞.

A.3.1. Poincaré series. Let κ ∈ P . If the function hκ on G satisfies the
transformation rule

hκ(gκn(x)g) = e2πiS(rx)hκ(gκg)

with r ∈ M̃ ′
κ and the estimate hκ(gκna(y)k) ≪ ∏

j min
(
yαj , y

−β
j

)
with α > 1 and

α+ β > 0, then

(68) P κhκ(g) =
∑

γ∈Γ
Nκ

\Γ
χ(γ)−1hκ(γg)

converges absolutely and defines the function P κhκ on G that is a square integrable,
(Γ, χ)-automorphic function. In the first step of the proof of convergence, the sum
over the units in Lemma 2.3 of [8] is replaced by a sum over ΓNκ\ΓPκ . The method in
§8 of [5] works well for this sum. The second step is a reduction to the convergence
of the Eisenstein series, which is a fact that we can assume. In Lemma 2.4 of [8], in
place of (2.52) and (2.53), we have, as N(y) :=

∏
j yj → ∞:

P κhκ(gκna(y)k) ≪α,β,ε max
(
N(y)1−α+ε, N(y)−β+ε

)
,(69)

P κhκ(gλna(y)k) ≪α,ε N(y)1−α+ε ,

for λ ∈ P r {κ}.
For hκ and f of weight q, equation (3.1) in [8] takes the form

(70) 〈P κhκ, f〉 =
Vol (Rd/Mκ)

Vol (Γ\G)

∫

A

hκ(gκa)Fκ,rf(a) |a|−1 da .
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A.3.2. Fourier coefficient of Poincaré series. For (κ, r) and (κ′, r′) as in
Theorem A.2 and for hκ

′
satisfying the conditions above:

Fκ,rP
κ′
hκ

′
(g) =

1

Vol (Rd/Mκ)

∑

γ∈Γ
Nκ′ \Γ

χ(γ)−1(71)

·
∫

Rd/Mκ

e−2πiS(rx)hκ
′
(γgκn(x)g) dx .

We write g−1
κ′ γgκ =

(
a
c
b
d

)
. Only if κ = κ′ there can be a contribution with c = 0.

With γ = gκ

(
ε
0
β
1/ε

)
g−1
κ as in §A.2.3, we obtain:

1

Vol (Rd/Mκ)

∑

γ∈Γ
Nκ

\Γ
Pκ

χ(γ)−1(72)

·
∫

Rd/Mκ

e−2πiS(rx)hκ
(
gκn(βε+ ε2x)h(ε)g

)
dx

=
1

Vol (Rd/Mκ)

∫

Rd/Mκ

e2πiS((r−ε
2r′)x) dx hκ (gκh(ε)g)

= 2δκ(r, r′)h
κ(gκa(ε

2)g) ,

where ε ∈ O∗
F satisfies ε2 = r/r′ if there are elements of the form

(
ε
0
β
1/ε

)
in g−1

κ Γgκ.

For all combinations of κ and κ′ the number of terms with c 6= 0 is large. We

write g−1
κ′ γgκ =

(
a
c
b
d

)
= n(a/c)w(c)n(d/c), where w(y) =

(
0
y
−y−1

0

)
, and obtain, in

the notations in §2.1:
1

Vol (Rd/Mκ)

∑

c∈κ′Cκ

∑

γ∈κ′Sκ(c)

∑

δ∈Γ
Nκ

χ(γδ)−1(73)

·
∫

Rd/Mκ

e−2πiS(rx)hκ
′
(γgκn(x)g) dx

=
1

Vol (Rd/Mκ)

∑

c∈κ′Cκ

∑

γ∈κ′Sκ(c)

χ(γ)−1

·
∫

Rd

e−2πiS(r(x−d/c))+2πiS(r′a/c)hκ
′
(gκ′w(c)n(x)g) dx

=
∑

c∈κ′Cκ

Sχ(κ, r;κ
′, r′; c)

Vol (Rd/Mκ)

∫

Rd

e−2πiS(rx)hκ
′
(gκ′w(c)n(x)g) dx .

A.3.3. Whittaker transform. §3.2 goes through almost verbatim. (We again
indicate references to [8] by italics.) In Definition 3.4, we put

(74) wκ,rq η(gκg) = wrqη(g) .

We insert gκ at appropriate places. The last formula in Theorem 3.8, implies

(75)

∫

Rd

e−2πiS(rx)wκ
′,r′
q η (gκ′w(c)n(x)g) dx = wκ,rq η̃(gκg) .



EIGENVALUES OF HECKE OPERATORS 753

A.3.4. Restricted version of the formula. As in §3.3, the scalar product of
Poincaré series P κwκ,rq η and P κ

′
wκ

′,r′
q η′ is computed in two ways.

In the spectral computation, we obtain the following

〈P κwκ,rq η, ψ̟,q〉 = 8d/2 πd
(Vol (Rd/Mκ)

Vol (Γ\G)
)1/2

|N(r)|1/2 cκ,r(̟)

· η(ν̟)
∏

j

e−πiqj

Γ(12 + ν̟̄,j +
qjsj
2 )

,

together with a similar expression for the scalar product with an Eisenstein series.
(Compare with (3.39).) We have to modify (3.40) and (3.41) by inserting the cusps
κ and κ′ into the Fourier coefficients. We modify the definition of the measure by

defining dσκ,r;κ
′,r′

χ,ξ by the expression in (3.43) with κ and κ′ inserted into the Fourier
coefficients. Then we obtain in place of (3.46):

(76) 〈P κwκ,rq η, P κ
′
wκ

′,r′
q η′〉 =

(8π2)d
√
N(rr′)

Vol (Γ\G)

∫

Yξ

ϑr,r
′

q (ν) dσκ,r;κ
′,r′

χ,ξ (ν) ,

with

ϑr,r
′

q (ν) =

d∏

j=1

ηj(νj)η′j(ν̄j)

Γ(12 − νj +
qjSign rj

2 )Γ(12 − νj +
qjSign rj

2 )
,

and dσκ,r;κ
′,r′

χ,ξ adapted to the new normalization.
A comparison shows that the cuspidal subspace contributes

(8π2)d
√
N(rr′)Vol (Γ\G)−1 Ñκ,r;κ

′,r′(ϑr,r
′

q ) ,

with a similarly modified expression for the scalar product with Eisenstein series.
The geometric computation of the scalar product is carried out as in §3.3.4. The

contribution from (72) is equal to

(77) 2δκ,κ′ δκ(r, r
′)Vol (Rd/Mκ) (4π)

d|N(r)|
∫

Yξ

ϑr,r
′

q (ν) dP̃l(ν) .

This agrees with (3.50), with the substitutions

(78) α(χ, ξ; r, r′) 7→ 2δκ,κ′δκ(r, r
′) ,

√
|DF | 7→ Vol (Rd/Mκ) .

The remaining contribution to the scalar product is given by (73):

Vol (Rd/Mκ)

∫

A

wκ,rq η(gκa) ·
∑

c∈κ′Cκ

Vol (Rd/Mκ)
−1Sχ(κ, r;κ′, r′)(79)

·
∫

Rd

e2πiS(rx)wκ
′,r′
q η′ (gκ′w(c)n(x)a) dx |a|−1 da .

Using (60) and Theorem 3.8, we see that the expression in (79) is equal to

∑

c∈κ′Sκ

Sχ(κ
′, r′;κ, r)χ(−1)

∫

A

wκ,rq η(gκa)w
κ,r
q η̃′(gκa) |a|−1 da .
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The transition r 7→ r′ under the conjugation is present in Theorem 3.8. The transition
κ′ 7→ κ is a consequence of the definitions, and has to be checked. With (3.52) the
integral over A is given by

(8π2)d

|N(c)| N(rr
′)1/2 χ(−1) (Bsϑr,r

′
q )

(
4π

√
rr′
c

)
.

This gives the final result of this contribution:

(80) (8π2)dN(rr′)1/2 Kκ,r;κ
′,r′
(
Bsϑr,r

′
q

)
.

Division by (8π2)dN(rr′)1/2 gives the restricted sum formula

1

Vol (Γ\G)

∫

Yξ

ϑ(ν) dσκ,r;κ
′,r′

χ,ξ (ν) = δκ,κ′
2Vol (Rr/Mκ)

(2π)d

∫

Yξ

ϑ(ν) dP̃l(ν)(81)

+ Kκ,r;κ
′,r′(Bsϑ) .

for all ϑ indicated in Proposition 3.9.
At this point we notice a minor error in [8]. With the sum of Kloosterman sums

as defined in (3.60), it should read Kr
′,r
χ instead of Kr,r′

χ in (3.61). The solution that
we will adopt from now on, is to take the expression in (3.60) as the definition of
Kr,r

′
χ , like in (67) here.

The proof of the convergence of the sum of Kloosterman sums (Proposition 3.14)
has to be revisited. In [8] the prime ideals are split according to whether they divide
the ideal I or not. The finite set S in Proposition A.1 may tun out to be a larger
set of prime ideals than those dividing I. Nevertheless, the method in (3.72), goes
through.

A.3.5. Extension. The rest of the proof of the formula in [8] is based on the
restricted formula in Proposition 3.9, and consists of extending the space of test
functions for which the formula holds. The dependence on the cusps κ and κ′ in (81)
here, is immaterial in these extension steps. In §3.5 we use Proposition 3.16, which
goes through unchanged. Thus we arrive at the sum formula as stated in Theorem A.2.

Appendix B. Asymptotic formula. In the proof of Proposition 4.8 we have
used the generalization (83) of (4), where |cr(̟)|2 = |c∞,r(̟)|2 is replaced by
cκ,r(̟) cκ

′,r′(̟). The aim of this section is to show that the methods in [9] can
be extended to give the asymptotic result (83) below.

We define for κ, κ′ ∈ P , r, r′ ∈ M̃ ′
κ r 0 and compact sets Ω ⊂ Rd

(82) Nκ,r;κ
′,r′(Ω) =

∑

̟ , λ̟∈Ω

cκ,r(̟) cκ
′,r′(̟) ,

where ̟ runs through a maximal orthogonal system of irreducible subspaces of
L2,cusp
ξ (Γ\G;χ). This generalizes the counting function on the left hand side of (1).

Theorem B.1. Let t 7→ Ωt be a family of bounded sets in Rd as in (3), or
satisfying the conditions indicated in §B.1 below. Let κ, κ′ ∈ P, and let r ∈ M̃ ′

κr {0},
r′ ∈ M̃ ′

κ′ r {0}, such that Sign r = Sign r′. Then, as t→ ∞

(83) Nκ,r;κ
′,r′(Ωt) = δκ,κ′ δκ(r, r

′)
2Vol (Rd/Mκ)Vol (Γ\G)

(2π)d
Pl(Ωt) + o

(
V1(Ωt)

)
,



EIGENVALUES OF HECKE OPERATORS 755

with the notations in (65), (2) and (5).

The restriction to Sign r = Sign r′ is necessary to us. We have not been able to
estimate Bessel transforms suitably in the unequal sign case.

B.1. Conditions. In §B.3 we will show that Theorem B.1 is valid for families
t 7→ Ωt as used in [9]. Such families have product form

Ωt = Ĉ+
t × Ĉ−

t ×
∏

j∈E
[Aj , Bj ] ,

based on a partition {1, . . . , d} = Q+ ⊔Q− ⊔ E of the archimedean places of F . The
bounded intervals [Aj , Bj ] do not depend on t, and the endpoints should not be of

the form b
2

(
1 − b

2

)
with b ≡ ξj mod 2, b > 1. The sets Ĉ+

t and Ĉ−
t are compact sets

contained in
∏
j∈Q+

[
5
4 ,∞

)
, respectively

∏
j∈Q−(∞, 0], such that the corresponding

sets C±
t =

∏
j∈Q±

(
i[1,∞) ∪ [0,∞)

)
in the variable ν with λ = 1

4 − ν2 satisfy the
conditions in (97) or (102) in [9]. The proof of Theorem 1.1 is based on the asymptotic
formula, so the statement of the theorem holds for all families t 7→ Ωt satisfying these
conditions.

A family t 7→ Ωt as in (3) in the introduction does not satisfy these conditions

directly. We write Ωt =
⊔
pΩ

(p)
t with

Ω
(p)
t =

[
5
4 , t
]Q+

×
[
−t,− 1

2

]
×
[
− 1

2 ,
5
4

]
,

and let p = (Q+, Q−, Q0) run over the partitions Q = Q+ ⊔ Q− ⊔ Q0 such that

Q0 6= Q. All sets Ω
(p)
t satisfy the conditions in [9]. Summing the asymptotic formulas

(83) applied to each of the families t 7→ Ω
(p)
t gives it for t 7→ Ωt.

There are more families for which the asymptotic formula can be proved, by
expressing them in families satisfying the conditions in (97) or (102) in [9]. Hence the
statement of Theorem 1.1 holds for all these families, in particular for the families in
§1.2.4–13 and §6 in [9].

B.2. Estimates of Fourier coefficients of Eisenstein series. In [9], (32),
(33), we quoted from [6] and [8] estimates of D∞,r

ξ (λ, χ; iy, iµ). These estimates have

to be generalized to Dκ,r
ξ (λ, χ; iy, iµ).

The estimations in §5.1–2 of [6] are based on the fact that Eisenstein series for
Γ0(I) are linear combinations of Eisenstein series for the subgroup Γ(I). In §4.2 of
[8] it is shown that this result extends to the situation with weights in Z instead of
2Z. The character χ is trivial on Γ(I), hence it only influences the coefficients in the
linear combination.

These estimations concern the Fourier coefficients D∞,r
ξ . Let κ ∈ P be another

cusp. The function Ẽq : g 7→ Eq(λ, χ; ν, iµ; gκg) is an Eisenstein series on the group
Γ1 = g−1

κ Γ0(I)gκ for a character χ1 determined by conjugation. Actually, depending
on the normalizations, it might be a multiple of an Eisenstein series on Γ1, with a
factor in which the influence of ν and µ is of the form tνtiµ1 with t > 0, t1 > 0.
So this factor is unimportant for estimates. Since gκ ∈ SL2(F ), the group Γ1 is
commensurable with Γ0(I), and contains a principal congruence subgroup Γ(I1), with
I1 ⊂ I. The character χ is trivial on Γ(I), so we can arrange I1 such that χ1 is trivial
on Γ(I1). Thus, for the Fourier coefficients of Ẽq at ∞ with nonzero order, we have
an estimate like in Proposition 4.2 in [8]. The Fourier coefficients of Eq(λ, χ; ν, iµ) at



756 R. W. BRUGGEMAN AND R. J. MIATELLO

κ of nonzero order can be expressed in those of Ẽq at ∞. The consequence is that
Dκ,r
ξ (λ, χ; ν, iµ) satisfies an estimate like that in Proposition 4.2 of [8]. As in (33) of

[9], we have:

(84) Dκ,r
ξ (λ, χ; iy, iµ) ≪F,I,κ,r,κ′,r′

(
log
(
2 +

∑

j

|y + µj |
))7

.

B.3. Derivation of the asymptotic formula. The method of proof is the
same as in §2-5 in [9], so we shall only indicate the points where the argument departs
from the approach therein.

In the proofs in [9] we mostly use the spectral parameter ν instead of the eigen-
value λ = 1

4 − ν2. In terms of the spectral parameter the counting function in (82)
has the form

(85) Ñκ,r;κ
′,r′(Ω̃) =

∑

̟ , ν̟∈Ω̃

cκ,r(̟) cκ
′,r′(̟) .

We choose the test functions in the same way as in Lemma 2.2 in [9]. The
considerations in §2.2.1 and §2.2.4, loc. cit., do not depend on the Fourier term order,
and go through unchanged. We use the Weil type estimate of Kloosterman sums in
Proposition A.1, and, in §2.2.2, loc. cit., we replace the distinction between p | I and
p ∤ I, by the distinction, p ∈ S and p 6∈ S, where S is a finite set of primes as in
Proposition A.1.

In §2.2.3 of [9] we use the estimate (84) of Fourier coefficients of Eisenstein se-
ries. The statement of Proposition 2.4 in [9] goes through for the counting quantity
Ñκ,r;κ′,r′(ϕ(q, ·)). The factor

√
|DF | is a specialization of Vol (Rd/Mκ), and a factor

δκ,κ′ δκ(r, r
′) is inserted. Hence the delta term is present only if the cusps κ and κ′

are equal, and also r/r′ is the square of a generalized unit.
The remaining proofs in [9] are based on the estimate in Proposition 2.4 of [9],

and hence go through for Fourier coefficients at different cusps.
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