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LOGARITHMIC SOBOLEV TRACE INEQUALITIES∗

FILOMENA FEO† AND MARIA ROSARIA POSTERARO‡

Abstract. We prove a logarithmic Sobolev trace inequality and we study the trace operator in
the weighted Sobolev space W 1,p(Ω, γ) for sufficiently regular domain, where γ is the Gauss measure.
Applications to PDE are also considered.
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1. Introduction. Sobolev Logarithmic inequality states that
∫

RN

|u|plog |u| dγ≤ p

2

∫

RN

|∇u|2|u|p−2
sign u dγ+‖u‖p

Lp(RN ,γ) log ‖u‖Lp(RN ,γ) , (1.1)

where 1 < p < +∞, γ is the Gauss measure and Lp
(
R

N , γ
)
is the weighted Lebesgue

space (see §2 for the definitions). This inequality was first proved in [18] (see also
[2] for more general probability measure). It has many applications in quantum field
theory and unlike the classical Sobolev inequality it is independent on dimension and
easily extends to the infinite dimensional case.

In terms of functional spaces inequality (1.1) implies the imbedding of weighted

Sobolev space W 1,p(RN , γ) into the weighted Zygmund space Lp (logL)
1
2
(
R

N , γ
)
.

The imbedding holds also for p = 1 and it is connected with gaussian isoperimetric
inequality (see [20], [15] and [23]).
This kind of imbeddings are also studied in [9] in the more general case of
rearrangement-invariant spaces. In [11] a set Ω ⊆ R

N with γ(Ω) < 1 and the space
W 1,p

0 (Ω, γ) are considered using properties of rearrangements of functions; the au-

thors prove that if u ∈ W 1,p
0 (Ω, γ) with 1 ≤ p < +∞, then u ∈ Lp (logL)

1
2 (Ω, γ)

and

‖u‖
Lp(logL)

1
2 (Ω,γ)

≤ C ‖∇u‖Lp(Ω,γ) , (1.2)

for some constant C depending only on p and γ(Ω). Analogous inequalities have been
obtained in infinite dimensional case and in the Lorentz-Zygmund spaces (see the
appendix of [17]). Estimates in the spirit of (1.2) are also obtained for equations
related to Gauss measure (see [12] and references therein).
If γ(Ω) = 1 inequality (1.2) has to be replaced by

‖u‖
Lp(logL)

1
2 (Ω,γ)

≤ C ‖∇u‖Lp(Ω,γ) + ‖u‖Lp(Ω,γ) .

A first result of our paper is to obtain (1.2) when u ∈ W 1,p(γ,Ω) (see §3); in
this case, as one can expect, smoothness assumption on ∂Ω has to be made. Besides
the continuity also the compactness of the imbedding of W 1,p(Ω, γ) in a Zygmund
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space is studied. As a consequence we obtain a Poincaré-Wirtinger type inequality.
Applications of these results to PDE are also considered.

The results explained above are used to investigate Sobolev trace inequalities.
This kind of inequalities play a fundamental role in problems with nonlinear boundary
conditions. In the euclidean case the Sobolev trace inequality (cf. e.g. [19]) tells us
that if Ω is smooth enough and 1 ≤ p < N, then there exists a constant C (depending
only on Ω and on p) such that

‖Tu‖
L

p(N−1)
N−p (∂Ω)

≤ C ‖u‖W 1,p(Ω) for every u ∈W 1,p (Ω) , (1.3)

where T is the trace operator. This kind of inequalities have been developed via
different methods and in different settings by various authors including Besov [8],
Gagliardo [13], Lions and Magenes [22]. Trace inequalities that involve rearrangement-
invariant norms are considered in [10]. Moreover trace imbedding (1.3) admits an
improvement in terms of Lorentz spaces (see [3]).

To investigate about trace operator in the weighted Sobolev space W 1,p(Ω, γ) we
need a Sobolev trace inequality in §4. We prove that if Ω is a smooth domain and
u ∈ C∞(Ω) then

∫

∂Ω

|u|p log
p

2p′ (2 + |u|)ϕdS ≤ C ‖u‖p
W 1,p(Ω,γ) , (1.4)

where ϕ (x) = (2π)
−N

2 exp
(
− |x|2

2

)
is the density of the Gauss measure and the inte-

gral on the left-hand side of (1.4) is a surface integral. This inequality captures the
spirit of the Gross inequalities: the logarithmic function replaces the powers in this
case too.

Using (1.4), we can define a trace operator and we prove that it is continuous
and compact from W 1,p(Ω, γ) into Lp(∂Ω, γ) for sufficiently regular domain Ω ⊆ R

N .
Moreover a Poincaré trace inequality is obtained in a suitable subspace of W 1,p(Ω, γ).
We give also some applications of these results to PDE.

Another Sobolev trace inequality is obtained in [24] as limit case of the classical
trace Sobolev inequality.

2. Preliminaries. In this section we recall some definitions and results which
will be useful in the following.

2.1. Gauss measure and rearrangements. Let γ be the N -dimensional
Gauss measure on R

N defined by

dγ = ϕ (x) dx = (2π)
−N

2 exp

(
−|x|2

2

)
dx, x ∈ R

N

normalized by γ
(
R

N
)
= 1.

We will denote by Φ (τ) the Gauss measure of the half-space
{
x ∈ R

N : xN < τ
}
:

Φ(τ)=γ
({
x∈R

N :xN <τ
})
=

1√
2π

∫ τ

−∞

exp

(
− t

2

2

)
dt ∀τ ∈R∪{−∞,+∞}.

We define the decreasing rearrangement with respect to Gauss measure (see e.g.
[14]) of a measurable function u in Ω as the function

u⊛ (s) = inf {t ≥ 0 : γu (t) ≤ s} s ∈ ]0, 1] ,

where γu (t) = γ ({x ∈ Ω : |u| > t}) is the distribution function of u.
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2.2. Sobolev and Zygmund spaces. The weighted Lebesgue space Lp(Ω, γ)
is the space of the measurable functions u on Ω such that

∫
Ω |u|p dγ < +∞. We

recall also that the weighted Sobolev space W 1,p(Ω, γ) for 1 ≤ p < +∞ is defined as
the space of the measurable functions u ∈ Lp(Ω, γ) such that there exist g1,...,gN ∈
Lp(Ω, γ) that verify

∫

Ω

u
∂

∂xi
ψϕ dx−

∫

Ω

uψxiϕ dx =

∫

Ω

giψϕ dx i = 1, ..., N ∀ψ ∈ D(Ω).

We stress that u ∈ W 1,p(Ω, γ) is a Banach space with respect to the norm
‖u‖W 1,p(Ω,γ) = ‖u‖Lp(Ω,γ) + ‖∇u‖Lp(Ω,γ) .

The Zygmund space Lp(logL)α(Ω, γ) for 1 ≤ p ≤ +∞ and α ∈ R is the space of
the measurable functions on Ω such that the quantity

||u||Lp(logL)α(Ω,γ) =






(∫ γ(Ω)

0

[(1− log t)αu⊛(t)]
p
dt

) 1
p

if 1 ≤ p < +∞

sup
t∈(0,γ(Ω))

[(1 − log t)αu⊛(t)] if p = +∞
(2.1)

is finite. The space Lp(logL)α(Ω, γ) is not trivial if and only if p < +∞ or p = +∞
and α ≤ 0.
The Zygmund spaces are the natural spaces in the context of Gauss measure, because
of the following property of isoperimetric function is (see [21]):

ϕ1 ◦ Φ−1(t) ∼ t(2 log
1

t
)

1
2 for t→ 0+ and t→ 1-. (2.2)

We recall same inclusion relations among Zygmund spaces. If 1 ≤ r < p ≤ +∞ and
−∞ < α, β < +∞, then we get

Lp(logL)α(Ω, γ) ⊆ Lr(logL)β(Ω, γ) .

It is clear from definition (2.1) that the space Lp(logL)α(Ω, γ) decreases as α increases.
For more properties we refer to [7].

2.3. Smoothness assumptions on the domain. In this paper we deal with
integrals involving the values of a W 1,p−function on ∂Ω. To this aim we need to have
a suitable local description of the set Ω and ∂Ω is a finite union of graphs. More
precisely we will consider smooth domain Ω which verifies the following condition
(cfr. Chapter 6 of [19] for bounded domain).

x′

x′

r

xN

xN
r

U−

r

U+
r

∂Ω

∆r

Λr
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Condition 2.1. Let Ω ⊂ R
N with N ≥ 2 be a domain such that there exist

i) m ∈ N coordinate systems Xr = (x′r, x
N
r ) where x′r = (x1r , ..., x

N−1
r )

for r = 1, 2, ...,m;
ii) ai, bi ∈ R ∪ {±∞} for i = 1, ..., N − 1 and m Lipschitz functions ar in
∆r =

{
x′r : xir ∈ (ai, bi) for i = 1, ..., N − 1

}

for r = 1, ..., N ;
iii) a number β > 0 such that the sets

Λr =
{
(x′r, x

N
r ) ∈ R

N : x′r ∈ ∆r and xNr = ar(x
′
r)
}

are subsets of ∂Ω, ∂Ω =
m
∪

r=1
Λr and the sets

U+
r =

{
(x′r , x

N
r ) ∈ R

N : x′r ∈ ∆r and ar(x
′
r) < xNr < ar(x

′
r) + β

}

U−
r =

{
(x′r, x

N
r ) ∈ R

N : x′r ∈ ∆r and ar(x
′
r)− β < xNr < ar(x

′
r)
}

are subset of Ω (after a suitable orthonormal transformation of coordinates).

We observe that the set Ur = U+
r ∪ U−

r is an open subset of RN and there exists
an open set U0 ⊆ U0 ⊂ Ω such that the collection {Ur}mr=0 is a open cover of Ω.
Moreover the collection {Ur}mr=1 is a open cover of ∂Ω.

3. Sobolev logarithmic inequalities in W 1,p(Ω, γ). In this section we prove

continuity and compactness of imbedding of W 1,p(Ω, γ) into Lp(logL)
1
2 (Ω, γ). The

first step is to obtain the analogue of (1.2) when u ∈ W 1,p(Ω, γ) for 1 ≤ p < +∞.

Theorem 3.1. (Continuity) If u ∈ W 1,p(Ω, γ) for 1 ≤ p < +∞ and Ω satisfies
condition 2.1, then there exists a positive constant C depending only on p and Ω such
that

‖u‖
Lp(logL)

1
2 (Ω,γ)

≤ C ‖u‖W 1,p(Ω,γ) , (3.1)

i.e. the embedding of weighted Sobolev space W 1,p(Ω, γ) into the weighted Zygmund

space Lp (logL)
1
2 (Ω, γ) is continuous for 1 ≤ p < +∞.

To prove Theorem 3.1 we need an extension operator P from W 1,p(Ω, γ) into
W 1,p(RN , γ). When u ∈W 1,p

0 (Ω, γ) the natural extension by zero outside Ω is contin-
uous without any assumptions on the regularity of the boundary. Working with the
space W 1,p(Ω, γ) the situation is more delicate and the regularity of the boundary of
Ω plays a crucial role.

Lemma 3.1. Let Ω satisfy condition 2.1, then there exists an extension operator
P : W 1,p(Ω, γ) → W 1,p(RN , γ) which is linear and continuous. More precisely for
every u ∈ W 1,p(Ω, γ)

j) P (u)|Ω = u,
jj) ‖P (u)‖Lp(RN ,γ) ≤ c ‖u‖Lp(Ω,γ) ,

jjj) ‖P (u)‖W 1,p(RN ,γ) ≤ c ‖u‖W 1,p(Ω,γ) ,

for some constant c = c(p,Ω).

The proof of this lemma can be done by adapting the classical tools of the
Lebesgue case (see e.g. [6]). We give a sketch of the construction of the operator
P .
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Proof. If Ω = R
N
+ the extension is obtained by reflection. If we consider a gen-

eral open set using classical tools we can reduce ourselves to the case R
N
+ . Indeed

there exists a finite number of open sets G0, G1, ..., Gh such that Ω ⊂
K
∪
i=0
Gi with

G0 ⊂ Ω, for each i = 1, ..,K a system of local coordinates gi : B(0, 1) → Gi and

for each i = 0, 1, ..,K a function αi ∈ C∞(Gi) such that

K∑

i=0

αi = 1 on Ω. Given

u ∈ W 1,p(Ω, γ) we have u =

k∑

i=0

ui, where ui = αiu. It is enough to extend ui to the

whole of RN . The function u0 is natural extended by zero outside Ω. For i = 1, ..,K
we define

ũi =

{
ui ◦ gi on B(0, 1) ∩ R

N
+

0 on R
N
+ −B(0, 1)

.

This function belongs toW 1,p(RN
+ , γ), then we can use the extension operator P from

W 1,p(RN
+ , γ) to W

1,p(RN , γ) and return to Gi using g
−1
i .

Remark 3.1. We note that the extension operator allows us to prove the density
( for the classical case see e.g. [6]) of C∞(Ω) in W 1,p(Ω, γ).

Proof of Theorem 3.1. We consider the extension operator P and using (1.2) we
obtain for some constant c

‖u‖
Lp(logL)

1
2 (Ω,γ)

≤ c ‖Pu‖
Lp(logL)

1
2 (RN ,γ)

≤ c ‖Pu‖W 1,p(RN ,γ) ≤ c ‖u‖W 1,p(Ω,γ)

for u ∈W 1,p(Ω, γ).

Remark 3.2. Theorem 3.1 implies the continuity of the embedding of Sobolev
space Wm,p(Ω,γ) m≥ 1 into the Zygmund space Lp(logL)

mα
(Ω,γ) for α ≤ 1

2 . A similar
result for Ω = R

N is proved in [16].

Proposition 3.1. (Compactness) Let 1 ≤ p < +∞ and let Ω satisfy condition
2.1. Then the embedding of W 1,p(Ω, γ) into Lp logLα(Ω, γ) is compact if α < 1

2 .

Proof. It is enough to prove the compactness of the embedding of W1,p(Ω,γ) into

L1(Ω,γ). Indeed we have that any bounded set of Lp (logL)
1
2 (Ω,γ) which is precompact

in L1 (Ω, γ) is also precompact in Lp logLα(Ω, γ) with α < 1
2 (see e.g. Theorem 8.23

of [1]).
Let be S bounded set in W 1,p(Ω, γ), then S is bounded in L1(Ω, γ) too. Using a
characterization of precompact sets of Lebesgue spaces (see e.g. Theorem 2.21 of [1])
we have to prove that for any number ε > 0 there exists a number δ > 0 and a
subset G ⊂⊂ Ω such that for any u ∈ S and every h ∈ R

N with |h| < δ the following
conditions hold:

a)

∫

Ω

|ũ(x+ h)ϕ(x + h)− ũ(x)ϕ(x)| dx < ε (3.2)

b)

∫

Ω \G

|u| dγ < ε, (3.3)
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where ũ is the zero extension of u outside Ω.
Let ε > 0 and Ωj =

{
x ∈ Ω : dist(x, ∂Ω) > 1

j

}
for j ∈ N. By (3.1) we have for some

constant c

∫

Ω \Ωj

|u| dγ ≤
(∫ γ(Ω \Ωj)

0

[
(1 − log t)

1
2u⊛(t)

]p
dt

) 1
p
(∫

Ω \Ωj

(1− log t)−
p′

2 dt

) 1
p′

≤ c ‖u‖W 1,p(Ω,γ)

(∫

Ω \Ωj

(1 − log t)−
p′

2 dt

) 1
p′

.

Since the Gauss measure of Ω is finite, we can choose j big enough to have
∫

Ω \Ωj

|u| dγ < ε, (3.4)

(i.e. (3.3) holds) and for h ∈ R
N

∫

Ω \Ωj

|ũ(x+ h)ϕ(x+ h)− ũ(x)ϕ(x)| dx < ε

2
. (3.5)

Let |h| ≤ 1
j
, then x + th ∈ Ω2j if x ∈ Ω and t ∈ [0, 1] . Let u ∈ C∞(Ω), we have for

some constant c
∫

Ωj

|ũ(x+ h)ϕ(x + h)− ũ(x)ϕ(x)| dx (3.6)

≤
∫

Ωj

∫ 1

0

∣∣∣∣
d

dt
ũ(x + th)ϕ(x+ th)

∣∣∣∣ dtdx

≤
∫

Ωj

∫ 1

0

|∇ũ(x+ th)hϕ(x + th)− ũ(x+ th)ϕ(x+ th) (x+ th)h| dtdx

≤ |h|
(∫

Ω2j

|∇ũ(y)ϕ(y)| dy +
∫

Ω2j

|ũ(y)ϕ(y)y| dy
)

≤ c |h|
(
‖∇u‖pLp(Ω,γ) + ‖u‖p

Lp(logL)
1
2 (Ω,γ)

)
≤ c |h| ‖u‖pW 1,p(Ω,γ) .

In the last inequalities we have used (3.1) and the fact that f(x) = |x| ∈
Lp′

(logL)−
1
2 (Ω, γ). Indeed since γf (t) = 1− γ (B(0, t)) , one can easily check that

∫ γ(Ω)

0

(1− log s)−
p′

2

[
(|x|)⊛ (s)

]p′

ds =

∫ +∞

0

tp
′

(1− log γf (t))
− p′

2 γ′f (t) dt < +∞.

Because of the density of C∞(Ω) in W 1,p(Ω, γ), (3.6) holds for every u in W 1,p(Ω, γ)
and then for |h| small enough by (3.5) and (3.6) we obtain (3.2)

Remark 3.3. Obviously the compactness result holds for W 1,p
0 (Ω, γ) for any

domain Ω.

Remark 3.4. The compactness proved in Proposition 3.1 implies the compact
embedding of Sobolev spaceWm,p(Ω,γ) m≥ 1 into the Zygmund space Lp(logL)mα (Ω,γ)
for α < 1

2 .
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The compactness can be used to obtain a Poincaré-Wirtinger type inequality (see
also [5] for p = 2).

Proposition 3.2. Let Ω be a connected domain satisfying condition 2.1. Assume
1 ≤ p < +∞. Then there exists a positive constant C, depending only on p and Ω,
such that

‖u− uΩ‖Lp(Ω,γ) ≤ C ‖∇u‖Lp(Ω,γ) (3.7)

for any u ∈ W 1,p(Ω, γ), where uΩ = 1
γ(Ω)

∫
Ω
udγ.

Remark 3.5. Using Theorem 3.1 and Proposition 3.2 it follows that there exists
a positive constant C, depending only on p and Ω, such that

‖u− uΩ‖
Lp(logL)

1
2 (Ω,γ)

≤ C ‖∇u‖Lp(Ω,γ)

for any u ∈ W 1,p(Ω, γ). See [9] for the case Ω = R
N .

Proof of Proposition 3.2. We proceed as in the classical case. We argue by
contradiction, then there would exist for any k ∈ N a function uk ∈ W 1,p(Ω, γ) such
that

‖uk − (uk)Ω‖Lp(Ω,γ) > k ‖∇uk‖Lp(Ω,γ) .

We renormalize by defining

vk =
uk − (uk)Ω

‖uk − (uk)Ω‖Lp(Ω,γ)

. (3.8)

Then

(vk)Ω = 0, ‖vk‖Lp(Ω,γ) = 1

and

and ‖∇vk‖Lp(Ω,γ) <
1

k
. (3.9)

In particular the functions {vk}k∈N
are bounded in W 1,p(Ω, γ). Then by the previous

theorem there exists a subsequence still denoted by {vk}k∈N
and a function v such

that

vk → v in Lp(Ω, γ).

Moreover by (3.8) it follows that

vΩ = 0 and ‖v‖Lp(Ω,γ) = 1. (3.10)

On the other hand, (3.9) implies for any ψ ∈ C∞
0 (Ω) and i = 1, ..., N

∫

Ω

v
∂ψ

∂xi
ϕdx−

∫

Ω

vψxiϕdx = lim
k→+∞

(∫

Ω

vk
∂ψ

∂xi
ϕdx −

∫

Ω

vkψxiϕdx

)

= lim
k→+∞

−
∫

Ω

∂vk
∂xi

ψϕdx = 0.
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Consequently v ∈ W 1,p(Ω, γ) and ∇v = 0 a.e. Then v is constant since Ω is con-
nected. In particular by the first estimate in (3.10) we must have v ≡ 0; in which case
‖v‖Lp(Ω,γ) = 0. This contradiction establishes the estimate (3.7).

Remark 3.6. The previous proof works in a more general case. Let Ω be
a connected domain satisfying condition 2.1 and let V ⊂ W 1,p(Ω, γ) be a linear
subspace of W 1,p(Ω, γ) with 1 ≤ p < +∞ which is closed and such that the only
constant function belonging to V is the function which is identically zero. Then there
exists a positive constant C, depending only on p and Ω, such that

‖v‖Lp(Ω,γ) ≤ C

(∫

Ω

N∑

i=1

∣∣∣∣
∂v

∂xi

∣∣∣∣
p

dγ

) 1
p

∀v ∈ V.

Remark 3.7. (Application to PDE ) Let Ω be a connected domain satisfying
condition 2.1. Let us consider the semicoercive homogeneous Neumann problem






− (uxi
ϕ)xi

= fϕ in Ω

∂u
∂ν

= 0 on ∂Ω,
(3.11)

where f ∈ L2(logL)−
1
2 (Ω, γ) and ν is the external normal. Using classical tools

(see e.g. [6] Theorem 6.2.3) and inequalities (3.1) and (3.7) it follows that problem
(3.11) has a weak solution in W 1,2(Ω, γ) if and only if

∫
Ω fdγ = 0. In particular there

exists a unique weak solution in X =
{
u ∈W 1,2(Ω, γ) :

∫
Ω
udγ = 0

}
by Lax-Milgram

theorem.
We consider also the following eigenvalue problem related to the equation of

quantum harmonic oscillator





− (uxi
ϕ)xi

= λu in Ω

∂u
∂ν

= 0 on ∂Ω.
(3.12)

Arguing in a classical way (see e.g. [6] Theorem 8.6.1), using inequality (3.7) and the
compactness of the embedding from W 1,2(Ω, γ) into L2(Ω, γ), it follows that there
exists an increasing sequence of eigenvalues of the problem (3.12) which tends to
infinity and a Hilbertian basis of eigenfunctions in L2(Ω, γ). Moreover for λ1 = 0, the
corresponding eigenfunction u1 = const 6= 0 and the first nontrivial eigenvalue λ2 has
the following characterization

λ2 = min

{
‖∇u‖L2(Ω,γ)

‖u‖L2(Ω,γ)

, u ∈ W 1,2(Ω, γ) :

∫

Ω

udγ = 0

}
.

A sharp lower bound for λ2 is proved in [4].

4. Sobolev logarithmic trace inequalities. In this section we deal with inte-
grals involving the values of a C∞−function on ∂Ω. We prove that a certain integral
of the function on ∂Ω is bounded by the W 1,p−norm on Ω. This inequality will be
crucial to define trace operator (see §5).



LOGARITHMIC SOBOLEV TRACE INEQUALITIES 577

Theorem 4.1. Let Ω be a domain satisfying condition 2.1 and 1 ≤ p < +∞. For
every u ∈ C∞(Ω) there exists a positive constant C depending only on p and Ω such
that

∫

∂Ω

|u|p log
p−1
2 (2 + |u|)ϕdS ≤ C ‖u‖pW 1,p(Ω,γ) . (4.1)

Remark 4.1. We obtain the same result if we replace the first member of (4.1)

with the quantity

∫

∂Ω

up
(
log+(|u|)

) p−1
2 ϕdS.

Proof of Theorem 4.1. Following classical tools (see Chapter 6 of [19] ) it is enough
to prove the existence of a constant CT > 0 such that for any function u ∈ C∞(Ω)
whose support is in Λr ∪ U+

r we have (4.1). After suitable transformation that maps
∆r × ]0, β[ onto U+

r and ∆r × {0} onto Λr, we can reduce to consider u such that
the support is in ∆r × [0, β[. Then it is sufficient to prove the existence of a constant
C > 0 such that for any function u ∈ C∞(∆r × [0, β[) whose support is in ∆r × [0, β[

∫

∆r

|u(x′r, 0)|
p
log

p−1
2 (2 + |u(x′r, 0)|)ϕ(x′r , 0) dx′r ≤ C ‖u‖pW 1,p(∆r×]0,β[,γ) . (4.2)

holds. In (4.2) we have denoted by u the composition of u with the change of coordi-
nates.

Now we prove (4.2) for 1 < p < +∞. The case p = 1 can be obtained in the same
(but more direct) way. For some constant c that can vary from line to line we have

∫

∆r

|u(x′r, 0)|
p
log

p−1
2 (2 + |u(x′r, 0)|) ϕ(x′r , 0) dx′r (4.3)

≤ c(A1 +A2 +A3)

where

A1 =

∫

∆r

∫ 0

β

p
∣

∣

∣
u(x′

r, x
N
r )

∣

∣

∣

p−1

log
p−1
2 (2 +

∣

∣

∣
u(x′

r, x
N
r )

∣

∣

∣
)

∣

∣

∣

∣

∂u

∂xN
r

(x′
r, x

N
r )

∣

∣

∣

∣

ϕ(x′
r, x

N
r ) dxN

r dx
′
r

A2 =

∫

∆r

∫ 0

β

p− 1

2

∣

∣

∣
u(x′

r, x
N
r )

∣

∣

∣

p log
p−3
2 (2 +

∣

∣u(x′
r, x

N
r )

∣

∣)

2 + |u(x′
r, x

N
r )|

∣

∣

∣

∣

∂u

∂xN
r

(x′
r, x

N
r )

∣

∣

∣

∣

ϕ(x′
r, x

N
r ) dxN

r dx
′
r

A3 =

∫

∆r

∫ 0

β

∣

∣

∣
u(x′

r, x
N
r )

∣

∣

∣

p

log
p−1
2 (2 +

∣

∣

∣
u(x′

r, x
N
r )

∣

∣

∣
)ϕ(x′

r, x
N
r )

∣

∣

∣
x
N
r

∣

∣

∣
dx

N
r dx

′
r.

We observe that the function f(x) = xNr ∈ L∞ (logL)
− 1

2 (∆r × ]0, β[ , γ). Indeed
γf (t) = 2Φ (−t) and using (2.2) we have

sup
t∈(0,γ(∆r×]0,β[))

(1− log t)−
1
2 f⊛(t) = sup

t∈(0,γ(∆r×]0,β[))

(1− log t)−
1
2

(
−Φ−1

(
t

2

))

≤ c sup
t∈(0,γ(∆r×]0,β[))

(1− log t)−
1
2 (2 log

2

t
)

1
2 < +∞.

Then we obtain

A3 ≤ c ‖u‖p
Lp(logL)

1
2p′ (∆r×]0,β[,γ)

∥∥xNr
∥∥
L∞(logL)−

1
2 (∆r×]0,β[,γ)

. (4.4)
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Moreover using Hölder inequality, we obtain

A1 ≤ c

(∫

∆r×]0,β[

∣∣u(x′r, xNr )
∣∣p log

p

2 (2 +
∣∣u(x′r, xNr )

∣∣)ϕ(x′r , xNr ) dxNr dx′r

) 1
p′

(4.5)

×
(∫

Ω

∣∣∣∣
∂u

∂xNr
(x′r , x

N
r )

∣∣∣∣
p

ϕ(x′r , x
N
r ) dxNr dx′r

) 1
p

and

A2 ≤ c

(∫

∆r×]0,β[

∣∣u(x′r, xNr )
∣∣p log

p−3
2 p′

(2 +
∣∣u(x′r, xNr )

∣∣)ϕ(x′r , xNr ) dxNr dx′r

) 1
p′

×
(∫

Ω

∣∣∣∣
∂u

∂xNr
(x′r , x

N
r )

∣∣∣∣
p

ϕ(x′r , x
N
r ) dxNr dx′r

) 1
p

. (4.6)

We observe that

∫

∆r×]0,β[

∣∣u(x′r, xNr )
∣∣p log

p−3
2 p′

(2 +
∣∣u(x′r , xNr )

∣∣)ϕ(x′r , xNr ) dxNr dx′r

≤ c

∫

∆r×]0,β[

∣∣u(x′r, xNr )
∣∣p log

p

2 (2 +
∣∣u(x′r, xNr )

∣∣)ϕ(x′r , xNr ) dxNr dx′r

and

(∫

∆r×]0,β[

∣∣u(x′r, xNr )
∣∣p log

p
2 (2 +

∣∣u(x′r, xNr )
∣∣)ϕ(x′r , xNr ) dxNr dx′r

)
≤ (4.7)

=

∫ γ(∆r×]0,β[)

0

[
u⊛(t) log

1
2 (2 + u⊛(t))

]p
dt

≤ c

(∫ γ(∆r×]0,β[)

0

[
(1− log t)

1
2u⊛(t)

]p
dt

)
,

because log(2+u⊛(t)) is dominated by a multiple of (1− log t). Indeed Lp (logL)
1
2 ⊂

Lp ⊂ Lp,∞, then u⊛(t) ≤ ct−
1
p for some positive constant.

Putting (4.4)-(4.7) in (4.3) and using Proposition 3.1 we have

∫

∆r

|u(x′r, 0)|
p
log

p−1
2 (2 + |u(x′r, 0)|)ϕ(x′r , 0)dx′r

≤c‖u‖p−1

Lp(logL)
1
2(∆r×]0,β[,γ)

‖∇u‖Lp(∆r×]0,β[,γ)

+c ‖u‖p
Lp(logL)

1
2p′(∆r×]0,β[,γ)

∥∥xNr
∥∥
L∞(logL)−

1
2(∆r×]0,β[,γ)

≤c ‖u‖p−1
W 1,p(∆r×]0,β[,γ) ‖∇u‖Lp(∆r×]0,β[,γ) + c ‖u‖pW 1,p(∆r×]0,β[,γ)

≤ c ‖u‖p
W 1,p(∆r×]0,β[,γ) .
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5. Trace operator. In this section the “boundary values” or trace of functions
in Sobolev spaces are studied.

If Ω is a domain satisfying condition 2.1, given a smooth function u ∈ C∞(Ω) ⊂
W 1,p(Ω, γ) the restriction to the boundary u|∂Ω is well defined. This restriction opera-
tor can be extended from smooth functions to W 1,p(Ω, γ) giving a linear continuous
operator from W 1,p(Ω, γ) to Lp(∂Ω, γ), the space of the measurable functions defined
almost everywhere on ∂Ω such that

∫

∂Ω

|u|p ϕ dHN−1 < +∞.

We stress that Lp(∂Ω, γ) is a Banach space with respect to the norm ‖u‖Lp(∂Ω,γ) =(∫
∂Ω |u|p ϕ dHN−1

) 1
p .

Using the logarithmic Sobolev inequalities (4.1), there exists a constant C > 0
such that for every u ∈ C∞(Ω)

‖u‖Lp(∂Ω,γ) ≤ C ‖u‖pW 1,p(Ω,γ) . (5.1)

It follows that the operator

T : C∞(Ω) → Lp(∂Ω, γ)

u→ Tu = u/∂Ω

is linear and continuous from
(
C∞(Ω), ‖‖W 1,p(Ω,γ)

)
into

(
Lp(∂Ω, γ), ‖‖Lp(∂Ω,γ)

)
.

By the Hahn-Banach theorem and the density of C∞(Ω) in W 1,p(Ω, γ) the opera-
tor can be extended to W 1,p(Ω, γ). This linear continuous operator from W 1,p(Ω, γ)
to Lp(∂Ω, γ) is called trace operator of u on ∂Ω. Then there exists a constant C > 0
such that

‖Tu‖Lp(∂Ω,γ) ≤ C ‖u‖W 1,p(Ω,γ) for every u ∈ W 1,p(Ω, γ), (5.2)

that implies that W 1,p(Ω, γ) is continuous imbedded in Lp(∂Ω, γ).
We remark that the trace operator can be defined also from W 1,p(Ω, γ) to

Lp(logL)
1

2p′ (∂Ω, γ), that is the space of the measurable function u such that∫

∂Ω

|u|p log
p−1
2 (2 + |u|)ϕ dHN−1 < +∞.

Moreover the trace operator is compact for 1 ≤ p < +∞. Indeed let {un}n∈N
be a

bounded sequence in W 1,p(Ω, γ), we will prove the existence of a Cauchy subsequence
in Lp(∂Ω, γ). By Proposition 3.1, there exists a Cauchy subsequence, still denoted by

{un}n∈N
, in Lp (logL)

1
2p′ (Ω, γ).. Moreover arguing as in the proof of the inequality

(4.1) we have

‖Tun − Tum‖pLp(∂Ω,γ) ≤
∫

∂Ω

|Tun − Tum|p log
p−1
2 (2 + |Tun − Tum|)ϕ dHN−1

≤ c ‖un − um‖p−1

Lp(logL)
1
2 (Ω,γ)

‖∇ (un − um)‖Lp(Ω,γ)

+ c ‖un − um‖p
Lp(logL)

1
2p′ (Ω,γ)

‖xN‖
L∞(logL)

1
2 (Ω,γ)

,

then {un}n∈N
is a Cauchy sequence in Lp(∂Ω, γ) too.
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The norm of the trace operator is given by

inf
u∈W 1,p(Ω,γ)−W

1,p
0 (Ω,γ)

‖u‖pW 1,p(Ω,γ)

‖Tu‖pLp(∂Ω,γ)

(5.3)

and this value is the best constant in the trace inequality (5.2). The trace operator is
compact, therefore an easy compactness arguments prove that there exist extremals
in (5.3). These extremals turn out to be the weak solution of





− div(|∇u|p−2 ∇uϕ) = |u|p−2
uϕ in Ω

|∇u|p−2 ∂u
∂ν

= λ |u|p−2
u on ∂Ω,

(5.4)

where λ is the first nontrivial eigenvalue.
When p = 2 and Ω is a connected domain satisfying condition 2.1, using classical
tools, compactness of the trace operator from W 1,2(Ω, γ) to L2(∂Ω, γ) and (3.7) it
follows that there exists an increasing sequence of eigenvalues of the problem (5.4)
which tends to infinity and a Hilbertian basis of eigenfunctions in L2(Ω, γ).

Moreover the continuity of the trace operator from W 1,2(Ω, γ) to L2(∂Ω, γ) and
(3.7) allow us to investigate about the existence of a weak solution of the following
semicoercive nonhomogeneous Neumann problem






− (uxi
ϕ)xi

= fϕ in Ω

∂u
∂ν

= g on ∂Ω,

where Ω is a connected domain satisfying condition 2.1, f ∈ L2(logL)
1
2 (Ω, γ) and

g ∈ L2(∂Ω, γ). Indeed using classical tools (see e.g. [6] Theorem 6.2.5) we obtain that
there exists a weak solution inW 1,2(Ω, γ) if and only if

∫
Ω
fdγ+

∫
∂Ω
gϕ dHN−1 = 0. In

particular there exists a unique weak solution in X =
{
u ∈ W 1,2(Ω, γ) :

∫
Ω vdγ = 0

}

by Lax-Milgram theorem.

6. Poincaré trace inequality. Arguing as in Proposition 3.2 (see Remark 3.6
too), we prove the following Poincaré type inequality.

Proposition 6.1. Let Ω be a connected domain satisfying condition 2.1 and
1 ≤ p < +∞. Then there exists a positive constant C, depending only on p and Ω,
such that

‖u‖Lp(Ω,γ) ≤ C ‖∇u‖Lp(Ω,γ) (6.1)

for any u ∈ X =

{
u ∈W 1,p(Ω, γ) :

∫

∂Ω

uϕ dHN−1 = 0

}
.

Using (5.1) and (6.1) we obtain

Corollary 6.1. Let Ω be a connected domain satisfying condition 2.1 and 1 ≤
p < +∞. Then there exists a positive constant C, depending only on p and Ω, such
that

‖Tu‖Lp(∂Ω,γ) ≤ C ‖∇u‖Lp(Ω,γ) (6.2)

for any u ∈ X.
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We remark that the previous results can be obtained also involving the trace

operator from W 1,p(Ω, γ) into Lp(logL)
1

2p′ (∂Ω, γ).

Remark 6.1. (Application to PDE ) Let consider the eigenvalue problem





− (uxi
ϕ)xi

= 0 in Ω

∂u
∂ν

= λu on ∂Ω,
(6.3)

where Ω is a connected domain satisfying condition 2.1. Arguing in a classical way
using inequality (6.2) and the compactness of the trace operator, it is easy to prove
that there exists an increasing sequence of eigenvalues of the problem (6.3) which tends
to infinity. Moreover for λ1 = 0 the corresponding eigenvalue function u1 = const 6= 0
and the first nontrivial eigenvalue λ2 has the following characterization

λ2 = min

{
‖∇u‖L2(Ω,γ)

‖Tu‖L2(∂Ω,γ)

, u ∈ W 1,2(Ω, γ) :

∫

∂Ω

uϕ dHN−1 = 0

}
.
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