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A GEOMETRIC THEORY OF ZERO AREA SINGULARITIES IN
GENERAL RELATIVITY*

HUBERT L. BRAYT AND JEFFREY L. JAUREGUI#

Abstract. The Schwarzschild spacetime metric of negative mass is well-known to contain a naked
singularity. In a spacelike slice, this singularity of the metric is characterized by the property that
nearby surfaces have arbitrarily small area. We develop a theory of such “zero area singularities”
in Riemannian manifolds, generalizing far beyond the Schwarzschild case (for example, allowing
the singularities to have nontrivial topology). We also define the mass of such singularities. The
main result of this paper is a lower bound on the ADM mass of an asymptotically flat manifold of
nonnegative scalar curvature in terms of the masses of its singularities, assuming a certain conjecture
in conformal geometry. The proof relies on the Riemannian Penrose inequality [9]. Equality is
attained in the inequality by the Schwarzschild metric of negative mass. An immediate corollary is
a version of the positive mass theorem that allows for certain types of incomplete metrics.
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1. Introduction: the negative mass Schwarzschild metric. The first met-
rics one typically encounters in the study of general relativity are the Minkowski
spacetime metric and the Schwarzschild spacetime metric, the latter given by

R

where t is the time coordinate, (R, 0, ) are spatial spherical coordinates, and m is
some positive number. This represents the exterior region R > 2m of a non-rotating
black hole of mass m in vacuum. A spacelike slice of this Lorentzian metric can be

2 2m\
ds? = — (1 — 1;”) dt® + (1 - m) dR? + R2(d9? + sin® 0 do?),

obtained by taking a level set of ¢; under a coordinate transformation R = r (1 + %)2,
the resulting 3-manifold is isometric to R® minus the ball of radius m/2 about the
origin, with the conformally flat metric

2 m*

(1) ds® = (1+ 27“) s,
where 6 = dx? + dy® + dz? is the usual flat metric on R3 and r = /22 + 2 + 22. Its
boundary is a minimal surface that represents the apparent horizon of the black hole.
We refer to (1) as the Schwarzschild metric (of mass m).

Consider instead the metric (1) with m < 0. This gives a Riemannian metric on
R? minus a closed ball of radius |m|/2 about the origin that approaches zero near its
inner boundary. One may loosely think of this manifold as a slice of a spacetime with
a single “black hole of negative mass.” In fact, this metric has a naked singularity,
as the singularity on the inner boundary is not enclosed by any apparent horizon. In
this paper we introduce a theory of such “zero area singularities” (ZAS), modeled on
the “Schwarzschild ZAS metric” (i.e., (1) with m < 0), yet far more general. Some of
the problems we address are:
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1. When can such singularities be “resolved”?

2. What is a good definition of the mass of such a singularity?

3. Can the ADM mass of an asymptotically flat manifold of nonnegative scalar

curvature be estimated in terms of the masses of its singularities?
The third question is motivated by the positive mass theorem [25, 28] and Riemannian
Penrose inequality [16, 9] (Theorems 1 and 2 below). The former states that, under
suitable conditions, the ADM mass of an asymptotically flat 3-manifold is nonneg-
ative, with zero mass occurring only for the flat metric on R3. The latter improves
this to provide a lower bound on the ADM mass in terms of the masses of its “black
holes.” Here, the case of equality is attained by the Schwarzschild metric with m > 0.
See appendix A for details on asymptotic flatness and ADM mass.
The main theorem of this paper is the Riemannian ZAS inequality (see Theorems

31 and 32), introduced by the first author [7]. It is an analog of the Riemannian Pen-
rose inequality, but for zero area singularities instead of black holes. Specifically, this
inequality gives a lower bound for the ADM mass of an asymptotically flat manifold in
terms of the masses of its ZAS. Its proof assumes an unproven conjecture (Conjecture
34) regarding the outermost minimal area enclosure of the boundary, with respect to
a conformal metric. While the conjecture is known to be true in some cases, proving
it remains an open problem. Although we shall write “the” Riemannian ZAS inequal-
ity in this paper, we remark that other similar inequalities may be discovered in the
future that also deserve this title. Table 1.1 illustrates how this theorem fits together
with the positive mass theorem and Riemannian Penrose inequality.

TABLE 1.1
The Schwarzschild metric as a case of equality

sign(m)  metric (1 + %)4 ) unique case of equality of
0 Euclidean positive mass theorem
+ Schwarzschild metric Riemannian penrose inequality

— Schwarzschild ZAS metric Riemannian ZAS inequality (Theorem 31)

For reference, we recall the following theorems. The geometric assumption of non-
negative scalar curvature is equivalent, physically, to the dominant energy condition
(for totally geodesic slices of spacetimes).

THEOREM 1 (Positive mass theorem [25]). Let (M, g) be a complete asymptoti-
cally flat Riemannian 3-manifold (without boundary) of nonnegative scalar curvature
with ADM mass m. Then m > 0, with equality holding if and only if (M,g) is
isometric to R® with the flat metric.

Witten gave an alternative proof of Theorem 1 for spin manifolds [28].

THEOREM 2 (Riemannian Penrose inequality, Theorem 19 of [9]). Let (M,g) be
a complete asymptotically flat Riemannian 3-manifold with compact smooth bound-
ary OM and nonnegative scalar curvature, with ADM mass m. Assume that OM is
minimal (i.e. has zero mean curvature), and let S be the outermost minimal area

enclosure of OM. Then m > 1/%, where A is the area of S. Equality holds if and

only if (M, g) is isometric to the Schwarzschild metric of mass m outside of S.

See appendix A for details on the outermost minimal area enclosure. Theorem
2 was first proved by Huisken and Ilmanen [16] with A replaced by the area of the
largest connected component of S.
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1.1. Negative mass in the literature. The concept of negative mass in both
classical physics and general relativity has appeared frequently in the literature. The
following list is a small sample of such articles and is by no means comprehensive.

e Bondi discusses negative mass in Newtonian mechanics, distinguishing inertial
mass, passive gravitational mass, and active gravitational mass [5]. He then
proceeds to study a two-body problem in general relativity involving bodies
with masses of opposite sign.

e Bonnor considers Newtonian mechanics and general relativity under the as-
sumption that all mass is negative [6]. Included in the discussion are 1) the
motion of test particles for a Schwarzschild spacetime of negative mass, 2)
Friedmann-Robertson-Walker cosmology with negative mass density, and 3)
charged particles of negative mass.

e More recently, research has turned toward the question of stability of the
negative mass Schwarzschild spacetime. Gibbons, Hartnoll, and Ishibashi
studied linear gravitational perturbations to this metric and found it to be
stable for a certain boundary condition on the perturbations [14]. However, a
separate analysis by Gleiser and Dotti reached a different conclusion, indicat-
ing the negative mass Schwarzschild spacetime to be perturbatively unstable
for all boundary conditions [15]. The papers are mathematically consistent
with each other, with differences arising from subtleties pertaining to defining
time evolution in a spacetime with a naked singularity. The issue of stability
warrants further analysis, although we do not consider it here.

The present paper offers a new perspective on singularities arising from negative
mass, extending past the Schwarzschild case. We will restrict our attention to the case
of time-symmetric (i.e., totally geodesic), spacelike slices of spacetimes. This setting
is a natural starting point, as it was for the positive mass theorem and Penrose
inequality.

1.2. Overview of contents. Before providing an overview of the paper, we
emphasize that the statements and proofs of the main theorems appear near the end,
in section 5.

In section 2 we make precise the notion of zero area singularity. By necessity,
this is preceded by a discussion of convergence for sequences of surfaces. Next, we
define two well-behaved classes of ZAS: those that are “regular” and “harmonically
regular.”

Section 3 introduces the mass of a ZAS: this is a numerical quantity that ulti-
mately gives a lower bound on the ADM mass in the main theorem. Defining the
mass for regular ZAS is straightforward; for arbitrary ZAS, formulating a definition
requires more care. We discuss connections between the ZAS mass and the Hawking
mass. Next, we define the capacity of a ZAS based on the classical notion of harmonic
capacity. The important connection between mass and capacity is that if the capacity
is positive, then the mass is —oo.

Spherically symmetric metrics with zero area singularities are studied in section
4. In this simple setting, we explicitly compute the mass and capacity. An example is
given that shows the concepts of regular and harmonically regular ZAS are distinct.
Experts may prefer to skip this section, which is largely computational and detail-
oriented.

The main two theorems, comprising two versions of the Riemannian ZAS inequal-
ity, are stated and proved (up to an unproven conjecture) in section 5. An immediate
corollary is a version of the positive mass theorem for manifolds with certain types of
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singularities.

After providing one final example, we conclude with a discussion about several
related open problems and conjectures. Two appendices follow which are referred to
as needed.

1.3. Comments and acknowledgements. In 1997, the first author, just out
of graduate school, sat next to Barry Mazur at a conference dinner at Harvard, who,
quite characteristically, asked the first author a series of probing questions about
his research, which at the time concerned black holes. One of the questions was
“Can a black hole have negative mass, and if so, what properties would it have?”
Contemplating this natural question marked the beginning of an enjoyable journey
leading to this paper.

The first author initiated this work, originally presented at a conference in 2005
under the heading “Negative Point Mass Singularities” [7]. The second author com-
menced work on this project as a graduate student, and wrote his thesis on a closely
related topic [18]. He would like to thank Mark Stern and Jeffrey Streets for helpful
discussions.

2. Definitions and preliminaries. In this paper, the singularities in question
will arise as metric singularities on a boundary component of a manifold. To study
the behavior of the metric near a singularity, we make extensive use of the idea of
nearby surfaces converging to a boundary component.

Throughout this paper (M, g) will be a smooth, asymptotically flat Riemannian 3-
manifold, with compact, smooth, nonempty boundary OM (see appendix A for details
on asymptotic flatness). We do not assume that g extends smoothly to 9M. We make
no other restrictions on the topology of OM (e.g., connectedness, orientability, genus).

2.1. Convergence of surfaces. For our purposes, a surface S in M will always
mean a C*°, closed, embedded 2-manifold in the interior of M that is the boundary
of a bounded open region Q. (Note that Q is uniquely determined by S.) We say
that a surface S; = 9y encloses a surface Sy = 05 if Q; D Qy. If ¥ is a nonempty
subcollection of the components of dM, we say that a surface S = 0Q encloses % if
S is homologous to .

We next define what it means for a surface S to be “close to” ¥ (with X as above).
Let U C M be a neighborhood of ¥ that is diffeomorphic to ¥ x [0, a) for some a > 0.
This gives a coordinate system (z,s) on U where z € ¥ and s € [0,a). f SCUisa
surface that can be parameterized in these coordinates as s = s(x), then we say it is
a “graph over Y¥”; clearly such S encloses Y. Whenever we discuss the convergence of
surfaces, it will be implicit that the surfaces are graphs over 3.

DEFINITION 3. Let {S,} be a sequence of surfaces that are graphs over ¥ that
can be parameterized as s, = s,(x) (see above). We say that {S,} converges in C*
to X if the functions s, : ¥ — [0,a) converge to 0 in C*.

We emphasize that convergence in C* depends only on the underlying smooth
structure of M and not on the metric. As an example, S, — X in CY if for any
open set U containing ¥, there exists ng > 0 such that S,, C U for all n > ng. We
shall not deal with convergence stronger than C? and will explain the significance of
convergence in C' and C? as necessary.

2.2. Zero area singularities. We now give the definition of zero area singular-
ity. Both the singular and plural will be abbreviated “ZAS.”
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DEFINITION 4. Let g be an asymptotically flat metric on M \ OM. A connected
component 30 of OM is a zero area singularity (ZAS) of g if for every sequence
of surfaces {S,} converging in C* to X9, the areas of S,, measured with respect to g
converge to zero.

Topologically, a ZAS is a boundary surface in M, not a point. However, in terms
of the metric, it is often convenient to think of a ZAS as a point formed by shrinking
the metric to zero. For example, the boundary sphere of the Schwarzschild ZAS metric
is a ZAS. Also, most notions of “point singularity” are ZAS (after deleting the point).
A depiction of a manifold with ZAS is given in figure 1.

ZAS could be defined for manifolds that are not asymptotically flat, but we do
not pursue this direction.

F1c. 1. A manifold with zero area singularities

(M,9)

On the left is a drawing of an abstract smooth manifold M with two boundary components. On
the right is a drawing of the same manifold equipped with a metric g for which both boundary
components are ZAS. The dotted lines represent cross-sectional surfaces (not necessarily 2-spheres).

In the case that g extends continuously to the boundary, we have several equiva-
lent conditions for ZAS:

PROPOSITION 5. Suppose X° is a component of OM to which g extends continu-

ously as a symmetric 2-tensor. The following are equivalent:

1. X% is a ZAS of g.

2. X9 has zero area measured with respect to g (see below).

3. For each point x € ¥.°, g has a null eigenvector tangent to X° at x.

4. There exists a sequence of surfaces {¥;} converging in C to X° such that

|Xi|g converges to zero.

Here, |5;|4 is the area of ¥; measured with respect to g.

A continuous, symmetric 2-tensor k on a surface that is positive semi-definite can
be used to compute areas by integrating the 2-form defined locally in coordinates by

1/ det kij dIl A dIQ.

Proof. The proof is an immediate consequence of the following observations:
e If g extends continuously to X, then for any sequence of surfaces {3, } con-
verging in C! to X9, the areas converge: |X,|, — [X°],.
e If k is the restriction of g to the tangent bundle of X%, then det k;; = 0 at p
if and only if £ has an eigenvector with zero eigenvalue at p.
a0

In general, it is not necessary that g extend continuously to the boundary in the
definition of ZAS.
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2.3. Resolutions of regular singularities. We now discuss what it means to
“resolve” a zero area singularity. An important case of ZAS occurs when a smooth
metric on M is deformed by a conformal factor that vanishes on the boundary [7]:

DEFINITION 6. Let X0 be a ZAS of g. Then X° is regular if there exists a smooth,
nonnegative function @ and a smooth metric g, both defined on a meighborhood U of
20, such that

1. @ vanishes precisely on X°,
2. 7(p) > 0 on X0, where U is the unit normal to X0 (taken with respect to g
and pointing into the manifold), and
3. g=p'g on U\ X°.
If such a pair (g, p) ewists, it is called a local resolution of %°.

The significance of the condition 7(%) > 0 is explained further in Lemma 11 and
is crucial in the proof of Proposition 12. As an example, the Schwarzschild ZAS with
m < 0 is a regular ZAS with a local resolution (g, %), where g is the flat metric and
P = (1 + 2—";) A graphical depiction of a local resolution is given in figure 2.

F1a. 2. A resolution of a reqular ZAS

W,a9) \7 (2N
5° 50

On the left is a neighborhood U of a regular ZAS X0 in the metric g. On the right is the same
neighborhood U equipped with a resolution metric g. The metrics g and g are conformal in U \ 3°,
with g = B*g, where @ vanishes on X0,

Much of our work utilizes a nicer class of singularities: those for which the reso-
lution function can be chosen to be harmonic.

DEFINITION 7. A regular ZAS X° of g is said to be harmonically regular if
there exists a local resolution (g, 9) such that @ is harmonic with respect to g. Such a
pair (g, 9) is called a local harmonic resolution.

In the case of a local harmonic resolution, the condition (%) > 0 holds auto-
matically by the maximum principle. We remark that if one local resolution (or local
harmonic resolution) exists, then so do infinitely many.

The Schwarzschild ZAS is harmonically regular, since the function (1 + ;”7) is
harmonic with respect to the flat metric on R3. In section 4 we give examples of ZAS
that are not regular and ZAS that are regular but not harmonically regular.

If several components of OM are (harmonically) regular ZAS, then there is a
natural notion of a local (harmonic) resolution of the union ¥ of these components:
in Definition 6, simply replace X° with X.

Since our ultimate goal—the Riemannian ZAS inequality—is a global geometric
statement, we require resolutions that are globally defined.

DEFINITION 8. Suppose all components of ¥ = M are harmonically regular
ZAS. Then the pair (g,9) is a global harmonic resolution of ¥ if
1. g is a smooth, asymptotically flat metric on M,
2. ¢ is the g- harmonic function on M vanishing on % and tending to one at
infinity, and
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3. g=p'gon M\ X.

For example, the aforementioned resolution of the Schwarzschild ZAS is a global
harmonic resolution. In general, if ¥ consists of harmonically regular ZAS, it is not
clear that a global harmonic resolution exists; however, this is known to be true:

PROPOSITION 9 (Theorem 58 of [18]). If ¥ = OM is a collection of harmonically
regular ZAS in (M, g), then ¥ admits a global harmonic resolution.

3. Mass and capacity of ZAS. In a time-symmetric (i.e., totally geodesic)
spacelike slice of a spacetime, we adopt the viewpoint that black holes may be iden-
tified with apparent horizons. An apparent horizon is defined to be a connected
component of the outermost minimal surface in the spacelike slice. If A is the area
of an apparent horizon S, then its mass (or “black hole mass”) is defined to be

mpu(S) = /5. This definition has physical [22] and mathematical [16, 9] mo-
tivation; it also equals m for the apparent horizon in the Schwarzschild metric of
mass m > 0. We note the black hole mass is also given by the limit of the Hawking
masses of a sequence of surfaces converging in C? to the apparent horizon. Recall the

Hawking mass of any surface S in (M, g) is given by

= /Sl _L/ 2
mH(S) = 167 1 167 SH dA s

where |S|, is the area of S with respect to g, H is the mean curvature of S, and dA
is the area form on S induced by g. The significance of C? convergence is explained
in the proof of Proposition 13 below.

Defining the mass of a ZAS, on the other hand, is not as straightforward, since
the metric becomes degenerate and potentially loses some regularity at the boundary.
For regular ZAS; it is possible to define mass in terms of a local resolution in such a
way as to not depend on the choice of local resolution. In the general case, defining
the mass is more involved. We first consider the regular case.

3.1. The mass of regular ZAS. Following [7], we define the mass of a regular
ZAS:

DEFINITION 10. Let (g,%) be a local resolution of a ZAS X° of g. Then the
regular mass of X0 is defined by the integral

(2) Miyeg (20) _ _i (1 /ED V(@)4/3d,4> 3/2’

™

where U is the unit normal to X° (pointing into the manifold) and dA is the area form
induced by g.

The advantages of this definition are that it

1. is independent of the choice of local resolution (Proposition 12),

2. depends only on the local geometry of (M, g) near X° (Proposition 13),

3. is related to the Hawking masses of nearby surfaces (Proposition 14),

4. arises naturally in the proof of the Riemannian ZAS inequality (Theorem 31),
and

5. equals m for the Schwarzschild ZAS metric of ADM mass m < 0 (left to the
reader).
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Before elaborating on these issues, we take a moment to describe how the masses
of regular ZAS add together. If X1 ... ¥¥ are regular ZAS and ¥ = U¥_ 3% then
applying (2) to X gives

i 3/2
3) Mg (%) = (Z Mg (1) ) ~

This is analogous with the case of black holes: if ¥1,..., %

with black hole masses m; = 4/ %, and if the black hole mass of their union X is

are apparent horizons

defined to be % (c.f. [22]), then

& 1/2
mpH (Z)Z (Zm?) .

Next, we show the regular mass is well-defined. (This was also proved in [7, 23].)
First, we require the following lemma;:

LEMMA 11. If (g1,%1) and (g5, P5) are two local resolutions of a regqular ZAS 0,
then the ratio % extends smoothly to X° as a strictly positive function.

Proof. Note that p; and P, vanish on X% and have nonzero normal derivative
there. The proof follows from considering Taylor series expansions for coordinate
expressions of p; and P, near ¥°. O

PROPOSITION 12. The definition of mes(X°) is independent of the choice of local
resolution.

Proof. Let (gy,%;) and (g,,®5) be two local resolutions of X9, defined on a
neighborhood U of XY, Then on U \ XY,

P10 =9=020>
By Lemma 11, A := % is smooth and positive on U. In particular, g, = A\g; on

U. This allows us to compare area elements dA; and unit normals 7; on 3° in the
metrics g; and gy:

dAy = NdA,,

Uy = A\ 727,

We show the integrals in (2) are the same whether computed for (g;,%;) or (gs, Ps)-

_ a\\ Y%
/ Vo (@,) "/ d Ay =/ <>\_2V1 (?)) MdA,
50 50

- / 71(0) /3 dA,,
EU

where the cancellation occurs because @, vanishes on X°. O
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The next few results serve to: give alternate characterizations of the regular mass,
relate the regular mass to the Hawking mass, and provide motivation for the definition
of the mass of an arbitrary ZAS. We have placed an emphasis on the Hawking mass
(versus other quasi-local mass functionals) due to its relevance to the Riemannian
Penrose inequality [16] and its role in the proof of the Riemannian ZAS inequality for
the case of a single ZAS [23].

PROPOSITION 13. Let ¥ be a subset of OM consisting of reqular ZAS of g. If
{X,} is a sequence of surfaces converging in C* to ¥, then

1 3/2
Mreg(B) = — lim <167T /2 H4/3dA> :

In particular, the right side is independent of the choice of sequence, and the left side
depends only on the local geometry of (M, g) near X.

Proof. Let (g, %) be some local resolution of ¥. Apply formula (32) in appendix
B for the change in mean curvature of a hypersurface under a conformal change of
the ambient metric. Below, H and H are the mean curvatures of ¥,, in the metrics g
and g, respectively.

1 . 3/2 1 _ , 43 _\3/?
—(— [ HY3qaA = — —/ % 2H + 43 v(p BdA
<167T /En ) (1671' - (“0 T ”(‘p)) v
1 . 4/3 - 3/2
- (= GH + 47(3 A) .
(167r /g (@ + ”(“")> d )

Now, take lim,, ., of both sides, and use the facts that % vanishes on ¥ and the C?
convergence of {X,,} ensures that the mean curvature of ¥,, in g is uniformly bounded
as n — oo to deduce:

1 s 3/2 1 /1 s 3/2
—dim (— [ HY3qA) =—Z(= [ we)V3dA
o (167T /En d ) 4 (W /z(y(gp)) I )
= Myeg ().

|

A similar result is now given for the Hawking mass; the proof also appears in [23].

PROPOSITION 14. Let ¥ be a subset of OM consisting of reqular ZAS of g. If
{X,} is a sequence of surfaces converging in C? to ¥, then

(4) limsup mp(X,) < Myeg(X).

n—oo

Moreover, there exists a sequence of surfaces {35} converging in C? to 3 such that

nh—>Holo mp (X)) = Mreg(X).

Proof. The first part is an application of Holder’s inequality:

[Saly _ [Zaly”
mp(X,) = 1671'9 (167)72 / H?dA (definition of Hawking mass)

SN 1 3/2
<y flonle / H*3dA (Holder’s inequality)
167 167 Jy,
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Inequality (4) follows by taking lim sup,,_, ., and applying Definition 4 and Proposition
13.

We now construct the sequence {¥;}. We first argue that there exists a local
resolution (g, @) such that 7($) =1 on X. Let (g, ) be some local resolution defined
in a neighborhood U of ¥. Let u be a positive g-harmonic function with Dirichlet
boundary condition given by (ﬁ(@))l/ ®on ¥. Set § =u'gand § = Z; we claim (g, )
is the desired local resolution.

First, note that g is a smooth metric on U, since u is positive and smooth. Next,
?*g = $*g = g, and $ vanishes only on ¥. Now, we compute the normal derivative
of ¢ on X:

by the boundary condition imposed on u. Thus, (g, ®) is the desired local resolution.
(We remark that if (g, %) is a local harmonic resolution, then so is (¢, @). This follows
from equation (30) in appendix B and will be used in the proof of Proposition 17.)

Define ¥ to be the 1/n level set of @, which is smooth and well-defined for all n
sufficiently large. It is clear that ¥ converges to ¥ in all C* as n — oo.

Since equality is attained in Hélder’s inequality for constant functions, the proof
is complete if we show the ratio of the minimum and maximum values of H (the
mean curvature of ¥, measured in ¢) tends to 1 as n — co. ;(From equation (32) in

n’

appendix B, H is given by
(5) H =g 2H + 43 °5(9),

where H is the mean curvature of ¥, in g. By C? convergence, H is bounded as
n — co. By C! convergence, () converges to 1 as n — oo. In particular, the second
term in (5) dominates. Since ¢ is by definition constant on X, we have proved the
claim. O

The following corollary of Proposition 14 will be pertinent when discussing the
mass of arbitrary ZAS.

COROLLARY 15. If ¥ is a subset of OM consisting of reqular ZAS of g, then

Mreg(X) = sup limsupmpg(X,),
{£,} n—oo

where the supremum is taken over all sequences {¥,} converging in C? to X.

It is necessary to take the supremum, since lim sup,,_, .. mg(X,,) evidently under-
estimates the regular mass in general.
To summarize, we have seen several expressions for the regular mass as the:
1. explicit formula (2) in terms of any local resolution,

3/2
2. timit of — (g [ HY3a4)",
3. limit of the Hawking masses of a certain sequence of surfaces, and

4. sup of the limsup of the Hawking masses of sequences converging to 3.

3.2. The mass of arbitrary ZAS. For simplicity, we assume from this point
on that all components of ¥ := OM are ZAS of g. We shall define only the mass of
Y (not the mass of each component of ). A good definition of the mass of ¥ should
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depend only on the local geometry near ¥ and agree with the regular mass in the case
that the components of X are regular (or at least harmonically regular). There are
three immediate candidates for the definition of the mass of 3: the supremum over
all sequences {%,,} converging in some C* to ¥ of

1. limsup,,_,.o mu(X,) (inspired by Corollary 15),

2
2. limsup,, , ., — (16% on H4/3dA> Y (inspired by Proposition 13), and
3. imsup,,_, o Mreg(Xy), where X, is viewed as a regular ZAS that “approxi-
mates” X. (This is explained below; see also figure 3.)

The first two candidates manifestly depend only on the local geometry near 3 and
agree with the regular mass for regular ZAS (by Corollary 15 and Proposition 13).
In fact, the second is greater than or equal to the first (an application of Hélder’s
inequality).

To explain the third quantity above, we show that each surface ¥, is naturally a
collection of ZAS (with respect to a new metric). Let €2, be the region enclosed by %,,,
and let ¢,, be the unique g-harmonic function that vanishes on ¥,, and tends to one at
infinity. Then ¢? g is an asymptotically flat metric on the manifold M\ Q,,. Moreover,
3, is a collection of harmonically regular ZAS for this manifold. This construction
is demonstrated in figure 3; essentially this process approximates any ZAS ¥ with a
sequence of harmonically regular ZAS. By construction, (g, ¢,) is a global harmonic
resolution of 3, so the regular mass of 3, is computed in this resolution as

(© mes(2) = =5 (3 [ slon)¥oaa) -

™

where the unit normal v and area form dA are taken with respect to g.

F1c. 3. Approzimating a ZAS by harmonically regular ZAS

(M,9) (M\Q,,9,9)

01 \9/’

¢,=0
Z\ Zn/

On the left side, (M, g) is pictured with a ZAS ¥ and a sequence {¥,} of surfaces converging to it.
n, is the g-harmonic function vanishing on 3, and approaching 1 at infinity. The conformal metric
g on the region M \ Q, has 3, as a ZAS. (Here, Q,, is the region enclosed by 3,,.)

We adopt the third candidate for our definition of mass; Proposition 17 and
Corollary 29 show this definition agrees with the regular mass for harmonically regular
ZAS, and Proposition 27 shows it depends only on the local geometry near ¥. The
relationship between the third and first two candidates for the definition of mass is
unknown; see section 6.4. Another justification for our choice of the definition of mass
is that it naturally gives a lower bound on the ADM mass of (M, g) (see Theorem
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32). Tt is currently unknown how to obtain such a lower bound in terms of the first
two candidates for the mass of .

DEFINITION 16. Let ¥ = OM be zero area singularities of (M,g). The mass of
> s

mzas(X) := sup (hmsup mreg(En)> ,

{Z,} n— 00

where the supremum is taken over all sequences {X,} converging in C' to ¥ and
Myeg(Xn) is given by equation (6).

Note that while the regular mass of a regular ZAS is a negative real num-
ber, mzas(X) takes values in [—00,0]. In section 4 we provide examples for which
mzas(X) = —oo and myzas(X) = 0. The requirement that the sequences {¥,} con-
verge in C! is explained in the proof of the following result.

PROPOSITION 17. If XX admits a global harmonic resolution, then the two defini-
tions of mass agree. That is, Myeg(X) = mzas(X).

Proof. Let X have a global harmonic resolution (g, ). Let {¥,,}52, be a collection
of smooth level sets of 7 that converge in C! to ¥, and let ¢,, be g-harmonic, vanishing
on X, and tending to 1 at infinity. Now we compute a convenient expression for the
regular mass of >,,:

3/2
Mieg(Xn) = —i (717/2 V(cpn)"‘/?’dA) (expression (6) for Myeg(Xn))
1/1 a3 —\*? _
= (/ (@7(en)) dA) (v =% %7 and dA = B'dA)
™ Sh
1/1 2
@ —1 (3 [ e i) =0,

We claim that the limit n — oo of the above equals myes(2). Let a,, be the (constant)
value of @ on ¥,,. Let E, be the closure of the region exterior to ¥,. ;From formula
(30) in appendix B, the function @y, is g-harmonic in F,,, zero on ¥,, and 1 at infinity.
Also, ¥ — a,, is g-harmonic on M, zero on X, and 1 — a,, at infinity. In particular, by
the uniqueness of harmonic functions with identical boundary values, we see that

1

m(a—an) in En

Ppp =

It follows that

(8) y(@@n) = 1_ anv(@) on X,.

Continuing with equations (7), and taking lim,,, ., we have

lin Mpeg(Sn) = lim — > (1 L (= V(<P)>4/3dA>3/2 (can. (8))

n—00 n—oo 4

-2 (& [ o)

= mreg(z)a
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since a, — 0 and ¥,, = ¥ in C'. Then by definition of ZAS mass,
mZAS(E> Z mreg<2)

for ZAS admitting a global harmonic resolution. Proposition 18 below gives the
reverse inequality. O

As a consequence of this result, we may interchangeably use the terms “mass” and
“regular mass” whenever a global harmonic resolution exists; by Proposition 9, this is
the case for all harmonically regular ZAS. Alternatively, Corollary 29 directly proves
(using Proposition 17) that mzag(X) = Myeg(X) for harmonically regular ZAS. The
question of whether mzag(X) = myeg(2) for merely regular ZAS is not fully resolved;
the answer is known to be yes in the spherically symmetric case. At the very least,
we have an inequality relating the two definitions:

PRrOPOSITION 18 (Proposition 56 of [18]). If ¥ = OM consists of regular ZAS,
then

mZAS<Z) < mreg(z)-

We also point out that in regards to the definition of mass, there exists a sequence
of surfaces that attains the supremum and for which the limsup may be replaced by
a limit.

PROPOSITION 19 (Proposition 55 of [18]). There exists a sequence of surfaces
{2,} converging in C* to ¥ such that

i e () = mzas(3).

The proof is a basic diagonalization argument applied to a maximizing sequence
of sequences {2, };.

3.3. The capacity of ZAS. We introduce the capacity of a collection of ZAS
in this section. This quantity has a relationship with the mass that plays a role in
the proof of the Riemannian ZAS inequality (Theorem 32).

DEFINITION 20. Suppose S = 08 is a surface in M that is a graph over OM
(recall this terminology from section 2.1). Let ¢ be the unique g-harmonic function
on M\ Q that vanishes on S and tends to 1 at infinity. Then the capacity of S is
defined to be the number

C(8) = /N Jefay

where |[V|? and dV are taken with respect to g.

The fact that C(S) is finite (and moreover the existence of ¢) follows from asymp-
totic flatness. The above integral is unchanged if ¢ is replaced with 1 — . Since 1 —¢
is harmonic, we have |V(1 — ¢)[? = div ((1 — ¢)V(1 — ¢)). Applying Stokes’ theorem
and the boundary conditions on ¢, we conclude that

(9) c(s) = /S v(0)dA,
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where v is the unit normal to S pointing toward infinity. The capacity is also charac-
terized as the minimum of an energy functional:

(10) C(S) = inf/ |V f2dV,
fJme
where the infimum is taken over all locally Lipschitz functions f that vanish on > and
tend to 1 at infinity; ¢ is the unique function attaining the infimum.
Now we recall a classical monotonicity property of capacity.

LEMMA 21. If Sy and So are surfaces that are graphs over OM and Sy is enclosed
by Sa, then C(S1) < C(S3). Moreover, equality holds if and only if S; = Ss.

Proof. Say S; = 091 and Sy = 0Qs. Let ¢1,ps be the harmonic functions
vanishing on 57,5, respectively, and tending to 1 at infinity. Since (2 can be ex-
tended continuously by zero in €9 \ €7 while remaining locally Lipschitz, we see that
fM\Ql |V2|2dV gives an upper bound for C(S7) in (10) yet equals C(S2). Therefore
C(S51) < O(S2).

In the above, if S; # Sa, then by the regularity of these surfaces (C* is sufficient),
the volume of Qs \ Q5 is positive. The above proof shows C'(S1) < C(S3). O

We are ready to define the capacity of ZAS [7].
DEFINITION 22. Assume the components of ¥ = OM are ZAS of g, and let

{2,359, be a sequence of surfaces converging to ¥ in C°. Define the capacity of %
as
C(X) = lim C(%,).

n—oo
The limit exists by the monotonicity guaranteed by Lemma 21.

Note that the capacity takes values in [0,00). We will often distinguish between
the cases of zero capacity and positive capacity. We show now that C(X) is well-
defined (as done in [23]).

PRrOPOSITION 23. The capacity of X as defined above is independent of the se-
quence {X,}.

Proof. Let {¥,} and {X/} be two sequences of surfaces converging to 3 in C°.
Then for any n > 0, ,, encloses X} for all ¢ sufficiently large. By Lemma 21, C(X}) <
C(X,) for such n and 7. Taking the limit ¢ — oo, we have lim; ,, C(3}) < C(X,)
for all n. Taking the limit n — oo, we have lim;_,o, C'(X}) < lim,, oo C(X,,). By the
symmetry of the argument, the opposite inequality holds as well. O

As an example, we show below that a collection of reqular ZAS has zero capacity.
Examples of ZAS with positive capacity will be given in section 4.

PROPOSITION 24. If the components of ¥ = OM are regular ZAS, then the
capacity of X is zero.

Proof. First, observe that the capacity of ¥ is equal to
(11) cx®) = inf/ |dip|2dV,
Y Jm

where the infimum is taken over all locally Lipschitz functions 1 that vanish on ¥ and
tend to 1 at infinity. Now, let (g,%) be some local resolution, and let 7 denote the
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distance function from ¥ with respect to g. For small € > 0, let 9. be the Lipschitz
test function on M given by:

It is straightforward to show the energy of 1. in the sense of (11) is of order e. O

3.4. The relationship between mass and capacity. Recently appearing in
the literature is an estimate relating the capacity of the boundary of an asymptot-
ically flat manifold to the boundary geometry [13]. In somewhat the same spirit,
the following result relates the capacity of a ZAS to the Hawking masses of nearby
surfaces [23]. It was proved using weak inverse mean curvature flow in the sense of
Huisken and Ilmanen [16].

THEOREM 25 (Robbins [23]). Assume (M,g) has nonnegative scalar curvature.
If ¥ is a connected ZAS with positive capacity, and if {¥,} converges in Ct to X,
then

limsupmpg(X,) = —oo.
n— oo

With no assumption on the scalar curvature, we prove the following sufficient
condition for the mass of ZAS to equal —oo.

THEOREM 26. If ¥ = OM is a collection of ZAS of positive capacity, then

mZAs(E) = —0OQ.

Proof. Suppose {3, } is any sequence of surfaces converging in C! to X. Applying
the definition of m;e, and Hélder’s inequality,

1/1 A
mreg(zn) = _Z (L V(Spn) / dA)

s

1 2
< 5,12 / W)dA ) .
= 47r3/2| |g ( o v(en)

The right hand side converges to —oo, since |%,[; = 0 and [, v(¢n) = C(X) > 0 (by
expression (9) for the capacity of a surface and the definition of the capacity of a ZAS).
Therefore lim sup,,_, o Mreg (X)) = —o0 for arbitrary {2, }, so mzas(X) = —c0. 0

We show in section 4 that the converse fails; there exist ZAS of zero capacity yet
negative infinite mass.

3.5. The local nature of mass and capacity. A satisfactory definition of the
mass of a collection of ZAS ought to only depend on the local geometry near the
singularities. Here we establish that the mass and the (sign of) capacity of ZAS are
inherently local notions, despite their definitions in terms of global geometry. This
section is meant only to illustrate these ideas and is not essential to the main theorems.
Most of the proof of the following proposition was given by Robbins in [23].

PROPOSITION 27. Suppose all components of ¥ = OM are ZAS of g, and let U
be any neighborhood of X.. Then 1) the sign of the capacity of ¥ and 2) the mass of
3 depend only on the restriction of g to U.
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Proof. First, assume X has zero capacity with respect to g. Let S be some surface
in M enclosing ¥ such that S and the region it bounds are contained in U. Let
¥, converge to ¥ in CY. By truncating finitely many terms of the sequence, we may
assume all 32, are enclosed by S. Let ¢, be g-harmonic, equal to 0 on ¥, and tending
to 1 at infinity. Let €, be the minimum value attained by ¢, on S. Let f, and f;" be
functions in the region bounded by ¥, and S that are g-harmonic, equal to 0 on %,
with f|s = €, and f,|s = 1. The setup is illustrated in figure 4. By the maximum

Fic. 4. Functions in the proof of Proposition 27
Q-1
n

This diagram illustrates the boundary values of the harmonic functions used in the proof of
Proposition 27.

principle, the following inequalities hold on X,,:

(12) 0 <v(fy) <wlen) <v(f)),

where v is the outward unit normal to X,, with respect to g. Integrating the first pair
of inequalities over ¥,, and using expression (9) for capacity, we have

0< / V(f7)dA < C(,).

n

By assumption, C(3,) — 0 as n — 00, s0 fEn v(f;)dA — 0. But by the
uniqueness of harmonic functions with identical boundary values, f, = e,f,, so
€n fEn v(f)dA — 0. Now, {e,} is an increasing sequence by the maximum principle,
so it must be that [, v(f;)dA — 0. By integrating the first and last inequality in
(12) over %,,, we have

(13) 0<C(n) s/ v(f)dA.

Zn

We asserted that the right hand side converges to zero (implying C(X) = 0), and
this fact depends only on the data (U, g|y). Thus, the property of zero capacity is
determined by the restriction of g to U. This completes the first part of the proof.

For the second part, if ¥ has positive capacity, then by Theorem 26, the mass
of ¥ is —oo. However, the property of positive capacity is determined by g|y, so the
condition mzag(X) = —oo is also determined by g|y. Now, we may assume ¥ has
zero capacity.

JFrom inequalities (12) and f,; = e, f,7, we have

(14) /3 / V(f)V3dA < /
>

V(pn)/3dA < / V() V3dA.
n

Zn

n
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By Lemma 28 (below) and the fact that ¥ has zero capacity, the sequence of numbers
{€n} converges to 1. Taking the lim sup of (14), we have

(15) limsup/ V(pn)/PdA = limsup/ v(f,)Y3dA.
S, 5.

n—oo n—oo

Since the right hand side depends only on g|y, it now follows from the definition of
the mass of ¥ that myzas(X) depends only on g|y. O

The following lemma will also be used in the proof of Theorem 32.

LEMMA 28. Suppose ¥ = OM consists of ZAS and has zero capacity. If {3,} is a
sequence of surfaces converging in C° to ¥ and @, is the harmonic function vanishing
on 3, and tending to 1 at infinity, then o, (x) — 1 pointwise in M \ X, with uniform
convergence on compact subsets.

Proof. Let K cC M \ ¥. Then for all n sufficiently large, K is contained in
the region exterior to 3,. Without loss of generality, assume X,, encloses 3,1 for
all n. Then by the maximum principle, {¢,} is an increasing sequence of harmonic
functions on K, each bounded between 0 and 1 and tending to 1 at infinity. Thus,
{pn} converges uniformly on K (indeed, in any C*) to a harmonic function ¢. Since
¥ has zero capacity, lim, o0 [5 [Vn|2dV =0, so [, [V[?dV = 0. So ¢ is constant
on M \ ¥ and must identically equal 1. O

Having shown that the ZAS mass is a local notion, we have the following corollary,
which improves Proposition 17.

COROLLARY 29. If ¥ = OM consists of harmonically regular ZAS, then
mreg(Z) = mZAs(E).

Proof. The proof of Proposition 27 shows that for the purposes of computing
the mass of X, the functions {f,7}22, may be used in lieu of {p,}>°; (where f;} is
harmonic, 0 on ¥,, and 1 on a fixed surface S). This was pointed out in [23]. Choose
S = 00 so that Q is contained in the domain of a local harmonic resolution, and
proceed as in Proposition 17. O

Thus, we may interchangeably use the terms “mass” and “regular mass” for har-
monically regular ZAS.

4. Examples: spherically symmetric ZAS and removable singularities.
This section involves many computational details; some readers may wish to skip to
section 5, which includes the main theorems. Many of the calculations below were
also carried out by Robbins [23].

Here, we consider M = S2 x [0, 00) with a spherically symmetric metric g given
by

A
(16) ds* = dr?® + ﬁda{
4

where r is the geodesic distance along the axis of symmetry, A(r) is smooth and
positive for r > 0 and extends continuously to 0 at r = 0, and do? is the round metric
on the sphere of radius 1. By construction, the value of A(r) equals the area of the
sphere S2 x {r}. Assume that g is asymptotically flat, so that A(r) is asymptotic to
4mr?. (In particular, [ % < 00.) By Proposition 5, ¥ = 52 x {0} is a ZAS of g.
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4.1. Capacity. We now derive an explicit expression for the capacity of 3. The
Laplacian with respect to g acting on functions of r is:

(1) AJ(r) = 1) + S 7).

It follows that the harmonic function vanishing on S, := 5% x {p} (with p > 0) and
tending to 1 at infinity is given by

1 " dr
‘Pp(r):foo dr /p A(r)

p A(r)

The improper integral is finite, by the asymptotic behavior of A(r). Now, the capacity
of S, is

(s,) = /5 i (expression (9) for capacity)
[rean )
(18) :(AWQZQI (15,1, = A(p).

In particular, the capacity of ¥ is given by

e gy ([ )

dr

A(r)
is infinite (which holds if and only if [; % is infinite for all € > 0). Otherwise, the
capacity is positive and finite.

Thus, we see that the capacity of 3 is zero if and only if the improper integral fooo

4.2. Explicit examples. In this section assume A(r) is given by
(19) A(r) = 4mr®, for 0 <r <1,

where a > 0 is a constant. We need only define A(r) on an interval, since the examples
of this section are purely local. Our goal is to fill in Table 4.1, which shows the mass
and capacity of the ZAS of this metric for the various values of «, as well as whether
or not each ZAS is regular or removable (explained below).

By the above discussion of capacity, we see that C'(X) > 0 if and only if « < 1.
By Theorem 26, if 0 < @ < 1, then mzas(X) = —oo. We now determine the mass of
3 assuming « > 1. The first step is to compute the regular masses of the concentric
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TABLE 4.1
ZAS data for metrics of the form ds? = dr? + r®do?

range of @  capacity of ¥ mass of ¥ regular ZAS removable singularity

0<axl positive —00 no no
1<ax< % Zero —00 no no
?f = % Zero —% yes no
3 <a<2 zero ZETO no no
a=2 Z€ero Z€ero no yes
2<a<oo zero Z€ETOo no no

For each a > 0, the spherically symmetric metric ds? = dr? +r®do? has a ZAS at 7 = 0. The above
table gives the following properties of this ZAS for each possible value of a: the sign of the capacity,
the mass, whether or not the ZAS is regular, and whether or not the ZAS is a removable singularity.

spheres S,:
. 3/2
Mreg(Sp) = — (/ v( 4/3dA>
7T S,
___1 / LI
= 473/2 s, poo dr) A(p)
3/2
1 —-1/3
=Y 4/3
f

A(T)
—1/4

1
. (e )
7T3/2 fp Ad(r)

We can use L’'Hopital’s rule to evaluate this limit (of the form 22) as p — 0:

2
1 — 3 A(p) A
lim v (S,) = —— - (grga 1A(p) (p))

p—0+ 47r3/2

= i (A0 a))

p—0t

2
(21) =— lim (4%)3/4ap3°‘/41> .

1
647‘(’3/2 <p—>0

This limit is —oo if 1 < & < 4/3, finite but nonzero if o = 4/3, and zero if o > 4/3.
For o > 4/3, this shows that the mass of ¥ is zero. (It is at least zero by our
computation, but it is a priori at most zero.) For 1 < a < 4/3, we claim the mass of
¥ is —oo

Given any sequence of surfaces {3, } converging in C! to 3, we compare them to
a sequence of round spheres. Let p, > 0 be the minimum value of the r-coordinate
that ¥,, attains; then X,, encloses S, , so C(¥,) > C(S,,). Also, since ¥,, converges
in C', the ratio of areas a,, := fl@;l) converges to 1. Using the proof of Theorem 26,
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we can estimate the regular mass of ¥,,:

1
T Ap3/2

1 _ _
= *W% 1/2A(Pn) 1/2C(Spn)2

= a;1/2mreg(spn)v

Mreg(¥in) < |l /2 C(20)?

where the last equality comes from equations (18) and (20). Taking limsup,, ,., of

both sides (and using p, — 0), we have limsup,,_, ., Mreg(Xn) = —oo. (We showed
above that this limit is —oco for concentric round spheres.) Thus, mzas(X) = —oo if
1<a<4/3.

For a = 4/3, we show below that ¥ is harmonically regular. By Corollary 29, its
mass is given by (21), which evaluates to —2. We now determine the values of « for
which ¥ is a regular ZAS.

LEMMA 30. The ZAS ¥ of the metric ds* = dr? + %ala2 with A(r) given by
(19) is regular if and only if « = 4/3. In this case, ¥ is harmonically regular.

Proof. We find a necessary condition for ¥ to be regular. Assume (g, ) is some
local resolution; by spherical symmetry we may assume @ and g depend only on r.
By applying a conformal transformation, we may assume that the spheres S? x {p}
have constant area 47 in g (i.e.,  *(r)A(r) = 47). (In other words, the metric g is
that of a round cylinder with spherical cross sections.) Then

?(r) = (11(7?)1/4 =ro/t

A necessary condition for a local resolution is that 7(®) is positive and finite on .
Compute this normal derivative:
0 a
7(3) = 2L 5(r) = &p8a/4-1
(@) =95 o) = gr
This is positive and finite in the limit » — 0 if and only if &« = 4/3. Thus, o = 4/3 is
necessary for the existence of a local resolution.

If @ = 4/3, then B(r) = 71/3. A calculation shows that the arc length parameter
for g is given as 7 = 3r'/3. Thus, B(F) = 17, which is smooth on [0, 1); moreover,
is g-harmonic. Thus, (g, %) is a local harmonic resolution. O

Evidently the case o = 4/3 is special. It is left to the reader to show that if the
Schwarzschild ZAS metric is written in the form (16), then to first order, A(s) is given
by a constant times s*3, where s is the distance to X.

4.3. Removable singularities. For our purposes a “removable singularity” is
a point deleted from the interior of a smooth Riemannian manifold. Such singularities
can be viewed as ZAS. For example the manifold R? \ {0} with the flat metric § has
its interior “boundary” as a ZAS. To see this, let M = 52 x [0, 00) with the flat metric
ds? = dr? +r?do? on its interior, which is isometric to R3\ {0}. Clearly the boundary
¥ = 82 x {0} is a ZAS. It is not difficult to see that the ZAS ¥ of the spherically
symmetric metric (19) is removable if and only if @ = 2, which corresponds to a
deleted point in flat space.

In fact, it is straightforward to show that a collection of removable singularities
has zero mass; see [18]. (The key tool is the existence of a harmonic function that
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blows up at the removable singularities.) However, not all ZAS with zero mass are
removable, as seen in earlier examples.

There is also a notion of a “removable S! singularity”; this occurs when an em-
bedded circle is removed from the interior of a smooth Riemannian manifold. The
resulting space has a zero area singularity that is topologically a 2-torus. It is left
to the reader to verify that removable S! singularities have mass equal to —oo (at
least for a circle deleted from R3). Thus, our definition of mass is not well-adapted
to studying these types of singularities.

4.4. A regular ZAS that is not harmonically regular. In this section,
we prove by example that there exists a ZAS that has a local resolution but no
local harmonic resolution; we begin by showing that the problem of finding a local
harmonic resolution is equivalent to solving a linear elliptic PDE. Let (g, %) be some
local resolution of a ZAS 0. Suppose for now that there exists a local harmonic

resolution (g, ¢) of X0 defined on a neighborhood U. Set u = %, which is smooth and

positive on M by Lemma 11. Also, § = u*g. Apply formula (30) from appendix B
(with @ playing the role of ¢). This leads to the equation

Ap = pA (f) ,
2
since @ is assumed to be g-harmonic. Then u satisfies Au = fu, where f = %. Then
u satisfies the linear elliptic PDE
Lu=0, inU
(22) u , in )
u >0, on X

where L := A — f. On the other hand, if u is some positive solution to (22) that
is smooth up to and including the boundary, then the above discussion implies that
(g, ) is a local harmonic resolution of ¥.°, where @ := % and g := u'g.

Note that solutions of (22) may lose regularity at the boundary if, for some local
resolution (g, %), the function % is not smooth at the boundary. Now we exhibit
such an example.

Consider a spherically symmetric metric g given by ds?> = dr? + e"do? and a
function B(r) = r, both for 0 < r < 1. Then (g, %) is a local resolution of the ZAS of
g := 7*g. We assume that if a local harmonic resolution exists, it is also spherically

symmetric. By equation (17), the Laplacian on functions of r is given by
Ay(r) =" (r) + 4/ (r).

Thus, for our choice of B(r), we have 22 = 1

=& = 7, 80 equation (22) becomes

where wu is the quotient of ¥ and the unknown harmonic resolution function. The
general solution of this second order linear ODE on (0, 1) is given by

0o —t
u(r) = Cir 4+ Cy <—e_7" + r/ etdt>
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where C and Cy are arbitrary constants. To satisfy the condition «(0) > 0, it must
be that Cy # 0. However, in this case, u/(r) does not extend smoothly to zero:

00—t
u’(r) =C1 + 02/ —dt,
” t
which diverges at » = 0. Thus, there exists no solution of (22) for this choice of g
obeying the necessary boundary conditions and extending smoothly to the boundary.
In other words, the ZAS ¥ admits no local harmonic resolution.

5. The Riemannian ZAS inequality. In this section we prove the two main
theorems of this paper, stated below. Both were introduced and proved in [7] (except
the case of equality in Theorem 31, which is a new result). The proofs rely on a
certain unproven conjecture, explained in section 5.2.

5.1. The main theorems.

THEOREM 31 (Riemannian ZAS inequality, harmonically regular case). Suppose
g is an asymptotically flat metric on M \ OM of nonnegative scalar curvature such
that all components of the boundary ¥ = OM are ZAS. Assume there exists a global
harmonic resolution (g, %) of X. Also assume Conjecture 34 (below) holds. Then the
ADM mass m of (M, g) satisfies

(23) m > mzas(%),

where mzas(X) s as in Definition 16. Equality holds in (23) if and only if (M, g) is
a Schwarzschild ZAS of mass m < 0.

If ¥ has components {3; }X_; with respective regular masses m;, then by equation
(3) and Proposition 17, the statement m > myzag(2) can be written

A 3/2
wz (L)
=1

THEOREM 32 (Riemannian ZAS inequality, general case). Suppose g is an asymp-
totically flat metric on M\ OM of nonnegative scalar curvature such that all compo-
nents of the boundary ¥ = OM are ZAS.Assume that Conjecture 34 holds. Then the
ADM mass m of (M, g) satisfies m > mzas(X).

We have not attempted to characterize the case of equality in the general case;
this issue is discussed in section 6.2.

REMARKS.

1. Robbins [23, 24] showed Theorem 32 in the case 9M is connected by applying
the technique of weak inverse mean curvature flow (IMCF) due to Huisken
and Ilmanen [16]. However, this approach gives no bound on the ADM mass
if more than one ZAS is present; the proof relies crucially on the monotonicity
of the Hawking mass under IMCF, but monotonicity is lost when the surfaces
travel past a ZAS.

2. Lam proved a version of Theorem 32 for manifolds that arise as graphs in
Minkowski space [20].

3. Jauregui proved a weakened version of the ZAS inequality for manifolds that
are conformally flat and topologically R™ minus a finite number of domains
[19]. The non-sharpness manifests as a multiplicative error term involving
the isoperimetric ratio of the domains.
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4. Theorem 31 and the definition of ZAS mass have alternate interpretations in
terms of certain invariants of the harmonic conformal class of asymptotically
flat metrics without singularities; see [17].

5. Note that a manifold containing ZAS typically cannot be extended to a
smooth, complete manifold; consequently the positive mass theorem does
not apply to such spaces.

The following special case with mzag(X) = 0 deserves attention, since it is a new
version of the positive mass theorem that allows for certain types of singularities and
incomplete metrics.

COROLLARY 33 (Positive mass theorem with singularities). Suppose (M, g) sat-
isfies the hypotheses of Theorem 32 with mzas(X) = 0. Then m > 0, where m is the
ADM mass of (M,g).

The above result is a nontrivial statement, since in section 4 that there exist
singularities of zero mass that are not removable.

5.2. A conjecture in conformal geometry. Our main tool in the proof of
Theorem 31 is the Riemannian Penrose inequality. The latter applies to manifolds
whose boundary is a minimal surface, so it will be necessary to transform our manifold
into such (by a conformal change, for example). This motivates the following problem,
independent of ZAS theory.

PROBLEM. Given a smooth asymptotically flat manifold (N, h) with compact
boundary (and no singularities), find a positive harmonic function u such that the
boundary has zero mean curvature in the metric u*h and u approaches a constant
at infinity. (We require w to be harmonic so that the sign of scalar curvature is
preserved.)

Unfortunately, this problem is unsolvable in general. Proposition 6 of [18] gives
the following geometric obstruction: if mean curvature H of the boundary of (N, h)
exceeds 4v(p) (where ¢ is harmonic with respect to h, 0 on ¥ and 1 at infinity, and v
is the inward point normal to the boundary), then no such harmonic function u exists
so that u*h has zero mean curvature boundary. An adaptation of the argument shows
that this procedure still fails even if u is allowed to be superharmonic. A topological
obstruction to solving the above problem can be found in [7].

Despite these obstructions, we predict in the following conjecture that we can
“almost” solve the above problem in the following sense: given (N, h) as above, there
exists a positive h-harmonic function u such that N contains a compact surface ¥ of
zero mean curvature (with respect to u*h) such that ¥ and ¥ the same area (with
respect to u*h). The following conjecture was first given in [7]. (For details on the
outermost minimal area enclosure of the boundary of an asymptotically flat manifold,
see section A.l in appendix A.)

CONJECTURE 34 (“Conformal conjecture”). Let (N,h) be a smooth asymptoti-
cally flat 3-manifold with compact, smooth, nonempty boundary 3, with h extending
smoothly to . There exists a smooth, positive function u on N and metric hg = uth
satisfying the following conditions. Let % be the outermost minimal area enclosure of
Y. with respect to hg.

1. w is harmonic with respect to h and tends to 1 at infinity.
2. In the metric ho, the areas of ¥ and ¥ are equal.
3. X is smooth with zero mean curvature.
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See section A.l in appendix A for a discussion of outermost minimal area enclo-
sures. We remark that the conjecture is known to be true in the spherically symmetric
case. The effect of applying the Conjecture 34 to an asymptotically flat manifold with
boundary is illustrated in figure 5.

Fic. 5. Conjecture 34, illustrated

(N.h) (N.h,)

conformal
conjecture

________

e
......

z

If the conformal conjecture applies to (N, h) as above on the left, then it gives the existence of
(N, ho) on the right. For the latter manifold, the outermost minimal area enclosure, ¥, is a zero
mean curvature surface and its area equals that of X.

Now we explain how this conjecture relates to Theorems 31 and 32. We wish to
obtain a lower bound on the ADM mass of (M, g). For the first theorem, our strategy
is to take a global harmonic resolution and apply Conjecture 34; this produces a
manifold-with-boundary to which the Riemannian Penrose inequality applies. (Note
that because the conformal factor is harmonic, the property of nonnegative scalar
curvature is preserved. See equation (31) in appendix B.) This gives a lower bound
on the ADM mass of the latter manifold; in the next section we explain how to
transform it to the desired bound. Finally, Theorem 32 will be a consequence of
Theorem 31 and the definition of mass.

If true, Conjecture 34 implies the following statement, which is better adapted
for the proof of Theorem 31.

CONJECTURE 35. Let (M, g) have boundary ¥ consisting of ZAS and admitting a
global harmonic resolution of X.. There exists a global harmonic resolution (gy,@,) of
Y such that ¥ (the outermost minimal area enclosure of ¥ in the metric g) is minimal
and |2y = [y,

Proof. Apply Conjecture 34 to some global harmonic resolution (g, ), obtaining
a metric g, and a function u that is harmonic with respect to g, such that g, = u*g.
From equation (30) in appendix B, the function @, := % is harmonic with respect to
Go- It is readily checked that (g4, @) is a global harmonic resolution of ¥ obeying the
desired properties. O

5.3. Proofs of the main theorems. We prove the first part of Theorem 31.
Note that nonnegativity of the scalar curvature is preserved under global harmonic
resolutions and applications of Conjecture 34, since the conformal factors are harmonic
(see equation (31) in appendix B). This fact will allow the use of the Riemannian
Penrose inequality (Theorem 2).

Proof of first part of Theorem 31. By hypothesis, we may assume the existence
of a global harmonic resolution (g, %) of ¥ as in Conjecture 35. As above, we let 3 be
the outermost minimal area enclosure of ¥ in the metric g. (We reiterate the points
that the Riemannian Penrose inequality applies to (M,g) and |X|5 = |§]|§) Now we
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make a series of estimates, where m and m are the ADM masses of g and g:

1 _
m=m— o lim . v(p)dA

(formula (33) in appendix B; S, is a large coordinate sphere)

Rlemanman Penrose 1nequahty, AP = 0; Stokes’ theorem)

g 1 /774/3* 1/4
s ([ ey

(Conjecture 35, Holder’s inequality)

- i\/@ % (i /E(V(‘P))4/3cl/1>3/4 (Eg)m

(rearranging)

i (33 (L o))

=\
(replacing () with z)
7r

[ ey eai) v

1
(the quadratic ZxQ + bz has minimum value —b%)

Y

Il

|
ANg—
N
3=

= mzas(¥)
(definition of regular mass; Proposition 17)

This proves inequality (23). O

Before proving the second part of Theorem 31, we show that Theorem 32 easily
follows from the above.

Proof of Theorem 32. If the capacity of ¥ is positive, then mzas(X) = —o0
by Theorem 26. Therefore m > myzag(2) follows trivially. Now assume ¥ has zero
capacity.

Let {¥,} converge to ¥ in C*, and let ¢,, be g-harmonic, vanishing on ¥,, and
tending to 1 at infinity. As before, (g, ¢, ) gives a global harmonic resolution of the
ZAS %, of the metric ¢?g. By Theorem 31, we have

(24) mapm (P59) = Mreg(En),

where map(¢tg) is the ADM mass of the metric ptg. Formula (33) in appendix
B allows us to compute the ADM mass of a conformal metric in terms of the original
metric. In the case at hand it gives

1
(25) m = mADM(gpng) + — lim v(pn)dA.

27 r—o0 s,

Since ¢,, is harmonic and S, is homologous to Yin, Stokes’ Theorem shows that the
second term on the right-hand side is equal to 5~ fz v(¢n)dA, which equals 5=C(3,,).
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Since ¥ has zero capacity, lim, . C(X,) = 0. Now, taking limsup,,_, ., of (24) and
applying (25), we have

m > lim sup Myeg (Xn)-
n—roo

By taking the supremum of this expression over all such {X,}, we have that m >
mZAS(E). O

Now, we prove the second part of Theorem 31 (characterizing the case of equality).

Proof of second part of Theorem 31. One may readily show that the Schwarzschild
ZAS metric g = (1 + ;”7)4 6 (with m < 0 and 4 the flat metric) on R?\ Bj,,|/2(0) has
both ADM mass and ZAS mass equal to m. (For the latter, apply the definition of
regular mass to the resolution (6, 1+ %) of ¥.)

Assume all components of ¥ = M are harmonically regular ZAS. Let (g, %) be
a global harmonic resolution of ¥ as in Conjecture 35; in particular ¥ is minimal and
1Xlg = o= g (where, as before, % is the outermost minimal area enclosure of X in the
metric g). Assume that the ADM mass m of (M, g) equals mzags(X), so that equality
holds at each step in the proof of inequality (23). In particular, the following must
hold:
1om =/ 2
g is isometric to the Schwarzschild metric of mass m > 0 (on R? \ By;/2(0))

so equality holds in the Riemannian Penrose inequality. Thus,

outside of ¥. (This does not complete the proof, since we have not yet
understood the region inside of 3.)

2. 7(®) is constant on ¥ (by the case of equality of Holder’s inequality).

3. The minimum of the quadratic L22 4 bz is attained, so © = —2b. Thus,

- <|zw|g>1/4 = (i / (u(¢)>4/3¢4>3/4_

Squaring (26), dividing by —4, and applying the definition of regular mass
gives

12|z

(27) 167

= mZAS(Z).

Out strategy is to show ¥ and ¥ have the same capacity (in the g metric); since
the former encloses the latter by definition, Lemma 21 would imply that these surfaces
are equal. First,

2
C()? = (/ y(gp)dA) (expression (9) for capacity)
)
1/1 I 1/2
=1 (/ V((p)4/3dA) -47r3/2|2\§/ (7(®) is constant on )
TJs
= —mzas(2) -47T3/2|2%/2 (Mmzas(X) = Myeg(X))
= 7|3l (by equation (27))

To compute the capacity of i, let ¢ be the g- harmonic function that equals 0 on ¥

and tends to 1 at infinity. In fact, ¢(r) is given by ’. (Here, we have used the
27'
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identification of g outside of & with the Schwarzschild metric.)

C(x)? = (/~ V(t/})dA>2 (expression (9) for capacity)

P

2
1 = 1 0 1
= | —X|s v = = —— [ p—
(4m |g> (V(¢)|z (1 N %)2 arw(r) - 4m>
= 7r|§]|§ (equality in Riemannian Penrose inequality)
< 7|¥lz (by definition of %)
=C(%)? (above computation of C'(X))

Therefore, C(X) < C(X). But we know from Lemma 21 that the reverse inequality
holds as well (since ¥ encloses ¥ by definition). By the second part of Lemma 21, we
have that ¥ = X. Therefore @ = v, so g is given by

—_\ 4 —\ 4
g:¢%:¢ﬂ@ﬁf”>5:(1_"ﬁ 5
2r 2r

which is the Schwarzschild ZAS metric of mass —m = m. O

5.4. Example: Schwarzschild space with a cylinder. We now give a global
example of a manifold of positive ADM mass that contains a zero area singularity;
the construction begins with a Schwarzschild space with a cylinder appended to its
horizon. For fixed parameters m > 0,L > 0, let M be the manifold with boundary
S? x [m/2 — L,00). Give M a metric g according to:

_ dr? + 4m?do?, on S? x [m/2 — L,m/2)
= 4
g (1 + %) (dr? +r2do?), on S? x [m/2,00)

where 7 parametrizes [m/2 — L,00) and do? is the round metric of radius 1 on S2.
The first region is a round cylinder of length I with spherical cross sections of area
167m2. The second region, diffeomorphic to R? \ B /2(0), has the Schwarzschild
metric of mass m. By construction, the sphere S? x {m/2} is the apparent horizon,
and this metric is C1'!. For a diagram, see figure 6.

Let % be the unique g-harmonic function that equals 0 on ¥ = OM = S%? x {m/2—
L} and tends to 1 at infinity. Then ¥ is a harmonically regular ZAS of g := *g with
global harmonic resolution (g, ). In this example, we shall compute the mass of the
manifold (M, g) as well as mass of the ZAS ¥ and find that they respect inequality
(23) and are equal if and only if L = 0.

By spherical symmetry, @ depends only on r. Such harmonic functions on a round
cylinder and Schwarzschild space are readily characterized; @ takes the form:

i £(r=m/2+1L), re[m/2-Lm/2)
wir Ito r e [m/2,00)

where a is a parameter to be determined and b := (2a — 1)/ is chosen so that @ is
continuous (and so g is continuous). For g to be a C* metric, the unit normal derivative

7 of % at ¥ must be continuous. Inside X, 7(¢) = #. Outside, 7 = @%, and



552 H. L. BRAY AND J. L. JAUREGUI

Fic. 6. Schwarzschild space with a cylinder

(M,9)

>

2

(M,g) is Schwarzschild space with a round cylinder over S? of length L appended to the minimal
surface.

a short computation shows 7(p) = 8% (1 — %) on ¥. Equating these interior and
exterior boundary conditions on 7(®) allows us to solve for a:

L
a=—-
L+4m’
so that

o _ 2L _ m(L—4m)
b:=(2a 1)m_<L+4m 1)m— Lram

Furthermore, g = ¢'g = (1 + %)45 outside ¥, so the ADM mass m of (M, g) is b.
On the other hand, the mass of the harmonically regular ZAS ¥ can be computed
from Definition 2 and Proposition 17 as

1 1 o 3/2
mzas(X) = 1 (77 /ZV(80)4/3dA)
_ =R aye
=~ (1)
D
T 432 (L + 4m)?
16m°
(L +4m)2’

where we have used the fact that |X|g = |§~]\§ = 167m?. Now, inequality (23) (the
Riemannian ZAS inequality) is satisfied with (M, g); by the above computations, this
is stated as:

_ m(L — 4m) 16m*

- - ).
Lidm = Gramp  mes®

Note that equality holds if and only if the length L of the cylinder is zero, in which
case (M, g) is the Schwarzschild ZAS.

Finally, we note that g is merely C1!, so the ZAS theory of this paper does
not technically apply. However, g could be perturbed to a C'° metric exhibiting the
qualitative properties above.
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Fic. 7. ADM mass and ZAS mass for Schwarzschild space with a cylinder

0.8

0.6 m (ADM mass) 1
— — —m(Z) (ZAS mass)

0.4 h

0.2

mass

_1 L L L L L L L L L
0 2 4 6 8 10 12 14 16 18 20

length of cylinder, L

With 7 = 1, the ADM mass m of (M, g) and the mass mzag(X) of the ZAS ¥ are plotted against
the length L of the cylinder, as described in section 5.4. The former is asymptotic to 1, and the

latter is asymptotic to zero. These values obey inequality (23) for all L > 0, with equality only for
L=0.

6. Conjectures and open problems. Discussions in this paper raise a number
of interesting questions.

6.1. Conformal conjecture. To complete the arguments of this paper, Con-
jecture 34 must be proved. It is readily verified in a spherically symmetric setting.
Establishing this conjecture as a theorem (or providing a counterexample) will be
crucial to furthering the theory of ZAS. For progress in this direction, see [18].

6.2. The case of equality in general. For ZAS that are not harmonically
regular, the case of equality of Theorem 32 is not necessarily the Schwarzschild ZAS
metric. For instance, R? minus a finite number of points gives an asymptotically flat
manifold of zero scalar curvature (and zero ADM mass) whose boundary consists of
ZAS of zero mass. However we conjecture that deleted points are the only obstruction
to uniqueness of the Schwarzschild ZAS as the case of equality:

CONJECTURE 36. In Theorem 32, if it happens that m = mzag(X), then (M, g)
s 1sometric to
1. a Schwarzschild metric with finitely many points deleted, if —oo < m < 0, or
2. the flat metric on R3 with finitely many points deleted if m = 0.

6.3. Generalization of the Riemannian ZAS inequality. The first author
conjectured the following inequality for the situation in which black holes and ZAS
exist simultaneously [7]. Recall that a surface is area outer-minimizing if every surface
enclosing it has equal or greater area.
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CONJECTURE 37. Let g be an asymptotically flat metric on M with nonnegative
scalar curvature. Assume M has compact smooth boundary OM that is a disjoint
union S U, where S is an area outer-minimizing minimal surface and % consists of
ZAS. Then the ADM mass m of (M, g) obeys

/S
(28) m > % + mZAs(Z).
s

(Note that S and ¥ need not be connected, and mzas(X) is nonpositive.)

The heuristic behind this conjecture is simply that the Newtonian potential energy
between two bodies whose masses have opposite signs is positive, and thus ought
to make a positive contribution to the total (ADM) mass. By this logic and the
Riemannian Penrose and ZAS inequalities, the right hand side of (28) underestimates
the ADM mass. It is expected that equality would hold only in the cases of flat space,
the Schwarzschild metric, and the Schwarzschild ZAS metric, all with points possibly
deleted (which correspond to removable ZAS of zero mass). See appendix B of [23]
for further discussion.

A special case to consider is when OM consists of exactly two components — one
connected ZAS and one connected area-outer-minimizing minimal surface — whose
masses are equal in magnitude but opposite in sign. The conjecture would predict
that the ADM mass of (M, g) is nonnegative. Alternatively, such a manifold may be
the most obvious source of a counterexample to the conjecture.

6.4. Alternate definitions of mass. J. Streets proved the existence and
uniqueness of a (weakly defined) inverse mean curvature flow of surfaces “out” of
a zero area singularity ¥ (see [27]; full details available in unpublished version). This
gives rise to a canonical family of surfaces {X}} converging to ¥ as t — —oo. More-
over, this family has the property that the limit of the Hawking mass is optimal in
the following sense:

(29) sup limsupmg(2,) = . lim myg (27),

{Z,} n—oo ——00

where the supremum is taken over all sequences of surfaces {3, } converging in C? to
Y. (This result assumes that the background metric has nonnegative scalar curvature.)
In other words, the existence of the canonical family obviates the need for taking the
sup of a limsup. Perhaps (29) is a “better” definition of mass than that which we
have adopted. However, it is unknown how to bound the ADM mass in terms of this
quantity (unless ¥ consists of regular ZAS — see Corollary 15).

We make the following related conjecture, which would show that the mass of ZAS
defined via Hawking masses underestimates the definition of mass we have chosen. It
is motivated by the first part of Proposition 14.

CONJECTURE 38. For sequences {3,} converging in C* to a ZAS % of a metric
of nonnegative scalar curvature,

sup limsupmpg(2,) < mzas(X).
{Zn} n—00

The left hand side can be computed by equation (29) above. In the case of ¥
connected, the conjecture trivially holds for ¥ of positive capacity, since both sides
equal —oo (Theorems 25 and 26).
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Along another line of thought, recall the notion of removable S' singularities
from section 4.3. Our definition of mass is unsatisfactory for such singularities, since
it always —oco. A more sophisticated definition of mass would give a finite quantity
for removable S! singularities (and would ideally give a lower bound on the ADM
mass in the same sense as the Riemannian ZAS inequality.)

6.5. Bartnik mass. In this section we define the Bartnik mass of a collection
of ZAS. Let (M, g) be an asymptotically flat manifold with boundary M such that
g has nonnegative scalar curvature. Let S = 9€) be a surface in M that is a graph
over OM (see section 2.1). Recall the outer Bartnik mass of S is defined by [9, 4]

mouter(S) = lrél,f mapm (5)7

where the infimum is taken over all “valid extensions” £ of S and mpas is the ADM
mass of €. An extension of S is an asymptotically flat manifold with boundary (V, h)
of nonnegative scalar curvature containing a subset that is isometric to 2 and has no
singularities outside of €2; it is said to be walid if S is not enclosed by a surface of less
area.

If ¥ = OM is a collection of ZAS, we define the (outer) Bartnik mass of ¥ as

mp (Z) = nh—>H;o mouter(zn)v

where ¥3,, is some sequence of surfaces converging in C” to ¥. The limit exists (possibly
—o00) and is independent of the choice of sequence because of the monotonicity of the
outer Bartnik mass (i.e., if S7 encloses Sz, then moyuter(S1) = Mouter (S2)). A priori,
the Bartnik mass of ¥ could be positive, negative, or zero. In fact, there may exist
examples of ZAS of positive Bartnik mass in a scalar-flat manifold with no apparent
horizons. However, the Riemannian ZAS inequality gives a lower bound on the Bartnik
mass in terms of the mass of the ZAS (assuming Conjecture 34).

Given a surface S, one version of the difficult and open “Bartnik minimal mass
extension problem” is to determine whether there exists some valid extension £ whose
ADM mass equals the outer Bartnik mass of S. However, the same problem for a
collection of ZAS ¥ may in fact be more tractable. This is because any extension can
be viewed as a valid extension, explained as follows. Let 3,, — ¥ in C; without loss
of generality, we may assume that each surface enclosing ¥,, has area at least that of
¥, and the areas of ¥,, decrease monotonically to zero. Then, given any extension
€ of X, (for some n), £ gives a valid extension for some ¥,, with n’ > n. Thus, for
the purposes of computing the Bartnik mass of ZAS 3, it is not necessary to restrict
only to valid extensions.

6.6. Extensions to spacetimes and higher dimensions. The definitions
of ZAS, resolutions, mass, and capacity extend naturally to higher dimensions (with
suitable changes made to certain constants). Also, the Riemannian Penrose inequality
has been generalized to dimensions less than eight by the first author and D. Lee [12].
Thus, the Riemannian ZAS inequality in dimensions less than eight will follow readily
if Conjecture 34 is proved (in dimensions less than eight).

Ultimately, it would be desirable to go beyond the time-symmetric case and de-
velop a theory of ZAS for arbitrary spacelike slices of spacetimes. One might hope to
prove a version of the ZAS inequality, m > myzas(X), in this setting. In figure 8, we
illustrate how such an inequality would fit in with the positive mass theorem and the
Penrose inequality. We refer the reader to a recent survey article by the first author
[8].
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Fi1G. 8. Theorems and conjectures in general relativity

Positive mass theorem, Positive mass theorem
time symmetric case (jang equation) for spacetimes

(conformal flow
technique)

Riemannian Penrose inequality
Penrose inequality 75 .caes > for spacetimes?

1
1 (present paper,

! modulo conformal
| conjecture)

v
Riemannian ZAS inequality
ZAS inequality for spacetimes?

This diagram illustrates the relationship between the positive mass theorem (upper left) and some
of its generalizations. By solving the Jang equation, Schoen and Yau showed how to obtain a
positive mass theorem for spacelike slices of spacetimes obeying the dominant energy condition [26].
In a different direction, the positive mass theorem was used by Bray to prove the Riemannian
Penrose inequality (RPI) [9]. (A version of the RPI proved by Huisken and Ilmanen [16] did not
use the positive mass theorem.) Next, the present paper used the RPI to prove the Riemannian
ZAS inequality, modulo Conjecture 34. It is conjectured that the RPI may also be used to prove a
version of the Penrose inequality for slices of spacetimes, using a generalization of the Jang equation
[10, 11]. Lastly, a study of ZAS in spacetimes may lead to a type of ZAS inequality in this setting.

Appendix A. Asymptotically flat manifolds and ADM mass. Global
geometric problems in general relativity are often studied on asymptotically flat man-
ifolds. Topologically, such spaces resemble R? outside of a compact set, and thus have
well-defined notions of “infinity.” Geometrically, they approach Euclidean space at
infinity.

DEFINITION 39. A connected Riemannian 3-manifold (M, g) (with or without
boundary) is asymptotically flat (with one end) if there exists a compact subset
K C M and a diffeomorphism ® : M\ K — R3\ B1(0) (where B1(0) is the closed
unit ball about the origin), such that in the coordinates (', z2, 2%) on M \ K induced
by ®, the metric satisfies, for some p > % and q > 3,

Gij = 0i; +O(r™?), Okgij = O(T'_p_l), Ok019i5 = O(r_p_Q), R, =0(r"%)

for all i, j, k,1 € {1,2,3}, where r = |z| = \/(21)2 + (22)2 + (z3)2, O} = %, and R,
is the scalar curvature of g. The (x%) are called asymptotically flat coordinates.

(This definition can easily be generalized to allow for several ends and higher
dimensions.) Unless otherwise stated, it is assumed that g is smooth and extends
smoothly to the boundary.

For asymptotically flat manifolds, there is an associated quantity called the ADM
mass that measures the rate at which the metric becomes flat at infinity [1]. Physically,
it represents the mass of an isolated gravitational system.

DEFINITION 40. The ADM mass of an asymptotically flat 3-manifold (M, g) is
the number

3
. 1 j
m= lim — g / (0igij — 0jgii) V' do,
j=1"5r

r—oo 16 &
1,]=
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where the (x%) are asymptotically flat coordinates, S, is the coordinate sphere of radius
r = |x|, v is the Euclidean unit normal to S, (pointing toward infinity), and do is the
Euclidean area form on S,..

Due to a theorem of Bartnik [2], the mass is finite and depends only on M
and g (and not the choice of coordinates). It is left to the reader to show that the
Schwarzschild metric (1 + 2—7’;)4 5 on R? \ Bjm|/2(0) is asymptotically flat with ADM
mass equal to m, for any real number m. When there is no ambiguity, we sometimes
refer to the ADM mass as simply “mass.”

A.1. Outermost minimal surfaces. A complete asymptotically flat manifold
(M, g) without boundary possesses a unique outermost minimal surface S (possibly
empty, possibly with multiple connected components). Each component of S is mini-
mal (i.e., has zero mean curvature) and is not enclosed by any other minimal surface.
See figure 9 for an illustration. Some well-known (but not obvious) results are that 1)
S is a disjoint union of smooth, immersed 2-spheres (that are in general embedded),
2) the region of M outside of S is diffeomorphic to R? minus a finite number of closed
balls, and 3) S minimizes area in its homology class outside of S. See [21] and section
4 of [16] for further details and references.

Related to the above is the concept of outermost minimal area enclosure: let
(M, g) be an asymptotically flat manifold with smooth, compact boundary M. Then
there exists a unique embedded surface ¥ (possibly of multiple connected components)
enclosing OM such that 1) S has the least area among all surfaces that enclose OM
and 2) Y is not enclosed by a surface of equal area; such Y is called the outermost
minimal area enclosure of OM (see figure 9). In general, all of the following cases may
occur: i) S = 0M, ii) v # OM but S NOM is nonempty, and iii) Y NOM is empty.
Note that % may only have C'11 regularity and may not have zero mean curvature
(see Theorem 1.3 of [16]). However, ¥\ OM is C°° with zero mean curvature (from
standard minimal surface theory).

F1c. 9. Outermost minimal surface and outermost minimal area enclosure

Pictured on the left and right are asymptotically flat manifolds without and with boundary,
respectively. The dotted contours denote minimal surfaces. The surface labeled S, consisting of two
components, is the outermost minimal surface. The surface labeled ¥ is the outermost minimal
area enclosure of the boundary, and in this case it is disjoint from the boundary.

Appendix B. Formulas for conformal metrics in dimension 3. Here, we
present several formulas that describe the behavior of certain geometric quantities
under conformal changes. Assume g; and g are Riemannian metrics on a 3-manifold
such that g, = u*g;, where u > 0.
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B.1. Laplacian. For any smooth function ¢, direct calculation shows
(30) A1 (ug) = u’ Ay () + A1 (u),

where A; and A, are the (negative spectrum) Laplace operators for g; and gs, re-
spectively [9]. In particular, if Aju = 0, then Ay(1/u) = 0. More generally, if
Alu = A1¢ = O, then Az(w/u) =0.

B.2. Scalar curvature. If Ry and R, are the respective scalar curvatures of g;
and g, then

(31) Ry = u_s(—SAlu—l—Rlu).

In particular, if w is harmonic with respect to g;, then ¢g; has nonnegative scalar
curvature if and only if go does.

B.3. Mean curvature. If S is a hypersurface of mean curvature H; with respect
to ¢; (and outward unit normal v;), i = 1,2, then

(32) Hy =u2H, + 4u*31/1(u).

Our convention is such that the mean curvature of a round sphere in flat R? is positive.

B.4. ADM mass. If go = u'g; are asymptotically flat with respective ADM
masses mq and mo, and if u — 1 at infinity, then

1.
(33) my—my = o 7ﬂlgrolo 5 v(u)do,

where, in some asymptotically flat coordinate system (z¢), S, is the coordinate sphere
of radius r = ||, v is the Euclidean unit normal to S, (pointing toward infinity), and
do is the Euclidean area form on S..
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