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REMARKS ON A SCALAR CURVATURE RIGIDITY THEOREM OF

BRENDLE AND MARQUES∗

GRAHAM COX† , PENGZI MIAO‡ , AND LUEN-FAI TAM§

Abstract. We give an improvement of a scalar curvature rigidity theorem of Brendle and
Marques regarding geodesic balls in Sn. The main result is that Brendle and Marques’ theorem
holds on a geodesic ball larger than that specified in [2].
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1. Introduction. In a recent paper [2], Brendle and Marques proved the follow-
ing theorem on scalar curvature rigidity of geodesic balls in the standard n-dimensional
sphere S

n.

Theorem 1.1 (Brendle and Marques [2]). Let Ω = B(δ) ⊂ S
n be a closed

geodesic ball of radius δ with

(1.1) cos δ ≥ 2√
n+ 3

.

Let ḡ be the standard metric on S
n. Suppose g is another metric on Ω with the

properties:

• R(g) ≥ R(ḡ) at each point in Ω
• H(g) ≥ H(ḡ) at each point on ∂Ω
• g and ḡ induce the same metric on ∂Ω

where R(g), R(ḡ) are the scalar curvature of g, ḡ, and H(g), H(ḡ) are the mean
curvature of ∂Ω in (Ω, g), (Ω, ḡ). If g − ḡ is sufficiently small in the C2-norm, then
ϕ∗(g) = ḡ for some diffeomorphism ϕ : Ω → Ω such that ϕ|∂Ω = id.

Theorem 1.1 is an interesting rigidity result for domains in S
n because the cor-

responding statement is false for δ = π
2 , which follows from the counterexample to

Min-Oo’s conjecture ([6]) constructed by Brendle, Marques and Neves in [3]. For an
account of the connection of Theorem 1.1 to other rigidity phenomena involving scalar
curvature, readers are referred to the recent survey [1] by Brendle.

In this paper, we provide an improvement of Theorem 1.1 by showing that The-
orem 1.1 is still valid on geodesic balls strictly larger than those specified by (1.1).
Precisely, we prove that condition (1.1) in Theorem 1.1 can be replaced by either one
of the following weaker conditions:
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(a) cos δ > ζ, where ζ is the positive constant given by

ζ2 =
4(n+ 4)− 4

√
2n− 1

n2 + 6n+ 17
.

(b) cos δ > cos δ0, where δ0 is the unique zero of the function

F (δ) = α(δ) +
(n+ 3) cos2 δ − 4

4 sin2 δ

where α(δ) = (n+1)
8n

[

1−
(

1− n
2µ(δ)

)

cos δ
]−1

and µ(δ) is the first nonzero

Neumann eigenvalue of B(δ). In particular, δ0 satisfies

(1.2) (cos δ0)
2 <

7n− 1

2n2 + 5n− 1
.

We compare the conditions (a) and (b). It follows from (1.2) that δ0 in (b)
satisfies

(1.3) lim sup
n→∞

(cos δ0)
2

4
n+3

≤ 7

8
,

while in (a) one has

(1.4) lim
n→∞

4(n+4)−4
√
2n−1

n2+6n+17
4

n+3

= 1.

Therefore, (b) gives a better improvement of Theorem 1.1 for large n.
For relatively small n, the following table provides numerical values of ζ and lower

estimates of cos δ0:

Table 1.1
ζ and cos δ0 for small n

n = 3 4 5 6 7 · · ·
ζ ≈ 0.6581 0.6130 0.5774 0.5481 0.5233 · · ·

cos δ0 > 0.6918 0.6511 0.6154 0.5845 0.5576 · · ·

where the lower bound of cos δ0 follows from Lemma 2.3 (iii) in Section 2. For these
listed small values of n, (a) is a better improvement of Theorem 1.1.

Acknowledgment. The first author would like to thank Hubert Bray and
Michael Eichmair for helpful discussions. The third author wants to thank Yuguang
Shi for useful discussions.

2. Rigidity of geodesic balls. Throughout this paper, we let Ω = B(δ) ⊂ S
n

be a (closed) geodesic ball of radius δ < π
2 , with boundary Σ = ∂B(δ). We denote by

ḡ the standard metric on S
n, with volume form dvolḡ (resp. dσḡ) on Ω (resp. Σ). We

additionally define ∇ and ∆ḡ to be the covariant derivative and Laplace operator of
ḡ, and adopt the convention that the divergence, trace and norm (denoted by div(·),
tr(·) and | · |, respectively) are always computed with respect to ḡ.



REMARKS ON A SCALAR CURVATURE RIGIDITY THEOREM 459

We assume that g = ḡ + h is a metric close to ḡ (say |h| ≤ 1
2 at each point in

Ω) and that g and ḡ induce the same metric on Σ. The outward unit normal to Σ in
(Ω, ḡ) is denoted by ν, and X is the vector field on Σ dual to the 1-form h(·, ν)|T (Σ),
i.e. ḡ(v,X) = h(v, ν) for any vector v tangent to Σ. Finally, for any function f and
vector ν, ∂νf denotes the directional derivative of f along ν.

2.1. Brendle and Marques’ proof. The following weighted integral estimate
of (R(g) − R(ḡ)) and (H(g) −H(ḡ)) plays a key role in the proof of Theorem 1.1 in
[2].

Theorem 2.1 (Brendle and Marques [2]). Let Ω = B(δ) and λ = cos r, where r

is the ḡ-distance to the center of B(δ). Assume div(h) = 0 where h = g − ḡ. Then

∫

Ω

[R(g)− n(n− 1)]λ dvolḡ +

∫

Σ

(2− h(ν, ν))[H(g)−H(ḡ)]λ dσḡ

=

∫

Ω

[

−1

4
(|∇h|2 + |∇(trh)|2)− 1

2

(

|h|2 + (trh)2
)

]

λ dvolḡ

+

∫

Σ

H(ḡ)

[

−1

4
h(ν, ν)2 − n

2(n− 1)
|X |2

]

λ dσḡ

+

∫

Σ

[

−h(ν, ν)2 − 1

2
|X |2

]

∂νλ dσḡ +

∫

Ω

E(h) dvolḡ +

∫

Σ

F (h) dσḡ

where |E(h)| ≤ C(|h|3 + |∇h|3), |F (h)| ≤ C
(

|h|3 + |h|2|∇h|
)

for some constant C

depending only on n.

To see how Theorem 1.1 follows from Theorem 2.1, one first pulls back g through
a diffeomorphism ϕ: Ω → Ω with ϕ|Σ = id such that ϕ∗(g) − ḡ is ḡ-divergence free
and ||ϕ∗(g)− ḡ||W 2,p(Ω) ≤ N ||g− ḡ||W 2,p(Ω) for some p > n and N depending only on
Ω ([2, Proposition 11]). Replacing g by ϕ∗(g), one assumes that div(h) = 0, where
h = g − ḡ and ||h||W 2,p(Ω) is small. If R(g) ≥ n(n − 1) and H(g) ≥ H(ḡ), Theorem
2.1 then implies

∫

Ω

[

1

4
(|∇h|2 + |∇(trh)|2) + 1

2

(

|h|2 + (trh)2
)

]

λ dvolḡ

+

∫

Σ

h(ν, ν)2
[

1

4
H(ḡ)λ+ ∂νλ

]

+ |X |2
[

n

2(n− 1)
H(ḡ)λ+

1

2
∂νλ

]

dσḡ

≤ C||h||C1(Ω̄)

∫

Ω

(

|∇h|2 + |h|2
)

dvolḡ

(2.1)

for a constant C independent on h. At Σ, direct calculation shows

(2.2)
1

4
H(ḡ)λ+ ∂νλ =

(n+ 3) cos2 δ − 4

4 sin δ

(2.3)
n

2(n− 1)
H(ḡ)λ +

1

2
∂νλ =

(n+ 1) cos2 δ − 1

2 sin δ
.

If cos δ ≥ 2√
n+3

, then both quantities in (2.2) and (2.3) are nonnegative. Therefore,

(2.1) implies h = 0 if ||h||C1(Ω̄) is sufficiently small.
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2.2. Improvement of Theorem 1.1: approach 1. Let λ and h be given as
in Theorem 2.1. Define

W (h) =

∫

Ω

[

1

4
(|∇h|2 + |∇(trh)|2) + 1

2

(

|h|2 + (trh)2
)

]

λ dvolḡ

+

∫

Σ

h(ν, ν)2
[

1

4
H(ḡ)λ+ ∂νλ

]

+ |X |2
[

n

2(n− 1)
H(ḡ)λ +

1

2
∂νλ

]

dσḡ .

(2.4)

It is clear from the above Brendle and Marques’ proof that Theorem 1.1 holds on a
geodesic ball Ω = B(δ) provided one can prove

(2.5) W (h) ≥ ǫ

∫

Ω

(

|∇h|2 + |h|2
)

dvolḡ

for some positive ǫ independent on h. To show (2.5), the difficulty lies in handling
the boundary integral

∫

Σ

h(ν, ν)2
[

1

4
H(ḡ)λ+ ∂νλ

]

+ |X |2
[

n

2(n− 1)
H(ḡ)λ+

1

2
∂νλ

]

dσḡ

which can be negative if cos δ is small.

Proposition 2.1. Let h be any C2 symmetric (0,2) tensor on Ω = B(δ) with
div(h) = 0. Let s = sin δ. Given any positive function φ on Ω, we have

s

∫

Σ

(trh)h(ν, ν)dσḡ

≤
∫

Ω

[

φ

2

√

1− λ2|h|2 + λ(trh)2 +
1

2φ

√

1− λ2|∇(trh)|2
]

dvolḡ.

(2.6)

In particular, if h|T (Σ) = 0, then

s

∫

Σ

h(ν, ν)2dσḡ

≤
∫

Ω

[

φ

2

√

1− λ2|h|2 + λ(trh)2 +
1

2φ

√

1− λ2|∇(trh)|2
]

dvolḡ.

(2.7)

Proof. Let ω be the 1-form on Ω given by

ωk = (trh)hik∇
i
λ.

Using the fact ∇k∇
i
λ = −λδik and the assumption div(h) = 0, we have

∇k
ωk = −λ(trh)2 + h(∇λ,∇(trh)).

At Σ, ω(ν) = −s(trh)h(ν, ν). It follows from the divergence theorem

(2.8) s

∫

Σ

(trh)h(ν, ν)dσḡ =

∫

Ω

[

λ(trh)2 − h(∇λ,∇(trh))
]

dvolḡ.

Given any positive function φ on Ω, using the fact |∇λ|2 = 1− λ2, we have

−h(∇λ,∇(trh)) ≤|∇λ| |h| |∇(trh)|

≤
√

1− λ2

[

φ

2
|h|2 + 1

2φ
|∇(trh)|2

]

.
(2.9)
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Thus, (2.6) follows from (2.8) and (2.9). If h|T (Σ) = 0, h(ν, ν) = trh at Σ. Therefore,
(2.6) implies (2.7).

Theorem 2.2. Let δ be a constant in (0, π2 ). Suppose cos δ > ζ, where ζ is the
positive constant given by

(2.10) ζ2 =

{

2
n+1 if n ≤ 4
4(n+4)−4

√
2n−1

n2+6n+17 if n ≥ 5.

Then the conclusion of Theorem 1.1 holds on B(δ).

Proof. Let c = cos δ. Note that (2.10) implies c2 ≥ 1
n+1 , hence the coefficient

of |X |2 in (2.4) is nonnegative. By Theorem 1.1, it suffices to assume c2 < 4
n+3 .

Choosing φ =
√
2 in Proposition 2.1, we have

W (h) ≥
∫

Ω

[

1

4
(|∇h|2 + |∇(trh)|2) + 1

2

(

|h|2 + (trh)2
)

]

λ dvolḡ

+
(n+ 3)c2 − 4

4(1− c2)

√

2(1− c2)

∫

Ω

(

1

2
|h|2 + 1

4
|∇(trh)|2

)

dvolḡ

+
(n+ 3)c2 − 4

4(1− c2)

∫

Ω

λ(trh)2dvolḡ.

(2.11)

We seek conditions on c such that

(2.12) c+
(n+ 3)c2 − 4

4(1− c2)

√

2(1− c2) > 0

and

(2.13)
1

2
+

(n+ 3)c2 − 4

4(1− c2)
≥ 0.

Direct calculation shows that (2.12) (under the assumption c2 < 4
n+3 ) is equivalent

to

(2.14) c2 >
4(n+ 4)− 4

√
2n− 1

n2 + 6n+ 17

and (2.13) is equivalent to

(2.15) c2 ≥ 2

n+ 1
.

Since

(2.16)
4(n+ 4)− 4

√
2n− 1

n2 + 6n+ 17
≥ 2

n+ 1

precisely when n ≥ 5, we conclude that (2.5) holds for some ǫ > 0 if (2.10) is satisfied.
Theorem 2.2 is proved.

Theorem 2.2 verifies condition (a) in the introduction for n ≥ 5. The remaining
case n = 3, 4 in condition (a) will be verified in section 2.4.
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2.3. Improvement of Theorem 1.1: approach 2. In this section, we give a
different approach to estimate the boundary integral of (trh)2 in W (h) in terms of the
interior integral in W (h). To do so, we use the linearization of the scalar curvature
(2.17). Noticing that the integral of trh over B(δ) is close to zero, we apply the
Poincaré inequality through an estimate of the first nonzero Neumann eigenvalue of
B(δ) in [5].

Lemma 2.1. Let Ω ⊂ S
n be a closed domain with smooth boundary Σ. Let ḡ be

the standard metric on S
n and g = ḡ+ h be another smooth metric on Ω such that g,

ḡ induce the same metric on Σ and divh = 0. Suppose |h| is very small, say |h| ≤ 1
2

at every point.
(i) Given any smooth function f on Ω, one has

∫

Ω

f(trh)∆ḡ(trh) + (n− 1)f(trh)2 dvolḡ

=

∫

Ω

f(trh) [R(ḡ)−R(g)] dvolḡ + E(h, f)

where

|E(h, f)| ≤ C||f ||C1(Ω)

(
∫

Ω

(

|h|3 + |∇h|3
)

dvolḡ +

∫

Σ

|h|2|∇h|dσḡ

)

for a positive constant C depending only on (Ω, ḡ).

(ii)
∫

Ω

(trh)dvolḡ =− 1

n− 1

(
∫

Ω

[R(g)−R(ḡ)] dvolḡ

+2

∫

Σ

[H(g)−H(ḡ)] dσḡ

)

+ F (h)

where

|F (h)| ≤ C

(
∫

Ω

(

|h|2 + |∇h|2
)

dvolḡ +

∫

Σ

(|h|2 + |h||∇h|)dσḡ

)

for a positive constant C depending only on (Ω, ḡ).

Proof. Since div(h) = 0 and Ric(ḡ) = (n− 1)ḡ, h satisfies

(2.17) −∆ḡ(trh)− (n− 1)(trh) = DRḡ(h),

whereDRḡ(·) denotes the linearization of the scalar curvature at ḡ. By [2, Proposition
4] (also see [5, Lemma 2.1]), one knows

R(g)−R(ḡ) = DRḡ(h)−
1

2
DRḡ(h

2) + 〈h,∇2
(trh)〉

− 1

4

(

|∇h|2 + |∇(trḡh)|2
)

+
1

2
hijhklRikjl

+ E(h) +∇i(E
i
1(h))

(2.18)

where h2 is the ḡ-square of h, i.e. (h2)ik = ḡjlhijhkl, E(h) is a function and E1(h) is
a vector field on Ω satisfying

|E(h)| ≤ C(|h||∇h|2 + |h|3), |E1(h)| ≤ C|h|2|∇h|
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for a positive constant C depending only on n. Multiplying (2.17) by f(trh) and
integrating by parts, (i) follows from (2.18).

To prove (ii), we integrate (2.17) on Ω to get

(2.19) −(n− 1)

∫

Ω

(trh)dvolḡ =

∫

Ω

DRḡ(h)dvolḡ +

∫

Σ

∂ν(trh) dσḡ.

Let DHḡ(h) denote the linearization of the mean curvature of Σ at ḡ. Direct calcula-
tion (see [2, Proposition 5] or [4, (34)]) shows

(2.20) 2DHḡ(h) = ∂ν(trh)− divh(ν)− divΣX.

Since div(h) = 0, (2.20) implies

(2.21)

∫

Σ

∂ν(trh) dσḡ = 2

∫

Σ

DHḡ(h)dσḡ.

By [2, Proposition 5], one has

(2.22) |H(g)−H(ḡ)−DHḡ(h)| ≤ C(|h|2 + |h||∇h|)

for a positive constant C depending only on n. (ii) now follows from (2.18)-(2.22) and
integration by parts on Ω.

We will make use of the first nonzero Neumann eigenvalue of B(δ), which we
denote by µ(δ). The next lemma on µ(δ) was proved in [5, Lemma 3.1].

Lemma 2.2 ([5]). Let µ(δ) be the first nonzero Neumann eigenvalue of B(δ) (with
respect to ḡ). Then

(i) µ(δ) is a strictly decreasing function of δ on (0, π
2 ];

(ii) for any 0 < δ < π
2 ,

µ(δ) > n+
(sin δ)n−2 cos δ
∫ δ

0
(sin t)n−1dt

>
n

(sin δ)2
.

Using µ(δ), we have the following estimate of
∫

Σ
(trh)2dσḡ.

Proposition 2.2. Let Ω = B(δ) and µ(δ) be the first nonzero Neumann eigen-
value of B(δ). Let g = ḡ + h be a smooth metric on B(δ) such that g, ḡ induce the
same metric on Σ and div(h) = 0. Suppose |h| is small, say |h| ≤ 1

2 at every point.
Let c = cos δ and s = sin δ. Then

s

∫

Σ

(trh)2dσḡ ≤ 2

[

1− c

(

1− n

2µ(δ)

)]
∫

Ω

λ|∇(trh)|2 dvolḡ

− 2

∫

Ω

(λ− c)(trh)(R(g)−R(ḡ)) dvolḡ

+ C||h||C1

[
∫

Ω

(

|h|2 + |∇h|2
)

dvolḡ +

∫

Σ

|h|2 dσḡ

]

+ C

[
∫

Ω

(R(g)−R(ḡ)) dvolḡ + 2

∫

Σ

(H(g)−H(ḡ)) dσḡ

]2

for some positive constant C depending only on (Ω, ḡ) and c.
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Proof. Integrating by parts, using the fact λ = c at Σ and ∆ḡλ = −nλ on Ω, we
have

∫

Σ

(trh)2∂νλ dσḡ

=

∫

Ω

(trh)2∆ḡλ− (λ − c)∆ḡ(trh)
2 dvolḡ

=

∫

Ω

−nλ(trh)2 − 2(λ− c)[(trh)∆ḡ(trh) + |∇(trh)|2]dvolḡ.

(2.23)

Choosing f = λ− c in Lemma 2.1(i), we have
∫

Ω

(λ − c)(trh)∆ḡ(trh) dvolḡ

=

∫

Ω

−(n− 1)(λ− c)(trh)2 − (λ− c)(trh) [R(g)−R(ḡ)] dvolḡ + E2(h)

(2.24)

where

|E2(h)| ≤ C

(
∫

Ω

(

|h|3 + |∇h|3
)

dvolḡ +

∫

Σ

|h|2|∇h|dσḡ

)

for some constant C depending on (Ω, ḡ) and c. It follows from (2.23) and (2.24) that
∫

Σ

(trh)2∂νλ dσḡ =

∫

Ω

[

(n− 2)(trh)2 − 2|∇(trh)|2
]

λ dvolḡ

+ 2c

∫

Ω

[

|∇(trh)|2 − (n− 1)(trh)2
]

dvolḡ

+ 2

∫

Ω

(λ − c)(trh) [R(g)−R(ḡ)] dvolḡ − 2E2(h).

(2.25)

Since λ ≥ c on Ω, (2.25) implies
∫

Σ

(trh)2∂νλ dσḡ ≥− 2

∫

Ω

|∇(trh)|2λdvolḡ + 2c

∫

Ω

[

|∇(trh)|2 − n

2
(trh)2

]

dvolḡ

+ 2

∫

Ω

(λ− c)(trh) [R(g)−R(ḡ)] dvolḡ − 2E2(h).

By the variational characterization of µ(δ), we have

(2.26)

∫

Ω

|∇(trh)|2 dvolḡ ≥ µ(δ)

[

(
∫

Ω

(trh)2 dvolḡ

)

− 1

V (ḡ)

(
∫

Ω

(trh) dvolḡ

)2
]

where V (ḡ) =
∫

Ω
1dvolḡ. It follows from Lemma 2.1(ii) and (2.26) that

∫

Ω

[

|∇(trh)|2 − n

2
(trh)2

]

dvolḡ

≥
(

1− n

2µ(δ)

)
∫

Ω

|∇(trh)|2 dvolḡ

− C

[
∫

Ω

(R(g)−R(ḡ)) dvolḡ + 2

∫

Σ

(H(g)−H(ḡ)) dσḡ

]2

− C

[
∫

Ω

(

|h|2 + |∇h|2
)

dvolḡ +

∫

Σ

(|h|2 + |h||∇h|dσḡ)

]2

(2.27)
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for a positive constant C depending only on (Ω, ḡ). The lemma now follows from
(2.25), (2.27) and the fact λ ≤ 1.

The following lemma is needed for the statement of Theorem 2.3.

Lemma 2.3. On (0, π
2 ], define

α(δ) =

[

1−
(

1− n

2µ(δ)

)

cos δ

]−1
(n+ 1)

8n

and

F (δ) = α(δ) +
(n+ 3) cos2 δ − 4

4 sin2 δ
.

Then
(i) α(δ) is strictly decreasing, limδ→0+ α(δ) = ∞ and α(π2 ) =

n+1
8n .

(ii) F (δ) is strictly decreasing, limδ→0+ F (δ) = ∞ and F (π2 ) < 0. Hence there is
exactly one δ0 ∈ (0, π2 ) such that F (δ0) = 0.

(iii) cos δ0 > κ where κ is the positive root of the equation

2n(n+ 3)x2 + (n+ 1)x+ (1− 7n) = 0.

In particular, (cos δ0)
2 > 1

n+1 .

Proof. (i) follows directly from Lemma 2.2. (ii) follows from (i) and the fact

F (δ) = α(δ) +
n− 1

4

1

sin2 δ
− n+ 3

4
.

To prove (iii), suppose cos δ0 = a. Since 0 < 1 − n
2µ(δ0)

< 1, one has
(

1− n
2µ(δ0)

)

cos δ0 < a and α(δ0) <
n+1
8n

1
(1−a) . Therefore,

0 = F (δ0) <
n+ 1

8n

1

(1− a)
+

n− 1

4

1

1− a2
− n+ 3

4

which implies (iii).

Theorem 2.3. Let Ω = B(δ) be a geodesic ball of radius δ in S
n. Suppose δ < δ0,

where δ0 is the unique zero in (0, π2 ) of the function

F (δ) = α(δ) +
(n+ 3) cos2 δ − 4

4 sin2 δ

where α(δ) =
[

1−
(

1− n
2µ(δ)

)

cos δ
]−1

(n+1)
8n . Then the conclusion of Theorem 1.1

holds on Ω.

Proof. Let W (h) be given in (2.4). Let c = cos δ. Lemma 2.3(iii) shows c2 > 1
n+1 .

Hence, the coefficient of |X |2 in W (h) is nonnegative. By Theorem 1.1, it suffices to
assume c2 < 4

n+3 . Apply Proposition 2.2, we have

W (h) ≥
∫

Ω

[

1

4
(|∇h|2 + |∇(trh)|2) + 1

2

(

|h|2 + (trh)2
)

]

λ dvolḡ

+

[

(n+ 3)c2 − 4

4(1− c2)

]

2

[

1− c

(

1− n

2µ(δ)

)]
∫

Ω

|∇(trh)|2λ dvolḡ

+ Ê(h, c),

(2.28)
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where

Ê(h, c) =

[

(n+ 3)c2 − 4

4(1− c2)

]{

−2

∫

Ω

(λ − c)(trh)(R(g)−R(ḡ))dvolḡ

+ C||h||C1

[
∫

Ω

(

|h|2 + |∇h|2
)

dvolḡ +

∫

Σ

|h|2 dσḡ

]

+C

[
∫

Ω

(R(g)−R(ḡ)) dvolḡ + 2

∫

Σ

(H(g)−H(ḡ)) dσḡ

]2
}

.

(2.29)

Since δ < δ0, Lemma 2.3 (ii) implies

F (δ) = α(δ) +
(n+ 3) cos2 δ − 4

4(1− cos2 δ)
> F (δ0) = 0.

Hence there exists a small constant ǫ ∈ (0, 1) such that

(2.30)
1

4

(

1 +
(1− ǫ)

n

)

+

[

(n+ 3)c2 − 4

4(1− c2)

]

2

[

1− c

(

1− n

2µ(δ)

)]

> 0.

By (2.28) and (2.30), using the fact |∇h|2 ≥ 1
n
|∇(trh)|2, we have

W (h) ≥ 1

4
ǫc

∫

Ω

(|∇h|2 + |h|2) dvolḡ + Ê(h, c).(2.31)

Now suppose R(g) − R(ḡ) ≥ 0, H(g) −H(ḡ) ≥ 0 and ||h||W 2,p(Ω) is sufficiently
small. It follows from Theorem 2.1, (2.29) and (2.31) that

1

2

∫

Ω

[R(g)−R(ḡ)]λ dvolḡ +
1

2

∫

Σ

[H(g)−H(ḡ)]λ dσḡ

≤ ǫ

∫

Ω

(|∇h|2 + |h|2) dvolḡ

+ C||h||C1

[
∫

Ω

(

|h|2 + |∇h|2
)

dvolḡ +

∫

Σ

|h|2 dσḡ

]

.

(2.32)

for some positive constant C independent of h. We can then proceed as in [2]: since
||h||L2(Σ) ≤ C||h||W 1,2(Ω), one knows the terms in the last line in (2.32) is bounded
by C||h||C1(Ω)||h||W 1,2(Ω). Therefore, if ||h||W 2,p(Ω) is sufficiently small, (2.32) implies
h must vanish identically. This completes the proof of Theorem 2.3.

We give some lower estimates of δ0 which are relatively more explicit.

Proposition 2.3. δ0 in Theorem 2.3 satisfies
(i) δ0 > δ̃0 where δ̃0 is the unique zero in (0, π

2 ) of the equation

[

1−
(

1− n

2µ̃(δ)

)

cos δ

]−1
n+ 1

8n
+

(n+ 3) cos2 δ − 4

4(1− cos2 δ)
= 0

where µ̃(δ) = n+
(sin δ)n−2 cos δ
∫ δ

0 (sin t)
n−1dt

.
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(ii) cos δ0 < κ̃ where κ̃ is the unique zero in (0, 1) of the equation

n(n+ 3)x4 + n(n+ 3)x3 + 2n(n+ 1)x2 + (1− 3n)x− 7n+ 1 = 0.

(iii) (cos δ0)
2 <

7n− 1

2n2 + 5n− 1
.

Proof. By Lemma 2.2 (ii), µ(δ0) > µ̃(δ0). Hence,

(2.33)

[

1−
(

1− n

2µ̃(δ0)

)

cos δ0

]−1
n+ 1

8n
+

(n+ 3) cos2 δ0 − 4

4(1− cos2 δ0)
< 0.

Note that µ̃(δ) is strictly decreasing in (0, π
2 ]. As in the proof of Lemma 2.3(ii), we

know the function

[

1−
(

1− n

2µ̃(δ)

)

cos δ

]−1
n+ 1

8n
+

(n+ 3) cos2 δ − 4

4(1− cos2 δ)

is strictly decreasing and has a unique zero δ̃0 in (0, π2 ). Hence, (i) follows from (2.33).
The proof of (ii) is similar to that of (i) except we replace the lower bound

µ(δ) > µ̃(δ) by a weaker lower bound µ(δ0) >
n

(sin δ0)2
= n

1−(cos δ0)2
.

(iii) follows from the fact

n+ 1

8n
+

(n+ 3) cos2 δ − 4

4(1− cos2 δ)
< 0.

Theorem 2.3 and Proposition 2.3 (iii) verify condition (b) in the introduction.

2.4. A combined approach. It remains to confirm the case n = 3, 4 in condi-
tion (a). To do so, we combine the two methods leading to Theorem 2.2 and Theorem
2.3.

Theorem 2.4. Suppose 3 ≤ n ≤ 4, Theorem 1.1 is true on B(δ) if

(2.34) cos δ >

(

4(n+ 4)− 4
√
2n− 1

n2 + 6n+ 17

)

1

2

≈
{

0.6581, n = 3
0.6130, n = 4.

Proof. Let c = cos δ. (2.34) implies c2 > 1
n+1 . By (2.11), we have W (h) ≥ Y (h)

where

Y (h) =

[

c+
(n+ 3)c2 − 4

4(1− c2)

√

2(1− c2)

]
∫

Ω

(

1

2
|h|2 + 1

4
|∇(trh)|2

)

dvolḡ

+

[

1

2
+

(n+ 3)c2 − 4

4(1− c2)

]
∫

Ω

λ(trh)2dvolḡ +
c

4

∫

Ω

|∇h|2 dvolḡ.

As before, we always assume c2 < 4
n+3 . Then (2.34) implies (2.12), i.e.

(2.35) c+
(n+ 3)c2 − 4

4(1− c2)

√

2(1− c2) > 0.
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To continue, we only need to assume 1
2 + (n+3)c2−4

4(1−c2) < 0. (If n ≥ 5, this term would

automatically be nonnegative by (2.16).)

Given any constants θ, τ ∈ (0, 1), using the fact |∇h|2 ≥ 1
n
|∇(trh)|2, |h|2 ≥

1
n
(trh)2, λ ≤ 1 and applying (2.26) as in Theorem 2.3, we have

Y (h) ≥
∫

Ω

{

θc

4
|∇h|2 + 1

4

[

1− θ

n
c+ c+

(n+ 3)c2 − 4

2
√

2(1− c2)

]

|∇(trh)|2

+ τ

[

c+
(n+ 3)c2 − 4

2
√

2(1− c2)

]

|h|2
2

+
1− τ

n

[

c+
(n+ 3)c2 − 4

2
√

2(1− c2)

]

(trh)2

2

+

[

1 +
(n+ 3)c2 − 4

2(1− c2)

]

(trh)2

2

}

dvolḡ

≥ ǫ

(
∫

Ω

|∇h|2 + |h|2dvolḡ
)

+

{

1

2

[

(n+ 1)− θ

n
c+

(n+ 3)c2 − 4

2
√

2(1− c2)

]

µ(δ) +
1− τ

n

[

c+
(n+ 3)c2 − 4

2
√

2(1− c2)

]

+

[

1 +
(n+ 3)c2 − 4

2(1− c2)

]}(
∫

Ω

(trh)2

2
dvolḡ

)

+ E(h)

(2.36)

where ǫ = min

{

θc
4 ,

τ
2

[

c+ (n+3)c2−4

2
√

2(1−c2)

]}

> 0, µ(δ) is the first nonzero Neumann eigen-

value of B(δ), and E(h) is an error term satisfying

|E(h)| ≤C

[
∫

Ω

(R(g)−R(ḡ)) dvolḡ + 2

∫

Σ

(H(g)−H(ḡ)) dσḡ

]2

+ C

[
∫

Ω

(

|h|2 + |∇h|2
)

dvolḡ +

∫

Σ

(|h|2 + |h||∇h|)dσḡ

]2

with C depending only on B(δ).

We claim that θ and τ can be chosen so that the coefficient of

∫

Ω

(trh)2

2
dvolḡ

above is positive. To see this, let

Fn(c) =
1

2

[

n+ 1

n
c+

(n+ 3)c2 − 4

2
√

2(1− c2)

]

µ(δ) +
1

n

[

c+
(n+ 3)c2 − 4

2
√

2(1− c2)

]

+

[

1 +
(n+ 3)c2 − 4

2(1− c2)

]

.

By (2.35) and the eigenvalue estimate µ(δ) > n
(sin δ)2 (Lemma 2.2 (ii)), one has

Fn(c) > Gn(c)
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where

Gn(c) =
1

2

[

n+ 1

n
c+

(n+ 3)c2 − 4

2
√

2(1− c2)

]

n

1− c2
+

1

n

[

c+
(n+ 3)c2 − 4

2
√

2(1− c2)

]

+

[

1 +
(n+ 3)c2 − 4

2(1− c2)

]

.

When n = 3 and 4, G3(c) and G4(c) are respectively given by

G3(c) =
1

2

[

4

3
c+

6c2 − 4

2
√

2(1− c2)

]

3

1− c2
+

1

3

[

c+
6c2 − 4

2
√

2(1− c2)

]

+

[

1 +
6c2 − 4

2(1− c2)

]

,

G4(c) =
1

2

[

5

4
c+

7c2 − 4

2
√

2(1− c2)

]

4

1− c2
+

1

4

[

c+
7c2 − 4

2
√

2(1− c2)

]

+

[

1 +
7c2 − 4

2(1− c2)

]

.

Using Mathematica, one verifies that

(2.37) G3(c) > 0 if 0.6378 < c < 1

and

(2.38) G4(c) > 0 if 0.5933 < c < 1.

In particular, this shows that Gn(c) > 0 is guaranteed by (2.34) for n = 3, 4.
Therefore, there exist small positive constants θ, τ such that the coefficient of

∫

Ω
(trh)2

2 dvolḡ in (2.36) is positive. For these θ and τ , we have

W (h) ≥ Y (h) ≥ ǫ

(
∫

Ω

|∇h|2 + |h|2dvolḡ
)

+ E(h).

Arguing as in the proof of Theorem 2.3 (the part following (2.31)), we conclude that
Theorem 1.1 holds on such a B(δ).
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