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A COMBINATORIAL INVARIANT FOR SPHERICAL CR
STRUCTURES∗

ELISHA FALBEL† AND QINGXUE WANG‡

Abstract. We study a cross-ratio of four generic points of S3 which comes from spherical CR
geometry. We construct a homomorphism from a certain group generated by generic configurations
of four points in S3 to the pre-Bloch group P(C). If M is a 3-dimensional spherical CR manifold
with a CR triangulation, by our homomorphism, we get a P(C)-valued invariant for M . We show
that when applying to it the Bloch-Wigner function, it is zero. Under some conditions on M , we
show the invariant lies in the Bloch group B(k), where k is the field generated by the cross-ratio.
For a CR triangulation of the Whitehead link complement, we show its invariant is a torsion in B(k)
and for a triangulation of the complement of the 52-knot we show that the invariant is not trivial
and not a torsion element.
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1. Introduction. One can define a number of invariants out of a 3-manifold
M equipped with a complete real hyperbolic structure. For instance, by Mostow’s
rigidity theorem, the volume of a hyperbolic 3-manifold turns out to be a topological
invariant of the underlying manifold. Another such invariant is the Chern-Simons
invariant CS(M) with values in R/Z ([CS]). Both invariants can be seen as arising
from an invariant associated to a hyperbolic manifold with values in the Bloch group
(for the definition see Section 2). The Bloch group B(C) is a subgroup of the pre-
Bloch group P(C) which is defined as the abelian group generated by all the points
in C \ {0, 1} quotiented by the 5-term relations. The volume and the Chern-Simons
invariant can then be seen through a function (the Bloch regulator)

B(C) → C/Q.

The imaginary part being the volume and the real part being CS(M) mod Q.
Another geometric structure on 3-manifolds which has been studied for a long

time is the Cauchy-Riemann (CR) structure. More precisely, consider S3 ⊂ C2 with
the contact structure obtained as the intersection D = TS3 ∩ JTS3 where J is the
multiplication by i in C2. The operator J restricted to D defines the standard CR
structure on S3. The group of CR-automorphisms of S3 is PU(2, 1) and we say
that a manifold M has a spherical CR structure if it has a (S3, PU(2, 1))- geometric
structure.

A configuration of four points in S3 can be thought as defining a CR simplex
which can be parametrised through certain cross-ratios. In this paper we obtain an
invariant associated to a simplicial complex by CR simplices with values in the pre-
Bloch group P(C) and with some additional hypothesis, it lies in B(C). In fact one
can define the invariant in P(k) where k is the field generated by the cross-ratios
of the simplicial complex. In the case k is an imaginary quadratic extension of a
totally real field and if the invariant is in B(k), a theorem by Borel will imply that the
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element is torsion and therefore CS(M) = 0. It is interesting to compare this result
with the real hyperbolic geometry case; Neumann and Yang [NY1] proved with the
same hypothesis that CS(M) = 0, although the corresponding element in the Bloch
group is never a torsion since the hyperbolic volume is non-vanishing. On the other
hand, in Section 5.2, we have examples with invariants which are non-trivial torsions
in the Bloch group.

The paper is organized as follows. In the second section, we recall the basic defi-
nitions of (pre)-Bloch group, cross-ratio structures, triangulations, and CR geometry.
In the third section, we study a complex of configurations of generic points in S3,
and a homomorphism to the pre-Bloch group P(C). For a 3-dimensional spherical
CR manifold M with a given CR triangulation, we associate a P(C)-valued invariant
[M ] which is independent of the triangulation. We show that when applying to it the
Bloch-Wigner dilogarithm function, it is zero. In the fourth section, we show that
when M is closed with holonomy with coefficients in a number field or non-compact
with unipotent parabolic boundary holonomy, the invariant [M ] lies in the Bloch
group B(k), where k is the field generated by the cross-ratio. For such an M , we
define its Chern-Simons invariant as the real part of ρ([M ]), where ρ is the Bloch
regulator map. In the last section, we compute the invariant for certain simplicial CR
structures on the complement of the figure eight knot and the Whitehead link and
the 52 knot. The torsion element we find associated to the Whitehead link and figure-
eight knot (see Section 5) is a very basic torsion element and it is null if we adopt
a different definition of the Bloch group (see Remark after Definition 4.3). On the
other hand we have a CR triangulation of the complement of the 52 whose invariant
is an element of infinite order in the Bloch group as shown in the last section.

2. Preliminaries. In this section, we recall the basic definitions and properties
of (pre)-Bloch group, cross-ratio structures, triangulations, and CR geometry.

2.1. The Bloch group. We consider an arbitrary field F in the next definition
although we will only use C, R and number fields in this paper. There are several
definitions of the Bloch group in the literature but we will follow conventions of [S1].

Definition 2.1. The pre-Bloch group P(F ) is the quotient of the free abelian
group Z[F \ {0, 1}] by the subgroup generated by the 5-term relations

[x]− [y] + [
y

x
]− [

1− x−1

1− y−1
] + [

1− x

1− y
], ∀x, y ∈ F \ {0, 1}. (1)

Consider the tensor product F ∗ ⊗
Z
F ∗, where F ∗ is the multiplicative group of

F . It is an abelian group satisfying, for n an integer, n(a⊗ b) = an ⊗ b = a⊗ bn.
Let T = 〈x ⊗ y + y ⊗ x | x, y ∈ F ∗〉 be the subgroup of F ∗ ⊗

Z
F ∗ generated by

x⊗ y + y ⊗ x, where x, y ∈ F ∗.

Definition 2.2.
∧2

F ∗ = (F ∗ ⊗
Z
F ∗)/T . For x, y ∈ F ∗, we will denote by x ∧ y

the image of x⊗ y in
∧2

F ∗.

Note that, for x, y ∈ F ∗, we have x ∧ y = −y ∧ x and 2 x ∧ x = 0. But x ∧ x = 0
is not necessarily true in

∧2
F ∗.

Definition 2.3. The Bloch group B(F ) is the kernel of the homomorphism

δ : P(F ) → ∧2
F ∗, which is defined on generators of P(F ) by δ([z]) = z ∧ (1− z).

When F = C, P(C) ([DS] theorem 4.16) and B(C) ([S1]) are uniquely divisible
groups and, in fact, are Q-vector spaces with infinite dimension ([S1]). In particular
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they have no torsion. On the other hand, when the field is R there exists torsion. In
particular, for all x ∈ R−{0, 1}, the element [x] + [1− x] ∈ B(R) does not depend on
x and has order six (see [S1] prop. 1.1 pg 220).

We will need the following result for B(k) when k contains a cubic root of unity:

Lemma 2.4. Suppose k is a field containing a cubic root of unity. Then

2[z] = 2

[

1

1− z

]

, ∀z ∈ k \ {0, 1}.

Proof. By [S1] Lemma 1.5 (c), we have

2([z] + [1− z]) = 0.

From Lemma 1.2 of [S1], we obtain

2([1− z] +

[

1

1− z

]

) = 0.

Therefore,

2[z] = −2[1− z] = 2

[

1

1− z

]

.

Consider the complex conjugation in C and its extension to an involution:

σ : Z[C \ {0, 1}] → Z[C \ {0, 1}].

As σ preserves the 5-term relations, it induces an involution on the pre-Bloch group
P(C) which we will also denote by σ. Let

P(C) = P(C)+ + P(C)−

be the decomposition of P(C) into the two subgroups preserved by the involution.
They are the eigenspaces of σ acting on the Q-vector space P(C). We have σ(z) = z
for z ∈ P(C)+ and σ(z) = −z for z ∈ P(C)−. Analogously

B(C) = B(C)+ + B(C)−.

By [S1, Lemma 1.3], for any x, y ∈ F −{0, 1}, [x]+ [1−x] = [y]+ [1−y] in P(F ).
That is, the element [x] + [1− x] ∈ B(F ) is independent of the choice of x, hence the
following definition makes sense.

Definition 2.5. cF := [x] + [1 − x] ∈ B(F ), where x is any given element of
F \ {0, 1}.

Let KM
∗ (F ) denote the Milnor K-groups of F , and K∗(F ) denote the Quillen’s

algebraic K-groups of F . It is well-known that KM
1 (F ) ∼= K1(F ) = F ∗ and

KM
2 (F ) ∼= K2(F ). There is a natural map from KM

n (F ) to Kn(F ) for each n.
The cokernel of this map is called the group of indecomposable elements, denoted
by K ind

n (F ).
For n = 3 and F an infinite field, we have the following fundamental exact

sequence, due to Suslin ([S1, Theorem 5.2]):

0 −−−−→ Tor(µ(F ), µ(F ))∼ −−−−→ K ind
3 (F )

sF−−−−→ B(F ) −−−−→ 0, (2)
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where µ(F ) is the group of roots of unity in F . If charF = 2,
Tor(µ(F ), µ(F ))∼ = Tor(µ(F ), µ(F )). If charF 6= 2, Tor(µ(F ), µ(F ))∼ is the unique
nontrivial extension of Tor(µ(F ), µ(F )) by Z/2, that is, we have the nontrivial exten-
sion

0 −−−−→ Z/2 −−−−→ Tor(µ(F ), µ(F ))∼ −−−−→ Tor(µ(F ), µ(F )) −−−−→ 0,

For a field extension E/F , there are natural homomorphisms
α : K ind

3 (F ) → K ind
3 (E) and β : B(F ) → B(E).

Lemma 2.6. Let F be an infinite field and E/F a field extension. The homomor-
phism sF : K ind

3 (F ) → B(F ) in (2) is functorial in E/F with respect to α, β. That
is, we have the following commutative diagram:

K ind
3 (E)

sE−−−−→ B(E)

α

x




β

x





K ind
3 (F )

sF−−−−→ B(F )

Proof. It follows from the construction of the exact sequence (2) in [S1]. The first
step in the construction is the homomorphism from H3(GL(F )) to B(F ) via spectral
sequences, see [S1, Proposition 3.1, Theorem 4.1]. The second step is the Hurewicz
homomophism from K3(F ) to H3(GL(F )), see [S1, Lemma 5.4, Theorem 5.1]. It is
clear that both steps are functorial with respect to the field extension E/F . Hence
the diagram commutes.

Lemma 2.7. Let E be a field of characteristic 0. If Tor(µ(E), µ(E)) has no
element of order 3, then 2cE ∈ B(E) has order 3.

Proof. Denote by o(g) the order of a group element g. Consider the field extension
E/Q. By [S1, Corollary 5.3], the Bloch group B(Q) is generated by cQ and o(cQ) = 6.
Hence o(2cQ) = 3. By Lemma 2.6, we have the commutative diagram:

K ind
3 (E)

sE−−−−→ B(E)

α

x




β

x





K ind
3 (Q)

sQ−−−−→ B(Q)

By definition β(2cQ) = 2cE . Since o(2cQ) = 3, o(2cE) = 1 or 3. It suffices to show that
2cE 6= 0. Since µ(Q) = Z/2, Tor(Z/2,Z/2) = Z/2. Hence Tor(µ(Q), µ(Q))∼ = Z/4.
Now by the fundamental exact sequence (2), there is a nonzero element q ∈ K ind

3 (Q)
such that sQ(q) = 2cQ. Since o(2cQ) = 3, we see that 3|o(q). Let r = α(q). By
the above commutative diagram, we get sE(r) = 2cE . Therefore, it suffices to show
that r /∈ ker sE . Indeed, since Tor(µ(E), µ(E)) has no element of order 3, we see
that Tor(µ(E), µ(E))∼ does not have an element of order 3 either. Hence it has no
element of order divided by 3. By [MS, Proposition 11.3], the homomorphism α is
injective. Therefore, 3|o(r) = o(q). Now the fundamental exact sequence (2) implies
that r /∈ ker sE . Hence o(2cE) = 3.

Consider now a number field k, that is, an extension of Q of degree d < ∞. We
have that k = Q(t), where t ∈ C satisfies an irreducible polynomial with coefficients in
Q with degree d. Each root of the irreducible polynomial determines a field embedding
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σ : k → C. There are r1 real embeddings (when σ(k) ⊂ R) and r2 pairs of complex
conjugate embeddings with d = r1 + 2r2.

Definition 2.8. The Bloch-Wigner function is

D(x) = arg (1− x) log |x| − Im (

∫ x

0

log (1− t)
dt

t
).

It is well-defined and real analytic on C − {0, 1} and extends to a continuous
function on CP 1 by defining D(0) = D(1) = D(∞) = 0. It is well-known that it
satisfies the 5-term relation. Hence it gives rise to a well-defined map:

D : P(k) → R,

given by

D(

k
∑

i=1

ni[xi]) =

k
∑

i=1

niD(xi).

Generalizing Dirichlet’s units theorem, Borel [Bo] proved the following description of
B(k). His results are more general and describe the higher K-theory of number fields.
The relation to the Bloch group and the use of the dilogarithm is due to work of
Dupont, Sah, Bloch and Suslin. In the following we let σi, σ̄i, 1 ≤ i ≤ r2, be the r2
pairs of complex embeddings.

Theorem 2.9 ([Bo]). Consider the map r : B(k) → Rr2 given by

[z] → (D(σ1(z)), · · · , D(σr2(z))) .

Then Im(r) is a lattice in Rr2 and Ker(r) is the torsion subgroup of B(k).
Recall that we have the Bloch regulator map:

ρ : B(C) → C/π2Q = R/π2Q⊕ iR.

It is known that the imaginary part of ρ coincides with the Bloch-Wigner function D.

2.2. Tetrahedra with cross-ratio structures. In the following we recall the
definition of cross-ratio structures of [F3].

Consider a set of four elements ∆ = {p0, p1, p2, p3}. We call pi, 0 ≤ i ≤ 3 the
vertices of ∆. Let O∆ be the set of all orderings of ∆. We will denote an element of
O∆ by [pi, pj , pk, pl] (where {i, j, k, l} = {0, 1, 2, 3}) and call it a simplex although we
only deal with configurations of four points. Given ∆, there are 24 simplices divided
in two classes O∆+ (containing [p0, p1, p2, p3]) and O∆− (containing [p0, p1, p3, p2])
of 12 elements each. Each class is an orbit of the even permutation group acting on
O∆.

The following definition assigns similarity invariants to each vertex of a configu-
ration of four points.

Definition 2.10. A cross-ratio structure on a set of four points
∆ = {p0, p1, p2, p3} is a function defined on the ordered quadruples

X : O∆ → C \ {0, 1}

satisfying, if (i, j, k, l) is any permutation of (0, 1, 2, 3), the relations
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1.

X(pi, pj , pk, pl) =
1

X(pi, pj , pl, pk)
.

2. (similarity relations)

X(pi, pj, pk, pl) =
1

1−X(pi, pl, pj, pk)
.

Remarks.
1. To visualize the definition we refer to Figure 1. For each [pi, pj , pk, pl] ∈ O∆+

we define

zij = X(pi, pj , pk, pl).

We interpret zij as a cross-ratio associated to the edge [ij] at the vertex i.
Cross-ratios of elements of O∆− are obtained taking inverses by the first
symmetry. In the following we shall denote by a sequence of numbers (ijkl)
the corresponding invariant X(ui, uj, uk, ul).

2. The similarity relations can be used to reduce the number of vari-
ables to four, one for each vertex. One can use, for instance,
(z01, z10, z23, z32) ∈ (C \ {0, 1})4.

3. If we impose that

z01 = z10 = z23 = z32,

we may interpret the configuration of four points as a configuration of points
in CP 1 with z01 one of the cross-ratios.

2.3. Triangulations, cross-ratio structures and an invariant. A triangu-
lation of a manifold is an explicit description of it as a simplicial complex. Equivalence
of triangulations was studied in [A]. Alexander defined certain moves on triangula-
tions and showed that any two triangulations of a closed manifold are related by a
sequence of these moves. A particularly simple description of that equivalence was ob-
tained by Pachner [P] through some elementary moves. In particular, Pachner proved
that any two triangulations are obtained from each other through the following two
moves and their inverses.

Definition 2.11. An elementary (or Pachner) move in a complex defined by a
triangulation is

• (2-3 move) the substitution of two simplices [u0, u1, u2, u3] − [u0, u1, u2, u4],
which have a common face, by three simplices
−[u0, u1, u3, u4] + [u0, u2, u3, u4]− [u1, u2, u3, u4] with one common edge and
vice-versa.

• (1-4 move) the substitution of a simplex [u0, u1, u2, u3] by four simplices

[u0, u1, u2, u4]− [u0, u1, u3, u4] + [u0, u2, u3, u4]− [u1, u2, u3, u4]

by adding a new vertex u4 and vice-versa.

To deal with manifolds with boundary it is useful to introduce ideal triangulations.
It is important in the following to consider singular triangulations, meaning that we
allow self or multiple intersections between simplices (along 2-faces).
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z01

z10

z23 z32

z02

z13

z20

z31

z03

z12

z21

z30

p2 p3

p0

p1

Fig. 1. Parameters for a cross-ratio structure

Definition 2.12. Let M be a compact manifold with boundary ∂M . Denote by M̂
the manifold obtained by collapsing each boundary component. An ideal triangulation
is a singular triangulation of M̂ such that its vertices are the points of M̂ obtained
from collapsing the boundary components of M .

A related concept we will not deal with in this paper is that of a spine of a
3-manifold with boundary. Ideal triangulations are in natural bijection to standard
spines and existence and equivalence of ideal triangulations were proven through the
corresponding existence and equivalence theorems for standard spines (a general ref-
erence is [Ma1]). We will need the following folklore theorem (cf. [Ma, P]).

Theorem 2.13. Any two ideal triangulations of a manifold with boundary can
be obtained from one another through the 2-3 moves.

Definition 2.14. Let T be a (ideal, if the 3-manifold is not closed) triangulation
of a 3-manifold. Let X(pi, pj , pk, pl) be a cross-ratio structure defined on the simplices.
The pair (T,X) is called a cross-ratio structure associated to a triangulation if the
following compatibility conditions are satisfied:

1. Edge compatibility: If [pi, pj, pm0
, pm1

], [pi, pj , pm1
, pm2

], · · · , [pi, pj, pmn
, pm0

]
are simplices having the edge [pi, pj ] in common then

X(pi, pj, pm0
, pm1

) · · ·X(pi, pj , pmn
, pm0

) = 1

2. Face compatibility: If [pi, pj , pk, pl] and [pi′ , pj, pk, pl] are two simplices with
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a common face [pj , pk, pl] then

X(pj , pi, pk, pl)X(pk, pi, pl, pj)X(pl, pi, pj , pk)

= X(pj , pi′ , pk, pl)X(pk, pi′ , pl, pj)X(pl, pi′ , pj, pk).

Definition 2.15. To each cross-ratio structure associated to a triangulation as
above we define the element

β(T,X) =
∑

s

([zs01] + [zs10] + [zs12] + [zs21]) ∈ P(C)

where s indexes the simplices in the triangulation and zsij are the cross-ratios of the
simplex s.

Consider (T ′,X′) and (T,X), two cross-ratio structures on two triangula-
tions obtained from each other by an elementary move. Given the five vertices
{i, j, k, l,m} = {0, 1, 2, 3, 4}, where the move is concentrated as above, we write (ijkl)
the cross-ratio defined by these points (which might be X′(ijkl) or X(ijkl) according
to which triangulation the simplex [ijkl] belongs).

Definition 2.16. We say that (T ′,X′) is obtained from (T,X) by an elemen-
tary move if the triangulation T ′ is obtained from T by an elementary move and the
following relations are satisfyed:

1. edge compatibility conditions

(ijkl) = (ijkm)(ijml).

2. face compatibility conditions

(ijkl)(ljik)(kjli) = (imkl)(lmik)(kmli).

Theorem 2.17. If (T ′,X′) is obtained from (T,X) by an elementary move then
β(T ′,X′) = β(T,X).

Proof. It is exactly the proof of Theorem 5.2 in [F3].

2.4. CR geometry (see [C, BS, G, J]). CR geometry is modeled on the
Heisenberg group N, the set of pairs (z, t) ∈ C× R with the product

(z, t) · (z′, t′) = (z + z′, t+ t′ + 2Im zz′).

The one point compactification of the Heisenberg group, N, of N can be interpreted
as S3 which, in turn, can be identified to the boundary of complex hyperbolic space.

We consider the group U(2, 1) preserving the Hermitian form 〈z, w〉 = w∗Jz
defined on C3 by the matrix

J =





0 0 1
0 1 0
1 0 0





and the following subspaces in C2,1 (that is, C3 with the above Hermitian form).

V0 =
{

z ∈ C3 − {0} : 〈z, z〉 = 0
}

,
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V− =
{

z ∈ C3 : 〈z, z〉 < 0
}

.

Let P : C3\{0} → CP 2 be the canonical projection. Then H2
C = P(V−) is the complex

hyperbolic space and S3 = ∂H2
C = P(V0) can be identified to N.

The group of biholomorphic transformations of H2
C is then PU(2, 1), the projec-

tivization of U(2, 1). It acts on S3 by CR transformations. We define C-circles as
boundaries of complex lines in H2

C. Analogously, R-circles are boundaries of totally
real totally geodesic two dimensional submanifolds in H2

C. Using the identification
S3 = N ∪ {∞}, one can define alternatively a C-circle as any circle in S3 which is
obtained from the vertical line {(0, t) ∈ N | t ∈ R }∪{∞} in the compactified Heisen-
berg space by translation by an element of PU(2, 1). Analogously, R-circles are all
obtained by translations of the horizontal line {(x, 0) ∈ N | x ∈ R } ∪ {∞}.

A point p = (z, t) in the Heisenberg group and the point ∞ are lifted to the
following points in C2,1:

p̂ =





−|z|2+it

2
z
1



 and ∞̂ =





1
0
0



 .

Consider C2,1 with the Hermitian form defined by J . The Hermitian structure
defines a Hermitian form on Λ3(C2,1). In fact, let {e1, e2, e3} be a basis of C2,1 such
that

〈e1, e1〉 = 〈e2, e2〉 = −〈e3, e3〉 = 1.

Then e = e1∧e2∧e3 is a basis of Λ3(C2,1) and we define 〈e1∧e2∧e3, e1∧e2∧e3〉 = −1.

Definition 2.18. Let v, w ∈ C2,1. We define the Hermitian cross-product v⊠w
by the formula

〈u, v ⊠ w〉e = u ∧ v ∧ w,

for all u ∈ C2,1.

In coordinates, v = (v0, v1, v2) and w = (w0, w1, w2), we compute

v ⊠ w = (v̄0w̄1 − v̄1w̄0, v̄2w̄0 − v̄0w̄2, v̄1w̄2 − v̄2w̄1).

So we observe that the coordinates of v⊠w are in the field generated by the conjugates
of the coordinates of v and w.

Definition 2.19. Given any three ordered points p0, p1, p2 ∈ ∂H2
C, we define

Cartan’s angular invariant A as

A(p0, p1, p2) = arg (−〈p̂0, p̂1〉〈p̂1, p̂2〉〈p̂2, p̂0〉).

Triple of points in S3 are classified by their Cartan invariant according to the
following proposition by Cartan (see [G]).

Proposition 2.20. Two ordered triples of pairwise distinct points (p0, p1, p2)
and (p′0, p

′
1, p

′
2) in ∂H2

C are equivalent under an element of PU(2, 1) if and only if

A(p0, p1, p2) = A(p′0, p
′
1, p

′
2).
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Definition 2.21. We say that n (n ≥ 1) points in S3 are generic if they are
distinct and, if n ≥ 3, any three of them are not contained in a C-circle.

As the action of PU(2, 1) is doubly transitive, a simple computation gives the
following normalization for a triple of generic points.

Lemma 2.22. One can always normalize a triple (p0, p1, p2) of generic points in
S3 so that in the compactified Heisenberg group they are

p0 = ∞ p1 = (0, 0) p2 = (1, t) with t ∈ R.

In that case tanA(p0, p1, p2) = t.

2.5. Configurations of four points. We refer to Figure 1 to describe the
parameters of a tetrahedron (see also [F2, F3]). Consider a generic configuration of
four (ordered) points (p0, p1, p2, p3) in S3. Fix one of them say p0 and consider the
projective space of complex lines passing through it. Then p1, p2, p3 determine three
points t1, t2, t3 on CP 1. The fourth point corresponds to the complex line passing
through p0 and tangent to S3, call it t0. The cross-ratio of those four points in CP 1 is
z01 = X(t0, t1, t2, t3) (here, X is the usual cross-ratio of four points in CP 1). We define
analogously the other invariants zij , 0 ≤ i, j ≤ 3. If we take p0 = ∞, the complex
lines passing through p0 intersect N in vertical lines which are then determined by a
coordinate in C. Up to Heisenberg translations, we can assume that p1 = (0, 0) and
p2 = (1, s2) and p3 = (z01, s3), s2, s3 ∈ R. The corresponding points in CP 1 will be
∞, 0, 1, z01. Therefore one “sees” at the vertex p0 the Euclidean triangle determined
by 0, 1, z01 ∈ C.

We associate to each vertex i, in the edge [ij], the invariant (ijkl) where the
order of k and l is fixed by the right hand rule with the thumb pointed from j to i.
A shortcut notation for the invariants is therefore

zij = (ijkl),

the indices kl being determined by the choice ij.
In order to give an explicit formula (see [W2, Ge]), denote by p̂ a lift of p ∈ S3.

Definition 2.23. Given two points pi and pj in S3, a polar vector cij is a
perpendicular vector to the complex line defined by pi and pj.

Observe that a polar vector is given by solving the equations
〈p̂i, cij〉 = 〈p̂j , cij〉 = 0 and therefore one can choose a polar vector to have
coordinates in the field defined by the conjugates of the coordinates of p̂i and p̂j.

Definition 2.24. Consider a generic configuration of four (ordered) points
(p0, p1, p2, p3) in S3. For [pi, pj , pk, pl] ∈ ∆O+, a positively oriented configuration,
define

zij = (ijlk) =
〈p̂l, cij〉〈p̂k, p̂i〉
〈p̂k, cij〉〈p̂l, p̂i〉

.

It satisfies the relations (ijlk) = (ijkl)−1 and

zijzji = zklzlk .



A COMBINATORIAL INVARIANT FOR SPHERICAL CR STRUCTURES 401

Moreover, we have the following description of the space of configurations of four
points.

Proposition 2.25. (cf. [F2]) Configurations (up to translations by PU(2, 1)) of
four generic points in S3 are parametrised by

V ⊂ (C∗ \ {1})12

with coordinates zij, 1 ≤ i 6= j ≤ 4, defined by, for (i, j, k, l) an even permutation of
(0, 1, 2, 3), the usual similarity constraints

zik =
1

1− zij

and the three complex equations

zijzji = zklzlk (3)

with the exclusion of solutions such that zijzjizikzkizilzli = −1 and zijzji ∈ R.

Remark. The real solutions parametrise configurations with four points con-
tained in an R-circle. The solutions such that zijzjizikzkizilzli = −1 and zijzji ∈ R

correspond to degenerate hyperbolic ideal tetrahedra with four points contained in
the boundary of a totally geodesic plane in real hyperbolic space. They don’t corre-
spond to CR tetrahedra. See [Ge] for more details and [F1, W1, W2, PP, PP1, FP]
for other descriptions.

We can also describe generic configurations of four points in S3 by the following
Lemma (see [F2, Proposition 4.3]).

Lemma 2.26. One can always normalize a quadruple (p0, p1, p2, p3) of generic
points in S3 so that in the compactified Heisenberg group they are

p0 = ∞ p1 = (0, 0) p2 = (1, t) p3 = (z, s|z|2),

where (z, t, s) are in the set

K = {(z, s, t) ∈ C× R× R | z 6= 0, 1 and z
s+ i

t+ i
6= 1 }.

In that case, the invariants of the configuration are

z01 = z, z10 =
z(s+ i)

t+ i
, z23 =

z[(t+ i)− z(s+ i)]

(z − 1)(t− i)
, z32 =

z(z − 1)(s− i)

(t+ i)− z(s+ i)
.

So the set V in the above proposition is homeomorphic to the setK defined above.

Definition 2.27. To each configuration of four generic points (p0, p1, p2, p3), we
define an element

β(p0, p1, p2, p3) := [z01] + [z10] + [z23] + [z32]

in P(C), the pre-Bloch group.
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3. A P(C)-valued CR invariant. In this section, let G = PU(2, 1). For n ≥ 0,
we define Cn(S

3) to be the free abelian group generated by the set of all generic (n+1)
ordered points in S3 (see Definition 2.21).

The group G acts on S3 and therefore it acts diagonally on Cn(S
3), which gives

Cn(S
3) a left G-module structure.

We define the differential dn : Cn(S
3) → Cn−1(S

3) by

dn(p0, . . . , pn) =

n
∑

i=0

(−1)i(p0, . . . , p̂i, . . . , pn),

then we can check that every dn is a G-module homomorphism and dn ◦ dn+1 = 0.
Hence we have the G-complex

C•(S
3) : · · · → Cn(S

3) → Cn−1(S
3) → · · · → C0(S

3).

We define the augmentation map ǫ : C0(S
3) → Z by ǫ(x) = 1 for each x ∈ S3.

Lemma 3.1 (cf. [S1] pg. 221). The augmentation complex C•(S3) → Z → 0 is
exact.

Proof. Let C−1(S
3) = Z. For z =

∑m
i=1 ni(p

i
0, . . . , p

i
k) ∈ kerdk, we can choose

a point p ∈ S3 such that if k > 0, p, pi0, . . . , p
i
k are generic for all i; if k = 0, p, pi0

are distinct for all i. Hence (p, pi0, . . . , p
i
k) ∈ Ck+1(S

3) and we can check directly that
d(
∑m

i=1 ni(p, p
i
0, . . . , p

i
k)) = z.

For a left G-module M , we denote MG its group of co-invariants, that is,

MG = M/〈gm−m, ∀g ∈ G,m ∈ M〉,

where 〈gm−m, ∀g ∈ G,m ∈ M〉 is the submodule of M generated by all the elements
of the form gm −m, g ∈ G,m ∈ M . Take the co-invariants of the complex C•(S3),
we get the induced complex:

C•(S
3)G : · · · → Cn(S

3)G → Cn−1(S
3)G → · · · → C0(S

3)G,

with differential d̄n : Cn(S
3)G → Cn−1(S

3)G induced by dn. Since G acts dou-
ble transitively on S3, we see that Cn(S

3)G = Z if n ≤ 1, and the differential
d̄1 : C1(S

3)G → C0(S
3)G is zero. The equivalence class of three generic points under

the action of G is determined by their Cartan invariant (see Proposition 2.20), so we
get

C2(S
3)G = Z[R].

Explicitly, a triple (p0, p1, p2) ∈ C2(S
3) determines an element

t = tanA(p0, p1, p2) ∈ Z[R]. In normalized coordinates, (∞, 0, (1, t)) ∈ C2(S
3)

is represented by t ∈ Z[R]. The differential

d̄2 : C2(S
3)G → C1(S

3)G = Z

is given on generators by d̄2(p0, p1, p2) = 1.

By Lemma 2.26, we can describe C3(S
3)G as follows:

C3(S
3)G = Z[K],
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where

K = {(z, s, t) ∈ C× R× R|z 6= 0, 1; z
s+ i

t+ i
6= 1}.

In normalized coordinates, (∞, 0, (1, t), (z, s|z|2)) ∈ C3(S
3) is represented by

(z, s, t) ∈ Z[K], so that

C3(S
3)G =

⊕

(z,s,t)∈K

Z · (∞, 0, (1, t), (z, s|z|2)).

By Z-linear extension of Definition 2.27 to C3(S
3)G, we have a homomorphism

β̄ : C3(S
3)G → P(C)

given by

k
∑

l=1

nl(p
l
0, p

l
1, p

l
2, p

l
3) 7→

k
∑

l=1

nlβ((p
l
0, p

l
1, p

l
2, p

l
3)).

Lemma 3.2. β̄(Im(d̄4)) = 0 in P(C).

Proof. We need to show that the images are in the subgroup generated by the
5-term relations. This is a special case of Theorem 2.17 and follows from Theorem
5.2 in [F3].

Therefore, β̄ induces a well-defined homomorphism:

c :
C3(S

3)G

Im(d̄4)
→ P(C)

defined by

c([p0, p1, p2, p3]) = β̄(p0, p1, p2, p3),

where [p0, p1, p2, p3] denotes the equivalence class of (p0, p1, p2, p3) in the quotient
group. When we restrict to H3(C•(S3)G), we get a homomorphism:

c : H3(C•(S
3)G) → P(C).

Remark 3.3. In the real hyperbolic case, we have G = PSL2(C) acting on CP 1

and the corresponding G-complex. In that case, we know that H3(C•(CP 1)PSL2(C))
is equal to P(C).

Normalizing the four points p0 = ∞, p1 = 0, p2 = (1, t), p3 = (z, s|z|2) according
to Lemma 2.26, we obtain the following invariants;

z01 = z, z10 =
z(s+ i)

t+ i
, z23 =

z[(t+ i)− z(s+ i)]

(z − 1)(t− i)
, z32 =

z(z − 1)(s− i)

(t+ i)− z(s+ i)

and the homomorphism c : C3(S
3)G

Im(d̄4)
→ P(C) can be expressed as

c([p0, p1, p2, p3]) = [z01] + [z10] + [z23] + [z32].
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Definition 3.4. Given a configuration [p0, p1, p2, p3] ∈ C3(S
3)G, we say it is

symmetric if it lies in the kernel of d̄3 : C3(S
3)G → C2(S

3)G.

Note that this definition is related to the definition of a symmetric tetrahedron
introduced in [F2, Section 4.3]. There, a configuration [p0, p1, p2, p3] is symmetric if
there exists an anti-holomorphic involution ϕ such that ϕ(pi) = pj and ϕ(pk) = pl for
{i, j, k, l} = {0, 1, 2, 3}. Three possible symmetries may appear, namely ϕ(p0) = p1,
ϕ(p0) = p3 or ϕ(p0) = p3. They are characterized by A(p0, p1, p2) = A(p0, p1, p3),
A(p0, p2, p3) = A(p0, p1, p3) and A(p0, p1, p2) = −A(p0, p2, p3) respectively. But the
definition above concerns only the first two of them as shown in the next Lemma.

Lemma 3.5. [p0, p1, p2, p3] ∈ C3(S
3)G is symmetric if and only if the Cartan

invariants satisfy

A(p0, p1, p2) = A(p0, p1, p3) or A(p0, p2, p3) = A(p0, p1, p3).

Proof. By the definition,

d̄3([p0, p1, p2, p3]) = [p1, p2, p3]− [p0, p2, p3] + [p0, p1, p3]− [p0, p1, p2].

Hence it lies in kernel of d̄3 if and only if in C2(S
3)G, we have either

[p1, p2, p3] = [p0, p2, p3], and [p0, p1, p3] = [p0, p1, p2]

or

[p1, p2, p3] = [p0, p1, p2], and [p0, p2, p3] = [p0, p1, p3].

We know that in C2(S
3)G, two elements are equal if and only if their Cartan invariants

are the same. It is known that the Cartan invariants satisfy the following cocycle
conditions ([G, Page 219]:

A(p1, p2, p3)− A(p0, p2, p3) + A(p0, p1, p3)− A(p0, p1, p2) = 0.

Now the lemma follows.

Proposition 3.6. Given [p0, p1, p2, p3] ∈ C3(S
3)G as above. Then it is symmet-

ric if and only if one of the following two equivalent conditions holds:
(1). t = s or t+ s− 2(s · Re (z) + Im (z)) = 0;
(2). |z01| = |z32|.

Proof. By [F2, Proposition 4.6], we have

tanA(p1, p2, p3) =
2(s− t)Re z + 2(1 + ts)Im z + t(1 + s2)|z|2 − s(1 + t2)

|(s− i)z + t− i|2 ;

and

tanA(p0, p2, p3) =
|z|2s− t+ 2Im z

|z − 1|2 , tanA(p0, p1, p3) = s, tanA(p0, p1, p2) = t.

By Lemma 3.5, we see that it is symmetric if and only if t = s or s = |z|2s−t+2Im z

|z−1|2 ,

which is condition (1). By the definition of z01 and z32, a direct computation shows
that |z01|2 = |z32|2 if and only if (t− s)(t+ s− 2(s ·Re (z) + Im (z))) = 0.
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Recall that

P(C) = P(C)+ + P(C)−

is the decomposition of P(C) into the two subgroups preserved by the complex con-
jugation involution.

Proposition 3.7. (1). The image of the homomorphism
c : H3(C•(S3)G) → P(C) contains P(C)+, the invariant subgroup of P(C) un-
der complex conjugation.
(2). Suppose [p0, p1, p2, p3] ∈ C3(S

3)G is symmetric. Then its image under the
homomorphism c lies in P(C)+.

Proof. For (1), we show that the subgroup generated by the images of the sym-
metric elements contains P(C)+. Consider the elements [p0, p1, p2, p3] of the form

p0 = ∞, p1 = 0, p2 = (1, t), p3 = (z, t|z|2); z ∈ C− {0, 1}, t ∈ R.

By Proposition 3.6, they are symmetric. By [F2, Corollary 4.11], we find the invari-
ants:

z01 = z, z10 = z, z23 = zeiθ, z32 = ze−iθ; z ∈ C− {0, 1}, θ ∈ R.

Therefore, we have

c([p0, p1, p2, p3]) = [z] + [z] + [zeiθ] + [ze−iθ] (4)

By [Sah, Theorem 4.16], P(C) is a Q-vector space. LetB =
∑k

i=1 ni[ai] ∈ P(C)+.

Then σ(B) =
∑k

i=1 ni[ai] = B. Hence

B =
1

2
(B + σ(B)) =

1

2

k
∑

i=1

ni([ai] + [ai]).

Choose bi ∈ C such that ai = b2i and therefore ai = bi
2
. By [DS, Theorem 5.23], we

know that in P(C), [a2] = 2([a] + [−a]). Therefore,

B =

k
∑

i=1

ni([bi] + [bi] + [−bi] + [−bi]).

Now in (4), if we choose z = bi and eiθ = −1, we see that the first part follows.
For (2), let T = c([p0, p1, p2, p3]) = [z01] + [z10] + [z23] + [z32]. Using the 5-term

relations, a direct computation shows that in P(C), the difference σ(T )− T is equal
to

[
z32(1 − z10)

z01(1 − z23)
] + [

z32(1− z23)

z01(1− z10)
] + [

z01(1− z23)

z32(1− z10)
] + [

z01(1− z10)

z32(1− z23)
]

Put

a =
z32(1− z10)

z01(1− z23)
, b =

z32(1 − z23)

z01(1 − z10)
,
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we can rewrite

σ(T )− T = [a] + [b] + [(a)−1] + [(b)−1], and ab =
|z32|2
|z01|2

.

Since [p0, p1, p2, p3] is symmetric, by Proposition 3.6, ab = 1, i.e. b = a−1. On the
other hand, we know in P(C),

[z] + [z−1] = 0,

therefore

σ(T )− T = [a] + [a−1] + [(a)−1] + [a] = 0.

That is, σ(T ) = T and the image lies in P(C)+.

Remark 3.8. The previous proposition shows that the homomorphism
c : H3(C•(S3)G) → P(C) is non-trivial, and P(C)+ is equal to the image of the
subgroup generated by the symmetric configurations. It would be very interesting to
determine its kernel and image.

Let M be a 3-dimensional spherical CR manifold (possibly non-compact).
Suppose it has a triangulation consisting of finitely many CR tetrahedra, say
M = ∆1∪· · ·∪∆k with each ∆i a CR tetrahedron (here we suppose that the triangu-
lation is ideal if the manifold is non-compact). Denote pi0, p

i
1, p

i
2, p

i
3 the four vertices

of ∆i where the order of the vertices is consistent with the orientation.

Definition 3.9. Let M be as above with the CR triangulation. Define an element

[M ] ∈ C3(S
3)G

Im(d̄4)
by

[M ] :=
k

∑

i=1

[pi0, p
i
1, p

i
2, p

i
3].

Lemma 3.10. 1. [M ] is independent of the triangulation.
2. [M ] ∈ H3(C•(S3)G), that is, d̄3([M ]) = 0.

Proof. 1. IfM is closed, we know that two different triangulations can be obtained
from one to the other by Pachner moves. If M is not closed, by Theorem 2.13, the
same result holds. From the definition, it is clear one Pachner move gives an element
of Im(d̄4). Hence [M ] is independent of the triangulation.

2. Since M is triangulated, their faces are matched and the terms in d̄3([M ]) are
canceled out in pairs.

In the following definition we suppose that a triangulation of a non-compact
manifold is ideal.

Definition 3.11. Let M be a 3-dimensional spherical CR manifold with a CR
triangulation. We define β(M) := c([M ]) ∈ P(C).

Now recall the Bloch-Wigner function (See Definition 2.8) D : P(C) → R.

Theorem 3.12. Let M be as in the definition 3.11. Then D(β(M)) = 0.
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Proof. For a configuration [p0, p1, p2, p3] ∈ C3(S
3)G with its cross-ratios zij , by

remark 3 of section 6 in [F3, page 14], we have the following identity:

−e2iA(pi,pj ,pk) = zilzjlzkl,

where [i, j, k, l] is an even permutation of [0, 1, 2, 3]. By [F3, Proposition 6.5], we
obtain:

2D(c([p0, p1, p2, p3])) = D(−e2iA(p1,p2,p3)) +D(−e2iA(p0,p3,p2))

+D(−e2iA(p0,p1,p3)) +D(−e2iA(p0,p2,p1)).

Let M = ∆1 ∪ · · · ∪∆k with each ∆i a CR tetrahedron. Denote pi0, p
i
1, p

i
2, p

i
3 the four

vertices of ∆i and the order of the vertices is consistent with the orientation. Then
by definition

D(β(M)) =

k
∑

i=1

D(c([pi0, p
i
1, p

i
2, p

i
3])).

Since M is glued by the tetrahedra ∆i, their faces are glued in pairs, and the corre-
sponding Cartan invariants are equal. By the above formula of 2D(c([p0, p1, p2, p3])),
we see that the terms in D(β(M)) are canceled in pairs. Hence it is zero.

Remark 3.13. Note that D(β(M)) is the CR volume of M defined in [F3]. The
above theorem says that it is always zero. This is exactly the opposite to the real
hyperbolic case where the volume is never zero.

4. An invariant in B(k). In this section, we will discuss when the P(C)-valued
invariant defined above can be defined in the Bloch group B(k) for k a number field.
We first discuss the real hyperbolic case, where it is known that the invariant always
lies in B(C).

Observe first that given a cross-ratio structure (T,X) associated to a triangulation
we may associate a field k

X
= Q(z1, · · · ), where z1, · · · are all the cross-ratios. It is

clearly preserved by taking finite coverings of the structure. From Proposition 4.2 in
[F3] we obtain:

Proposition 4.1. The field k
X

is invariant under elementary moves.

For the case of an ideal real hyperbolic triangulation see [NR]. In particular,
one can compare k

X
to a holonomy representation defined by an ideal triangulation.

Recall that the invariant trace field of a representation ρ : Γ → PSL(2,C) is given by
taking lifts g̃ ∈ SL(2,C) of elements g ∈ PSL(2,C) and defining ([R])

kρ = Q
({

Tr(g̃2) | g ∈ Γ
})

.

For an ideal triangulation of a finite volume cusped hyperbolic manifold, the field
obtained by adjoining the cross-ratios of the ideal tetrahedra and the field obtained
from a holonomy representation ρ are the same, that is kρ = k

X
([NR] Theorem 2.4 pg.

277). Moreover, if we choose one tetrahedron with one of its faces normalized to be, in
homogeneous coordinates of CP 1, [1, 0], [0, 1], [1, 1] (that is, ∞, 0, 1 in C∪ {∞}), then
the coordinates [zi, 1] of the vertices of the other tetrahedra obtained by developing
the triangulation are all in the field k

X
and any side pairing g ∈ PSL(2,C) which

identifies two sides of the triangulation has a lift with coefficients in the same field
(see [NR] lemma 2.5 pg. 278).
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In the case of CR structures analogous results were proven in [Ge1]. Denote by
g̃ ∈ SU(2, 1) a lift of an element g ∈ PU(2, 1). Let the invariant trace field of a
representation ρ : Γ → PU(2, 1) be defined as (see [Ge1, Mc])

kρ = Q
({

Tr((ρ̃(γ))3) | γ ∈ Γ
})

.

For an ideal triangulation of a CR structure, we can develop it in S3 by choosing one
tetrahedron with one of its faces normalized to be, in homogeneous coordinates of
CP 2,

[1, 0, 0], [0, 0, 1], [(−1+ it)/2, 1 + it, 1]

(that is, ∞, 0, 1 + it in the compactified Heisenberg space N), then the coordinates
[z1i , z

2
i , 1] of the vertices of the other tetrahedra obtained by developing the triangula-

tion are all in the field k
X
. We will call such a construction a normalized development.

Proposition 4.2 ([Ge]). If (T,X) is a CR triangulation then

k
X
= Q(z1i , z

2
i , z̄

1
i , z̄

2
i ),

where [z1i , z
2
i , 1] are as above, the coordinates of the vertices of a normalized develop-

ment. In particular, k
X

is invariant under complex conjugation.

Choosing an edge in each simplex allows us to obtain an element in the pre-Bloch
group. We will denote by Tb the triangulation with a choice of edge in each simplex.
This can, for instance, be achieved by a choice of branching of the triangulation.

Definition 4.3. Let (Tb,X) be a cross-ratio structure on a triangulation with a
choice of edge on each simplex. Define

βk(Tb,X) =
∑

s

([zs01] + [zs10] + [zs23] + [zs32]) ∈ P(k
X
).

Remark. This definition depends on a choice of edge in each simplex of a trian-
gulation. There are several ways to make it independent of the choice. We can use
Lemma 2.4 and define it to be 2β(T,X) in P(k

X
(ω)), where ω is a cubic root of unity.

We will use, instead, the following

Definition 4.4. Let (T,X) be a cross-ratio structure. Define

β̃k(T,X) =
∑

s

∑

i6=j

[zsij ]

=
∑

s

([zs01] + [zs10] + [zs23] + [zs32] + [zs02] + [zs20] + [zs13] + [zs31] + [zs03] + [zs30] + [zs12] + [zs21]) ∈ P(k
X
).

Another definition that is independent of the particular choice of edges in each
tetrahedron starts by defining a slightly smaller pre-Bloch group P ′(k

X
) as in ([NY]

Definition 2.3 pg. 4) to be the quotient of the free abelian group Z[k
X
∪∞] by the

subgroup generated by 5-term relations and

[1] = [0] = [∞] = 0.

Both definitions of the pre-Bloch group will differ by a torsion subgroup.
With the definition above we have [z] = [ 1

1−z
] and therefore one can define

∑

s([z
s
01] + [zs10] + [zs23] + [zs32]) as an invariant which does not depend on the choice

of a pair of edges in each tetrahedron.
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4.1. The real hyperbolic invariant. We will show for a finite volume non-
compact real hyperbolic 3-manifold with ideal triangulation, the corresponding in-
variant lies in B(C). This follows from [NZ] (see a proof in [NY]). But we give an
elementary geometric proof of the identity which will give an idea of the proof in the
CR case.

Consider an ideal triangulation of a 3-manifold. We order the simplices by choos-
ing arbitrarily a first one and then a second one with a common face. Having chosen
n simplices we choose the (n+ 1)-th as a simplex with one face in common with the
union of the previous ones or, if there are two common faces, they share a common
edge (if there are three common faces, the edges defined by each pair should be com-
mon too). In this way we obtain a polyhedron homeomorphic to a 3-ball with face
pairings on its boundary (homeomorphic to a sphere).

Suppose the triangulation has a hyperbolic cross-ratio structure. To each order
on the simplices as above, we can associate a well defined map from the 0-skeleton of
each simplex to CP 1. We can associate with the first simplex the points ∞, 0, 1, z and
proceed determining the other vertices which are clearly defined by the cross-ratios.
In fact, the map is determined by the chosen order on the simplices and the initial
map defined on the 0-skeleton of the first simplex.

Definition 4.5. The holonomy group of the hyperbolic structure is the group
generated by the face pairing transformations of the polyhedron.

Let pi ∈ CP 1 be the vertices of the development map as above. Choose a lift
vi ∈ C2 for each vertex pi. The vertices of the faces of the polyhedron are identified
by side pairings in PSL(2,C) but their lifts to C2 might not be identified by lifts of
the side pairings to SL(2,C).

Definition 4.6. We call a lift of the vertices of a development of a triangulation
special if there are lifts of the side pairings which preserve the lifted vertices up to
multiplication by −1.

Lemma 4.7. Any ideal triangulation of a finite volume 3-manifold has a special
lift.

Proof. We consider a finite ideal triangulation of the 3-manifold and its develop-
ment by ideal tetrahedra in hyperbolic space. We are only interested in its vertices
in CP 1. Let Γ ∈ PSL(2,C) be the holonomy group of the hyperbolic structure.

Choose one vertex p ∈ CP 1 and a lift v ∈ C2 of p. Without loss of generality, we
suppose that v = (1, 0) (p = ∞). The elements of SL(2,C) which are lifts of elements
of the parabolic group fixing p are of the form

±
[

1 ⋆
0 1

]

.

Consider all vertices identified to p by the holonomy group. That is, the other vertices
pi are obtained by pi = gip for gi ∈ Γ. Let ĝi ∈ SL(2,C) be a lift of gi and let vi = ĝiv.
We first observe that the definition is compatible up to a multiplication by−1. Indeed,
if gkp = glp then g−1

l gkp = p and therefore g−1
l gk is parabolic (or the identity) and

ĝkv = ±ĝlv.

Let g ∈ Γ be a side pairing of the polyhedra obtained by the development map.
We have ggip = gjp, therefore (gj)

−1ggip = p and we conclude that (gj)
−1ggi is
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parabolic and then its lift (ĝj)
−1ĝĝi is a parabolic element (or the identity element)

fixing v up to sign. This implies that ĝĝiv = ±ĝjv and we conclude that

ĝvi = ±vj.

We do that for each cycle of vertices and obtain that the lift is special.

Here we use the following observation in [DZ]. Let vi = (v1i , v
2
i ) ∈ C2 for 0 ≤ i ≤ 3

and define the determinant

[vi, vj ] =

∣

∣

∣

∣

v1i v1j
v2i v2j

∣

∣

∣

∣

.

Suppose (v0, v1, v2, v3) is a quadruple of points in C2 so that they define a quadruple
of pairwise distinct points (p0, p1, p2, p3) in CP 1, where h(vi) = pi is the projection
in projective space. Observe that

[p0, p1, p2, p3] =
[v2, v0][v3, v1]

[v3, v0][v2, v1]

is the cross ratio of the projection of the four distinct points in CP 1.
If we choose a special hyperbolic lift of a triangulation, we obtain a well de-

fined function (up to a sign) on the 1-simplices of the triangulation. That function
recuperates the cross ratio of the 3-simplices according to the formula above.

4.2. Bloch identity.

Definition 4.8. Given a finite hyperbolic triangulation T = (Ti, zi) by ideal
tetrahedra, we define its Bloch sum by

δ(β(T )) =
∑

i

zi ∧ (1− zi).

We prove

Theorem 4.9. For a finite ideal triangulation T of a finite volume hyperbolic
manifold

δ(β(T )) = 0.

Proof. Consider a development of the triangulation with vertices in CP 1. There
exists a special lift by the Proposition above. We compute the following sum

∑

i

[pi0, p
i
1, p

i
2, p

i
3] ∧ [pi0, p

i
2, p

i
3, p

i
1].

For each tetrahedron (p0, p1, p2, p3), let vi be the lift of pi. Then

[p0, p1, p2, p3] =
[v2, v0][v3, v1]

[v3, v0][v2, v1]
.

Therefore

[p0, p1, p2, p3] ∧ [p0, p2, p3, p1] =
[v2, v0][v3, v1]

[v3, v0][v2, v1]
∧ [v3, v0][v1, v2]

[v1, v0][v3, v2]

= [v0, v2] ∧ [v0, v3] + [v0, v2] ∧ [v2, v1]− [v0, v2] ∧ [v2, v3]− [v0, v2] ∧ [v0, v1]

+ [v1, v3] ∧ [v0, v3] + [v1, v3] ∧ [v2, v1]− [v1, v3] ∧ [v2, v3]− [v1, v3] ∧ [v0, v1]

− [v1, v2] ∧ [v0, v3]− [v1, v2] ∧ [v2, v1] + [v1, v2] ∧ [v2, v3] + [v1, v2] ∧ [v0, v1]

− [v0, v3] ∧ [v0, v3]− [v0, v3] ∧ [v2, v1] + [v0, v3] ∧ [v2, v3] + [v0, v3] ∧ [v0, v1].
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Observe that (−a) ∧ b = a ∧ b and [v, w] = −[w, v]. Therefore we can write

[p0, p1, p2, p3] ∧ [p0, p2, p3, p1]

= [v0, v1] ∧ [v0, v2] + [v0, v2] ∧ [v0, v3] + [v0, v3] ∧ [v0, v1]

+[v1, v2] ∧ [v1, v0] + [v1, v3] ∧ [v1, v2] + [v1, v0] ∧ [v1, v3]

+[v2, v0] ∧ [v2, v1] + [v2, v1] ∧ [v2, v3] + [v2, v3] ∧ [v2, v0]

+[v3, v0] ∧ [v3, v2] + [v3, v2] ∧ [v3, v1] + [v3, v1] ∧ [v3, v0].

This shows that each face of a fixed tetrahedron appears three times in the sum
but the terms corresponding to a common face between two tetrahedra appear with
opposite sign. When the faces are identified by a side pairing, the lift of the side
pairing, at most, changes the sign of the lifted vertices. But the terms of the sum
above are invariant under sign change.

4.3. CR invariant. Let v1, v2 ∈ C2,1 be two vectors in the Hermitian space C2,1

with Hermitian product 〈·, ·〉. We will write v12 = v1⊠v2 for the (alternating bilinear)
Hermitian cross-product as defined in 2.18. It satisfies, for any v1, v2, v3 ∈ C2,1,

〈v1, v23〉 = 〈v2, v31〉.

For four generic points (p0, p1, p2, p3) in S3 and vi ∈ C2,1 chosen lifts, put

[p0, p1, p2, p3] =
〈v3, v01〉〈v2, v0〉
〈v2, v01〉〈v3, v0〉

.

Then by Definition 2.27, 2.24, we have

β(p0, p1, p2, p3) = [p0, p1, p2, p3] + [p1, p0, p3, p2] + [p2, p3, p0, p1] + [p3, p2, p1, p0].

The next proposition computes the image of β(p0, p1, p2, p3) under the map

δ : P(C) → C∗ ∧C∗

defined on the generators of P(C) by δ([z]) = z ∧ (1 − z). The main objective is to
obtain an expression which depends on four oriented surface terms. These terms will
cancel out when two configurations have a common face.

Lemma 4.10. Let pi ∈ S3, 0 ≤ i ≤ 3, be four pairwise distinct points and
vi ∈ C2,1 chosen lifts (to simplify notations we will denote vi simply i). We have

−δ(β(p0, p1, p2, p3)) = 〈3, 01〉 ∧ 〈0, 1〉〈1, 3〉〈3, 0〉
〈0, 3〉〈3, 1〉〈1, 0〉 + 〈2, 01〉 ∧ 〈0, 2〉〈2, 1〉〈1, 0〉

〈0, 1〉〈1, 2〉〈2, 0〉

+〈3, 02〉 ∧ 〈0, 3〉〈3, 2〉〈2, 0〉
〈0, 2〉〈2, 3〉〈3, 0〉 + 〈2, 31〉 ∧ 〈1, 2〉〈2, 3〉〈3, 1〉

〈1, 3〉〈3, 2〉〈2, 1〉
+〈2, 0〉 ∧ 〈3, 0〉+ 〈1, 0〉 ∧ 〈2, 0〉+ 〈3, 0〉 ∧ 〈1, 0〉
+〈3, 1〉 ∧ 〈2, 1〉+ 〈0, 1〉 ∧ 〈3, 1〉+ 〈2, 1〉 ∧ 〈0, 1〉
+〈0, 2〉 ∧ 〈1, 2〉+ 〈3, 2〉 ∧ 〈0, 2〉+ 〈1, 2〉 ∧ 〈3, 2〉
+〈1, 3〉 ∧ 〈0, 3〉+ 〈2, 3〉 ∧ 〈1, 3〉+ 〈0, 3〉 ∧ 〈2, 3〉.

Proof. To simplify notation we write

[p0, p1, p2, p3] = [0, 1, 2, 3] =
〈3, 01〉〈2, 0〉
〈2, 01〉〈3, 0〉 .
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Also, observe that

−δ([0, 1, 2, 3]) = [0, 1, 2, 3] ∧ [0, 2, 3, 1].

Therefore we need to compute

−δ(β(p0, p1, p2, p3)) = [0, 1, 2, 3]∧ [0, 2, 3, 1] + [1, 0, 3, 2]∧ [1, 3, 2, 0]

+[2, 3, 0, 1]∧ [2, 0, 1, 3] + [3, 2, 1, 0]∧ [3, 1, 0, 2]

=
〈3, 01〉〈2, 0〉
〈2, 01〉〈3, 0〉 ∧

〈1, 02〉〈3, 0〉
〈3, 02〉〈1, 0〉 +

〈2, 10〉〈3, 1〉
〈3, 10〉〈2, 1〉 ∧

〈0, 13〉〈2, 1〉
〈2, 13〉〈0, 1〉

+
〈1, 23〉〈0, 2〉
〈0, 23〉〈1, 2〉 ∧

〈3, 20〉〈1, 2〉
〈1, 20〉〈3, 2〉 +

〈0, 32〉〈1, 3〉
〈1, 32〉〈0, 3〉 ∧

〈2, 31〉〈0, 3〉
〈0, 31〉〈2, 3〉 .

We may use the distributive property of the wedge product to obtain a sum of three
types of terms. The first type one is of the form 〈i, jk〉 ∧ 〈i′, j′k′〉. The second one is
of the form 〈i, jk〉 ∧ 〈n,m〉. The third type is 〈i, j〉 ∧ 〈n,m〉.

Using the property 〈1, 23〉 = 〈2, 31〉 = −〈1, 32〉 and the fact that (−1)∧ z = 0 for
all z we can treat 〈i, jk〉 as invariant under all permutations.

We obtain by a straightforward computation that all terms of type 1 cancel out.
Also, the terms of type 2 can be written in a more concise form as

〈3, 01〉 ∧ 〈0, 1〉〈1, 3〉〈3, 0〉
〈0, 3〉〈3, 1〉〈1, 0〉 + 〈2, 01〉 ∧ 〈0, 2〉〈2, 1〉〈1, 0〉

〈0, 1〉〈1, 2〉〈2, 0〉

+ 〈3, 02〉 ∧ 〈0, 3〉〈3, 2〉〈2, 0〉
〈0, 2〉〈2, 3〉〈3, 0〉 + 〈2, 31〉 ∧ 〈1, 2〉〈2, 3〉〈3, 1〉

〈1, 3〉〈3, 2〉〈2, 1〉 .

Finally, the terms of type 3 are the following

〈2, 0〉 ∧ 〈3, 0〉+ 〈1, 0〉 ∧ 〈2, 0〉+ 〈3, 0〉 ∧ 〈1, 0〉
+〈3, 1〉 ∧ 〈2, 1〉+ 〈0, 1〉 ∧ 〈3, 1〉+ 〈2, 1〉 ∧ 〈0, 1〉
+〈0, 2〉 ∧ 〈1, 2〉+ 〈3, 2〉 ∧ 〈0, 2〉+ 〈1, 2〉 ∧ 〈3, 2〉
+〈1, 3〉 ∧ 〈0, 3〉+ 〈2, 3〉 ∧ 〈1, 3〉+ 〈0, 3〉 ∧ 〈2, 3〉.

Consider a CR triangulation and Let pi ∈ S3 be the vertices of the developement
map as in the real hyperbolic case. Choose a lift vi ∈ C3 for each vertex pi. The
vertices of the faces of the polyhedron are identified by side pairings in PU(2, 1).

Definition 4.11. Define the holonomy group of a CR triangulation to be the
group generated by the face pairing transformations of the polyhedron.

Definition 4.12. We call a lift of the vertices of a development of a CR trian-
gulation special if there are lifts of the side pairings preserving the lifted vertices up
to multiplication by a root of unity.

Lemma 4.13. If a CR triangulation is such that each vertex of the developed
triangulation is the fixed point of purely parabolic elements (or the identity) of the
holonomy group then it has a special lift.

Proof. The proof is the same as in the case of real hyperbolic structures. That
is, we divide the vertices into classes, each one obtained by translating a fixed vertex
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by elements of the holonomy group. That is, fixing a vertex p ∈ S3 we consider
all vertices identified to p by the holonomy group. That is, the other vertices pi
are obtained by pi = gip for gi ∈ Γ. In order to verify the compatibility, suppose
gip = gjp. Then g−1

j gip = p and by hypothesis g−1
j gi is purely parabolic. Without

loss of generality, we suppose that p = ∞ and let ĝi ∈ SU(2, 1) be a lift of gi and
let vi = ĝiv. Then ĝip̂ = ωgj p̂ where ω is a cubic root of unity. Let g ∈ Γ be a side
pairing of the polyhedra obtained by the development map. We have ggip = gjp,
therefore (gj)

−1ggip = p and we conclude that (gj)
−1ggi is parabolic and then its lift

(ĝj)
−1ĝĝi is a parabolic element (or the identity element) fixing v up to a cubic root

of unity. We conclude that

ĝvi = vj .

up to multiplication by a cubic root of unity. We do that for each cycle of vertices
and obtain that the lift is special.

Theorem 4.14. Let M be a 3-dimensional spherical CR manifold with a CR
triangulation, say M = ∆1 ∪ · · · ∪∆k with each ∆i a CR tetrahedron. Suppose M is
non-compact with purely parabolic boundary. Then its invariant β(M) ∈ B(C), that
is,

∑

i

δ(β(∆i)) = 0.

Proof. The proof follows from the previous proposition. We choose a special lift
and each face of a fixed tetrahedron appears four times in the sum but the terms
corresponding to a common face between two tetrahedra appear with opposite sign.
The only problem might arise with the side pairing maps, but the surface terms
obtained will differ by terms (which are null) of the form ω ∧ a where ω is a cubic
root of unity.

The arguments above are valid if we substitute C for k = k
X
where k

X
is the field

generated by the cross-ratios of a triangulation. We will make the hypothesis that k
is a number field in order to obtain a special lift:

Lemma 4.15. If a CR triangulation with k = k
X
a number field is such that each

vertex of the developed triangulation is the fixed point of a parabolic or elliptic element
(that is, we exclude loxodromic elements) of the holonomy group then a finite cover
of the triangulation has development with a special lift.

Here the root of unity appearing in the definition of a special lift is in k.

Proof. We first consider a normalized development of the vertices. By Proposition
4.2 the coordinates of a normalised development of the triangulation are contained in
the invariant field. By Lemma 3.4 of [Ge] any element M in the holonomy is such
that M3 ∈ SU(2, 1, k). Let Γ be the group generated by the cubes. It is a finite
index subgroup of the holonomy group and we consider the corresponding finite cover
of the triangulation. It defines the same field k but now the side pairings have lifts
in SU(2, 1, k). Now we argue as before: we divide the vertices into classes, each one
obtained by translating a fixed vertex by elements of the holonomy group. Fixing a
vertex p ∈ S3 we consider all vertices identified to p by the holonomy group. That
is, the other vertices pi are obtained by pi = gip for gi ∈ Γ. Suppose gip = gjp.
Then g−1

j gip = p and by hypothesis g−1
j gi is parabolic or elliptic with coefficients in
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k. Without loss of generality, we suppose that p = ∞ and let ĝi ∈ SU(2, 1, k) be a
lift of gi and vi = ĝiv. Then ĝip̂ = µgj p̂ where µ is a root of unity in the field k. Let
g ∈ Γ be a side pairing of the polyhedra obtained by the development map. We have
ggip = gjp, therefore (gj)

−1ggip = p and we conclude that (gj)
−1ggi is parabolic or

elliptic and then its lift (ĝj)
−1ĝĝi fixes v up to a root of unity. We conclude that

ĝvi = vj .

up to multiplication by a root of unity. We do that for each cycle of vertices and
obtain that the lift is special.

Theorem 4.16. Let k = k
X

(which we suppose to be a number field) be the in-
variant field of a CR-triangulation of M with parabolic or elliptic boundary holonomy.
Then there exists an integer d ≥ 1 such that dβ(M) ∈ B(k).

Proof. By the proposition above we obtain a special normalized lift of a certain
finite cover of M . The proof then follows as in theorem 4.14 for the cover so that
dβ(M) ∈ B(k) for an integer d ≥ 1.

Theorem 4.17. Let k
X

be the field of a CR-triangulation (T,X). Suppose
kX ⊂ k where k is a purely imaginary quadratic extension of a totally real field.
If β(T,X) ∈ B(k) then it is torsion.

Proof. We proved that D(β(T,X)) = 0 and the result follows from Borel’s theo-
rem.

Let M be a CR-triangulation. Assume that its invariant β(M) ∈ B(C). Then we
have ρ(β(M)) ∈ C/π2Q. By Theorem 3.12, we know Im ρ(β(M)) = 0.

Definition 4.18. Let M be as above with β(M) ∈ B(C). We define its Chern-
Simons invariant to be the real part of ρ(β(M)), denoted by CS(M).

Remark. Theorem 4.17 implies that if the invariant field associated to a CR
structure is an imaginary quadratic extension of a totally real field then CS(M) = 0.

5. Examples. Besides the 5-term relation (1) at the beginning, it is known ([S1])
that we have two more identities in P(C):

[z] + [z−1] = 0, (5)

[z] + [1− z] = 0. (6)

In the following, for a comlex number a, we will denote its complex conjugation by a.

5.1. Figure 8 knot complement. The Figure 8 knot complement K can be
glued by two ideal CR tetrahedra. Solving the equations in [F2] imposing that R(H2)
be real, we obtain the following one real parameter family of solutions: Let

α =

√

2− 4β2 + 2
√

5− 8β.

Observe that α is real for I = {β | − 1
2 −

√
5
2 ≤ β ≤ 5

8 }. Then one branch of solutions
is given (for β ∈ I), by:

w12 = β +
α

2
i; w21 = β − α

2
i; w34 = β +

α

2
i; w43 = β − α

2
i.
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and

z12 =

√
5− 8β − 2β + 1 + αi√

5− 8β + 3− 4β
; z21 = z12; z34 = z12; z43 = z12.

Lemma 5.1. The invariant

[w12] + [w21] + [w34] + [w43] + [z12] + [z21] + [z34] + [z43] = 0 in P(C).

Proof. By the definition, we see that LHS= 2([w12] + [w12] + [z12] + [z12]). We
will check that

1

1− 1
w12

=
w12

w12 − 1
= z12, and

1

1− 1
w12

=
w12

w12 − 1
= z12.

Then it will follow that [w12] + [z12] = 0, and [w12] + [z12] = 0. The lemma will
be proved. We only need to check the first one since the second is the complex
conjugation of the first one.

w12

w12 − 1
=

β + α
2 i

(β − 1) + α
2 i

=
(β + α

2 i)((β − 1)− α
2 i)

(β − 1)2 + α2

4

=
[β(β − 1) + α2

4 − α
2 i]

(β − 1)2 + α2

4

.

Multiplying by 2 on the numerator and denominator of the last fraction, we get

w12

w12 − 1
=

2β(β − 1) + α2

2 − αi

2(β − 1)2 + α2

2

.

By the equation of α and β at the beginning, we have

2β2 +
α2

2
= 1 +

√

5− 8β.

Plug this in and simplify, we have

w12

w12 − 1
=

(
√
5− 8β − 2β + 1)− αi√

5− 8β + 3− 4β
= z12.

For β = 1/2 we obtain α =
√
3 and therefore the invariant

β(K) = 4([ω] + [ω]),

where ω = exp(2πi3 ) is a primitive cube root of unity. Since ω = ω−1, by (5), we see
in P(C)

[ω] + [ω] = 0.

So β(K) = 0.
In [F2, Page 94], there are two other representations from the fundamental group

of the figure eight complement to PU(2, 1). They have cyclic holonomy on the bound-
ary. The first invariants are

w12 =
3

8
+

√
7

8
i; w21 =

5

4
+

√
7

4
i; w34 =

3

8
−

√
7

8
i; w43 =

5

4
−

√
7

4
i.
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The second invariants are

t12 =
3

2
+

√
7

2
i; t21 = −1

4
−

√
7

4
i; t34 =

3

2
−

√
7

2
i; t43 = −1

4
+

√
7

4
i.

Let F = Q(
√
−7). Then we have the invariants

β1(K) = 2([w12] + [w21] + [w34] + [w43]), β2(K) = 2([t12] + [t21] + [t34] + [t43]) ∈ P(F ).

Proposition 5.2. (1). β1(K) = −2cF in P(F ).
(2). β2(K) = 0 in P(F ).
(3). β1(K) ∈ B(F ) is a non-trivial torsion of order 3.

Proof. (1). Let’s put

a = w34 =
3

8
−

√
7

8
i, b = w43 =

5

4
−

√
7

4
i,

then

1

2
b =

5

8
−

√
7

8
i = 1− a,

1

2
b =

5

8
+

√
7

8
i = 1− a,

and

[a] = cF − [1− a] = cF − [
1

2
b], [a] = cF − [1− a] = cF − [

1

2
b].

Therefore,

β1(K) = 2([b] + [b]− [
1

2
b]− [

1

2
b] + 2cF ).

By the five-term equation (1), take x = 1
2 , y = 1

2b, then we obtain

[
1

2
]− [

1

2
b] + [b]− [

1− 2

1− (12b)
−1

] + [
1− 1

2

1− 1
2b

] = 0.

Direct computations show that

s =
1− 1

2

1− 1
2b

=
3

4
−

√
7

4
i, and

1− 2

1− (12b)
−1

=
1

1
4 +

√
7
4 i

=
1

1− s
.

Hence,

[b]− [
1

2
b] = [

1

1− s
]− [s]− [

1

2
].

Similarly by taking x = 1
2 , y = 1

2b, we have

[b]− [
1

2
b] = [

1

1− s
]− [s]− [

1

2
].

Hence,

β1(K) = 2([
1

1− s
]− [s]+[

1

1− s
]− [s]−cF )+4cF = 2([

1

1− s
]− [s]+[

1

1− s
]− [s])+2cF .
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By Lemma 1.2 of [S1], in P(F ) we have

2([
1

1− s
]) = −2[1− s], and 2([

1

1− s
]) = −2[1− s],

so

β1(K) = −2cF − 2cF + 2cF = −2cF .

(2). Notice that

t43 = 1− w43, t21 = 1− w21, t12 = w−1
34 ; t34 = w−1

12 .

Hence we have

[t43] = cF − [w43], [t21] = cF − [w21], 2[t12] = −2[w34], 2[t34] = −2[w12],

and

β2(K) = 2([t12] + [t21] + [t34] + [t43]) = 4cF − β1(K) = 6cF = 0.

The last equality comes from [S1, Lemma 1.5(a)].

(3). Since cF ∈ B(F ), by (1), β1(K) ∈ B(F ). It is easy to see that for
F = Q(

√
−7), µ(F ) = {±1} = Z/2. Hence Tor(µ(F ), µ(F )) = Z/2. The result

follows by Lemma 2.7.

Corollary 5.3. Both β1(K) and β2(K) are zero in B(C).
Proof. β2(K) = 0 in B(C) since it is already zero in P(F ). For β1(K), since it

is a torsion in B(F ), it will be a torsion in B(C). We know that B(C) is torsion-free,
hence β1(K) = 0 in B(C).

5.2. Whitehead link complement. The Whitehead link complement W can
be glued by four ideal CR tetrahedra. See [Sc, Ge]. Their CR invariants are:

A01 = −1

8
+

√
15

8
i; A10 = −2; A23 = −3

4
+

√
15

4
i; A32 =

1

2
−

√
15

6
i.

B01 = −2; B10 = A01; B23 = A32; B32 = A23.

C01 = A01; C10 = −2; C23 = A23; C32 = A32.

D01 = −2; D10 = A01; D23 = A32; D32 = A23.

Let F = Q(
√
−15). Then we have

β(W ) = 4[−2] + 2([A01] + [A01] + [A23] + [A23] + [A32] + [A32]) ∈ P(F ).

In P(F ), by [S1, Lemma 1.2], for any z 6= 0, 1 we have :

2([z] + [z−1]) = 0. (7)
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Lemma 5.4. Let z ∈ F − {0, 1,−1}. Then we have

2[z2] = 4[z] + 4[−z].

Proof. By [S1, Lemma 4.5], we have [z2] = 2([z] + [−z] + [−1]). By (7), we have
4[−1] = 0. Hence

2[z2] = 4[z] + 4[−z] + 4[−1] = 2[z2] = 4[z] + 4[−z].

Proposition 5.5. (1). β(W ) = 4[ 12 ] in P(F ).
(2). β(W ) ∧ (1− β(W )) = 0, hence β(W ) ∈ B(F ).
(3). β(W ) has order 3 in B(F ).

Proof. (1). Since 1−A32 = 1
2 +

√
15
6 i = A32, by Definition 2.5, we get

[A32] + [A32] = [A32] + [1−A32] = cF .

In the 5-term equation (1), take x = A01, y = A01A01 = |A01|2, we obtain in P(F ):

[A01]− [|A01|2] + [A01]− [
1−A−1

01

1− |A01|−2
] + [

1−A01

1− |A01|2
] = 0.

Therefore,

[A01] + [A01] = [|A01|2] + [
1−A−1

01

1− |A01|−2
]− [

1−A01

1− |A01|2
].

Direct computations show that

1−A−1
01

1− |A01|−2
= A−1

23 .

1−A01

1− |A01|2
= 1− 1

A23

.

Therefore,

[A01] + [A01] = [
1

4
] + [A−1

23 ]− [1− 1

A23

].

We obtain that

β(W ) = 4[−2] + 2([A01] + [A01] + [A23] + [A23] + [A32] + [A32])

= 4[−2] + 2([
1

4
] + [A−1

23 ]− [1− 1

A23

] + [A23] + [A23] + cF )

= 4[−2] + 2([
1

4
] + [A−1

23 ]− [1− 1

A23

]− [
1

A23

] + [
1

A23

] + [A23] + [A23] + cF )

= 4[−2] + 2([
1

4
] + [A−1

23 ]− cF + [
1

A23

] + [A23] + [A23] + cF )

= 4[−2] + 2([
1

4
] + [A23] + [A−1

23 ] + [A23] + [(A23)
−1])

= 4[−2] + 2[
1

4
] (By (7)).
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Next by Lemma 5.4 and (7), we have in P(F )

2[z2] = 4[z] + 4[−z] and 2[z] = −2[z−1].

Therefore,

2[
1

4
] = 4[

1

2
] + 4[−1

2
] = 4[

1

2
]− 4[−2].

Now in P(F ) we have

β(W ) = 4[−2] + 4[
1

2
]− 4[−2] = 4[

1

2
].

(2). Since

δ(ρ(W ) = 4(
1

2
∧ (1− 1

2
)) = 4(

1

2
∧ 1

2
) = 0,

β(W ) ∈ B(F ).

(3). Notice β(W ) = 4[ 12 ] = 2([ 12 ] + [1 − 1
2 ]) = 2cF . It is easy to see that for

F = Q(
√
−15), µ(F ) = {±1} = Z/2. Hence Tor(µ(F ), µ(F )) = Z/2 and it has no

element of order 3. By Lemma 2.7, β(W ) = 2cF is a nonzero 3-torsion in B(F ).

Corollary 5.6. β(W ) = 0 in B(C).

Proof. It follows from the fact that B(C) is torsion-free.

5.3. The 52 knot. We thank P.-V. Koseleff for help with the following example.
The complement of the 52 knot is triangulated using three simplices with parameters
uij , vij and wij . The edge conditions are:

1. u42v32u34v43w32 = 1
2. u43v23u24w23v34 = 1
3. u31v31w24v21u41w31 = 1
4. w13u14v12w42v13u13 = 1
5. w21u21w41v14w43u23v24 = 1
6. u12w12v42u32w34v41w14 = 1

The face conditions are:

1. v41v31v21u31u41u31 = 1
2. v34v24v14u32u42u12 = 1
3. u43u23u13w34w24u14 = 1
4. u34u14u24w32w42w12 = 1
5. v42v32v12w31w21w41 = 1
6. v43v23v13w13w43w23 = 1

The holonomy equations for a unipotent solution are:

1. v42
1

u34
v31

1
w23

u21
1

w43
v13

1
u14

w12 = 1

2. v14
1

w42
= 1

We have to add 9 conjugacy equations to obtain a CR solution to the equa-
tions. Observe that the solutions to the equations above (without the conjugacy
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equations) contain the hyperbolic solution. In particular each solution X to the equa-
tion x3 − x+ 1 = 0 give solutions to the equations above making

u12 = X2 +X,u13 = X2, u14 = X,u21 = X2 +X,u23 = X,u24 = X2,

u31 = X2, u32 = X,u34 = X2 +X,u41 = X,u42 = X2, u43 = X2 +X,

v12 = X2, v13 = X, v14 = X2 +X, v21 = X2, v23 = X2 +X, v24 = X,

v31 = X, v32 = X2 +X, v34 = X2, v41 = X2 +X, v42 = X, v43 = X2,

w12 = X,w13 = X2 +X,w14 = X2, w21 = X,w23 = X2, w24 = X2 +X,

w31 = X2 +X,w32 = X2, w34 = X,w41 = X2, w42 = X2 +X,w43 = X.

Observe that there are two complex conjugate solutions, both being hyperbolic solu-
tions with opposite orientation and the third solution also is CR. Let F = Q(X) where
X is the real solution. From the definition, add together the invariants above, we have
β = 12([X2 +X ] + [X ] + [X2]) ∈ P(F ), and X satisfies the equation x3 − x+1 = 0.

Lemma 5.7. β is in the Bloch group B(F ).

Proof. We need to show that in
∧2

F ∗

δ(β) = 12{X ∧ (1−X) +X2 ∧ (1−X2) + (X2 +X) ∧ (1 −X2 −X)} = 0.

Since 1−X = −X3, we see that X ∧ (1−X) = X ∧ (−1)+ 3X ∧X . Since each term
on the right-hand is 2-torsion, 12X ∧ (1 − X) = 0. Next, since X(1 − X2) = 1,
1 − X2 = X−1. Hence, X2 ∧ (1 − X2) = X2 ∧ X−1 = −2X ∧ X = 0 and
12X2 ∧ (1−X2) = 0. Since 1−X2 = X−1, we obtain

(X2 +X) ∧ (1−X2 −X) = (X2 +X) ∧ (X−1 −X)

= (X2 +X) ∧ 1−X2

X

= X(X + 1) ∧X−2

= X ∧X−2 + (X + 1) ∧X−2.

Hence 12(X2 +X) ∧ (1 − X2 − X) = −24(X + 1) ∧ X and δ(β) = 24X ∧ (1 +X).
Now observe that

1 = X −X3 = X(1−X)(1 +X),

therefore 0 = X ∧ X(1 − X)(1 + X) = X ∧ X + X ∧ (1 − X) + X ∧ (1 + X). We
conclude that 2X ∧ (1 +X) = 0 and β ∈ B(F ).

Proposition 5.8. β has infinite order in B(F ).

Proof. F = Q(X) has one real embedding and two complex (conjugate) embed-
dings. Let’s fix one complex embedding σ : F → C. Consider the Borel regulator
map: r : B(F ) → R. By Borel’s Theorem, it suffices to show that D(σ(β)) 6= 0,
where D is the dilogarithm function. Since the two complex conjugate solutions to
the equation x3 − x+ 1 = 0 correspond to the complete hyperbolic structure on the
complement of the knot 52, D(σ(β)) equals a non-zero multiple of the hyperbolic
volume, which is clearly non-zero.
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