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ON THE YAU CYCLE OF A NORMAL SURFACE SINGULARITY∗

KAZUHIRO KONNO†

Abstract. The notion of the Yau sequence was introduced by Tomaru, as an attempt to extend
Yau’s elliptic sequence for (weakly) elliptic singularities to normal surface singularities of higher
fundamental genera. We show some fundamental properties of the sequence. Among other things,
it is shown that its length gives us the arithmetic genus for singular points of fundamental genus
two. Furthermore, an upper bound on the geometric genus is given for certain surface singularities
of degree one. The relation between the canonical cycle and the Yau cycle is also discussed.
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Introduction. Let (V, o) be a germ of a normal singular point on a complex
surface V . If π : X → V denotes a resolution, then the intersection form is nega-
tive definite on the exceptional set π−1(o). Hence, there exists a non-zero effective
divisor with support π−1(o) that has a non-positive intersection number with every
exceptional curve. We denote by Z the smallest one among such divisors and call it
the fundamental cycle. Apparently, −Z2 is one of the most naive invariants of (V, o)
independent of the choice of resolutions. We call −Z2 the degree of (V, o).

In this paper, we study surface singularities by considering decompositions of
various cycles on π−1(o). One of the main objects is the Yau sequence introduced
by Tomaru [9], which formally generalizes S.S.T. Yau’s elliptic sequence [11] to sin-
gularities of bigger fundamental genera. We define the Yau cycle Y to be the sum
of all curves appearing in the sequence. Then one can associate to (V, o) some new
numerical invariants such as −Y 2, pa(Y ) and dimH1(Y,OY ). Furthermore, as is
naturally expected after [11], Y enjoys nice numerical properties similar to those of
the canonical cycle of a numerically Gorenstein elliptic singularity. Though, in this
paper, we can only give small applications with a special regard to singularities of
degree one, we hope that the Yau cycle will work in large for fruitful results in future
studies of surface singularities of general type.

The organization of the paper is as follows. In §1, we recall the notion of the
Yau sequence [9] and state fundamental properties of cycles canonically associated
to the sequence. Several known facts on the elliptic sequence (see, e.g., [11], [7], [5])
will be successfully extended to Yau cycles. Among other things, in Theorem 1.5,
we give a formula computing dimH1(Y,OY ) in the spirit of [6]. In §2, we observe
the relation between Yau sequence and the arithmetic genus of a singular point of
fundamental genus 2, and show in Corollary 2.5 that the length of the sequence
actually computes the arithmetic genus. We also discuss two conjectures posed by
Okuma in [6] for numerically Gorenstein elliptic singularities. We give an affirmative
answer to Conjecture 1.4 and a counterexample to Conjecture 5.14 in [6].

The rest is basically devoted to singularities of degree one. Such singular points
are attractive not only for the naive reason that the degree is the smallest possible,
but also for the fact shown in [2] that each connected component of the base locus of
the linear system |L| is contained in the exceptional set of a singularity of degree one,
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for any invertible sheaf L on X such that L − KX is nef. In §3, we study the Yau
cycle on the minimal resolution and show in Lemma 3.4 that some multiple of it gives
us the canonical cycle, when Z is essentially irreducible, a condition automatically
satisfied in the elliptic case. See Theorem 3.5 for a slightly more general result that
gives a sufficient condition for a singularity of degree one to be numerically Gorenstein
and shows how Yau cycles can describe the canonical cycle. For those with essentially
irreducible Z, we also give in Theorem 3.9 the upper bound of the geometric genus.
Example 3.10 tells us that the bound is optimal. In §4, we discuss decompositions of
the canonical cycle of a numerically Gorenstein singular point in order to supplement a
result in [3]. Theorem 4.5 shows, as predicted by Theorem 3.5, that a certain multiple
of the Yau cycle forms the “leading term” of the canonical cycle when the singular
point is of degree one. Theorem 4.7 describes the case of fundamental genus 2 (of
given degree).

Notation. Throughout the paper, a curve means a non-zero effective divisor
(with compact irreducible components) on a non-singular complex surface. For a
curve D, the arithmetic genus pa(D) is defined by pa(D) = 1− χ(OD). If D is on a
non-singular surface X , then the invertible sheaf OD(KX +D) is the dualizing sheaf
ωD of D, by the adjunction formula. We have 2pa(D) − 2 = degωD = D(KX +D).
An invertible sheaf (or a line bundle) on a curve is nef if it is of non-negative degree
on any irreducible components.

A curve D is chain-connected if OD−Γ(−Γ) is not nef for any proper subcurve Γ,
0 ≺ Γ ≺ D. One of the remarkable features of a chain-connected curve D is that,
if OD(−C) is nef for a curve C, then either D � C or Supp(C) ∩ Supp(D) = ∅. If
D is chain-connected and pa(D) > 0, then there uniquely exists a chain-connected
subcurve Dmin of D such that pa(Dmin) = pa(D) and KDmin

is nef. We call Dmin the
minimal model of D. We have

Dmin = min{Γ |0 ≺ Γ � D, pa(Γ) = pa(D)}

= max{Γ |0 ≺ Γ � D, KΓ is nef}.

A maximal chain-connected subcurve of a curve C is called a chain-connected com-
ponent of C. Every curve C decomposes as C =

∑n
i=1 Ci in such a way that Ci is a

chain-connected component of C−
∑

j<i Cj . Then OCj
(−Ci) is nef for i < j. Such an

ordered decomposition is essentially unique and called a chain-connected component
decomposition (a CCC decomposition, for short) of C. See [3] for these facts and
further properties.

We sometimes need a stronger connectivity for curves. For a fixed integer k
(usually non-negative), D is called (numerically) k-connected, if (D − Γ)Γ ≥ k holds
for any proper subcurve Γ ≺ D. Every 1-connected curve is chain-connected. But the
converse is not true. For further properties of numerically connected curves, we refer
the readers to [1, Appendix].

Let (V, o) be an isolated surface singularity and π : X → V a resolution. Let
Z be the fundamental cycle on π−1(o). Then Z is chain-connected. We call the
arithmetic genus of Z the fundamental genus of (V, o) and denote it by pf (V, o).
The arithmetic genus and the geometric genus of (V, o) are respectively defined by
pa(V, o) = max{pa(D)|0 ≺ D, Supp(D) ⊆ π−1(o)} and pg(V, o) = dim(R1π∗OX)o. It
is known that pf (V, o) ≤ pa(V, o) ≤ pg(V, o). See [10]. Since the intersection form is
negative definite on π−1(o), there is a Q-divisor ZK with support in π−1(o) such that
−ZK is numerically equivalent to KX . We call it the canonical cycle. When ZK is
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an integral divisor, we call (V, o) a numerically Gorenstein singularity. Note that a
normal surface singularity (V, o) is Gorenstein i.e., OV,o is a Gorenstein local ring, if
and only if −ZK is linearly equivalent to KX .

Acknowledgments. The author would like to thank Tadashi Tomaru very much
for his interests and helpful suggestions.

1. The minimal model and Yau cycle. In this section, we recall the notion
of the Yau sequence introduced by Tomaru [9] and study cycles canonically associated
to it.

Let (V, o) be a germ of a normal surface singular point and π : X → V a resolution.
We denote by Z the fundamental cycle on π−1(o) and always assume that pf (V, o) :=
pa(Z) > 0. Let Zmin denote the minimal model of Z. Recall that Zmin is obtained from
Z by removing (−1)Z -curves, i.e., non-singular rational curves C with C(Z −C) = 1,
one by one (see, [3, Sect.2]). Note also that Z − C is chain-connected, H1(Z,OZ) ≃
H1(Z − C,OZ−C) and H1(Z,Z) ≃ H1(Z − C,Z) for any (−1)Z-curve C (if exists).

Lemma 1.1. Assume that −Z is numerically trivial on Zmin. Let D ≺ Z be
a maximal subcurve such that OD(−Z) is numerically trivial and pa(D) = pf (V, o).
Then the following hold.

(1) D is the fundamental cycle on its support.

(2) ∆ � D holds for any chain-connected curve ∆ � Z such that O∆(−Z) is numer-
ically trivial and pa(∆) > 0.

(3) If C ≺ Z is an irreducible component such that CD > 0, then C ≃ P1, CD = 1
and CZ < 0.

Proof. LetD be a maximal subcurve of Z such that OD(−Z) is numerically trivial
and pa(D) = pf(V, o). Recall that the last condition assures the chain-connectivity of
D by [3, Lemma 3.2]. We show (1) holds for D. Assume that there is a component
C � D satisfying CD > 0. Since OD(−Z) is numerically trivial and C � D, we
have C(Z − D) < 0 and, hence, C � Z − D. Then C + D is a subcurve of Z and
OC+D(−Z) is numerically trivial. Furthermore, we have pa(D+C) = pa(D)+pa(C)−
1+CD ≥ pa(D) = pf . Then pa(D+C) = pf , since pa(D+C) ≤ h1(D+C,OD+C) ≤
h1(Z,OZ) = pf . This contradicts the assumption that D is maximal. Hence we get
(1).

Let ∆ be as in (2). If O∆(−D) is not nef, then there exists a component C � ∆
satisfying CD > 0. Since D is the fundamental cycle on its support, this shows C 6� D
and it follows C+D � Z. But, OC+D(−Z) is numerically trivial and pa(D+C) = pf ,
contradicting the maximality of D. Hence O∆(−D) is nef. Then, since ∆ is chain-
connected, either Supp(∆)∩Supp(D) = ∅ or ∆ � D. If the first alternative happens,
thenD+∆ � Z and we would have pa(D)+pa(∆) = h1(D+∆,OD+∆) ≤ h1(Z,OZ) =
pf , which is impossible by pa(D) = pf and pa(∆) > 0. Therefore, ∆ is a subcurve of
D.

We show (3). Since we must have pa(D+C) = pa(D), we get pa(C)−1+CD = 0.
Hence pa(C) = 0 and CD = 1. Since D ≺ C+D, by the maximality of D, OC+D(−Z)
is nef but cannot be numerically trivial. This implies CZ < 0. Note also that D has
a non-multiple component meeting C.

We call D as in the above lemma the Tyurina component of Z. Since Zmin is also
the minimal model of D, an obvious induction gives us the longest sequence of curves

(1.1) 0 ≺ Dm ≺ Dm−1 ≺ · · · ≺ D2 ≺ D1 = Z
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such that Di+1 is the Tyurina component of Di for 1 ≤ i ≤ m − 1. We call it the
Yau sequence for Z according to [9]. Note that Zmin � Dm and DmZmin < 0 hold.
The case ZminZ < 0, which was excluded from the above consideration, corresponds
to m = 1. Since the Yau sequence is uniquely determined, its length m is a numerical
invariant of (V, o). We put

(1.2) Y =

m
∑

i=1

Di

and call it the Yau cycle.

Lemma 1.2. Consider the Yau sequence for Z as in (1.1). Then the following
hold.

(1) If m ≥ 3, then Supp(Di −Dj) ∩ Supp(Dk) = ∅ for i < j < k.

(2) Choose an index ν with 1 ≤ ν ≤ m and put Yν =
∑m

i=ν Di. Then −Yν is nef on
Supp(Dν). In particular, −Y is nef on π−1(o).

(3) D2
i ≤ D2

i+1 for 1 ≤ i < m.

Proof. Assume m ≥ 3 and take three indices i, j, k with i < j < k. Then
ODk

(−(Di −Dj)) is numerically trivial. Since Dk is chain-connected, we have either
Dk � Di − Dj or Supp(Di − Dj) ∩ Supp(Dk) = ∅. Assume the first alternative
happens. Then Dj +Dk � Di and we get pa(Di) = h1(Di,O) ≥ h1(Dj +Dk,O) ≥
pa(Dj +Dk) = pa(Dj) + pa(Dk) − 1. When pf (V, o) > 1, this immediately leads us
to a contradiction, since pa(Di) = pa(Dj) = pa(Dk) > 1. So, we may assume that
pf (V, o) = 1. Then we have pa(Di) = pa(Dj + Dk) = 1. Recall that, for a chain-
connected curve E with pa(E) > 0, any subcurve E′ � E satisfying pa(E

′) = pa(E)
is also chain-connected ([3, §3]). Since Di is chain-connected, Dj +Dk must be chain-
connected, too. However, it is not the case, because ODk

(−Dj) is numerically trivial.
In sum, we cannot have Dj +Dk � Di. Hence (1).

We show (2). It suffices to show that −Y is nef on Supp(Z). Take any irreducible
component C � Y and let i be the biggest index such that C � Di. Since Di is the
fundamental cycle on its support, we have CDi ≤ 0. Furthermore, we have CDj = 0
for any j satisfying either j < i or j > i + 1 by (1). So, CY = CDi + CDi+1.
If CDi+1 = 0, then CY ≤ 0. If CDi+1 > 0, then we also have CY ≤ 0, since
Lemma 1.1 (3) implies that CDi+1 = 1 and CDi < 0. Hence −Y is nef. It follows
0 ≥ (Di −Di+1)Y = (Di −Di+1)(Di +Di+1) = D2

i −D2
i+1. This gives (3).

Lemma 1.3. Let the notation be as in the previous lemma. For a subcurve ∆ ≺ Y ,
the following three conditions are equivalent.

(1) −(Y −∆) is nef on Supp(∆).

(2) −(Y −∆) is nef on π−1(o).

(3) ∆ = Yν for some ν, 1 < ν ≤ m.

Proof. Let ∆ be a proper subcurve of Y . Assume that (1) holds. If B is a
component with B 6� ∆, then B∆ ≥ 0 and BY ≤ 0. Hence −B(Y −∆) ≥ 0. So, (2)
holds. We next assume (2). Since −(Y −∆) is nef on the chain-connected curve Z =
D1 and Supp(D1)∩Supp(Y −∆) 6= ∅, we get D1 � Y −∆, that is, ∆ � Y −D1 = Y2.
If ∆ 6= Y2, then, since OD2

(−D1) is numerically trivial, −(Y2 −∆) = −(Y −∆)+D1

is nef on the chain-connected curve D2 and Supp(D2) ∩ Supp(Y2 − ∆) 6= ∅, we get
D2 � Y2 −∆, or equivalently, ∆ � Y2 −D2 = Y3. Now, we can show that (3) holds
inductively. Clearly, (3) implies (1), because Y − Yν is numerically trivial on Yν .
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Lemma 1.4. Let π : X → V be the minimal resolution of a numerically Goren-
stein, isolated surface singularity (V, o) with pf (V, o) > 0. Then Y � ZK . If further-
more KY is nef and pf (V, o) ≥ 2, then 2Y � ZK .

Proof. Let ZK be the canonical cycle. Since π is minimal, −ZK is nef on π−1(o).
Let Y =

∑m
i=1 Di be the Yau cycle as in (1.2). Then each Di is chain-connected and

ODj
(−Di) is numerically trivial for i < j. In particular, ODi

(−(ZK −
∑i−1

j=1 Dj)) is
numerically equivalent to the nef invertible sheaf ODi

(−ZK) of positive degree. From
this, one gets Di � ZK −D1 − · · · −Di−1. By induction, Y � ZK .

KY is numerically equivalent to −(ZK − Y ) and it is non-trivial when pf > 1.
Hence, similarly as above, one can show that Y � ZK − Y if KY is nef.

Now, the formula pa(Y )− 1 =
∑m

i=1(pa(Di)− 1) +
∑

i<j DiDj gives us

(1.3) pa(Y ) = m(pf − 1) + 1.

Another numerical invariant to be investigated is h1(Y,OY ). When m = 1, we clearly
have h1(Y,OY ) = pf . For m ≥ 2, we have the following:

Theorem 1.5. When m ≥ 2, let γ be the order of ODm
(−Z) (possibly γ = +∞).

Then

h1(Y,OY ) = (pf − 1)m+ 1 +

[

m− 1

γ

]

,

where [(m − 1)/γ] denotes the integer part of (m − 1)/γ. In particular, if π−1(o) is
simply connected, then h1(Y,OY ) = m · pf .

Proof. We may assume that ODm
(−Z) is a torsion element of order γ in Pic(Dm).

Consider the exact sequence

0 → OYi+1
(−Y + Yi+1) → OYi

(−Y + Yi) → ODi
(−Y + Yi) → 0

inductively for 1 ≤ i ≤ m− 1. We remark that OYi
(−Y +Yi) ≃ OYi

holds if and only
if ODi

(−Y + Yi) ≃ ODi
and H0(Yi,−Y + Yi) → H0(Di,−Y + Yi) is surjective, since

Supp(Yi) is connected and Di is the chain-connected component of Yi. Furthermore,
we have ODi

(−Y + Yi) ≃ ODi
(−(i − 1)Z), since Supp(D1 −Di−1) ∩ Supp(Di) = ∅

when i > 2, by Lemma 1.2 (1). Note also that ODi
(−Z) for i ≥ 2 and ODm

(−Z) have
the same order, since we have natural isomorphisms H1(Di,ODi

) → H1(Dm,ODm
)

and H1(Di,Z) → H1(Dm,Z) by the process obtaining the minimal model (cf. [6,
Lemma 3.7]).

We put ai = h0(Yi,−Y + Yi) for 1 ≤ i ≤ m and am+1 = 0. Then the above
consideration implies

ai − ai+1 =

{

1, if γ|(i− 1),

0, otherwise.

Hence h0(Y,OY ) = a1 =
∑m

i=1(ai − ai+1) = [(m − 1)/γ] + 1. Then the formula for
h1(Y,OY ) follows from the Riemann-Roch theorem.

Remark 1.6. All the above results are modeled on the known facts for pf = 1.
Let (V, o) be an elliptic numerically Gorenstein singularity and π : X → V the
minimal resolution. It is shown in [11, Theorem 3.7] that the Yau cycle coin-
cides with the canonical cycle. (See also Lemma 2.1 below.) Then the formula
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for pg(V, o) = h1(Y,OY ) in Proposition 1.5 is due to Okuma [6], and Lemma 1.3
corresponds to Tomari-Némethi’s Lemma ([7] and [5], see also [6, Proposition 2.9]).
The result corresponding to Lemma 1.2, which might be overlooked in preceding
researches, can be found in [3].

2. Applications.

2.1. Numerically Gorenstein elliptic singularities. For the convenience of
the reader, we give a proof based on the CCC decomposition for the following well-
known result due to Yau [11].

Lemma 2.1. If (V, o) is a numerically Gorenstein elliptic singular point and
π : X → V is the minimal resolution, then the Yau cycle coincides with the canonical
cycle on X.

Proof. We compare the Yau cycle Y =
∑m

i=1 Di with the canonical cycle ZK . Let
ZK = Γ1 + · · · + Γn be the CCC decomposition. It is shown in [3] that OΓj

(−Γi) is
numerically trivial when i < j, pa(Γi) = 1 for any i, Γ1 = Z and Γn = Zmin. Since
D2 is the Tyurina component of D1 = Γ1, we get Γ2 � D2. Since we are working on
the minimal resolution −ZK is nef and, hence, −(ZK −Γ1) is nef on D2. This implies
that D2 � ZK −Γ1 by the chain-connectivity of D2. Then D2 � Γ2, because Γ2 is the
chain-connected component of ZK − Γ1. Hence D2 = Γ2. Now the obvious induction
shows that n = m and Di = Γi for any i, that is, Y = ZK .

In the situation of the above lemma, we consider two conjectures in [6]. Put
ωY = OY (κ) and consider the exact sequence

0 → ωYi+1
→ ωYi

→ ODi
(κ− (Y − Yi)) → 0

for i = 1, . . . ,m − 1. Note that OY (κ) is numerically trivial. As in the proof of
Proposition 1.5, we have h0(ωYi

)−h0(ωYi+1
) = 1 ifODi

(κ) ≃ ODi
((i−1)Z); h0(ωYi

) =
h0(ωYi+1

) otherwise. Put α := min{1 ≤ i ≤ m| ODm
(κ) ≃ ODm

((i − 1)Z)}. Recall
that Dm is a minimally elliptic cycle and we have ODm

≃ ωDm
= ODm

(κ−(Y −Ym)),
i.e., ODm

(κ) ≃ ODm
((m− 1)Z). Hence, letting γ = ord(ODm

(Z)), we get γ|(m− α)
and pg(V, o) = h0(ωY ) = 1 + (m− α)/γ as shown in [6].

Put β = min({1 ≤ i < m| OYi+1
(−(Y −Yi+1)) ≃ OYi+1

}∪{m}). By Theorem 5.13
and Corollary 2.15 in [6], respectively, we have 0 ≤ β − α < γ and see that β = m
is equivalent to α = m. It should be noticed that the index set of the Tyurina
components here is {1, . . . ,m}, while it is {0, 1, . . . ,m} in [6]; so, Okuma’s α, β are
smaller than ours by one, although such differences are not essential.

Proposition 2.2. Let the situation be as above. If β < m, then γ|β. In
particular, Conjecture 1.4 in [6] is true, that is, α and β determine each other if the
resolution graph and the invariant γ are given.

Proof. We have OYβ+1
(−(Y − Yβ+1)) ≃ OYβ+1

. By restricting it to Dm, we get
ODm

(−βZ) ≃ ODm
by Lemma 1.2 (1). Hence γ|β.

Okuma also conjectured in [6, Conjecture 5.14] that Di coincides Di+1 on
Supp(Di+1). Unfortunately, such a strong assertion does not always hold as the
following simple example shows.

Example 2.3. Let Ai 1 ≤ i ≤ 4 be a non-singular rational curve satisfying
A2

1 = −4, A2
2 = A2

3 = A2
4 = −2, A1A2 = 2, A1A3 = A1A4 = A2A4 = 0 and

A2A3 = A3A4 = 1. (See, Fig. 1.) Put Γ1 = A1 + 2A2 + 2A3 +A4 and Γ2 = A1 +A2.
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Then Γ1 is the fundamental cycle on its support, pa(Γ1) = 1 and Γ2 is the minimal
model of Γ1 for which OΓ2

(−Γ1) is numerically trivial. Furthermore, ZK = Γ1 + Γ2

is the canonical cycle. On Supp(Γ2), Γ1 is not Γ2 but A1 + 2A2.

��
��i i i−4

A1 A2 A3 A4

Fig. 1.

2.2. Arithmetic genus of a singularity with pf = 2. Here, we assume
pf (V, o) = 2. Unlike elliptic singular points, not only the geometric genus but also
the arithmetic genus can be arbitrarily big. We show that the Yau sequence gives us
a natural way to compute pa(V, o):

Proposition 2.4. Assume that pf (V, o) = 2. Let k be the biggest positive integer
such that there exists a decreasing sequence 0 ≺ Ek ≺ Ek−1 ≺ · · · ≺ E1 of chain-
connected curves Ei with support in π−1(o) satisfying

(1) pa(Ei) = 2 for any i, and

(2) OEj
(−Ei) is numerically trivial for i < j.

Then pa(V, o) = pa(
∑k

i=1 Ei) = k + 1. Furthermore, E1 can be assumed to be Z.

Proof. Let E be a curve whose support is in π−1(o) such that pa(E) = pa(V, o).
Let E = E1 + · · ·+Ek be a CCC decomposition, where Ei is a chain-connected curve
and OEj

(−Ei) is nef for i < j. We have

pa(E)− 1 =

k
∑

i=1

(pa(Ei)− 1) +
∑

i<j

EiEj .

If pa(Ei) < 2 for some i, then pa(E) = pa(E−Ei)+pa(Ei)−1+Ei(E−Ei) ≤ pa(E−
Ei). So, we can assume from the first time that pa(Ei) = 2 for any i. Then, it follows
from the uniqueness of the minimal model of Z that Ek � Ek−1 � · · · � E2 � E1.

We have pa(E) = k + 1 +
∑

i<j EiEj . If there are indices i < j with EiEj < 0,
then pa(E) = pa(E −Ej) + 1+Ej(E −Ej) ≤ pa(E −Ej). This enables us to assume
that EiEj = 0 holds for any i < j. Then Ek ≺ Ek−1 ≺ · · · ≺ E2 ≺ E1, OEj

(−Ei) is
numerically trivial for i < j, and pa(E) = k + 1.

We show that we can replace E1 by Z. Since E1 is chain-connected and OE1
(−Z)

is nef, we have E1 � Z. Put F = Z − E1 and assume F 6= 0. Since OE2
(−E1) =

OE2
(−Z + F ) is numerically trivial and OE2

(−Z) is nef, OE2
(−F ) is nef. Then,

since E2 is chain-connected, we have either E2 � F or Supp(E2) ∩ Supp(F ) = ∅. If
E2 � F is the case, then E1 + E2 � Z and it would follow pa(E1 + E2) ≤ h1(E1 +
E2,OE1+E2

) ≤ h1(Z,OZ) = pa(Z). This is impossible, because pa(Z) = 2 and
pa(E1 +E2) = pa(E1)+ pa(E2)− 1+E1E2 = 3 > 2. Hence Supp(E2)∩Supp(F ) = ∅.
In particular, we see that OE2

(−Z) is also numerically trivial.
It is clear that the longest sequence as in the above proposition can be realized

by the Yau sequence. Hence, we get:

Corollary 2.5. Let (V, o) be a normal 2-dimensional singular point with
pf (V, o) = 2. Then pa(V, o) = pa(Y ) = m + 1 holds, where Y denotes the Yau
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cycle for Z as in (1.2) and m is its length. In particular, pa(V, o) = 2 holds if and
only if ZminZ < 0.

Corollary 2.6. Assume that pf (V, o) = 2 and pa(V, o) > 2. Let D be the
Tyurina component of Z. If (V ′, o′) denotes the singular point obtained by contracting
D, then pa(V

′, o′) = pa(V, o)− 1.

We give one more remark to see that Zmin is numerically 1-connected when pf = 2.

Lemma 2.7. Let ∆ be a minimal, chain-connected curve of arithmetic genus 2.
Then ∆ is numerically 1-connected.

Proof. Take a proper subcurve Γ of ∆. Then pa(Γ) < pa(∆) = 2 and, since K∆

is nef, we have

0 ≤ degK∆|Γ = degKΓ + (∆− Γ)Γ.

It follows that (∆− Γ)Γ ≥ 0, where the equality sign holds only if degK∆|Γ = 0 and
pa(Γ) = 1. Assume that (∆ − Γ)Γ = 0 and put Γ′ = ∆ − Γ. Then we also have
degK∆|Γ′ = 0 and pa(Γ

′) = 1. This is impossible, since 2 = degK∆ = degK∆|Γ +
degK∆|Γ′ = 0+0 = 0. Therefore, (∆−Γ)Γ ≥ 1, that is, ∆ is numerically 1-connected.

3. Singularities of degree one. Let π : X → V be the minimal resolution
of an isolated singularity (V, o) of a complex surface. Throughout the section, we
denote by Z the fundamental cycle on π−1(o) and assume that Z2 = −1. Since π
is the minimal resolution, we automatically have pf (V, o) > 0. Note also that Z is
numerically 1-connected by Z2 = −1 (see, e.g., [2, Lemma 2.1]).

3.1. Canonical cycle. Firstly, we study the Tyurina component of Z.

Lemma 3.1. Let (V, o) be an isolated singular point of degree one and pf (V, o) > 0.
Let Z be the fundamental cycle on the minimal resolution and assume that Z 6= Zmin.
Then ZminZ = 0 and Z−D is a (−2)-curve, where D denotes the Tyurina component
of Z.

Proof. Since Z2 = −1, we have the unique non-multiple component A1 with
−A1Z = 1 and OZ−A1

(−Z) is numerically trivial. We assume that Z is not minimal
and let B ≺ Z be a (−1)Z-curve, i.e., B ≃ P1 and B(Z−B) = 1. Since we are working
on the minimal resolution, we get B2 ≤ −2. Then BZ ≤ −1 by B(Z −B) = 1. This
implies that B = A1 and B2 = −2, that is, A1 is a (−2)-curve. It is then clear that
D = Z −A1 is the Tyurina component of Z.

Note that we have D2 = −1 by −1 = Z2 ≤ D2 < 0. So, D has a unique
irreducible component A2 of multiplicity one satisfying −A2D = 1. Since A2Z = 0,
we get A1A2 = 1. Therefore, by induction, Yau sequence for Z is of the form

(3.1) 0 ≺ Zmin = Dm ≺ Dm−1 ≺ · · · ≺ D1 = Z,

whereD2
i = −1 for any i, ODj

(−Di) is numerically trivial for i < j and Ai = Di−Di+1

is a (−2)-curve with−AiDi = 1 and AiDi+1 = 1 for 1 ≤ i < m. In particular, Z−Zmin

is the fundamental cycle of the rational double point of type (Am−1) and a part of
the dual graph of Z is as in Fig. 2. (This fact also follows from [9, Proposition 5.2].)
We denote by A the unique irreducible component of Dm such that −ADm = 1.
Since Dm is minimal, A is not a (−1)Dm

-curve. Hence, either pa(A) > 0 or A ≃ P1,
A2 ≤ −3.
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Fig. 2. Rough dual graph of Z

Next, we give a lower bound of pa(V, o) by using the Yau cycle Y =
∑m

i=1 Di. As
we shall see in Example 3.10, the bound is sharp.

Lemma 3.2. pa(V, o) ≥ pf (pf−1)m/2+1 holds for an isolated surface singularity
(V, o) of degree one and pf (V, o) > 0.

Proof. Let k be a positive integer. We have

pa(kY )− 1 = k(pa(Y )− 1) +

(

k

2

)

Y 2 = (pf − 1)mk −
m

2
k(k − 1).

Then pa(kY ) ≤ pf (pf − 1)m/2 + 1, where the equality sign holds only when k =
pf − 1, pf . In particular, we get the assertion, since pa(V, o) ≥ pa(kY ) for any k.

We already know that A is not a (−2)-curve.

Definition 3.3. We say that Z is essentially irreducible if either Z = A or Z−A
consists of (−2)-curves.

We remark that, when pf = 1, the condition Z2 = −1 automatically assures that
Z is essentially irreducible: in fact, either Zmin = A or A is a (−3)-curve.

Lemma 3.4. Let (V, o) be a normal surface singularity with pf(V, o) > 0 and
Z2 = −1. Assume that Z is essentially irreducible (on the minimal resolution).
Then (V, o) is numerically Gorenstein with canonical cycle (2pf − 1)Y . Furthermore,
Zmin(= Dm) is numerically 2-connected and |KZmin

| is free from base points.

Proof. We have KXA = KXZ = 2pf(V, o) − 1 > 0. We claim that BY = 0
for any component B ≺ Z − A. This can be seen as follows. If B = Ai for some i,
1 ≤ i ≤ m− 1, then we clearly have BY = B(Di +Di+1) = 0. If B � Dm −A, then
OB(−Di) is numerically trivial for any 1 ≤ i ≤ m and, hence, BY = 0. In sum, we
have shown that (2pf − 1)Y is the canonical cycle on π−1(o), since Z is essentially
irreducible.

It follows from D2
m = −1 that Dm is at least numerically 1-connected (e.g.,

[2], Lemma 2.1). We know that (2pf − 1)Dm is the canonical cycle on Supp(Dm),
because ODm

(−Di) is numerically trivial for i < m. By the adjunction formula, KDm

is numerically equivalent to −2(pf − 1)Dm on Supp(Dm). If C is a proper subcurve
of Dm, then degKDm

|C = degKC + C(Dm − C). It follows that C(Dm − C) =
−2(pf − 1)CDm + 2− 2pa(C) is even. This implies that Dm is 2-connected. Then it
is known that |KDm

| is free from base points (see, e.g., [1, Proposition (A.7)]).

Theorem 3.5. Let (V, o) be a normal surface singularity of degree one, pf (V, o) >
0 and Z the fundamental cycle on the minimal resolution of (V, o). Assume that
one of the following two conditions (1), (2) is satisfied for any curve Γ which is the
fundamental cycle on its support and satisfies Γ � Z, Γ2 = −1 and KΓ nef.

(1) Γ is essentially irreducible.

(2) The irreducible component AΓ with AΓΓ = −1 is a fixed component of |KΓ|.
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Then (V, o) is a numerically Gorenstein singularity and there exists a sequence {Zi}ri=1

of fundamental cycles of singularities of degree one satisfying Z = Z1 and OZj
(−Zi)

is numerically trivial when i < j, such that the canonical cycle on Supp(Z) can be
written as

(3.2) ZK =
r

∑

i=1

(2pi − 1)Yi,

where Yi denotes the Yau cycle for Zi and pi = pa(Zi) (i = 1, . . . , r).

Proof. We do it by induction on the fundamental genus.
As already remarked, Z is essentially irreducible when pf (V, o) = 1. Hence (V, o)

is numerically Gorenstein by Lemma 3.4.
Suppose that pf (V, o) > 1. As usual, take the Yau sequence Dm ≺ · · · ≺ D1 = Z

for Z and let A be the component with ADm = −1. Then Dm satisfies either (1) or
(2). When (1) is the case, we are done by Lemma 3.4. So, we have (2), that is, A is
a fixed component of |KDm

|. Then it follows from [2, Theorem 1.1 and Lemma 1.4]
that A ≃ P1 and Dm decomposes as

(3.3) Dm = A+ Γ1 + · · ·+ Γn−1, A
2 = −n,

where each Γi is the fundamental cycle on its support, AΓi = −Γ2
i = 1 and

OΓj
(−Γi) ≃ OΓj

when i < j. We have pa(Γi) > 0, pa(Dm) =
∑n−1

i=1 pa(Γi) and, either
Γj ≺ Γi or Supp(Γi) ∩ Supp(Γj) = ∅ for i < j. Furthermore, if Γk ≺ Γj ≺ Γi, then
we have Supp(Γi −Γj)∩ Supp(Γk) = ∅, because the condition AΓi = AΓj = AΓk = 1
forbids Γk � Γi − Γj . Note also that we have n ≥ 3 by the minimality of Dm. Hence
pa(Γi) is strictly smaller than pf (V, o).

After re-labeling if necessary, we may assume that {Γi}si=1, s ≤ n−1, is the set of
all chain-connected components of Dm−A, i.e., maximal members in {Γ1, . . . ,Γn−1}.
Then Supp(Γi) ∩ Supp(Γj) = ∅ for i < j ≤ s. Since pa(Γi) < pa(Dm) and Γi is the
fundamental cycle of a singularity of degree one for any i ≤ s, the hypothesis of in-
duction allows us to assume that Γi contracts to a numerically Gorenstein singularity.
We let ZKi

be the canonical cycle on Supp(Γi) and put di = AZKi
for i = 1, . . . , s.

Then di is a positive integer.
Consider the integral cycle Ξ = (n − 2 +

∑s
i=1 di)Y +

∑s
i=1 ZKi

. Recall that
Supp(D1 − Dm) ∩ Supp(Dm − A) = ∅ and −Y is numerically trivial on Z − A.
Using this, one easily sees that ΞB = −KXB holds for any component B of Z − A.
Furthermore, since AY = −1 and A is a (−n)-curve, we get ΞA = 2−n = −KXA by
the choice of di’s. Hence, Ξ gives us the canonical cycle on Supp(Z).

Since ZY = −1 and ZZKi
= 0 for any 1 ≤ i ≤ s, we get ΞZ = −(n−2+

∑s
i=1 di).

On the other hand, we have KXZ = 2pf (V, o) − 1 by Z2 = −1. Hence the equality
n− 2 +

∑s
i=1 di = 2pf(V, o) − 1 holds for the coefficient of Y in Ξ.

Remark 3.6. (1) In the above situation, similarly as in Lemma 2.4, we have

pa(V, o)− 1 ≥
1

2

r
∑

i=1

pi(pi − 1)mi,

where mi denotes the length of the Yau sequence for Zi.
(2) For a numerically Gorenstein singularity of degree one, (2pf − 1)Y is a subcurve
of the canonical cycle on the minimal resolution, as we shall see in the next section.
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(3) A surface singularity of degree one is not necessarily numerically Gorenstein when
pf > 1, as the following example shows. Let C1, C2 be irreducible curves with C2

1 =
−4, C1C2 = −C2

2 = 3, C2 ≃ P1. Then C1+C2 is the fundamental cycle of a singularity
of degree one and pf = pa(C1) + 2 for which the canonical cycle (2pf − 1)C1 +(2pf −
2/3)C2 is not integral.

3.2. A pg-bound in the essentially irreducible case. We keep the notation
just after Lemma 3.1.

Lemma 3.7. Let k be a non-negative integer and L a line bundle on Di numer-
ically equivalent to ODi

(−kY ). Then the restriction map H0(Di, L) → H0(A,L) is
injective.

Proof. Recall that multA(Di) = 1 and consider the cohomology long exact se-
quence for

0 → ODi−A(L−A) → ODi
(L) → OA(L) → 0.

We have the decomposition Di−A = (Di−Dm)+(Dm−A) with (Di−Dm)∩ (Dm−
A) = ∅. It is clear that H0(Di−Dm, L−A) = 0, because ODi−Dm

(L) ≃ ODi−Dm
and

(Di −Dm)A = 1 when i < m. It follows H0(Di − A,L− A) ≃ H0(Dm − A,L −A).
Since ODm−A(L − A) ≡ ODm−A(Dm − A) and the intersection form on Dm − A is
negative definite, we get H0(Dm −A,L−A) = 0.

If h1(Di, L) = 0, then h0(Di, L) = degL|Di
+ 1 − pf = k + 1 − pf which is not

greater than k/2 + 1 when k ≤ 2pf . We need the following Clifford-type lemma.

Lemma 3.8. Let L be as above and suppose that h1(Di, L) 6= 0. If Dm−A supports
at most exceptional sets of rational singular points, then H0(Di, L) ⊗H0(Di,KDi

−
L) → H0(Di,KDi

) is non-degenerate in each factor and h0(Di, L) ≤ k/2 + 1.

Proof. We consider the exact sequence

0 → ODi−A(KDi−A − L) → ODi
(KDi

− L) → OA(KDi
− L) → 0.

By duality, H0(Di −A,KDi−A −L)∨ ≃ H1(Di −A,L) which is zero, because Di −A
supports exceptional sets of rational singular points.

Take s ∈ H0(Di, L) and t ∈ H0(Di,KDi
−L) such that st = 0 in H0(Di,KDi

). If
s 6= 0, then s|A 6= 0. The same is true for t. Hence st = 0 implies that either s or t is
zero. By Hopf’s lemma, we get h0(Di, L)+h0(Di,KDi

−L) ≤ h0(Di,KDi
)+1 = pf+1.

By the Riemann-Roch theorem, h0(Di, L) − h0(Di,KDi
− L) = k + 1 − pf . So,

2h0(Di, L) ≤ k + 2.
Suppose now that Z is essentially irreducible. Then, by Lemma 3.4, ZK = (2pf −

1)Y is the canonical cycle. We shall give a bound for pg(V, o) = h0(ZK ,OZK
). When

pf = 1, we have ZK = Y and the task has already done in [6] or Proposition 1.5 with
a more accurate result. Anyway, we have pg(V, o) ≤ m when pf = 1. So, we may
assume that pf ≥ 2. By using the exact sequence

0 → O(2pf−1−k)Y (−kY ) → O(2pf−k)Y (−(k − 1)Y ) → OY (−(k − 1)Y ) → 0

for k = 1, . . . , 2pf−2, one gets h0(ZK ,OZK
) ≤

∑2pf−2
k=0 h0(Y,−kY ). When k > pf−1,

we use h0(Y,−kY ) = h1(Y,KY + kY ) = h0(Y,KY + kY ) + (k − pf + 1)m. Hence,
putting η = KX + (2pf − 1)Y , we get

pg(V, o) ≤

pf−2
∑

k=0

{h0(Y,−kY ) + h0(Y, η − kY )}+
m

2
pf (pf − 1) + h0(Y,−(pf − 1)Y ).
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If we put L = OY (−kY ) or OY (η − kY ), then it follows from Lemma 3.8 that

h0(Y, L) ≤
∑m

i=1 h
0(Di, L −

∑i−1
j=1 Dj) ≤ m([k/2] + 1) for 0 ≤ k ≤ pf − 1, where

[k/2] denotes the integer part of k/2. So,

pg(V, o) ≤ 2m

pf−2
∑

k=0

[

k

2

]

+m(p2f + 3pf − 2)/2 +m

[

pf − 1

2

]

= p2fm.

This shows the first half of the following:

Theorem 3.9. Let (V, o) be an isolated surface singularity of degree one, Z the
fundamental cycle on the minimal resolution. Assume that Z is essentially irreducible.
Then pg(V, o) ≤ p2fm, where m denotes the length of the Yau sequence for Z. If

pg(V, o) = p2fm, then (V, o) is a hypersurface double point and the maximal ideal cycle
for (V, o) is Z.

Proof. If pg(V, o) = p2fm, then the above computation shows that h0(Y,OY ) =

h0(Y, η) = m. Hence KX is linearly equivalent to −(2pf − 1)Y and we have
ODj

(−Di) ≃ ODj
whenever i < j (see, e.g., [3, §2]). In particular, (V, o) is Gorenstein.

Consider the cohomology long exact sequence for

0 → OX(−ZK) → OX(−Z) → OZK−Z(−Z) → 0.

Since H1(X,−ZK) = 0 by the Kodaira-type vanishing theorem, the restriction map
H0(X,−Z) → H0(ZK − Z,−Z) is surjective. If m = 1, then H0(ZK − Z,−Z) →
H0(Z,−Z) has to be surjective and h0(Z,−Z) = 1, in order for pg(V, o) = p2f to
hold. Recall that Z is 2-connected in this case by Lemma 3.4. It follows that a
non-zero element in H0(Z,−Z) vanishes only at a non-singular point of Z (see, e.g.,
[1, Appendix]). Assume that m ≥ 2. Recall that D1 = Z and consider the exact
sequence

0 → H0(ZK − Z −D2,−Z −D2) → H0(ZK − Z,−Z) → H0(D2,−Z).

Since we have pg(V, o) = p2fm, the restriction map H0(ZK−Z,−Z) → H0(D2,−Z) ≃

H0(D2,OD2
) has to be surjective. Since it factors through H0(Z,−Z), we see that

H0(ZK − Z,−Z) → H0(Z,−Z) is also non-trivial and, furthermore, the image con-
tains an element that does not vanish on D2. In sum, we see that H0(X,−Z) →
H0(Z,−Z) is non-trivial and there exists a section in H0(X,−Z) that vanishes only
at a unique non-singular point x of Z (x ∈ A1 \ (A1 ∩ D2)). We have shown that
OZ(−Z) ≃ OZ(x).

We remark that, when m ≥ 2, we have h0(Z,−Z) = 2 but the restriction map
H0(X,−Z) → H0(Z,−Z) is of rank one. This can be seen as follows. Consider the
exact sequence

0 → H0(A1,−Z −D2) → H0(Z,−Z) → H0(D2,−Z) → 0.

SinceOA1
(−Z−D2) andOD2

(−Z) are trivial, we get h0(Z,−Z) = 2. Then, |OZ(−Z)|
is a free pencil by a result in [3, §2]. If H0(X,−Z) → H0(Z,−Z) were surjective,
then OX(−Z) is π-free and it would follow that mOX = OX(−Z), where m denotes
the ideal sheaf for o ∈ V . But then mult(V, o) = −Z2 = 1, which is absurd.

Since |OX(−Z)| has no fixed components, Z is the maximal ideal cycle for (V, o)
on X . By using the fact that the base point x of |OX(−Z)| is a non-singular point of
Z, it is easy to see that mOX ≃ mxOX(−Z) and mult(V, o) = −Z2 + 1 = 2.
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Example 3.10. Let (V, o) be a hypersurface singularity defined by xa + yb +
zabm = 0, where a, b,m are positive integers with (a, b) = 1. We have

pf (V, o) =
(a− 1)(b− 1)

2

by Tomaru’s formula [9, Theorem 4.3], Z2 = −1 and ZK = (2pf − 1)(D1+ · · ·+Dm),
where the minimal model Dm of Z = D1 is non-singular. One can also calculate the
arithmetic genus by Tomari’s formula [8, Theorem (3.8)] as:

pa(V, o) = max
r≥1

{

r(pf − 1) + 1−
r−1
∑

k=0

[

k

m

]

}

=
m

2
pf (pf − 1) + 1.

This shows that our bound for the arithmetic genus in Lemma 3.2 is sharp.
We put a = 2, b = 2p+ 1 and consider the double point defined by x2 + y2p+1 +

z2(2p+1)m = 0. Then pf = p and it can be checked, by using the canonical resolution
for double coverings for instance, that pg(V, o) = p2fm holds. So, the bound of the
geometric genus in Theorem 3.9 is also sharp.

3.3. Certain Gorenstein singularities of degree one and pf = 2. By a
theorem of Tomari [8], we have pa(U, o) ≤ pg(U, o) − 1 for any Gorenstein singular
point (U, o). In particular, it follows that a Gorenstein surface singularity with pg = 2
is elliptic. So, the next target should be the classification of those with pg = 3. When
pa(U, o) = 1, (U, o) is an elliptic singulary by definition. When pa(U, o) = 2, we have
pf (U, o) = 2 and the Yau sequence is of length one by Corollary 2.5. In view of
Theorem 3.9, in which the pg-bound is 4 when pf = 2,m = 1, we have a chance to
find a Gorenstein singularity of degree one satisfying pf = pa = 2, pg = 3, among
those with essentially irreducible fundamental cycle. In fact, we have:

Theorem 3.11. Let (V, o) be a Gorenstein surface singularity with pf (V, o) = 2
such that Z2 = −1 and ZK = 3Z hold on the minimal resolution. Then pa(V, o) = 2
and there are the following two cases, where Zm denotes the maximal ideal cycle.

(1) pg(V, o) = 4, Zm = Z, mOX ≃ mxOX(−Z) with a non-singular point x ∈ Z,
mult(V, o) = 2 and embdim(V, o) = 3.

(2) pg(V, o) = 3, Zm = 2Z, mOX ≃ OX(−2Z), mult(V, o) = 4 and embdim(V, o) = 4.

Proof. In the above situation, consider the cohomology long exact sequence for

0 → OX(−(i+ 1)Z) → OX(−iZ) → OZ(−iZ) → 0.

Since −3Z is the canonical cycle, we have H1(X,−(i + 1)Z) = 0 for i ≥ 2 by the
vanishing theorem. Hence H0(X,−iZ) → H0(Z,−iZ) is surjective when i ≥ 2. If
H0(X,−2Z) → H0(X,−Z) is not surjective, then H0(Z,−Z) 6= 0 and we get (1)
of Theorem 3.11 by the proof of Theorem 3.9. So, we assume that H0(X,−2Z) →
H0(X,−Z) is surjective. Then 2Z � Zm. Since |KZ | = |OZ(−2Z)| is free from base
points by Lemma 3.4, |OX(−2Z)| is π-free. Hence Zm = 2Z and mult(V, o) = −Z2

m
=

4.

Claim 3.12. H0(Z,−Z) = H1(Z,−Z) = 0 and pg(V, o) = 3.

Proof. To compute pg(V, o), we consider the cohomology long exact sequence for

0 → O2Z(−Z) → OZK
→ OZ → 0.
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Since the restriction map H0(ZK ,OZK
) → H0(Z,OZ) is surjective, we get pg(V, o) =

h0(ZK ,OZK
) = h0(2Z,−Z) + 1. Consider

0 → OZ(−2Z) → O2Z(−Z) → OZ(−Z) → 0.

The restriction map H0(X,−Z) → H0(2Z,−Z) is surjective by the fact that
H1(X,−3Z) = 0, while H0(X,−Z) → H0(Z,−Z) is zero by the assumption. It fol-
lows thatH0(2Z,−Z) → H0(Z,−Z) is also zero. Then h0(2Z,−Z) = h0(Z,−2Z) = 2
and we get pg(V, o) = 3.

It remains to show that h0(Z,−Z) = 0. Since h1(2Z,−Z) = 1, we get
h0(2Z,O2Z) = 1 by the duality theorem. Then, since H0(2Z,O2Z) → H0(Z,OZ)
is an isomorphism, it follows from the cohomology long exact sequence for

0 → OZ(−Z) → O2Z → OZ → 0

that H0(Z,−Z) = H1(Z,−Z) = 0.
We compute the embedding dimension. Before going in detail, we remark that

|OZ(−3Z)| is free from base points. This can be seen as follows. If it has a base point
x, then, by [2, Proposition 5.1], there exists a subcurve ∆ of Z such that ∆2 = −1,
x is a non-singular point of ∆ and O∆(−3Z) ≃ ω∆ ⊗ O∆(x). Since ∆2 = −1, ∆ is
1-connected. By Z∆ = 0,−1 and degω∆ = 2pa(∆) − 2, the possible case is only:
Z∆ = −1 and pa(∆) = 2. This implies that ∆ = Z, since Z is its own minimal
model. Then we get OZ(−Z) ≃ OZ(x), contradicting that H0(Z,−Z) = 0.

We study the graded ring R(Z,−Z) =
⊕

i≥0 H
0(Z,−iZ). We have h0(Z,−2Z) =

2 and h0(Z,−iZ) = i − 1 for i ≥ 3. By the free-pencil trick, µi : H0(Z,−iZ) ⊗
H0(Z,−2Z) → H0(Z,−(i + 2)Z) is surjective for i ≥ 2, i 6= 4. This is because
H1(Z,−(i − 2)Z) = 0 when i = 3 or i ≥ 5, while we get it by dimension count when
i = 2. Therefore, R(Z,−Z) is generated in degrees at most 6. Let {x0, x1} be a basis
for H0(Z,−2Z). Then H0(Z,−4Z) is generated by x2

0, x0x1, x
2
1. Let {y0, y1} be a

basis for H0(Z,−3Z). Then H0(Z,−5Z) is generated by x0y0, x0y1, x1y0, x1y1. We
consider H0(Z,−6Z). Here, we have four elements xj

0x
3−j
1 (0 ≤ j ≤ 3) which generate

a subspace V1 of codimension one. Recall that |OZ(−3Z)| is free from base points. By
the free-pencil-trick, one can show that Sym2H0(Z,−3Z) → H0(Z,−6Z) is injective,
and the image V2 = 〈y20 , y0y1, y

2
1〉 is a subspace of dimension three. We claim that

H0(Z,−6Z) = V1 + V2. Assume not. Then V2 ⊂ V1 and we have three relations:
y20 = c1(x), y0y1 = c2(x) and y21 = c3(x), where c1, c2, c3 are cubic forms in x0, x1. It
follows y1/y0 = c2(x)/c1(x). This implies that the morphism defined by |OZ(−3Z)|
is the composite of the morphism defined by |OZ(−2Z)| and the morphism P1 → P1

given by c2/c1, which is impossible, because −3Z2 = 3 and −2Z2 = 2. Therefore,
V2 6⊂ V1. For the same reasoning, we may assume that y20 , y

2
1 ∈ V1 and y0y1 6∈ V1.

Now, we have two relations: y20 = ϕ0(x0, x1), y
2
1 = ϕ1(x0, x1), where ϕ0, ϕ1 are cubic

forms. It is not hard to confirm that there are no further relations in R(Z,−Z). There-
fore, R(Z,−Z) ≃ C[X0, X1, Y0, Y1]/(Y

2
0 − ϕ0(X0, X1), Y

2
1 − ϕ1(X0, X1)) as graded

C-algebras, where degX0 = degX1 = 2 and deg Y0 = deg Y1 = 3.
Let x̄i and ȳi (i = 0, 1) be preimages of xi in H0(X,−2Z) and yi in H0(X,−3Z),

respectively. Then ȳ0, ȳ1 generate H0(X,−3Z)/H0(X,m2OX). Hence

dimm/m2 = dim
H0(X,mOX)

H0(X,m2OX)
= dim

H0(X,−2Z)

H0(X,−3Z)
+ 2 = h0(Z,−2Z) + 2

and we get embdim(V, o) = 4 as wished.
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The complete intersection singularity defined by y2 = w3+x3, z2 = w3−x3 in C4

(with coordinates w, x, y, z) serves an example, as the above description of R(Z,−Z)
shows.

4. A remark on the canonical cycle. Let π : X → V be the minimal resolu-
tion of a numerically Gorenstein surface singularity (V, o). Let ZK be the canonical
cycle and ZK = Γ1 + · · · + Γn a CCC decomposition, that is, each Γi is a maximal
chain-connected subcurve of ZK −

∑

j<i Γj . When pf (V, o) > 0, we showed in [3] the
following:

• Γ1 = Z is the fundamental cycle and, if n ≥ 2,
• Γ2 = gcd(Γ1, ZK − Γ1), pa(Γ2) = pf(V, o) and Supp(Γ1 − Γ2) ∩ Supp(ZK −
Γ1 − Γ2) = ∅,

• pa(Γi) > 0 and Γi � Γ2 for any i ≥ 3,
• for i < j, either Γj � Γi or Supp(Γi) ∩ Supp(Γj) = ∅,
• the dualizing sheaf of every minimal curve in {Γi}ni=1 is nef.

Lemma 4.1. Assume that pf (V, o) > 1. Then n ≥ 2 and 2− 2pf (V, o) ≤ Γ1Γ2 ≤
−1.

Proof. If n = 1, then ZK = Z and 1 = pa(ZK) = pa(Z) = pf (V, o) > 1, a
contradiction. Hence n ≥ 2. We have 2pa(Γ1) − 2 = Γ1(KX + Γ1) = −Γ1(ZK − Γ1).
This implies that there exists an index i ≥ 2 with −Γ1Γi > 0, if pa(Γ1) > 1. Since
Γi � Γ2 for i ≥ 2 and −Γ1 is nef, we get −Γ1Γ2 > 0. We have Γ1Γ2 ≥ Γ1(ZK −Γ1) =
2− 2pf .

In fact, when pf (V, o) > 0, we have n = 1 if and only if (V, o) is a minimally
elliptic singularity [4].

Lemma 4.2. Assume that i < j, Γj � Γi and pa(Γi) = pa(Γj). Then Γ2
i ≤ Γ2

j

with equality holding only when, either Γi = Γj or Γi − Γj consists of (−2)-curves.

Proof. We have 2pa(Γi)−2 = −ZKΓi+Γ2
i . Hence Γ

2
j −Γ2

i = 2(pa(Γj)−pa(Γi))−
ZK(Γi − Γj) = −ZK(Γi − Γj)) ≥ 0, since −ZK ≡ KX is nef.

In particular, we have Γ2
1 ≤ Γ2

2.

Lemma 4.3. Assume that Γi+1 � Γi and OΓi−Γi+1
(−

∑

j<i Γj) is numerically
trivial. Then the following hold.

(1) Γi+1 = gcd(Γi, ZK−
∑

j≤i Γj), pa(Γi+1) = pa(Γi) and Supp(Γi−Γi+1)∩Supp(ZK−
∑

j≤i+1 Γj) = ∅.

(2) Γ2
i ≤ Γ2

i+1. Furthermore, Γi+1 = Γi holds if and only if Γi(Γi − Γi+1) = 0.

Proof. (1): Put G = gcd(Γi, ZK −
∑

j≤i Γj). Then, since Γi+1 � G � Γi,

2pa(G)− 2 = −G(ZK −G)

= −Γi(ZK − Γi) + (Γi −G)(ZK −G−
∑

j≤i

Γj) + (Γi −G)
∑

j<i

Γj

= 2pa(Γi)− 2 + (Γi −G)(ZK −G−
∑

j≤i

Γj).

By the choice of G, Γi−G has no common components with ZK−G−
∑

j≤i Γj . Hence
(Γi − G)(ZK − G −

∑

j≤i Γj) ≥ 0 and we get pa(G) ≥ pa(Γi). On the other hand,

since Γi is chain-connected, pa(G) ≤ h1(G,OG) ≤ h1(Γi,OΓi
) = pa(Γi). In sum, we

get pa(G) = pa(Γi) and Supp(Γi−G)∩Supp(ZK −G−
∑

j≤i Γj) = ∅. Note that G is
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chain-connected, since so is Γi and pa(G) = pa(Γi) > 0 (see, [3], Lemma 3.2). We have
G− Γi+1 � ZK −

∑

j≤i+1 Γj . So, OG−Γi+1
(−Γi+1) is nef. By the chain-connectivity

of G is chain-connected, this implies Γi+1 = G.
(2): The first assertion follows from (1) and Lemma 4.5. To show the last equiv-

alence, we only have to show the converse. Since OΓi−Γi+1
(−

∑

j<i Γj) is numerically
trivial, we have (Γi + Γi+1)(Γi − Γi+1) = ZK(Γi − Γi+1) − (Γi − Γi+1)

∑

j<i Γj −
(Γi − Γi+1)(ZK −

∑

j≤i+1 Γj) = ZK(Γi − Γi+1) by (1). If Γi(Γi − Γi+1) = 0, then

0 ≥ (Γi − Γi+1)
2 = −(Γi + Γi+1)(Γi − Γi+1) = −ZK(Γi − Γi+1) ≥ 0. Hence

(Γi − Γi+1)
2 = 0 and it follows Γi+1 = Γi, since the intersection form is negative

definite on π−1(o).
The following is useful to study the “leading term” of the canonical cycle in some

cases.

Theorem 4.4. Assume that pf (V, o) > 1 and write 2pf−2 = ab with two positive
integers a, b. If there exist b indices i ≥ 2 satisfying −Γ1Γi = a, then the following
hold.

(1) Γi+1 = gcd(Γi, ZK −
∑

j≤i Γj) and pa(Γi+1) = pf (V, o) for i ∈ {1, 2, . . . , b}.

(2) Γb+1 � Γb � · · · � Γ2 � Γ1 and Γ2
1 ≤ Γ2

2 ≤ · · · ≤ Γ2
b+1.

(3) For 1 ≤ i < j ≤ b+ 1, OΓj
(−Γi) is nef of degree a.

(4) For 1 ≤ i < j < k ≤ b + 1, Supp(Γi − Γj) ∩ Supp(Γk) = ∅.

In particular, pa(Γ) = 1 and ZK −Γ is numerically equivalent to −KX on its support

for Γ =
∑b+1

i=1 Γi.

Proof. We have −Γ1Γi ∈ {a, 0} for i ≥ 2 by the choice of a, b, since −Γ1(ZK −
Γ1) = 2pf − 2. If Γj � Γi, then −Γ1Γi ≥ −Γ1Γj. Since Γi � Γ2 for i ≥ 3, we have
−Γ1Γ2 = a.

Let i0 be the smallest index with i0 ≥ 3 and −Γ1Γi0 = a. Then Γi0

is a maximal element in {Γi}ni=3. So, we can assume that i0 = 3 after re-
numbering if necessary. Since OΓ2−Γ3

(−Γ1) is numerically trivial, it follows from
Lemma 4.3 that Γ3 = gcd(Γ2, ZK − Γ1 − Γ2), pa(Γ3) = pa(Γ2), Γ2

2 ≤ Γ2
3 and

Supp(Γ2 − Γ3, ZK − Γ1 − Γ2 − Γ3) = ∅. Note that the last condition implies that
Γ1, Γ2 and Γ3 are linearly equivalent on ZK − Γ1 − Γ2 − Γ3. We claim that Γi � Γ3

for i ≥ 3. If not, then Γ3 and Γi are disjoint. Then Γ3 + Γi � Γ2 and we get
pa(Γ3) + pa(Γi) = h1(Γ3 + Γi,O) ≤ h1(Γ2,OΓ2

) = pa(Γ2). This is impossible, since
pa(Γ3) = pa(Γ2) and pa(Γi) > 0. Therefore, Γi � Γ3 for i ≥ 3.

Now, the assertions (1)–(4) can be shown inductively. The rest may be clear.
We apply Theorem 4.4 to two naive cases: (i) singularities of degree one and (ii)

singularities of fundamental genus 2.

Theorem 4.5. Let (V, o) be a numerically Gorenstein surface singular point
with pf (V, o) > 1 and Z2 = −1. Then the canonical cycle on the minimal resolution
decomposes as ZK = (2pf − 1)Y + ∆, where Y denotes the Yau cycle for Z and,
either ∆ = 0 or ∆ is a sum of (at most pf ) disjoint canonical cycles of singularities
of fundamental genus < pf (V, o).

Proof. First, we show that ZK decomposes as ZK = (2pf −1)(∆1+ · · ·+∆r)+∆,
where ∆1 = Z, ∆i for i ≥ 2 is the fundamental cycle of a singularity of degree one
with pa(∆i) = pf , ∆r ≺ · · · ≺ ∆1 and O∆j

(−∆i) is numrically trivial when i < j.
To see this, let ZK =

∑n
i=1 Γi be a CCC decomposition. Then we have Γ1 = Z and

0 ≥ Γ1(Γ1 − Γ2) = −1 − Γ1Γ2. Since −ZKΓ1 = 2pf − 1 and Γi � Γ2 for i ≥ 2,
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we may assume that Γ1Γi = −1 for 1 ≤ i ≤ 2pf − 1. It follows from Theorem 4.4
that pa(Γi) = pf for 1 ≤ i ≤ 2pf − 1. Furthermore, we have −1 = Γ2

1 ≤ · · · ≤
Γ2
2pf−1 < 0. So, Γ2

1 = Γ2
2 = · · · = Γ2

2pf−1 = −1 and Lemma 4.3, (2) implies that

Z = Γ1 = Γ2 = · · · = Γ2pf−1. We put ∆1 = Γ1. Then (2pf − 1)∆1 is a subcurve of
ZK and −∆1 is numerically trivial on ZK − (2pf − 1)∆1. If ZK = (2pf − 1)∆1, then
we stop by putting r = 1 and ∆ = 0. Assume that ZK − (2pf − 1)∆1 6= 0. Then,
ZK−(2pf−1)∆1 is the canonical cycle on its support (possibly with several connected
components). We may assume that Γ2pf

has the biggest arithmetic genus among the
chain-connected components of ZK−(2pf −1)∆1. If pa(Γ2pf

) < pf (V, o), then we put
∆ = ZK−(2pf−1)∆1 and stop with r = 1. If pa(Γ2pf

) = pf , then we have Γ2
2pf

= −1,

since −1 = Γ2
1 ≤ Γ2

2pf
by Lemma 4.5. Note that Γ2pf

is the fundamental cycle on its

support, being a chain-connected component of the canonical cycle ZK− (2pf −1)∆1.
As above, we can show Γ2pf

Γ2pf+1 = −1, Γ2
2pf

= · · · = Γ2
4pf−2 = −1 and Γ2pf

=

· · · = Γ4pf−2. We put ∆2 = Γ2pf
. Since O∆2

(−∆1) is numerically trivial, we have
∆2 ≺ ∆1. We know that ZK− (2pf −1)(∆1+∆2) is either 0 or the canonical cycle on
its support. Now, the obvious induction shows the decomposition of ZK as claimed.
Note that not only each but also the total of arithmetic genus of chain-connected
components of ∆ does not exceed pf .

Next, we claim that ∆1 −∆i+1 is a (−2)-curve for i < r. Note that, for i < j,
∆i−∆j consists of (−2)-curves by Lemma 4.5. ¿From (∆i−∆j)

2 = −2, we know that
∆i−∆j is connected. We denote by Ai the unique component of ∆i with −Ai∆i = 1.
Assume that i < r. We have Ai � ∆i −∆i+1 and already know that Ai is a (−2)-
curve. Then 2pf − 1 = (2pf − 1)Ai(∆i+1 + · · · + ∆µ) + Ai∆ by AiZK = 0. Since
Ai 6� ZK − (2pf − 1)(∆1+ · · ·+∆i), and ∆j � ∆i+1 for j > i+1, we get Ai∆i+1 = 1
and Ai ∩ Supp(ZK − (2pf − 1)(∆1 + · · · +∆i+1)) = ∅. Hence Ai(∆i −∆i+1) = −2.
Since (∆i −∆i+1)

2 = −2, we get (∆i −∆i+1 −Ai)
2 = 0, which is sufficient to imply

that ∆i −∆i+1 = Ai.

Finally, we show that ∆r ≺ · · · ≺ ∆1 is the Yau sequence. Since the difference
∆i−∆i+1 is a (−2)-curve, it suffices to show that ∆r is the minimal model of Z = ∆1,
by Lemma 3.1 and what we saw above. If ∆ = 0, then K∆r

is nef, because ∆r is
the smallest chain-connected curve appearing in the CCC decomposition of ZK . So,
let ∆ 6= 0. We assume that ∆r is not minimal and show that this eventually leads
us to a contradiction. If ∆r is not minimal, then Ar is a (−2)-curve and ∆r − Ar

is also chain-connected of arithmetic genus pf , by Lemma 3.1. Recall that ∆i is
numerically trivial on ∆r − Ar for i = 1, . . . , r. Hence O∆r−Ar

(−∆) is numerically
equivalent to the nef invertible sheaf O∆r−Ar

(−ZK). Then, either ∆r − Ar � ∆
or Supp(∆r − Ar) ∩ Supp(∆) = ∅ by the chain-connectivity of ∆r − Ar. The first
alternative is impossible, since it would imply the existence of a chain-connected
component of ∆ whose arithmetic genus is pf . The last alternative is also impossible
by the fact Supp(∆) ⊆ Supp(∆r). Therefore, ∆r is minimal.

We add a remark that may be useful to study ∆ further.

Lemma 4.6. Let the situation be as above and assume that ∆ 6= 0. Then Zmin

decomposes as Zmin = Ã+ B̃, where

(1) Ã is a 2-connected curve that is the fundamental cycle on its support, A � Ã and
Ã−A consists of (−2)-curves at most, where A is the component with AZmin = −1,

(2) the set of all chain-connected components of B̃ coincides with that of ∆,

(3) Supp(Ã−A) ∩ Supp(B̃) = ∅ and B̃ meets A.
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Proof. Zmin = ∆r and A = Ar in the notation of the proof of Theorem 4.5.
Since −Zmin is numerically trivial on ∆ and Supp(∆) ⊆ Supp(Zmin−A), every chain
connected component of ∆, which is the fundamental cycle on its support since ∆ is a
sum of disjoint canonical cycles, is a subcurve of Zmin−A. Since OZmin−A(−∆) is nef,
every chain-connected component of Zmin−A is either a subcurve of ∆ or disjoint from
Supp(∆). Let Γ be a chain-connected component of Zmin −A disjoint from ∆. Then
−KXΓ = (2pf −1)Y Γ+∆Γ = 0 implying that Γ consists of (−2)-curves. We define Ã
as the biggest subcurve of Zmin whose support is the union of A and all such Γ’s, and
put B̃ = Zmin−Ã. Then we have (2) and (3). We have−1 = AZmin = AÃ+AB̃ > AÃ.
Let C be any component of Ã, C 6= A. Then it is a (−2)-curve that does not meet B̃,
and we have 0 = −KXC = (2pf − 1)ZminC +∆C = (2pf − 1)ÃC. Hence, OÃ(−Ã) is

nef and Ã2 = AÃ. To show the 2-connectivity of Ã, we can assume that Ã− A 6= 0.
Let Ã = C1 + C2 be non-trivial decompotition by curves. We may assume A � C1.
Then C2 consists of (−2)-curves and it follows that C2

2 is a negative even integer. By
0 = ÃC2 = C1C2 + C2

2 , we get C1C2 ≥ 2.
We give our second application of Theorem 4.4.

Theorem 4.7. Let ZK be the canonical cycle on the minimal resolution π : X →
V of an isolated numerically Gorenstein surface singular point (V, o) with pf (V, o) = 2.
Then ZK decomposes as

ZK = ∆1 + · · ·+∆r + E,

where the ∆i’s and E are curves satisfying the following conditions.

(1) For any i, 1 ≤ i ≤ r, the CCC decomposition of ∆i is one of the following types:

(a) ∆i = Γi,1 +Γi,2 +Γi,3, Γi,3 � Γi,2 � Γi,1, Γ
2
i,1 ≤ Γ2

i,2 ≤ Γ2
i,3 and OΓi,ν

(−Γi,µ)
is nef of degree 1 for 1 ≤ µ < ν ≤ 3.

(b) ∆i = Γi,1 + Γi,2, Γi,2 � Γi,1, Γ
2
i,1 ≤ Γ2

i,2 and OΓi,2
(−Γi,1) is nef of degree 2.

Furthermore, pa(Γi,ν) = 2, Γi,1 is the fundamental cycle on its support and, when
i < j, OΓj,ν

(−Γi,µ) is numerically trivial and Γj,ν ≺ Γi,µ, Γ
2
i,µ ≤ Γ2

j,ν for any µ, ν.

(2) ZK −
∑i

j=1 ∆j is numerically equivalent to −KX on its support for any i, 1 ≤
i ≤ r.

(3) If E 6= 0, then E consists of at most two disjoint canonical cycles of numerically
Gorenstein elliptic singular points. All the curves Γi,ν as in (1) are numerically trivial
on E.

(4) If E = 0, then Γr,µ, where µ = 3 or 2 according to whether ∆r is of type (a) or
(b) in (1), is the minimal model of the fundamental cycle Z = Γ1,1 for (V, o).

Proof. Let ZK =
∑n

i=1 Γi be a CCC decomposition. We have 2 = 2pa(Γ1)− 2 =
−Γ1(ZK − Γ1) = −Γ1

∑n
i=2 Γi. Since OΓi

(−Γ1) is nef, we have Γ1Γ2 = −1,−2 and,
in any case, the hypothesis of Theorem 4.4 is satisfied.

We put ∆1 = Γ1+Γ2 when −Γ1Γ2 = 2, and ∆1 = Γ1+Γ2+Γ3 when −Γ1Γ2 = 1.
Then pa(∆1) = 1 and ZK −∆1 is the canonical cycle on its support by Theorem 4.4.
If ZK −∆1 = 0, then we stop with r = 1 and E = 0. Assume that ZK −∆1 6= 0. If
any chain-connected component of ZK −∆1 is of arithmetic genus < 2, then we stop
with r = 1 and E = ZK − ∆1. Then E consists of at most two disjoint canonical
cycles of elliptic singularities. So, we may assume that ZK − ∆1 is the canonical
cycle of a singular point of pf = 2. Then, one can repeat the above argument to get
∆2 consisting of two or three Γi’s of arithmetic genus 2. Now, the obvious induction
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shows the assertions (1)–(3). We get (4), because Γr,µ is a minimal element in {Γi}ni=1

implying that KΓr,µ
is nef.

Unfortunately, we do not know whether the sequence Γr,1 ≺ · · · ≺ Γ1,1 = Z
always forms the Yau sequence or not. We have pa(V, o) ≥ r + 1 by Proposition 2.4.

Example 4.8. Let Ai (0 ≤ i ≤ 4) be non-singular projective curves with A2
i =

−2. Suppose that the dual graph of A =
⋃4

i=0 Ai is of Dynkin type (D5) as in
Figure 3. We denote by (V, o) the singularity obtained by contracting A. Then
Z = A0 +A1 +2A2 +2A3 +A4 is the fundamental cycle on A and we have Z2 = −2.

i i i i

i

A1 A2 A3 A4

A0

Fig. 3.

(1) This example shows that both of (a) and (b) in Theorem 4.7, (1) actually occur.
Assume that A0 is of genus two and Ai ≃ P1 for 1 ≤ i ≤ 4. Then pf (V, o) = 2 and

ZK = 5A0 + 3A1 + 6A2 + 4A3 + 2A4 is the canonical cycle. Hence ZK =
∑5

i=1 Γi,
where Γ1 = Γ2 = Z, Γ3 = A0 + A1 + A2, Γ4 = A0 + A2 and Γ5 = A0. We have
Γ1Γ2 = −2 and ΓiΓj = −1 for 3 ≤ i < j ≤ 5. Put ∆1 = Γ1 + Γ2, ∆2 = Γ3 +Γ4 + Γ5.
Then ZK = ∆1 +∆2 is the decomposition as in Theorem 4.7, ∆2 is of type (a) while
∆1 is of type (b).

(2) Let A2 be an elliptic curve, and Ai ≃ P1 for i 6= 2. Then pf (V, o) = 2 and
the canonical cycle is ZK = 3A0 + 3A1 + 6A2 + 4A3 + 2A4 = Γ1 + Γ2 + Γ3 + Γ4,
where Γ1 = Γ2 = Z, Γ3 = A0 + A1 + A2 and Γ4 = A2. If we put ∆1 = Γ1 + Γ2 and
E = Γ3+Γ4, then ZK = ∆1+E is the decomposition as in Theorem 4.7 with ∆1 being
of type (b) and E is the canonical cycle of an elliptic singularity with fundamental
cycle Γ3. We get pa(V, o) = 2 from Corollary 2.5, because Zmin = A0+A1+2A2+A3

and ZminZ < 0. Note also that Γ2 6= Zmin. Therefore, if E 6= 0, the curve Γr,µ as in
Theorem 4.7, (4) is not necessarily the minimal model of the fundamental cycle.
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