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GEOMETRIC FLOWS WITH ROUGH INITIAL DATA*

HERBERT KOCH' AND TOBIAS LAMM?

Abstract. We show the existence of a global unique and analytic solution for the mean curvature
flow, the surface diffusion flow and the Willmore flow of entire graphs for Lipschitz initial data with
small Lipschitz norm. We also show the existence of a global unique and analytic solution to the
Ricci-DeTurck flow on euclidean space for bounded initial metrics which are close to the euclidean
metric in L* and to the harmonic map flow for initial maps whose image is contained in a small
geodesic ball.
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1. Introduction. In this paper we prove the existence of solutions of geometric
flows with non-smooth initial data. More precisely, we consider the graphical Will-
more, surface diffusion and mean curvature flow, the Ricci-DeTurck flow on R™ and
the harmonic map flow for maps from R™ into a compact target manifold.

The initial data we are interested in are Lipschitz functions for the mean curva-
ture, surface diffusion and Willmore flow, and L> metrics (respectively maps) for the
Ricci-DeTurck and harmonic map flow. Here and in the rest of the paper we say that
a function f is Lipschitz if it belongs to the homogeneous Lipschitz space C%!(R")
with norm || f||co.1mn)y = [|Vf||pe®n). We construct the solutions of the flows via
a fixed point argument and therefore we require the initial data to be small in the
corresponding spaces.

Crucial in our construction are scale invariant norms based on space-time cylin-
ders, similar to the Carleson weight characterization of BMO (see [26, 16]). This
point of view has been introduced by the first author and Tataru [16] in the context
of the Navier-Stokes equations. Here we approach quasilinear equations and we obtain
new and possibly optimal results in terms of the regularity of the initial data and the
regularity of the solution. Moreover our method to construct the solutions allows a
uniform and efficient treatment of the five geometric evolution equations.

In the above mentioned paper [16] a fixed point argument was used in order to
show the existence of a unique global solution of the Navier-Stokes equations for any
initial data which is divergence free and small in BMO~! (the space of distributions
which are the divergence of vector fields with BMO components). By localizing
their construction the authors were also able to show the existence of a unique local
solution of the Navier-Stokes equations for any initial data which is divergence free
and in VMO~!.

In the case of the harmonic map flow we show how a similar local construction
can be used to obtain the existence of a local unique solution for initial maps which
are small L°°-perturbations of uniformly continuous maps.

Using an idea introduced by Angenent [1], [2] we obtain in all cases analyticity of
the solution as a byproduct of the fixed point argument.
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It is likely that related local constructions can be used to obtain unique local
and analytic solutions of the mean curvature, surface diffusion and Willmore flow for
C"! initial surfaces and even for small Lipschitz perturbations of such surfaces. This
remark may be of interest for numerical approximations by triangulated surfaces. We
remark that throughout the paper uniqueness always means uniqueness of the mild
solution.

In the following we give a brief outline of the paper.

In section 2 we recall some basic properties of the heat kernel and the biharmonic
heat kernel and we study solutions of the homogeneous linear equations with rough
initial data.

In section 3 we show the existence of a global unique and analytic solution of the
Willmore and surface diffusion flow of entire graphs for Lipschitz initial data with
small Lipschitz norm. Moreover we show the existence of global unique and analytic
self-similar solutions for self-similar Lipschitz initial data having small Lipschitz norm.

A global unique and analytic solution to the Ricci-DeTurck flow on R™ for L°°-
initial metrics which are L* close to the euclidean metric is constructed in section 4.
This yields a slight improvement of a recent existence result of Schniirer, Schulze &
Simon [22].

In section 5 we show the existence of a global unique and analytic solution of the
mean curvature flow of entire graphs for Lipschitz initial data with small Lipschitz
norm. We emphasize that this construction includes the case of higher codimensions.

In section 6 we construct a local unique solution of the harmonic map flow for
every initial data which is a L°-perturbation of a uniformly continous map. As a
Corollary we get the existence of a global solution for the harmonic map flow for every
initial map whose image is contained in a small geodesic ball.

Finally, in the appendix, we use the method of the stationary phase to derive
some standard estimates for the biharmonic heat kernel.

2. Preliminaries. In this section we recall some estimates for the heat kernel
and the biharmonic heat kernel and we prove estimates for solutions of the corre-
sponding homogeneous initial value problems with rough initial data.

22
2.1. Heat kernel. The heat kernel ®(x,t) = (47rt)_%e_% is the fundamental

solution of the heat equation
(O — A)®(x,t) =0 on R" x (0,00).
We have the following estimates for the heat kernel and its derivatives.
LEMMA 2.1. We have for every k,l € Ny and t > 0, z € R"
(2.1) |0VE® (2, 1)| < c(t? + |z) "2 and
(2.2) OIV*D (-, )|y < et

Moreover, for any (z,t) € R™ x (0,1)\(B1(0) x (0, 1)), there ezist constants c,c; >0
such that

(2.3) | (x,1)] + [V|(2, 1) + |V (2, 1) < ce™I"l.
We note that solutions of the heat equation which grow slower than ele” at infinity

are unique (see for example [12]). In the following, whenever we speak of a solution
of the heat equation, we mean a solution satisfying this growth condition.
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As a consequence of the estimates for the heat kernel we get the following result
for solutions of the homogeneous heat equation.

LEMMA 2.2. Let ug € L®(R") and let u : R x Ry — R be a solution of the
homogeneous linear equation

uy — Au =0, u(-,0) = uo.
Then we have
[l oo (o ety + SUP 2 [[Vu(t)|| oo () + sup sup (R_%||vu||L2(BR(:c)><(O,R2))
t>0 z€R™ R>0
+ RVl
(2.4) < cffuo|| poe .-

BR<m>x<%2,R2>>>

Proof. The estimate (2.4) is invariant under translations and the scaling (A > 0)
ux(w,t) = u(\z, \*t) and therefore it suffices to show

(0, D] + [Va(0, D] + [IVul[L2 (8, (0)x (0.1)) + ||Vl

Ln+4(B1(0)x(5,1))
§ C||u0||Loo(]Rn).
Now (2.2) implies that for i € {0,1} we have
sup  sup |V'u(x,t)| < sup sup | Vi®(y, tyug(x — y)dy|
z€B1(0) $<t<1 z€B1(0) 1 <t<1 JR»
S C||UQ||Loo(]Rn).

In order to estimate the third term we let n € C°(B2(0)), 0 <n <1,n=11in By(0)
with [|V7[|pe®n) < ¢ be a standard cut-off function. Multiplying the homogeneous
heat equation with n?u and integrating by parts we get with the help of Young’s
inequality and the pointwise estimate for u

o / Ll + / PIVal? < c / V021l < el ]2 -
R Rn B2 (0)

Integrating this estimate from 0 to 1 and using the properties of 1 yields the desired
result. O

REMARK 2.3. The choice of the L?-spacetime norm of the gradient is motivated
by the Carleson measure characterization of BMO(R™) (see [26, 16]). Namely, for a
solution w of Opu — Au =0 on R™ x (0, 00) with u(-,0) = ug, we have

|luoll Brron) = sup sup R~ 2||Vul| 125, (2)x (0,72))
xz€ER™ R>0

in the sense that the right hand side defines an equivalent norm for BMO(R™).

2.2. Biharmonic heat kernel. The biharmonic heat kernel b(x,t) is the fun-
damental solution of

(0 + A?)b(2,t) =0 on R™ x (0,00)
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and it is given by
b(w, t) =F (e 1M
:ti%g(n)a

where 1 = 2t~ and

g(n) = (27r)*%/ eIk g
We have the estimate

'é
lg(m)] < K(1+ |n))~Fe ol

with a = 23 1—36. Additionally we have for every m € N that

d™g _nomo ol
d77—m(77)|§Km(1+|77|) el

Standard proofs of these estimates are provided in appendix A. In the following
Lemma we rephrase the above estimates on b and its derivatives in such a way that
we can directly apply them later on.

LEMMA 2.4. We have for every t > 0 and x € R" that

a |z|3
(2.5) [b(x, )] < et 4exp(—a I )
3
Moreover we have for every k,l € Ng andt >0, x € R"
(2.6) 0iVEb(, )] < c(tF + |2)) " F 1 and
(2.7) [OEVFb (-, )| 1 mny < et E

Finally, for all (z,t) € R™ x (0,1)\(B1(0) x (0,1)) and all 0 < j < 4 there ewist
constants c,cy > 0 such that

(2.8) |V7b(x,t)] < ce~ll,

4
Solutions of the biharmonic heat equation which grow slower than e!*/® at infinity
are unique, and therefore, whenever we speak of a solution of the biharmonic heat
equation we mean the one which satisfies this growth condition.
We also need the following estimate for solutions of the homogeneous problem.

LeEmMMA 2.5. Let u : R™ x Rar — R be a solution of the homogeneous linear
equation

ug + A%u =0, u(+,0) = ug € COH(R™).
Then we have
1
[[Vul| oo (mr xrt+) + iglgt“ V2 u(t)|| oo (rm)

+ sup sup RW%GHVQUH
ZERM R>0

(29) §C||U0||CO,1(R7L).

L+6(Br(x)x (&, R1))
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Proof. Since the estimate (2.9) is invariant under translations and the scaling
ux(z,t) = su(Az, A*t) (A > 0), it suffices to show that

Vu(0, 1)] + [V*u(0,1)] + || V*u|

Lrre(By 0)x (3,1)) < clluolloor@n).

Using (2.5) and (2.7) we get for ¢ = 1,2

sup  sup |Vu(z,t)| < sup sup | [ V7b(y,t)Vue(z — y)dy|
z€B1(0) 1 <t<1 z€B1(0) 1<t<1 JR»

< cf|uolco @n).-
This finishes the proof of the Lemma. 0

3. Willmore and surface diffusion flow. For a closed two-dimensional surface
¥ and an immersion f : ¥ — R3 the Willmore functional is defined by

(3.1) W)= [ B,

where g is the induced metric, H = k1 + K2 is the mean curvature of ¥ and dyg is the
area element. Critical points of W are called Willmore surfaces and they are solutions
of the Euler-Lagrange equation

1
(3.2) AGH + 5H3 —2HK =0,

where A, is the Laplace-Beltrami operator of the induced metric and K = k1k9 is
the Gauss curvature of ¥. The Willmore flow is the L2-gradient flow of W and is
therefore given by the following fourth order quasilinear parabolic equation

fit=—-A,H — %H3 +2HK on % x[0,T),
(3.3) f(-,0) = fo,

where fo : ¥ — R? is some given immersion and f;* denotes the normal part of f;. In
the case that ¥ is a sphere Kuwert & Schétzle [17]-[19] showed that if W (fy) < 8,
then the Willmore flow exists for all times and subconverges to a smooth Willmore
sphere. On the other hand Mayer & Simonett [21] gave a numerical example for a
singularity formation of the Willmore flow for an initial immersion of a sphere fy with
W(fo) < 8 + €, where ¢ > 0 is arbitrary (for an analytic proof of this result see
[3]). Moreover, in a recent paper, Chill, Fasangova & Schitzle [5] showed that if f
is W22 N C! close to a C2 local minimizer of W (i.e. a minimizer among all closed
immersions which are C? close to each other), then the Willmore flow with initial data
fo exists for all times and converges (after reparametrization) to a C? local minimizer
of W.

In this section we are interested in the Willmore flow for graphs on R? (so called
entire graphs). Hence we assume that there exists a function u : R? — R such that
¥ = graph(u) = {(z,u(z))|z € R?}. Standard calculations then yield

Uy Vu det V2u

1 .
fE=tt H=div(=D), K=" and
1 . Vu® Vu
AgH =~ div (w1 T)VH),
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where v = /1 + |Vu|2. From the calculations in [6] we get

- 1
AgH + SH* —2HK = div (—((I -

7VU®VU

Y (oH) - %HQVU))

and therefore the Willmore flow equation (3.3) can be rewritten as

_ Vu® Vu

(3.4) us + v div (% (1 2

1
)WV(vH) — §H2Vu)> =0 on R?*x[0,7)
with initial condition u(-,0) = ug, where ug : R> — R is some function. The following
observation concerning the scaling behavior of a solution of the Willmore flow turns
out to be very important: If u(z,t) is a solution of (3.4) with initial condition u(-,0) =
ug, then the rescaled function

(3.5) ux(z,t) = %u()\x,)\‘lt)

is also a solution of (3.4) with initial condition ux(-,0) = ux 0 = Fug(X-).

Our aim in this section is to show the existence of a global unique and analytic
solution of (3.4) under very weak regularity assumptions on the initial data ug. Since
the method we use to construct the solution does not depend on the dimension we
consider in the following solutions of (3.4) on R™ (n € N).

Before stating the main result of this section we need to define a suitable Banach
space. For functions u : R x (0, 00) — R which are continuous and twice differentiable
with respect to the space variable we define a norm by

— =212
[lellxoe = SUp [[VU(lloe ey + SUp sup RISV o) (2 1))

Moreover we define the Banach space
Xoo ={u| ul|x, < o0}

The following Theorem is our main result for the Willmore flow of graphs.

THEOREM 3.1. There exists ¢ > 0, C > 0 such that for every ug € C%(R")
satisfying ||uo||cormny < € there exists an analytic solution u € Xo of the Willmore
flow (3.4) with u(-,0) = ug which satisfies ||u||x., < C|luo||cor(mny. The solution is
unique in the ball BX>~(0,Ce) = {u € Xoo| ||ul|x., < Ce}.

More precisely, there exist R > 0, ¢ > 0 such that for every k € Ny and multiindex
a € Ny we have the estimate

(3.6) sup sup |(£1V)* (t0;)*Vu(z, t)| < clluo|| o @my R (|a| + k).
zeR™ t>0

Moreover the solution u depends analytically on ug.

We remark that in the above Theorem the initial value wug is allowed to have
infinite Willmore energy. Moreover weak solutions in X, are fixed points of the fixed
point map F,,, defined below.

It is an interesting open problem if one can drop the smallness assumption on the
Lipschitz norm of ug in Theorem 3.1.

In the case of the mean curvature flow for entire graphs, Ecker & Huisken [10, 11]
showed the existence of a global solution for initial data which are locally Lipschitz
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continuous. Since the equation (3.4) is of fourth order it is not clear if one can expect
a corresponding result in this situation.

We would like to remark that the Willmore flow for graphs has previously been
studied from a numerical point of view by Deckelnick & Dziuk [6].

In order to show the existence of a solution if the Willmore flow we need to rewrite
the equation (3.4). We start by introducing some notation. We use the * notation to
denote an arbitrary linear combination of contractions of indices for derivatives of u.
For example we have V?juviuvju = VZu x Vux Vu = |Vu|>?Au. Moreover we use
the abstract notation

Pi(Vu) =Vux*...xVu.

i-times

With the help of this notation we are now able to rewrite equation (3.4) in a form
which is more suitable for our purposes.

LEMMA 3.2. The Willmore flow equation (3.4) can be written as
(37) w+ Atu = folu] + Vififu] + V5 £ [u] = flu],
where

4
folu| = Vux V2u* VZux Z v Poy,_o(Vu),

k=1

4
filu] = V2u x V2u Z v kP (Vu) and
k=1

2
folu] = Vux Z v 2 Py (V).
k=1

Proof. We calculate term by term.

’U,VUQ_,VUH2 VoVu
5 le(TH ) —le(l 5 ) — 2 H
=Vifilul + folu]
’UdiV(EV(UH)) =A(vH) — EV(’UH)
v v
CAZy - AV %VAu + %v(vuvw)

=A%u+ Vi i [u] — T+ I1.
Now we can rewrite I as follows:
Vku

I :vj(wvfkw?ju) — folu] — Fvijkuvfju
. Viu
=folu] + Vi f{[u] = 5, 5 Vi V?ul®
: Viu
=folu] + V; f[u] — Vi(55 [V2ul?)

_ 02
= folu] + V; f{ [u].
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For IT we argue similarly to get

_VjquuVlu
4

o VjquuVlu

B 204

=folu] + V; 1 [u].

Vi(ViuViu) + folul

Finally we have

ViuV u VuVu Vi oV,;uV u
:V?j(TjH) + Vi filu] + folul,

where we argued as above to rewrite the last term in the first line. Altogether this
finishes the proof of the Lemma. 0
Next we write equation (3.7) in integral form

(3-8) u(z,t) = Suo(z,t) + V flul(z, 1),

where

Suo(z,t) = / bz — v, uo(y)dy and

Vil = [ ] b=yt - ) flul(y. sdyds.

The goal for the rest of this section is to construct a solution of the integral equation
(3.8) by using a fixed point argument.

Another very important fourth order geometric evolution equation is the surface
diffusion flow, given by

fi-=—-A,H.

For results on this flow see for example [7].
Restricting again to the situation of entire graphs (and using the above formulas)
we see that this equation is equivalent to

(3.9) up = —div ((UI - @

)VH) :

LEMMA 3.3. The equation for the graphical surface diffusion flow (3.9) can be
written in the form (3.7).

Proof. We write

up = — div(vVH) + div (M
v

VH)
=I+1I.
Next we use the calculations from Lemma 3.2 in order to conclude
I=—A(vH) +div(VvH)
=— Au+ V£ [u] + Vi fi[u].
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Moreover, we observe

@H) — div (HV(

=V, 5 [u] + Vi filul

11 =A( Yuo V)

v

and this finishes the proof of the Lemma. O
The fact that we can rewrite the graphical surface diffusion flow in the form (3.7)
allows to conclude the following result (compare with Theorem 3.1).

THEOREM 3.4. There exists € > 0, C > 0 such that for every ug € C%*(R")
satisfying ||uo||co.1mny < € there exists an analytic solution u € Xoo of the surface
diffusion flow (3.9) with u(-,0) = ug which satisfies ||u||x.. < C|luol|co.r(@mny. The
solution is unique in the ball BX=(0,Ck¢).

More precisely there exists R > 0, ¢ > 0 such that for every k € Ny and multiindex
a € Ny we have the estimate

(3.10) sup sup |(¢1V)*(t0,)F Vu(z, t)] < ¢l[uo||cor @myRI*TF (|a| + k).
z€ER™ t>0

Moreover the solution u depends analytically on ug.

3.1. Model case. Before studying the general equation (3.7) we study solutions
of the simplified problem (which might be of independent interest)

(3.11) up + A%u = folu] + V fi[u] = flul,

where fo[u] and fi[u] are as in Lemma 3.2. In this case we define for every 0 < T < oo
the Banach space Xy, 7 by

1
Xar = {ul [lullxyr = sup |[Vu(®)l[pe@n) + sup t7|[Vu(t)||poo@ny < 00}
0<t<T 0<t<T
Moreover, we let
3
Yo,u,r = {fol |[follvonr = sup t3|[fo(t)|[Loern) < o0}
0<t<T
and
1
Yimr = {fil 1fillviae = sup t2|[fi(t)|[Le@n) < 00}
0<t<T

Finally we define the norm

||f||YM,T = inf{||f0||Y0,M,T + ||f1||Y1,M,T| fO € YO,M,T; fl € Yl,M,Ta f = fO + Vfl}

and the Banach space

YM,T = {f| ||f||YM,T < OO}
Our main goal in this subsection is to prove the following Theorem.

THEOREM 3.5. Let 0 < T < o0, u € Xpyrr and fuu] = folu] + V fiu], where
folu] and fi[u] are as in Lemma 8.2. Then the map Fy : COV(R™) x Xy — X,
defined by Fay(ug,u) = Sug + V far]u] is analytic and we have

(3.12) [1Eas (o, )| x5 7 < elluollcor@ny + llull,, .-
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Moreover, there exists g9 > 0 and q¢ < 1 such that for all ug € C%Y(R"™) and all
ur,uz € Xy ={u € Xar| [|ullx,r <eo} we have

(313) ||FM(U'0’ ul) - FM(u07u2)||XM,T < Q||U1 - u2||XM,T'

The Theorem will be a consequence of the next two results and Lemma, 2.5.

LEMMA 3.6. For every 0 < T < oo the map fum[-] = fol]+Vfil] : Xmr — Yu,r,
where fo and fi1 are as in Lemma 3.2, is analytic. Moreover we have the estimates

(3.14) A aelulllyae e <cllull,, .
for every uw € Xy 7 and
[ far[wa] = farfuz]llya -
(3'15) < C(||u1||XM,T7 ||U’2||XM,T)(||U’1||XM,T + ||u2||XI\/I,T)||U’1 - u2||XM,T
for all ui,us € Xpy 7.

Proof. Polynomial maps are analytic. We expand the functions of Vu into power
series. This yields a convergent power series expansion of fy and f; in the function
spaces.

In order to see (3.15) we notice that for every ¢ € N

o7 — 0y | < e[V, [Vuz oy * oy [V — V|,

where v; = \/1+ |Vu,|?2, j € {1,2}. 0
LEMMA 3.7. Let 0 <T < oo and let fo+Vfi = fu € Y. Then Vfyr € Xur
and we have the estimate

(3'16) ||VfM||XMT < C||fM||YM,T'

Proof. Since the estimate (3.16) is invariant under translations and the scaling
defined in (3.5) it suffices to show that

[VV far(0,1)] + [V2V fa0(0, )] < el farllvis o
for T > 1. Using the definition of the operator V and Lemma 2.4 we estimate
1
V0.0 e [ [ (Vb1 =)ol )
O n
+ |v2 (_ya 1-s |f1(y7 )|)dyd5

3 1 —n—1
<C||f0||Yo MT/ / 4 175 4 +|y|) dde

1 —n—2
+c||f1|y1MT// -t pl) " dyds

<C||fM||YMT'

w

Arguing similarly for |[V2V f1,(0,1)| we get

1 —n—2
w0l <e [ [ (00t i) " oty olavas

+c/0 / (1_5)% +|y|>7n73|f1(y75)|dyds.

Estimating the integrals as above we get the desired bound for |V2V f3,(0,1)]. O
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3.2. General case. For the general case of a solution of (3.7) we have to include
the term V2 f5[u] into our analysis. In order to do this we need to modify our function
spaces while we still want them to be invariant under the scaling defined in (3.5).

DEFINITION 3.8. For every 0 < T < oo we define the function spaces X1 and Yr

by
X = V t oo (R™ Rn+6 v
’ {uloi?ET” u(®)lle (® )+QS£D£LO<S;I)<T ] UHL"“" (Br(x)x (& R%))
< oo} and
YT :Yb,T + VYi,T + VQYé,T7
where

= su sup Rw¥o n
||f0||Y0,T 16]15"0<Rp ||f0|| + B ( )><(R‘1 R4))

1 fillyir = sup  sup  RT[|fy]] . and

4
TER™ O< R4<T (BR(Q")X(R RBY))

||f2||Y2,T = aseu]RRL O<SR}l4p<TRn+6 ||f2||Ln+6 BR(z)x(R ,R4))"

As in the previous subsection our goal is to prove the following Theorem.

THEOREM 3.9. Let 0 < T < oo, u € Xt and let flu] = fo[u] + V fi[u] + V2 fa[u],
where folu], fi[u] and fa[u] are as in Lemma 3.2. Then the map F : COY(R") x X1 —
X, defined by F(ug,u) = Sug + V flu] is analytic and we have

(3.17) 1E (o, w)l|x, < c(lluollcor @ny + [ull,)-

Moreover, there exists €9 > 0 and ¢ < 1 such that for all ug € C%'(R"™) and all
ur,ug € X7° = {u € Xp| ||u||x, <eo} we have

(3.18) |[F (w0, u1) — F(uo, u2)||x7 < qllur — ual[x,-

The Theorem will be a consequence of the following two results and Lemma 2.5.

LEMMA 3.10. For every 0 < T < oo the operator f[-] = (fo + Vf1 + V2f2)[] :
X1 — Yr, where fo, f1 and fa are as in Lemma 3.2, is analytic and we have the
estimates

(3.19) 1 [l < ellullk,

for allu € Xr and

(3.20)  [[flua]=flualllyr < c(llurllxes Juzllx)(urllxr + [uzllxz)[ur — wollx,
for all ui,us € Xp.

Proof. The proof is the same as the one for Lemma 3.6. O

LEMMA 3.11. Let 0 < T < oo and fo+Vfi +V2fo=fcYpr. ThenVfc Xp
and we have

(3.21) WV Fllxz < cllfllye-
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Proof. Since the estimate (3.21) is invariant under translations and the scaling
defined in (3.5) it is enough to show that

IVV 0, )] + V2V fll om0y x(2,1)) < €llflva

for some T' > 1.
By definition we have

1
VV£(0,1) = / / Vb(x,1 —t)f(z,t)dzxdt
0 n
and, with @ = B1(0) x [3,1) and Q" = B1(0) x (0, ), we decompose

IVV £(0,1) |<‘/ Vb(z, 1—t)f(:ntd:cdt‘+‘/

Vb(z,1 - t)f(z, t)dmdt‘
R7 x (0,1)\Q

=I+1I

Now we estimate term by term. We start with I.

I< ‘/ (Vb(:c, 1—t)fo(z,t) — V?b(2,1 — t) f1(z,t) + Vb(x, 1 — t) fo(a, t)) dmdt‘

<||Vb V2b n
1980 2t o Mol g2 ) + I8 28 o Ml e o
3
IV azg  1F2llznse@)
Sc||f||YT7
where we used the fact that
.22 3| <
(322) Vbl g IV g I <

which is a consequence of the estimate (2.6).
Integrating by parts and using (2.8) we get

I <CZ Z / o 1/ e~ (| fol + | f1] + | fo]) (, t)daxdt

m=0yezn
<Y s [ (1ol + 11l + 1 fo ot
m:OyeZn Bl( )X(Q—m,—l’Q—m,)

Now we claim that there exists a number v < 1 such that
CEON | (1fol + 1Fa] + | fel) . O dt < ey vy
By (0)x(2—m—1,2—-m)

Using the translation invariance this claim then implies that
II < c||f||YT7
which, combined with the above estimate, shows that

IVVF(0, )] < ell fllye
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and finishes the proof of the first part of the estimate (3.21).

To prove (3.23) we cover the set Bi(0) x (27™~1 27™) by approximately 2"
cylinders of the form Q. (y) := B,-= (y) x (2=m=1 27™) By Hélder’s inequality we
get

2 6m—m(n+4)(n+3) 4m—m(n+4)2? 2m—m(n+4)(n+5)
S il @my Se2 fFo 427 awE 427 s )| f|ly,
=0

<2755 fllve

which implies (3.23) with y =274,
Using the same arguments as in the estimate for the term II above we get the
pointwise bound

sup | (V2@ =yt = 5) foly,5) = V?blw — vt = ) f1(y,5)
(z,t)eQ JR™x(0,1)\B2(0)x(5,1)

+ Vib(z =yt = 5)faly. ) ) dyds| < el vz

Therefore it remains to show the estimate for the L"*5-norm of V2V f on Q for
functions fo, f1 and fo whose support is contained in B2(0) X (%, 1).

In this situation the estimate for V2V (V2 fy) follows immediately from the fact
that

(324) ||v2u||Ln+6(Rn xR+) § C||f2||Ln+6(Rn xR+)
for all solutions u of
(3.25) w o+ ANu=VEif, u(,0)=0.

(3.24) can be seen as follows: Multiplying the equation (3.25) by u and integrating
by parts, we get with the help of Holder’s inequality

AT g gty < el follL2@n xre) || VUl L2 @n xR )

Integrating by parts again and interchanging derivatives yields
IV2ul| 2re xr+) < |l follL2@n xR+

Hence the operator which maps f;j to 8,%lu is a continuous and linear operator T};x;
from L? to L?, which has an integral kernel given by ijklb. We equip R” x R with
the metric

d((z,1), (y, 5)) = max{|z —yl, |t — s|'/*}.

and we let m™*! be the Lebesgue measure. The triple (R™ x R, d,m™*!) is a space
of homogeneous type and Tj;z; is a singular integral operator in this non Euclidean
setting. As a consequence of this we get for every 1 < p < oo that (see for example
[26])

2
p
[ Tijrr fllLe@nxrty < c 11| Lo mn xR+

p—1
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and this shows (3.24) by choosing p = n + 6.
In order to estimate the L"*5-norm of V2V fy and V2VV f; we recall the Young
inequality

I1f * gllm e xr+y < el flloe@nxr+) 9] La@n xRS
where
1 1 1
1<p,gm<o0 and —-4+-=1+4 —.
P q m
n+6

Applying this inequality with m =n+ 6, p = "T*'G, q= respectively m = n + 6,

n+4°

p= "T*'G, q= Z—ig and using (3.22) we therefore get

V2V follnts@nx (0,0) V2V V fill La+o@n x (0,1))

<c(llfoll, nge + 1Al

6 +6 .
3 (RnxR+) "3 (]Rnx]R+))

Since the support of fo and f; is contained in By(0) x (,1) this estimate completes
the proof of the Lemma. 0

3.3. Proof of Theorem 3.1.

Proof. For every 0 < T < oo and ug € C%'(R™) we define the operator F,, :
Xr — Xrp by

(3.26) F,,(u) = F(ug,u) = Sug + V fu],

where flu] = folu] + Vfi[u] + V2f2[u] and fo[u], fi[u] and fa[u] are as in Lemma
3.2. From Theorem 3.9 and the Banach fixed point theorem we get that there exist
61,02 > 0 such that for all ug € C%'(R™) with ||ug||co.1(gn) < 61 the map F,, has a
unique fixed point u € X%Q (X%2 is defined in Theorem 3.9). Moreover u depends on
ug in a Lipschitz continous way. Thus u is the unique global solution of (3.7) we were
looking for.

Next we show that v depends analytically on ug. From Theorem 3.9 we get that
for every 0 < T' < oo the map G : C%1(R") x X7 — Xr, defined by

G(“Oau) =u- SuO - Vf[u] =u- F(Uo,’u),
is analytic, G(0,0) = 0 and
D,G(0,0) = id.

Combining all these facts we can apply the (analytic) implicit function theorem (see
for example [8]) to get the existence of balls B.(0) ¢ C%1(R"), B,(0) C Xr and
a unique analytic map A : B.(0) ¢ C%(R") — B.,(0) C Xr such that A(0) = 0
and G(ug, A(ug)) = 0 for all ug € B.(0). Moreover G(ug,u;) = 0 if and only if
u1 = A(up). From the above considerations we conclude that for § = min{da, v} there
exists a unique solution u € X3 of (3.7) which depends analytically on the initial
data ug.

It remains to prove that u(z,t) is analytic in  and ¢ for every z € R™ and
0 <t < oo. In order to do this we let T' < co and we define for £1,e2 > 0 small an
operator G : D, (0) x (1 — &g, 1+ ¢e3) x COL(R") x X7 — X, where D, (0) C R", by

(3.27) Gla, 7, up,u) = u — Sug — V fur[u],
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where
farlu] = 7f[u] + (1 = 7)A%u — aVu.

Note that fo1[u] = f[u]. By using Lemma 2.4 it is easy to see that ||[VaVul|x, <
cla|T%||u||x,. Moreover, by defining flu] = 7f[u] + A((1 = 7)Au), we get that

Theorem 3.9 remains valid for f[u] and we have the estimate
- 3
16 (@, 7y w0, w)llxr < e lluolleoa gy + [l lxe (14 [l T + 1= 7] + [luli%,) )

Since G(0,1,0,0) = 0 and D,G(0,1,0,0) = id, another application of the implicit
function theorem gives the existence and uniqueness of an analytic map A : Dz(0) x
(1—-£6,14¢) x Bz(0) — X7 such that G(a, 7, ug, A(a, T,up)) = 0 and therefore

A(a, 7,u) = Sug + V f[A(a, T, up)].

Next we let € < min{e,£} and we observe from the above uniqueness results
that A(uo)(z — at,7t) = A(a,T,uo) since A(ug)(-,0) = ug = A(a,7,u0)(-,0) and
G(a,T,up, A(ug)(x — at, 7t)) = 0.

Hence we get that A(up)(x — at, 7t) depends analytically on a and 7. Since for
finite ¢ we moreover have that

0

%A(uo)(ac —at, 7t)|(a,r)=(0,1) = — tVA(uo)(x, 1),
0
EA(UQ)(I —at, 7t)|(a,r)=(0,1) =t0:A(uo)(x,t),

with similar formulas for higher and mixed derivatives, we conclude that A(ug) and
therefore also u is analytic in space and time for all x € R™ and all 0 < t < oo.
The estimate (3.6) (resp. (3.10)) now follows from a scaling argument and the above
formula for the derivatives of w. O

3.4. Self-similar solutions. In this subsection we use Theorem 3.1 in order
to show the existence of self-similar solutions of the Willmore and surface diffusion
flow for graphs. More precisely we show the existence of homothetically expanding
solutions. Since the arguments for both flows are identical we restrict ourselves to the
situation of the Willmore flow.

We consider self-similar initial data ug, i.e. ug which satisfy

1
3.28 ug(x) = —ug(Ax) for any A >0 and z € R".
A

Hence X = graph(ug) is a cone with vertex 0. If we assume that ||uo||co.1mn) < €,
where ¢ is as in Theorem 3.1, we get from Theorem 3.1 the existence of a unique
analytic solution u € X of (3.4) with initial condition u(-,0) = ug. Next, if we
define ug x(z) = uo(Az), we get that |[ug,x|[co.1®n) = [|uo||co.1@n) < € and hence
ux(z,t) = $u(Az,A*t) is the unique analytic solution of (3.4) in Xoo with ux(-,0) =
up,x. Since by (3.28) we have that ug = ug,x we get that for any self-similar initial
data ug with ||ug||co.1mn) < € there exists a unique analytic solution of (3.4) which
satisfies

(3.29) u(z,t) = %u()\x, M)
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for any 2 € R, t > 0 and A > 0. Defining A = ¢~ % and U(y) = u(y,1) (note that ¥
is analytic) we get that

(3.30) w(z,t) = L1 (xt™ 7).

Moreover ¥ satisfies the elliptic equation
2 1 Y
(3.31) A \II+Z\I/—Z-V\II:f[\I/],

where f is as in Lemma 3.2. Combining all these facts we get the following Theorem.

THEOREM 3.12. There exists ¢ > 0, C > 0 such that if ug € COY(R") is
self-similar with ||uo||co.r mny < €, then there exists a global analytic and self-similar
solution v € Xoo of the Willmore flow (3.4) which satisfies the estimates ||ul|x., <
Clluo||co.1(rny and (3.6). The solution is unique in the ball BX>(0,C¢). Moreover u
can be written in the form (3.30), where U is an analytic solution of (3.31).

4. Ricci-DeTurck flow. On a manifold M™ with a family of Riemannian met-
rics g(t) the Ricci flow is given by

Org = — 2Ric(g) in M" x (0,T) and
(41) g(,O) =4o,

where Ric(g) denotes the Ricci curvature of g and go is some metric on M™. In this
section we are interested in a closely related flow, the so called Ricci-DeTurck flow
for a family of Riemannian metrics g(¢) on R™. This flow is given by (see for example
[13])

0rg = — 2Ric(g) — Ps(g) in R™ x (0,7) and
(42) g(a 0) =4o,

where ¢ is the euclidean metric and

where G(g,8) = 6 —2g, dg : h — dgh = —gV;h;,dz" (d, maps symmetric covariant
two-tensors onto one-forms) and d} : w — diw = §(Viw; + Vjw;)dz' @ da? (df is
the adjoint operator of d, with respect to the L? inner product and therefore it maps
one-forms onto symmetric covariant two-tensors).

The Ricci-DeTurck flow was introduced by DeTurck [9] in order to give a short
proof for the short-time existence of the Ricci flow on compact manifolds. DeTurck
achieved this goal by showing that the flows are equivalent (see also [23]) and that
(4.2) is a strictly parabolic system for which the general short-time existence theory
can be applied.

In local coordinates the Ricci-DeTurck flow (4.2) can be written as (see [23])

1
gij =9*°VaVigij + igabgpq (vigpangqb +2V49ipVgiv — 2VagipVigiq

(43) — Qngpangiq - 2vigpavbgjq)a
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where all the derivatives are taken with respect to the euclidean background metric.
We can rewrite this system as follows

(00 = A)hiy =V (((6+ )™ = 6)Vohiy) = Va6 +B)* Vo
1
5 (6 )6 + 1)1 (Vihya Vs + 2V ahip Vi — 2Vahsp Vihi
— 2V, hpaVihig — 2vihpavbhjq)

where h = g — 4, (((5 + h)ab) = ((5 + h)ab> and

Ro[h] :% (6 + 1) (0 + B (VibipaVshas + 2V ahsp¥ ghiv = 2V ahsp Vohig
~ 2V hpaVohig — 2VilpaVohs) = Va(8 + h) Vs and
YRR =Va (((3+R)™ = ) Vohis).
We note that the Ricci-DeTurck flow is invariant under the scaling (A > 0)
(4.5) ha(z,t) = h(Az, A*t).

We remark that in the rest of this section all norms are taken with respect to the
euclidean metric J.
For all 0 < T < oo we define the function spaces

X ={h| |[h]|x = sup |[h(t)||pe(mn)
o<t<T

_n _2

s A (R EIVRl L2 x 0.8) + BETNVA sy o)
<oo} and

Yr =Y} + VYy,

where

n a4
fllvg = sup sup (R sy + RS ot e )

T€ER™ O<R2<T

_n 2
HfHY,} :a-seu]RRL O<Sll%12p<T (R 2 ||f||L2(BR(93)><(O,R2)) + R+ ||f||L”+4(BR(93)><(RT2,R2))> .

Note that these spaces are both invariant under the scaling defined in (4.5).
From the definition of the spaces X, ¥Yr and the expressions for Ry[h], R1[h] we
directly get the following Lemma.

LEMMA 4.1. For every 0 < T < oo and every 0 < v < 1 the operator Ry[-] +
VRi[]: X} ={h e Xp| ||h]|x; <~} — Yr is analytic and we have the estimate

(4.6) [1Bolk) + V Balh][ly: < e(y)[|hl%,
for all h € X7. and

[[Bo[h1] = Rolho] + V(B1[hi] = Rufho])|lvs
(4.7) < c(lhallxr + [lh2llxo)llh1 = hellx,
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for all hi,hy € X..

Moreover we have

LEMMA 4.2. Let 0 <T < o0 and R= Ry+ VRy € Yr. Then every solution h of
(0r — A)h = R with h(-,0) = hg € L®°(R") is in X1 and we have the estimate

(4.8) [[h]|xr < c(|[hollpo ®n) + [ R]lye)-

Proof. First of all we note that by Lemma 2.2 we can assume without loss of
generality that hg = 0. Next we note that the estimate (4.8) is invariant under
translations and the scaling defined in (4.5). Hence it suffices to show that

(7 (0, D) + (VA L2(B, 0)x (0,1)) + VAl Lrtacs, 0)x(2,1)) < cllRllve,

for some T' > 1.
The estimate for the L°°-norm of A follows from arguments similar to the ones
used in the proof of Lemma 3.11. More precisely, we decompose

|h(0,1)] §|/ ®(z,1 — t)R(x, t)dzdt| + | ®(z,1 —t)R(x,t)dzdt]
Q R x(0,)\Q
<I+1I,

where we let again Q@ = B1(0) x [1,1) and Q' = B1(0) x (0, 3).
Now we estimate I by

10, g o R0l 25 ) + 11991

n <
24(Q) Ln+§ (Q/)HRIHL Q) = C||R||YT7

where we used that

19]] ss
n+2 (R x[0,1])

+ Vel

ntd <eg¢,
L3 (R x[0,1])

which is a consequence of (2.1).
Integration by parts and (2.3) yield

1
IT<ey e~el=l(|Ry (2, t)| + | Ry (2, t)|)dxdt
0 JBi(y)

yeEL™
<c[|R||yz-

Combining the above estimates we conclude
1h(0, )] < el Rlly, -

In order to estimate the L2-norm of Vh we multiply the equation (9; — A)h =
Ry + VRy with n%h, where 7 is defined as in the proof of Lemma 2.2, integrate by
parts and use Young’s inequality to get

0t/ n2|h|2+/ n*|Vh|? < C/ (Ih[* + Bl Ro| + | R [?).
R~ Rn B, (0)

Integrating in time and using the pointwise estimate for h yields

[[VAI|L2(B, 0)x0,1)) < cl|R||vzg-
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Hence it remains to estimate the L"T*-norm of Vh on (. Arguing as in the
estimate for IT above we have

sup_| (VO —y.t = 9)Ro(y,s)
(z,t)€Q JR™x(0,1)\B2(0)x(5,1)

— V20(x —y.t — 5)Ra(y. ) ) dyds| < cl|Rlly,

and hence we can assume that the support of Ry and Ry is contained in By (0) x (1, 1).
In this situation we can use an argument involving singular integrals and the Young
inequality as in the proof of Lemma 3.11 to finish the estimate for the L™ *4-norm of
Vh. O

Since we know that the linearization of the operator

é)t + 2RiC(') + P(;()

at g =9 is 9y — A (see e.g. [13]) we can argue as in the proof of Theorem 3.1 to get
the following result

THEOREM 4.3. There existse > 0, C > 0 such that for every metric go € L*°(R™)
satisfying ||go — d|| e (mny < € there exists a global analytic solution g € § + Xo of the
Ricci-DeTurck flow (4.2) with g(-,0) = go and ||g — d||x.. < Cllgo — d||po®n). The
solution is unique in the ball BX=(5§,C¢e) = {g| |lg — d||x.. < Ce}.

More precisely there exists R > 0, ¢ > 0 such that for every k € Ny and every
multisndex oo € N we have the estimate

(4.9) sup sup |(t2V)*(t0,)* (g — 6)(z, )| < c||go — 8| oo rmy R * (|| + ).

z€R™ t>0
Moreover the solution g depends analytically on go.

This result improves Theorem 1.2 of [22] since the solution we construct is unique
in X, analytic in = and ¢ and the initial metric go is only assumed to be in L>=(R™).
We like to remark that on general complete manifolds local solutions of (4.2) have
been constructed by Simon [24] for initial metrics go € C° which are close to a smooth
metric with bounded sectional curvature (see also [25]).

The relation between the solution of (4.2) constructed in Theorem 4.3 and a
solution of the Ricci flow is illustrated in the following remark.

REMARK 4.4. Let go be a smooth initial metric satisfying ||go — || o= ®n) < € and
let g € 6+ X be the analytic solution of (4.2) constructed in Theorem 4.3. It is shown
in [22] that there exists a smooth family of diffeomorphisms ¢ : R™ x [0,00) — R"
with ¢(-,0) = id such that the family of metrics g(x,t) = (v(x,t))*g(x,t) is a solution
of the Ricci flow (4.1) with initial data go.

5. Mean curvature flow. Let M" be a n-dimensional orientable manifold and
let Fy : M — R™™™ (m € N) be an immersion. We say that the family of immersions
F: M x[0,T) — R™"™ solves the mean curvature flow with initial condition Fy if

O&F=H on Mx(0,T) and
(5.1) F(-,0) =F,

where H(z,t) is the mean curvature vector of My = F(M,t) at F(x,t). Here we
are interested in the case M = R"™ and where Fy(z) = (z, fo(z)), fo : R* — R™ is
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the graph of fo (entire graph). More precisely we consider fo € C%!(R™,R™) and
we assume that the Lipschitz norm of fy is ”small”. Then we construct solutions
f:R™ x [0,00) = R™ of the parabolic system

0% f
—g%
atf g 0x’8$3’
(52) f(a 0) :an
where gi; = 0;; + (55, 25).
For m = 1 we calculate
. VifV;f
U= §, — v IS
R T

and therefore we have
Vf )
V1+|VS]?

and hence we recover the well-known equation for the mean curvature flow for graphs
in codimension one.

Concerning the relation between solutions of the equations (5.1) and (5.2) it was
shown in [29], Proposition 2.2, that for every graphical solution F' of (5.1) there exists
a family of diffeomorphisms 7 : R” x [0, 00) — R™ such that F(x,t) = F(r(z,t),t) can

be written as F'(z,t) = (z, f(x,t)) and f is a solution of (5.2). Conversely, if f is a

solution of (5.2), then F(z,t) = (z, f(x,t)) is a solution of (5.1).
Next we note that (5.2) can equivalently be written as

Of =1+ V2 div(

@ — A f =(g7 —69) 2T wp,

0xtoxI
(5.3) f(50) =fo

and this system is invariant under the scaling (A > 0)

1
(5.4) Iz, t) = Xf()mc, 2.
For every 0 < T' < oo we define the function spaces
Xo ={fl lfllxy = sup [[Vf(t)l[rmn)
0<t<T

+ sup sup R%H|‘v2f”Ln+4( < oo} and

R2 po2
zER™ 0<R2<T Br(@)x(5,12)

2
Yo = {gl llglly= =x8;1ﬂ50<81}212p<TR"+4||g| Lrta(Br(a)x (2 R2)) < 09}

Now we are in a position to formulate our main Theorem of this subsection.

THEOREM b5.1. There exists € > 0, C > 0 such that for every map fo : R® — R™
satisfying || follcor(mn rmy < € there exists a global analytic solution f € Xo of (5.2)
with f(-,0) = fo and ||f||x.. < C||follcor@nrm). The solution is unique in the ball
BX=(0,C¢) = {f| [lfllx. < Ce}.
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More precisely, there exists R > 0, ¢ > 0 such that for every k € Ny and every
multiindex o € N we have the estimate

(5.5) sup sup (£2 V) (t0,)*V f (2, 1) < ¢l| follco gn mmy RIHE (|0 + k).
xeR™

Moreover the solution f depends analytically on fo.

In the case m = 1 Ecker & Huisken [10, 11] showed the existence of a global
solution of the mean curvature flow of entire graphs for any initial data which is
locally Lipschitz.

We remark that for m > 1, one needs at least a certain ”smallness” condition for the
Lipschitz norm of the initial data in view of an example (due to Lawson & Osserman
[20]) of a minimal graph F : R* — R” which is Lipschitz continuous but not C*.

For compact manifolds and Lipschitz initial data fy with locally small Lipschitz
norm, Wang [30] showed the existence of a local smooth solution of the mean curvature
flow. Moreover, for M = ¥ x 31, where 3; and ¥, are compact manifolds of constant
curvature, and initial maps fo : 31 — 35 which are Lipschitz with small Lipschitz
norm, the mean curvature flow has been studied by Wang [28] (see also [27]).

In the special case m = n and fo = Vug € C%! for some ug : R® — R (so called
Lagrangian graphs) satisfying —(1 — 6)id < V2ug < (1 — §)id, where 0 < § < 1 is
arbitrary, a global smooth solution of the Lagrangian mean curvature flow for entire
graphs has recently been constructed by Chau, Chen & He [4].

In order to prove Theorem 5.1 we start with the following Lemma.

LEMMA 5.2. For every 0 < T < oo and every v < 1 the operator M|[-] : X]. =
{f € Xr|l|fllxr <~} — Yr is analytic and we have the estimates

(5.6) IM[f]llve < ellf1%s
for all f € X7 and
(5.7) IM[f1] = M[folllve < () f1llxz + [1f2llxo)llf1 = follxs

for all f1, f2 € X7.
Proof. This is a consequence of the facts that for every f € X7 we have
19" = 67 || ooy < eIV fl] Lo ) [IV fl] oo (m)
and
lg" = 95 || @ny < ||V filloe@n)s [V follLoo @)V (f1 = fo)l|Loo @r)s

where g; =0 +(Vf;,Vfi), 1 € {1,2}. 0

Next we have

LEMMA 5.3. Let 0 < T < oo, fo € COLR",R™) and M € Yr. Then every
solution f of (O — A)f = M with f(-,0) = fo is in X1 and we have

(5.8) 1|z < e(llfollcor @ pmy + [[M |[lyz)-

Proof. First of all we observe that by Lemma 2.2 and the above remark we can
assume without loss of generality that f, = 0. From the translation and scaling
invariance it follows that we only have to show that for some 7" > 1 we have

IVFO, D]+ [[V2 fll prss (a0 x (2,1)) < €M ][y
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The proof of this estimate follows from arguments similar to the ones used in the
proof of Lemma 3.11. Namely, we decompose

V£(0,1)] §|/ VO (x,1 — )M (x, t)dadt] + | V(1 — )M (z, ¢)dudt]
Q R™ % (0,1)\Q
=I+1I

where again @ = B;(0) x [4,1), and we estimate (||V<I>||LH_§(R"X(O71)) <e¢)

I <[99l gy o M 1]1mssc0) < cllM [y

Moreover, we use (2.3) to get

II < ¢ sup Z/ / |M(x,t)|dxdt.
m=072""""J/B1(y)

yezZ™

Next we claim that there exists 0 < v < 1 such that

/ / M (2, 0)|dadt < cy™|| M|y,
2-m-1.JB,(0)

which then finishes the proof of the L°°-estimate. In order to proof this claim we
cover By (0) x (27™~1 27™) by approximately 22" cylinders of the form Q,,(y) :=
B, = (y) x (2=m=1 27™) and we use Holder’s inequality to estimate

m—m(n+2)(n+3) —m(n+1)

2
IM||L1 @y <2 2080 |[M|[y; <27 2 |[M]]yy

and hence this proves the claim with v = %
In order to finish the proof of the Lemma it remains to show that

t
(5.9) | [ 90—yt = )My s)dydsl sscoy <el|M [l
O n

By using similar arguments as above we get

sup | V2®(x —y,t — s)M(y, s)dyds| < c||M]||y,
(z,t)€Q JR™x(0,1)\B2(0)x(%,1)

and therefore we can assume that the support of M is contained in B3(0) x (3, 1). In
this situation we can use an argument involving singular integrals as in the proof of
Lemma 3.11 to finish the proof of (5.9). O

Theorem 5.1 now follows from an application of the Banach fixed point theorem
and the implicit function theorem as in the proof of Theorem 3.1.

Arguing as in the case of the Willmore flow we get an existence result for self-
similar solutions of the mean curvature flow for entire graphs in higher codimensions.

COROLLARY 5.4. There exists € > 0, C > 0 such that if fo € COL(R",R™) is
self-similar (i.e. fo(z) = fo(Ax) for every x € R™, X > 0) with || fol|cor(rn pm) < €,
then there exists an analytic, self-similar solution f € X of the mean curvature flow
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(5.2) which satisfies the estimates || f||x.. < C||follco.r@n rmy and (5.5). The solution
is unique in the ball BX>=(0,C¢). Moreover f can be written as f(x,t) = \/EE(%),
where £ is an analytic solution of the elliptic system

W9 ()VHEW) + 5y VE—) =0,
where hi; = ;5 + (Vi€,V;E).

6. Harmonic map flow. In this section we study the harmonic map flow for
maps from the euclidean space into a smooth and compact Riemannian manifold N,
which we assume to be isometrically embedded into some euclidean space R!. For
simplicity we assume first that N is the round sphere S'~! C R’ and later on we show
how to extend the results to the general case. A map u : R" x [0,T) — S1is a
solution of the harmonic map flow with initial condition ug : R"® — S'=1 if

(0 — A)u = u|Vu* in R™ x (0,T) and
(6.1) u(+,0) = uo.

Our main goal in this subsection is to prove a local existence result for solutions of
(6.1) in the case where ug is a small L*-perturbation of an uniformly continuous map.
We note that the harmonic map flow is invariant under the scaling (A > 0)

(6.2) uy(w,t) = u(Ax, \’t)
and we define for every 0 < T' < oo the function spaces
Xr ={u| |lullx = sup ([[u(t)|[ze@n) +t2[[Vu(t)]|L=@n))
0<t<T

+ sup sup Ri%||Vu||L2(BR(;c)><(O,R2)) < oo} and
z€R™ 0<R2<T

Yo ={f1 [Ifllyr = sup t[[f(®)llL@n)
0<t<T

+ sup  sup  R7"||fll21(Br(z)x(0,r2)) < 00}
z€R™ 0< R2<T

Similar function spaces have been used in [16] to construct a solution to the Navier-
Stokes equation.
Now we can formulate our main Theorem of this subsection.

THEOREM 6.1. There exists eg = €9(n) > 0 such that for every uniformly contin-
uous map w : R — S and every map ug : R™ — S satisfying [|uo —w|| oo (rr) <
g there exists 6 = 0(go, w) > 0 and an analytic solution u € p5 + Xs2 of (6.1). Here
05 = Jgn ®( —y,0*)w(y)dy.

As a corollary of this Theorem and its proof we get

COROLLARY 6.2. There exists ey > 0 such that for all ug : R — S'=1 satisfying
lluo — P||poemn) < €0, where P € S'=1 is some arbitrary point, there exists a global
analytic solution uw € P+ X of (6.1).

We remark that the harmonic map flow for smooth initial maps whose image lies
in a geodesic ball has previously been studied by Jost [15].
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In the following we let w : R® — S!~! be a fixed uniformly continuous map and
we let ¢ : R™ x [0,00) — R! be the unique solution of

(O —A)p=0 in R"x (0,00) and
(6.3) (-, 0) = w.

Since w is uniformly continuous we know that for every € > 0 there exists é > 0 such
that for every x € R"™ we have oscp;(,)w < € and therefore we get for all x,y € R"

(6.0 w(e) — w(y) < =01+

Now we have the following Lemma.

LEMMA 6.3. Let w and ¢ be as above. Then we have
(6.5) sl ey <c  and
(66) ||<p§ — w||Loo(]Rn) -+ 5||V<p5||Loo(Rn) -+ 52||V2305||Loo(]]§n) SC&,
where ps = (-, 62).

Proof. (6.5) follows from Lemma 2.2. For the second term in (6.6) we note that
for every z € R" we have

Vs (x)| =| A Vo(z —y,0%)(w(y) — w(x))dyl
Scséfn/ %e7‘152y‘ (1+|‘Tf;y|)dy
<ced 1,

where we used (6.4) in the first estimate. The first and third term in (6.6) are
estimated similarly. O

Next we assume that v is a solution of (6.1) and we let v(z,t) = u(x,t) — ps(x).
From this definition it follows that v is a solution of the system

(9 — A)w =v|Vo|? + 20(Vv, Vs) + @5 Vo|? + v| Vs |?
+ 205(Vo, Vios) + 05| Veos|* — As
(6.7) v(+,0) = vy =ug — Ps-
By (6.6) we get
||U0||Loo(Rn) < ||UQ — U}||L00(Rn) + ce
and hence we see that Theorem 6.1 will be a consequence of the next Proposition if
we choose € small enough.

PROPOSITION 6.4. There exists £g = e9(n) > 0 such that for all vy : R* — R!
satisfying ||vo|| e mny < €0 there exists 6 = 6(co,w) > 0 and a unique and analytic
solution v € Xs2 of (6.7).

In order to prove this Proposition we need the following two Lemmas.
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LEMMA 6.5. Let ps = [, ®(-—, 8)w(y)dy and let v € Xg2. Then we have that
Hv, ps] € Ys2 with

(6.8) 1o, @slllve < o=+ ollxge + ol ) ollx,s +ce.

Moreover there exists €1 > 0 and g < 1 such that for all e < g1 and all v1,vs € Xg; =
{v e Xsz| [[v]lx,, <e1} we have

(6.9) [[H [v1, 5] — H[v2, 5]llv,, < qllvr —v2|lx,,-

Proof. This is a direct consequence of the definition of the function spaces X2
and Yjz, the explicit expression for H[v, ¢s] and Lemma 6.3. O

LEMMA 6.6. Let H € Yp for some 0 < T < oo. Then every solution v of
(0y — A)v = H with v(-,0) = v € L*®(R™,R!) is in X7 and we have the estimate

(6.10) [ollxz < e(llvollzoe @y + [[H]lvz)-

Proof. Lemma 2.2 shows that without loss of generality we can assume that
vo = 0. In order to finish the proof of the Lemma we argue as in [16]. From the
translation and scaling invariance of the estimate (6.10) it follows that we only have
to show that (T > 1)

[0(0, D[ + [Vo(0, D] + [IVoll L2 (81 0)x (0,1)) < €l [H]lyr-

Without loss of generality we can assume that H has compact support in R™ X
(0,1). The estimate for |v(0,1)| follows directly from the estimate for the heat kernel
and the estimate for |Vv(0,1)| can be shown as in [16]. Finally, in order to get the
estimate for ||Vo||12(5,(0)x(0,1)), we multiply the equation by n?v, where 7 is as in
the proof of Lemma 2.2, and integrate by parts to get

at/ n2lvl2+/ |w|2Sc/ (ol + [ol| ) < cl|H|2,.
R™ B1(0) B> (0)

Integrating over ¢ from 0 to 1 yields the desired result. O

Proposition 6.4 (and therefore also Theorem 6.1) is now a consequence of the pre-
vious two Lemmas and a fixed point (respectively implicit function theorem) argument
similar to the one used in the proof of Theorem 3.1.

REMARK 6.7. The above argument directly extends to the harmonic map flow for
maps from R™ into an arbitrary compact submanifold N of some euclidean space. The
regularity of the solution will then also depend on the reqularity of N (for example the
solution will be analytic if N is analytic).

Appendix A. The fundamental solution of the biharmonic heat equa-
tion. The fundamental solution b(z, t) of the biharmonic heat equation

up + A% =0

can be expressed through the Fourier integral

n

g(x) = (27r)*%/ etk =Ikl* g,
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by defining b(z,t) =t~ % g(xt~ 7). The function g is smooth and radial.

In the following we want to apply the method of the stationary phase to study the
behavior of g(x) as |z| — co. The asymptotics of g are determined by the complex
critical points of the complex phase function p(k) = ik — |k|* which are given by

3 1 1 1
ky = (i% + §i)2_§|x|§,ko = —i27 5|3,

The values of the function q(k) = ikx — k* at the critical points k4 of p are

3
qlks) = iksx — kL = %mki =23 <1—36 + ?1)—6z> 2|3

Moreover the Hessian of the phase function is given by
Viip(k) = —4k>8;; — 6(kik;).

To simplify the notation we will restrict ourselves to the case x = (r,0). Next we
calculate the eigenvalues of the Hessian V?p at the critical points k+ to be

1 V3 ,
-2 (5 L V3 ) 275 |r|3

—1
2

and

1, V3
3 <§ + §z> 2753,

where the second one has multiplicity n — 1. Hence the oscillatory integral g is given
as the real part of a complex function g which satisfies

_1 n
1 3.\ ° n 3 33 .
(A.1) <§ + §z> |5 exp <2é (E + 1—6¢> |x|‘é> g~m:+0(z ).

This is an asymptotic relation which remains true after differentiating both sides.

A rigorous proof of this asymptotic formula can be given as follows. We recall
that = (r,0) with » >> 1 and we shift the domain of integration to R™ +i2~ 3r3e;.
We obtain

o) ~(2m) % exp (<23 alt) [ [owp (itog - 2 HeParr +57r)
— (Ig? = 327 ¥ jo))? — 273 Boy? ) | ac.

The asymptotic relation (A.1) is now obtained by a standard evaluation of the oscil-
latory integral as in Theorem 7.7.5 of [14].
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