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This paper analyzes and simplifies Abhyankar’s proof of embedded resolution
of surface singularities in positive characteristic. Abhyankar’s proof is obtained by
combining the results in the papers [2], [4], [5], [6] and the first two chapters of the
book [7]. This proof is extremely influential, but because of its length and complexity,
is not generally well known and understood. In this article, I have written a report
on the proof, hoping to make the main ideas more generally known. I give complete
proofs of the essential parts of the proof. Some lemmas, which are given complete
self contained proofs in Abhyankar’s work, are merely stated and cited in this paper.
Some of these cited results can be proven directly without great difficulty. I have
made substantial simplifications in the original proofs, but have made a point of not
making simplications which eliminate an original and interesting idea which could
possibly have application to resolution in higher dimension.

Resolution of singularities in characteristic zero and in all dimensions was first
proven by Hironaka [26]. More recently, there have been significant simplifications of
this proof, including in [9], [11], [12], [20], [21], [28], [29], [34], [44], [45]. The first
proof of resolution of surface singularities in characteristic p > 0 was by Abhyankar
[1]. There have been other proofs of resolution of surface singularities in characteristic
p > 0 since this time, including the proof analyzed in this paper, and proofs by
Hironaka [27], Lipman [37], Hauser [24] and Cossart, Jannsen and Saito [16]. The
first proof of resolution of singularities of 3-folds in positive characteristic p > 5 was
given by Abhyankar [7], using the embedded resolution theorems for surfaces analyzed
in this paper. A greatly simplified proof appears in [18], using Hironaka’s algorithm
[27] for embedded resolution of surface singularities. Recently, Cossart and Piltant
have proven resolution of singularities of 3-folds in all characteristics [14], [15]. Some of
the recent papers attacking resolution in higher dimensions and positive characteristic
are [13], [19], [30], [31], [32], [33], [35], [39], [42], and [43].

Abhyankar’s proof of embedded resolution of surface singularities is essentially
a generalization of Zariski’s characteristic zero proof [46] of embedded resolution of
surface singularities. Zariski’s final global proof, deducing the Theorem of Beppo Levi
from local uniformization, extends without much difficulty to characteristic p > 0. The
essential point where Zariski’s proof does not extend to characteristic p > 0 is in local
uniformization of a particular type of valuation ν which dominates a normal local
domain of dimension two. This difficult case occurs when ν is rational nondiscrete.
For the most part, for simplicity, we restrict to the analysis of this fundamental case.

The global argument used to deduce global resolution from local uniformization
does not extend to dimension three, even in characteristic zero, as birational geometry
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is tremendously more complicated in higher dimensions. Even the algorithm of Beppo
Levi fails in dimension three [41].

Abhyankar’s proof of local uniformization is by consideration of a sequence of
blow ups of points along the valuation, until a good form is obtained, from which it
is easy to make a reduction in multiplicity by blowing up a sequence of nonsingular
curves. This is the philosophy of the good point algorithm which Abhyankar considers
in a later paper [8]. In characteristic zero, this method gives a very simple and elegant
global proof of resolution of surface singularities [40], [17]. It is not so difficult to prove
from local uniformization, stated in Theorem 4.1, that the good point algorithm yields
a global proof of resolution of singularities for characteristic p > 0 surfaces.

Ramification theoretic methods and embedded resolution of ideals in regular local
rings of dimension two are used to reduce the problem of reduction of the order of
an element f in a regular local ring of dimension three (along a valuation) to the
situation where f is a monic polynomial of degree pn of multiplicity pn. The proof of
this result may extend to a local result along a valuation in higher dimensions, with
the assumption that embedded resolution is true in codimension 1. Recently, strong
global versions of this result in all dimensions have been found by Hironaka [31], and
in the work of Benito and Villamayor [10]. A reduction to the inseparable case has
been found in all dimensions, locally along a valuation, by Temkin [43].

The most striking part of Abhyankar’s proof is the argument for reduction of order
of a monic polynomial of order pn. The first interesting point is that the problem is
set up as an inductive statement. It is phrased as a problem on reduction of order
of a polynomial f(Z), with coefficients in a regular local ring of dimension two. By
performing only blow ups of the two dimensional regular local ring a stable form of
the polynomial is obtained, which is adequate to prove reduction of order of a local
equation of a surface in a 3-fold. Another interesting point is a reduction to the case
where f(Z) is almost purely inseparable; that is f(Z) transforms as if it had a form
f(Z) = Zpn

+ F with F ∈ R. To obtain this reduction, resolution of the Artin-
Schreier case must be completely solved. Then ramification theoretic methods are
used in an ingenious way. Reduction for the Artin-Schreier case is accomplished in
Section 4 of this paper. Recently, Cossart and Piltant [15] have proven resolution of
the Artin-Schreier case in dimension three. The proof is extremely long and complex.

Abhyankar’s algorithm of reduction for a polynomial f(Z) of degree pn is by
studying how the Newton Polygon of f(0) (which is a polynomial or series in two
variables) changes under translations or “cleaning” (replacing Z with Z + r for some
r ∈ R), and under quadratic transforms of R. The singularity of f(Z) is tracked by
considering an R-type (a, b, c) or an R-antitype (b, a, d). The number c can in fact go
up after blowing up and cleaning. This corresponds to the concept of “shade” in [25].
The subtle bracket [b, c] (defined after Lemma 7.3) is used to control c under blowing
up.

This part of the argument (Chapter 7) may appear at first to be a web of over-
whelming complexity. However, many deep ideas are incorporated into the proof.
The proof demonstrates in a very clear way some of the problems which arise in res-
olution in higher dimension, and realizes in the “simplest” case the natural algebraic
approach to resolution in positive characteristic.

The numbers a, b, d are related to the invariant (β, 1
e , α) which is the main res-

olution invariant in Hironaka’s resolution algorithm [27], [24], [18], [16]. Hironaka
considers a Newton polygon which is a projection of the coefficients of all the terms of
the polynomial. His resolution algorithm (for dimension two) is to apply the resolu-
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tion algorithm of Beppo Levi directly, and show that this invariant always drops under
resolution. Hironaka’s invariant can however go up under the good point algorithm
for resolution.

1. An outline of the proof.

Reduction of global resolution of singularities to local uniformization.

Suppose that Y is a surface contained in a nonsingular 3-fold X , over an algebraically
closed field k of characteristic p > 0.

It is proven in Theorem 9.12 and Corollary 9.13 that there exists a finite sequence
of blow ups of points and nonsingular curves

(1) Xn → Xn−1 → · · · → X1 → X

such that the center blown up by each Φi : Xi → Xi−1 is in the locus where the
strict transform Yi of Y on Xi is singular, and the strict transform of Yn on Xn is
nonsingular.

Let e be the largest multiplicity of a point on Y . A permissible blow up of X is
the blow up of a point or nonsingular curve contained in the (closed) locus Singe(Y )
of points of multiplicity e on Y . The blow up is strictly permissible if the center blown
up is a point or nonsingular curve contained in Singe(Y ). Under a permissible blow
up, the multiplicity of the strict transform cannot go up. Further, while there is in
general not a “hypersurface of maximal contact”, there is an approximation to one
which has some good properties. Since a point of Y is nonsingular if and only if it
has multiplicity 1, by induction on e, we are reduced to constructing a sequence (1)
of permissible blow ups such that all points on the strict transform Yn of Y are of
multiplicity less than e.

We will say that Y is prepared if all irreducible curves in Singe(Y ) are nonsingular,
at most two curves in Singe(Y ) pass through any given point of Singe(Y ), and these
two curves intersect transversally at p if this happens.

After a few permissible blow ups (Theorem 9.4), we obtain the situation that Y1

is prepared, where Y1 is the strict transform of Y . If Y2 is the strict transform of Y1

after a further sequence of permissible blowups, we have that Y2 is also prepared. We
may assume that Y is prepared.

The main resolution theorem, Theorem 9.12, is that any sequence of strictly per-
missible blowups will eventually terminate in an Xn such that Yn contains no points
of multiplicity e. This is the “Theorem of Beppo Levi”. The major ingredient in the
proof is local uniformization: for every 0-dimensional valuation ν of the function field
k(X) there exists a finite sequence of permissible blow ups Xm → X such that the
center of ν on the strict transform Y m of Y is less than e at the center of ν. The proof
of local uniformization will be discussed in the next subsection. The obstruction to
constructing a global resolution is that the choice of centers in this local resolution
depends on the valuation ν, so different resolutions for different valuations may not
patch globally. A valuation gives a convenient way to interpret birational geometry
locally; by the valuative criterion of properness, for any projective variety Z with
function field K, and valuation ν of K, there exists a unique local ring OZ,q of Z
such that the valuation ring of ν dominates OZ,q. q is called the center of ν on Z.
If the residue field of ν is equal to the algebraically closed field k, then ν is called
0-dimensional. The center of a 0-dimensional valuation is always a closed point.

Assuming local uniformization, we now indicate how we deduce termination of
a sequence of strictly permissible blow ups. Assume that we can construct such a
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sequence which does not terminate, so that we have a sequence of infinite length

(2) · · · → Xi
Φi→ Xi−1 → · · · → X1

Φ1→ X0 = X

of strictly permissible blow ups. Since all of these blow ups are strictly permissible, we
can find an infinite sequence of points pi ∈ Xi such that Φi(pi) = pi−1 for all i, pi has
multiplicity e on the strict transform Yi of Y on Xi, and that infinitely many of the pi
are on the center blown up by Φi+1. We can then assume, without loss of generality,
that each pi is on the center blown up by Φi+1. There exists a 0-dimensional valuation
ν of k(X) whose center on Xi is pi for all i in the sequence (2).

We now consider a finite sequence of permissible blow ups

(3) Xm → · · · → X1 → X

such that the strict transform Y m of Y on Xm has multiplicity less than e at the
center of ν. Such a sequence exists by local uniformization (Theorem 9.7).

We compare the sequences (2) and (3) to modify the sequence (2) by essentially
splicing in (3), to obtain the impossible conclusion that the strict transform of Y on
Xm has multiplicity e at the center of ν. The fact that infinitely many of the Φi

must in fact be the blow up of the point pi−1 is essential in this argument. This
contradiction shows that the sequence (2) must in fact be finite.

Our proof of Theorem 9.12 extends without difficulty to the case where Y is a
reduced, but not necessarily integral, surface. The analysis in Sections 5 - 8 and 11
of [18] reduces the proof of the fundamental theorems on embredded resolution of a
surface in a nonsingular 3-fold (stated in Theorem 9.14) and principalization of ideal
sheaves on a nonsingular 3-fold (stated in Theorem 9.15) to the Theorem of Beppo
Levi for reduced surfaces. This part of the proof involves no essential differences
between characteristic zero and characteristic p > 0. in Sections 9 and 10 of [18], we
use Hironaka’s resolution algorithm to prove the Theorem of Beppo Levi for reduced
surfaces.

Local uniformization. Suppose that ν is a 0-dimensional valuation of the func-
tion field k(X) of X . The goal (realized in Theorem 9.7 and Corollary 9.8) is to
construct a sequence of blow ups of points which are the center of ν,

(4) Xn → Xn−1 → · · · → X1 → X,

until we obtain a good form for a local equation of the strict transform Yn of Y on
Xn, from which we may deduce that after a further sequence of permissible blow ups
of curves we obtain a reduction in multiplicity at the center of ν.

By a theory of the tangent cone (Lemma 9.1) in a sequence (4), we have regular
parameters xi, yi, zi in the local ring Ri of the center of pi on Xi which are related by

xi = xi+1, yi = xi+1(yi+1 + αi+1), zi = xi+1(zi+1 + λi+1) with αi+1 ∈ k, λi+1 ∈ k[xi, yi],

or

xi = xi+1yi+1, yi = yi+1, zi = yi+1(zi+1 + λi+1) with λi+1 ∈ k[xi, yi].

Let S0 = k[[x, y]] and Si = S0[xi, yi](xi,yi) for i ≥ 1, which are regular local rings
of dimension two.

The valuation ν of k(X) induces a 0-dimensional valuation of the quotient field
K of S, which we will also call ν. The infinite sequence of quadratic transforms

(5) S0 → S1 → · · · → Sn → · · ·
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is dominated by ν.
The desired good form which we seek is an expression for a (formal) local equation

w = 0 of Yn at pn of the form

w = (zn)
e +

e∑

j=1

gjx
aj
n ybjn (zn)

e−j

with ge ∈ M(Ŝn) (the maximal ideal of Sn), and ordŜn
gj′ < j′ for some j′ with

1 ≤ j′ ≤ e.
To show that we can obtain such a good form, we solve a slightly different problem.

We start with a formal local equation f(z) = 0 of Y at p with

f(z) = ze + a1z
e−1 + · · ·+ ae,

for some ai ∈ S.
We then consider the monic polynomial f(Z) in the polynomial ring S[Z] over S.

We define the order ordSf(Z) to be min{ordS(ai) + (e − i)}. Now by Theorem 8.1,
there exists a number n, r ∈ Sn, and u, v ∈ N such that if we make the substitution
g(Z) = (xu

ny
v
n)

−ef(xu
ny

v
nZ + r), then we have g(Z) ∈ Ŝn[Z] and 0 < ordŜn

g(Z) < e.
Finally, we compare this expression with our regular parameters xn, yn, zn in Rn,
using Lemma 9.6, to obtain a local equation w = 0 of Yn in Xn which has the desired
good form.

We will now discuss the proof of Theorem 8.1 in the essential case when the
valuation ν (of the quotient field of S) is rational nondiscrete. This is by far the
hardest case, and is the situation where differences between characteristic zero and
p are most evident. The remaining cases of valuations are essentially “toric” (The
irrational case is for instance handled in Section 1 of [1]). The rational nondiscrete
condition means that the sequence of blow ups (5) is as complicated as possible (a
precise description is given in Lemma 2.2). We will write (a, b) ≡ 0(m) if both integers
a and b are divisible by m.

By Lemmas 8.4 and 8.5, it suffices to show that one of the following three condi-
tions hold:

(6) There exists s ∈ S such that f(Z + s) = Zn or

(7)

There exists a number k and s ∈ Sk such that

f(Z + s) = Ze + x
t1
k g1Z

e−1 + · · ·+ x
te−1

k ge−1Z + x
te
k ge

where gi ∈ Sk are not divisible by xk, and there exists an integer u with 0 < u < e

such that gu is a unit in Sk, tj ≥ j
u
tu for 1 ≤ j ≤ u and tj > j

u
tu for u < j ≤ e, or

(8)

There exists a number k and s ∈ Sk such that

f(Z + s) = Ze + x
t1
k g1Z

e−1 + · · ·+ x
te−1

k ge−1Z + x
te
k ge

where gi ∈ Sk are not divisible by xk and ti ≥
i
e
te for 1 ≤ i ≤ e. Further,

ord(Rk)xkRk
(ge) = c with (te, c) 6≡ 0(e) and c = 0 if the degree of every nonconstant

monic irreducible factor of f(Z) in K[Z] is not divisible by p, and c ≤ e
p
if the

degree of some nonconstant monic irreducible factor of f(Z) is divisible by p.
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Using ramification theory, and the fact that appropriate discriminants (in a reg-
ular local ring of dimension two) can be made to be simple normal crossing divisors
after enough blow ups, we reduce to the case where f(Z) ∈ K[Z] is irreducible and
ν does not split in K[Z]/(f(Z)). Now using Abhyankar’s extension (Theorem 8.2)
to positive characteristic of Jung’s theorem on ramification over a SNC divisor in
characteristic zero, we reduce to the case where f(Z) is irreducible in K[Z] of degree
m = pn, and ν does not split in K[Z]/(f(Z)). This final, and most difficult, case is
discussed in the next subsection.

Reduction for monic polynomials of degree m = pn. In this subsection,
we assume that R is a regular local ring of dimension two, containing an algebraically
closed field k which is isomorphic to its residue field. Suppose that ν is a valuation of
the quotient field K of R which dominates R. Suppose that L is a field extension of
K, and z ∈ L is not in K and is integral over R. Suppose that m = pn = [K(z) : K]
and f(Z) ∈ K[Z] is the minimal polynomial of z over K.

The coefficients of f(Z) are in R since z is integral over R. Write

f(Z) = Zm + f1Z
m−1 + · · ·+ fm−1Z + F

with f1, . . . , fm−1, F ∈ R.
The objective (realized in Theorem 7.8) is to find an index k in the sequence of

quadratic transforms

(9) R = R0 → R1 → · · ·
along ν such that:

(10)

There exists a number k and r ∈ Rk such that

f(Z + r) = Zm + xt1
k g1Z

m−1 + · · ·+ x
tm−1

k gm−1Z + xtm
k gm

where gi ∈ Rk are not divisible by xk and ti ≥ i
m tm for 1 ≤ i ≤ m. Further,

ord(Rk)xkRk
(gm) = c with c < m

p and (tm, c) 6≡ 0(m).

The assumptions that ν does not split in K(z) and f(Z) is irreducible in K[Z]
are necessary for obtaining this form. The method of proof is to perform two types
of operations:

1. Perform a quadratic transform Ri → Ri+1 along ν.
2. Make an Ri-translate; that is replace f(Z) with fi(Z) = f(Z + ri) for some

ri ∈ Ri.
Let

f(Z) = Zm + f1Z
m−1 + · · ·+ fm−1Z + F

with f1, . . . , fm−1, F ∈ R. The analysis of the effect of these operations on f(Z) is
made especially complicated by the presence of the terms fi for 1 ≤ i ≤ m − 1. It
turns out that for i sufficently large in the quadratic sequence (9) these terms do not
interfere too much with the term F , so that we can almost assume that these terms
are not there at all. This good state of affairs occurs when f(Z) is Ri-permissible. It
means that f(Z) is of nonsplitting type relative to ordRi

; that is

ordRi
fq ≥

q

m
ordRi

F
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for 0 < q < m, and f(Z) is of ramified type relative to ord(Ri)xiRi
; that is if fq = x

aq

i gq
with gq ∈ R and xi 6 | gq for 0 < q < m and F = xam

i G with G ∈ Ri and xi 6 | G, then

aq >
q

m
am

for 0 < q < m. Further, these properties continue to hold after making an Ri-
translate.

An essential result that we will return to a little later, is to show that f(Z) is
Ri-permissible for all large enough i. This is proven in Theorem 7.2. Assuming this
result, we can then assume, without loss of generality, that f(Z) is Ri-permissible for
all i.

An intricate analysis is made, in Section 7, of how the constant term F = f(0) of
f(Z) changes under quadratic transforms, while making suitable Ri-translates. This
can be considered as a generalization of resolution of plane curve singularities, with
the twist that monomials which are pn-th powers are removed. After each quadratic
transform, we take an Ri-translate fi(Z) of f(Z).

To measure how much progress has been made towards reaching a form of the
type of (10), there are two types of intermediate forms which are recorded: fi(Z) of
Ri-type (ai, bi, ci) and of Ri-antitype (bi, ai, di). In each of these types we require
that xai

i ybii divides the “constant term” fi(0). In (ai, bi, ci)-type we have that fi(0)

has a nonzero xai

i ybi+ci
i term with (ai, bi + ci) 6≡ 0(m). In (bi, ai, di)-antitype we

have that fi(0) has a nonzero xai+di

i ybii term with (ai + di, bi) 6≡ 0(m). The essential
measures considered are a nonnegative integer [bi, ci] in the case of Ri-type (ai, bi, ci),
and a nonnegative integer di in the case of antitype. The measure associated to
fi(Z) ∈ Ri[Z] is either [bi, ci] or di, computed from viewing fi(Z) as an appropriate
Ri-type or Ri-antitype. Even the choice of ai and bi in an Ri-type or Ri-antitype
is subtle. They may not be the highest powers of xi and yi which divide fi(0). We
have that [bi+1, ci+1] ≤ [bi, ci] and di+1 ≤ di under a quadratic transform. After an
appropriate sequence of quadratic transforms, which depends on the type of valuation
ν being considered, one of these numbers must drop. The function [b, c] is used instead
of c since we may have ci+1 > ci.

Finally, we consider the proof that f(Z) is Ri-permissible for all i ≫ 0, which
is the statement of Theorem 7.2. The question reduces to showing (in Theorem 5.7)
that if L is a p-extension of K and ν does not split in L, then for n ≫ 0, ordRn

does
not split in L and ord(Rn)xnRn

is totally ramified in L.
A valuation ω ofK does not split in an algebraic extension L if the integral closure

W of the valuation ring Vω of ω in L has only one maximal ideal. If, further, the
residue field of W over the residue field of Vω is purely inseparable, then ω is totally
ramified in L.

The proof of Theorem 5.7 follows easily once we have established it for the case
when L is an Artin-Schreier extension of K. For general p-extensions L, we deduce
the result by knowing that it is true for all Artin-Schreier extensions of K contained
in L.

In the case of an Artin-Schreier extension, we have that L = K(z) where

f(Z) = Zp +Gp−1Z + F

with F,G ∈ R is the minimal polynomial of z over K. Direct computations are
given in Sections 4 and 5 for this case. In Section 4, A proof of reduction of order
is given for the Artin Schreier case, which is an essential component in Abhyankar’s
first (nonembedded) proof of resolution of surfaces [1].
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A dictionary between the results in this paper and Abhyankar’s original

proof. The material in Section 3 on the relation of splitting type and ramification
type of a polynomial to splitting and ramification of a valuation is from the paper [5].
Section 4 is a simplification of the proof in [2]. The main result Theorem 4.1 of this
section is stated in [2] and in Section 9 of [1]. Theorem 5.1 of Section 5 is a case of
a more general theorem proven in [4]. The final analysis of Artin-Schreier extensions
leading up to Theorem 5.7 is a summary of results from [5]. The statement and proof
of Theorem 5.7 is Theorem 4.23 [5]. Section 6 on polynomials is a summary of some
of the results of Section 6 of [5]. Section 7, the degree pt case, is a simplification of
proofs from [5]. The main theorems 7.2, 7.7 and 7.8 are cases of Theorems 5.4 [5],
and cases of Theorems 5.3 and 5.5 [5]. Section 8 on reduction of order of a polynomial
is a survey of results from [6]. Theorem 8.1 is Theorem 1.1 of [6]. It is also stated
as (5.1) in [7]. Section 9, which proves local uniformization and global resolution of
singularities, covers results of Chapters 1 and 2 of [7]. While the general method
and outline of proof are the same in section 9 and in the book [7], our proofs are
substantially simpler. Lemma 9.1 (on tangent cones and approximate manifolds) is
stated as (3.10.1) and (4.4) in [7]. Lemma 9.9 and Lemma 9.10 are cases of (3.10.4)
and (3.10.6) of [7]. Theorem 9.7 and Corollary 9.8 are versions of (5.2.1) and (5.2.4)
[7]. The global resolution theorems Theorem 9.12, 9.14 and 9.15 are versions of results
stated in Section 9 of [7].

2. Notation. The nonnegative integers will be denoted by N. The positive
integers will be denoted by Z+. Suppose that i, j, p ∈ Z. We will write (i, j) ≡ 0 (p)
if p divides both i and j.

We will write M(A) for the maximal ideal of a quasi local ring (A has a unique
maximal ideal, but A might not be noetherian).

Suppose that A is a local domain (A has a unique maximal ideal, and A is noethe-
rian) with quotient field K. Suppose that ν is a valuation of K. We will write Vν

for the valuation ring of ν. We will say that ν dominates A if Vν dominates A; that
is, A ⊂ Vν and M(Vν) ∩ A = M(A), or equivalently, ν is nonnegative on A and is
positive on M(A). We will say that ν is 0-dimensional if Vν/M(Vν)) is an algebraic
extension of A/M(A).

Suppose that R is a regular local ring. For f ∈ R, we will write ordR(f) for the
M(R)-adic value of f ; that is the largest power ofM(R) which contains f . When there
is no danger of confusion, we may write ord(f) for ordR(f). Suppose that x1, . . . , xn

is a regular system of parameters in R. We will say that f ∈ R is an R-monomial in
x1, . . . , xn if there exist a1, . . . , an ∈ N and a unit δ ∈ R such that f = xa1

1 · · ·xan
n δ.

Suppose that R1 is a local ring of the blow up of a prime ideal P in spec(R), such
that R/P is a regular local ring. Then the regular local ring R1 is called a monoidal
transform of R. In the case that P is the maximal ideal of R, R1 is called a quadratic
transform of R. If ν is a valuation of K which dominates R. we say that R → R1 is
a monoidal transform along ν if ν dominates R1.

Suppose that X is a projective variety, over an algebraically closed field k, with
function field k(X). A valuation ν of k(X) is a valuation of the algebraic function field
k(X) such that the valuation ring Vν contains k. ν is 0-dimensional if Vν/M(Vν) = k.
The center of ν on X is the unique point p ∈ X such that Vν dominates the local ring
OX,p (which exists by the valuative criterion for properness). If ν is zero dimensional,
p must be a closed point of X . Suppose that X is nonsingular, and Y is a codimension
one subvariety of X . Suppose that p ∈ Y . We will say that f = 0 is a local equation of
Y at p if IY,p = fOX,p, where IY is the ideal sheaf of Y in X . We will say that f = 0
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is a formal local equation of Y at p if ÎY,p = fÔX,p, where ÔX,p is the completion of
OX,p with respect to its maximal ideal.

Definition 2.1. Let S0 be a two dimensional regular local ring, containing an
algebraically closed field k of characteristic p which is isomorphic to the residue field
of S0. Let K be the quotient field of S0. Let ν be a 0-dimensional valuation of K
which dominates S0. Let

(11) S0 → S1 → · · · → Sn → · · ·

be the infinite sequence of quadratic transforms along V . Suppose that x0, y0 are
regular parameters in S0. For n ≥ 0, the canonical parameters of Sn determined by
x0, y0 are the regular parameters xn, yn in Sn defined recursively by

(12) xi = xi+1, yi = xi+1(yi+1 + αi+1) with αi+1 ∈ k or,

(13) xi = xi+1yi+1, yi = yi+1.

The following Lemma is Lemma 1.2 [6].

Lemma 2.2. Let S0 be a two dimensional regular local ring, containing an alge-
braically closed field k of characteristic p > 0 which is isomorphic to the residue field
of S0. Let K be the quotient field of S0. Let ν be a valuation of K which dominates
S0 and is rational nondiscrete (the value group of ν is order isomorphic to a subset
of Q which is not isomorphic to Z). Suppose that x0, y0 are regular parameters in
S0. Then ν is 0-dimensional. Further, in the sequence (11) of quadratic transforms
along ν, transforms of the type of (12) with αi+1 6= 0 occur infinitely many times, and
transforms of the type of (13) occur infinitely many times.

If g(Z) = bn + bn−1Z + · · · + b0Z
n ∈ R[Z] with bi ∈ R is a polynomial, we will

write ordR(g) = r if r = min{ordR(bi) + n− i}.
Definition 2.3. Suppose that R is a ring and f(Z) ∈ R[Z] is a polynomial. An

R-translate f ′(Z) of f(Z) is a polynomial f ′(Z) ∈ R[Z] defined by f ′(Z) = f(Z + r)
for some r ∈ R.

We will make free use of the basic theorems of embedded resolution of ideals
in a regular local ring of dimension two (c.f. Sections 3.5, 4.2 [17]) which we will
call “embedded principalization of ideals” in a two dimensional regular local ring. In
particular, we will frequently use the following result.

Lemma 2.4. Let assumptions be as in Definition 2.1. Suppose that ν is a rational
nondiscrete valuation of K which dominates S0, and F ∈ R. Then there exists n0

such that for all n ≥ n0 we have that F = δnx
an
n where δn ∈ Sn is a unit and an ∈ N.

We will also make use of the standard properties of excellent rings, which are
proven in Scholie IV.7.8.3 [22].

3. Nonsplitting. In this section we summarize some properties of splitting and
nonsplitting of valuations.

Definition 3.1. Let R be a normal quasi local domain with quotient field K.
Let L be an algebraic extension of K and let S be the integral closure of R in L. We
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say that R splits in L if S is not quasi local. We say that R is totally ramified in L
if R does not split in L and S/M(S) is purely inseparable over R/M(R).

Given a valuation ν of a field K and an algebraic extension L of K we say that
ν splits in L if Vν splits in L. We say that ν is totally ramified in L if Vν is totally
ramified in L.

Lemma 3.2. Suppose that R is a normal quasi-local domain with quotient field
K, ν is a valuation of K which dominates R and L is an algebraic extension of K
such that R splits in L. Then ν splits in L.

Proof. The valuation ring Vν of ν is the directed union of the local rings {Sj},
obtained by blowing up a 2-generated ideal Ij in R and taking the local ring of the
center of ν.

Suppose that A1 and A2 are two different normal quasi local domains, which
dominate R and are localizations of the integral closure of R in L. For i = 1, 2 let Bi

be a directed union of quasi local rings Tij such that Tik dominates Tij if k > j and
Tij is a local ring of the blow up of IjAi which dominates Sj . Then Bi are distinct
quasi local rings which dominate Vν . By Theorem 5, Section 4, Chapter VI [47],
there exist valuation rings V1 and V2 with quotient field L which dominate B1 and
B2 respectively.

V1 and V2 are distinct since V1 dominates A1 and R and V2 dominates V2 and R.
Since each Vi dominates Vν and Vi ∩K is a valuation ring, V1 ∩K = V2 ∩K = Vν by
Lemma 2.31 [3]. By Lemma 2.37 [3], we have that V1 and V2 are distinct local rings
of the integral closure of Vν in L which dominate Vν .

Definition 3.3. Let ν be a valuation of a field K, and let K[Z] be a polynomial
ring over K. Suppose that f(Z) ∈ K[Z] is monic of degree m > 0. We then have an
expansion

f(Z) = Zm +

m−1∑

i=1

fiZ
m−i + F

with F, f1, . . . , fm−1 ∈ K. We say that f(Z) is of prenonsplitting-type relative to ν if
there exist ti ∈ Vν such that fm

i = tiF
i for 0 < i < m.

We say that f(Z) is of preramified-type relative to ν if the following three condi-
tions hold:

1. f(Z) is of prenonsplitting-type relative to ν,
2. Vν/M(Vν) is of characteristic p 6= 0 and m is a power of p.
3. If there exists G ∈ K and a unit G′ ∈ Vν such that F = G′Gm, then there

exists ti ∈ M(Vν) such that fm
i = tiF

i for 0 < i < m.
We say that f(Z) is of nonsplitting-type relative to ν provided every K-translate

of f(Z) is of nonsplitting-type relative to ν. We say that f(Z) is of ramified-type
relative to ν provided every K-translate of f(Z) is of preramified-type relative to ν.

The following Lemmas 3.4, 3.5 and 3.7 are proven in Lemmas 2.3, 2.5 and 2.10
of [5]. The proofs are by Galois theory.

Lemma 3.4. Let K be a field, let L be a normal extension of K, let ν be a
valuation of K such that ν does not split in L, and let f(Z) be a monic polynomial
of degree m > 0 in K[Z] such that f(Z) is irreducible in K[Z] and f(z) = 0 for some
z ∈ L. Then f(Z) is of nonsplitting type relative to ν.
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Lemma 3.5. Let K be a field, let L be a normal extension of K, let ν be a
valuation of K such that Vν/M(Vν) is of characteristic p > 0 and ν is totally ramified
in L, and let f(Z) ∈ K[Z] be a monic polynomial of degree m = pn, where n is a
positive integer, such that f(Z) is irreducible in K[Z] and f(z) = 0 for some z ∈ L.
Then f(Z) is of ramified type relative to ν.

Definition 3.6. A p-extension of a field K of characteristic p > 0 is a normal
extension L of K such that [L : K] = pn for some n ∈ N. A p-cyclic extension K is
a normal extension L of K such that [L : K] = p.

Lemma 3.7. Let R be a normal quasilocal domain with quotient field K and let
L be a p-extension of K. Then R does not split (respectively R is totally ramified) in
L if and only if for every subfield K∗ of L which is a separable p-cyclic extension of
K we have that R does not split (respectively R is totally ramified) in K∗.

4. The Artin-Schreier Case. In this section, we prove the following theorem.

Theorem 4.1. Let K be a two dimensional algebraic function field over an
algebraically closed field k of characteristic p 6= 0, let K∗ be a Galois extension of
K of degree p, and let ν be a rational nondiscrete valuation of K having only one
extension ν∗ to K∗. Assume that ν can be uniformized. Then ν∗ can be uniformized.

This theorem is stated in Theorem 4 of [1] (and later in [2]) and is a critical
part of Abhyankar’s proof of local uniformization of a valuation of a two dimensional
algebraic function field over an algebraically closed field. Abhyankar makes use of
ramification theory to reduce to the case of Theorem 4.1.

The statement “ν can be uniformized” means that there exists a regular local
ring R, with quotient field K, such that R is a localization of a finite type k-algebra
(R is an algebraic local ring of K) and ν dominates R. The statement that ν has only
one extension to K∗ means that ν does not split in K∗ (Section 3). The statement
that ν is a rational nondiscrete valuation means that the value group of ν is (order
isomorphic to) a subset of Q which is not isomorphic to Z.

Suppose that R is a regular algebraic local ring ofK which is dominated by ν. Let
x, y be a regular system of parameters in R. let R1 be the local ring of the quadratic
transform of R which is dominated by ν. Then R1 has a regular system of parameters
x1, y1 of one of the following types:

(14) x = x1, y = x1(y1 + α1)

with α1 ∈ k, or

(15) x = x1y1, y = y1.

We can continue to blow up maximal ideals to construct a sequence of regular algebraic
local rings,

(16) R → R1 → R2 → · · ·

along (dominated by) ν, where each Ri+1 has regular parameters (xi+1, yi+1) of one
of the following types:

(17) xi = xi+1, yi = xi+1(yi+1 + αi+1)
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with αi+1 ∈ k, or

(18) xi = xi+1yi+1, yi = yi+1.

We will also allow interchanging of the variables xi, yi.
The fact that ν is rational nondiscrete tells us that we must obtain a form (17)

with αi+1 6= 0 infinitely many times in the sequence, and we must obtain a form (18)
infinitely many times in the sequence.

We know from “embedded principalization of ideals” in regular local rings of
dimension two, and since ν is rational nondiscrete, that if f ∈ R, then there exists an
index i in the sequence (16) such that f = xn

i δ where n ∈ N and δ is a unit in Ri

We now introduce a construction which will be used in the proof of the theorem.
Since K∗ is a galois extension of K of degree p, it is an Artin-Schreier extension.
Thus K∗ = K[z′] where the minimal polynomial g′(z) of z′ over K has the form
g′(z) = zp + z + d. Since ω can be uniformized, there exists a regular algebraic local
ring R of K such that ω dominates R. Write d = a

b where a, b ∈ R. Setting z = bz′,
we obtain that K∗ = K[z] and the minimal polynomial of z over K has the form

(19) g(z) = zp + hp−1z + f

where h, f ∈ R. The domain S = R[z] ∼= R[z]/(g(z)) is integral over R and has the
quotient field K∗. Thus ν∗ is nonnegative on S. Let T be the integral closure of R
in K∗. Since ν does not split in K∗, T is a local ring. The center of ν∗ on S is the
maximal ideal mT ∩ S. Let N = M(R)R[z] + zR[z], a maximal ideal of R[z].

We now make a fundamental observation.

Lemma 4.2. Suppose that x, y are a regular system of parameters in R, so that
the polynomial ring k[x, y] is a subset of R. Suppose that ord(g(z)) > 0. Then the
center of ν∗ on S is the maximal ideal (x, y, z).

Proof. The assumption that ord(g(z)) > 0 implies that the ideal m1 = (x, y, z) is
a maximal ideal of S which contracts to M(R). But m1 is then the unique maximal
ideal which dominates M(R), since ν does not split in K∗ (by Lemma 3.2).

We point out that our assumption of nonsplitting implies that ord(h) > 0 in
(19). Otherwise, the residue of g(z) in R/M(R)[z] ∼= k[z] would be an Artin Schreier
polynomial, and there would be p distinct maximal ideals in S which contract to
M(R), which we know cannot happen (it would contradict the assumption that ν
does not split in K∗).

We will perform 3 types of operations on the polynomial ring R[z], which induce
birational transformations of S. Suppose that x, y are regular parameters in R. Then
there is a natural inclusion of the polynomial ring k[x, y] into R.

The first and simplest operation is to “clean” the coefficients of g(z). Suppose
that A(x, y) ∈ k[x, y]. We can make a change of variables in R[z], replacing z with
z′ = z − A(x, y). We then set g′(z′) = g(z′ + A(x, y)) ∈ R[z′]. Set z′ = z − A(x, y).
We then have that S = R[z′] ∼= R[z′]/(g′(z′)).

The most basic case of this transformation is to make ord(g′(z′)) > 0. There
exists α ∈ k such that f − α ∈ M(R). Set z′ = z + p

√
α. Then, since ord(h) > 0,

we have that ord(g′(z′)) > 0. More generally, we can view f as an element of the
completion R̂ ∼= k[[x, y]] of R, and “clean” to remove p-th powers from f be making
substitutions z′ = z −A(x, y).

The second type of operation is to perform a quadratic transform R → R1 along
ν. The regular local ring R1 has a regular system of parameters x1, y1 defined by
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(14) or (15). We view g(z) as an (irreducible) element of the polynomial ring R1[z].
Set S1 = R1[z] ∼= R1[z]/(g(z)). S1 is a birational extension of S, such that ν∗ is
nonnegative on S1.

Using quadratic transformations of R, we can make h a monomial. By “embedded
principalization of ideals” in R, we can construct a sequence R → Ri of quadratic
transformations (16) along ν, such that in Ri[z], we have

(20) g(z) = zp + (xai

i ybii )(p−1)δiz + fi

where xi, yi are a regular system of parameters in Ri, δi, fi ∈ Ri and δi is a unit in
Ri. We may thus assume that this forms holds in R, so that

(21) g(z) = zp + (xayb)(p−1)δz + f.

Suppose that (21) holds and R → R1 is a quadratic transformation along ν. Then

a1 = a+ b, b1 = b

if (14) holds with α1 = 0,

a1 = a+ b, b1 = 0

if (14) holds with α1 6= 0, and

a1 = a, b1 = a+ b

if (15) holds.
The third type of operation is to make a monomial substitution for z. Suppose

that s, t ∈ N are such that xspytp divides f in R, with s ≤ a, t ≤ b. Define z1 by

z = xsytz1.

Define

g1(z1) =
g(xsytz1)

xspytp
.

The element g1(z1) is in the polynomial ring R[z1]. Substituting into (21), we see
that

g1(z1) = zp1 + (xa1yb1)(p−1)δz1 + f1,

where a1 = a− s, b1 = b − t and

f1 =
f

xspytp
∈ R.

Define z1 ∈ K∗ by

z = xsytz1.

Let S1 = R[z1] ∼= R[z1]/(g1(z1)). S1 is a birational extension of S. The valuation ν∗

is nonnegative on S1 since S1 is integral over R.
We will construct sequences of operations of these three types. Composing the

three operations will give us the data of a birational extension of regular local rings
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R → R1, with a regular system of parameters x1, y1 in R1, a polynomial ring R1[z1],
an irreducible polynomial g1(z1) ∈ R1[z1] which has the form

(22) g1(z1) = zp1 + (xa1
1 yb11 )(p−1)δ1z1 + f1

where δ1, f1 ∈ R1 and δ1 is a unit. We further have a birational extension S → S1 =
R1[z1] ∼= R1[z1]/(g1(z1)), where ν∗ is nonnegative on S1.

Our choice of regular parameters x, y in R gives us an identification of R̂ with the
power series ring k[[x, y]]. We then have an expansion

f =
∑

i,j∈N

fi,jx
iyj

with fi,j ∈ k. We also have an associated series f1 ∈ k[[x1, y1]], with coefficients
(f1)i,j ∈ k.

We will summarize the above data by saying that (R, g), (R1, g1) are states (with
associated equations (21) and (22)), and call such a sequence of operations a trans-
formation from (R, g) to (R1, g1). We will also refer to states such as (R′, g′), where
it is understood that the complete set of data will be written as S′, x′, y′, z′, f ′, a′, b′,
etc. We will also find it convenient at one point to interchange the variables x and y
in R, and then make the obvious change of notation in the state (R, g).

We will say that a state (R, g) is resolved if 0 < ord(g) < p.
The following two lemmas, Lemma 4.3 and Lemma 4.4, are completely worked

out in (5.1), (5.2) and (5.3) of [2]. The proofs are straightforward, but somewhat
technical.

Suppose that i, j ∈ Z. Recall that (i, j) ≡ 0 (p) if p divides both i and j.

Lemma 4.3. Suppose that (R, g) is a state. Then there exists A(x, y) ∈ k[x, y]
and a transformation (R, g) → (R1, g1) obtained by setting z1 = z −A(x, y) such that
g1(z1) = g(z1 + A(x, y)) has the form (22), with (f1)i,j = 0 for all (i, j) such that
(i, j) ≡ 0 (p) and i+ j ≤ p max{a, b}.

This is (5.3) [2].

Lemma 4.4. Suppose that n ∈ Z+ and (R, g) is a state such that a > 0 (in (21))
and there exist l,m ∈ N with l < p, (l,m) 6≡ 0 (p), fl,m 6= 0, and fi,j = 0 for all i < l.
Then there exists A(x, y) ∈ k[x, y] and a transformation (R, g) → (R1, g1) obtained
by setting z1 = z −A(x, y) such that g1(z1) = g(z1 +A(x, y)) has the form (22), with
(f1)l,m 6= 0, (f1)i,j = 0 for all i < l and (f1)i,j = 0 for all (i, j) such that (i, j) ≡ 0 (p)
and i+ j ≤ p max{a, b}.

This is (5.2) of [2].

Lemma 4.5. Suppose that n ∈ Z+ and (R, g) is a state such that max{a, b} = n
in (21). (The number n is necessarily ≥ 1, as remarked after Lemma 4.2). Then
there exists a transformation of states (R, g) → (R1, g1) such that one of the following
holds in (22):

1. max{a1, b1} < n or
2. max{a1, b1} = n and there exists l,m ∈ N with l+m < np such that (f1)l,m 6=

0, and (f1)i,j = 0 whenever (i, j) ≡ 0 (p) with i+ j ≤ l +m.

Proof. By Lemma 4.3, we can make a a change of variables (a transformation
of the first type) in z, to achieve that fi,j = 0 for all (i, j) such that (i, j) ≡ 0 (p)
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with i + j ≤ pn. Suppose that 2 does not hold. Then we have that ord(f) ≥ np.
Perform the quadratic transform R → R1 along ν. Let x1, y1 be the regular system
of parameters in R1 determined by this quadratic transform. If x1, y1 are of of the
type (14), then define z = xn

1 z1. If x1, y1 are of type (15), then define z = yn1 z1. Since
ord(f) ≥ np and a+ b ≥ n, this defines a transformation (R, g) → (R, g1).

In the case that x = x1, y = x1(y1 + α1), z = xn
1 z1, we have that

g1(z1) = zp1 + (x
(a+b)−n
1 (y1 + α1)

b)p−1δz1 +
f

xnp
1

,

with a similar expression if x = x1y1, y = y1, z = yn1 z1. We see that

(a1, b1) =





(a+ b− n, 0) if x = x1, y = x1(y1 + α1) with α1 6= 0
(a+ b− n, b) if x = x1, y = x1y1
(a, a+ b − n) if x = x1y1, y = y1.

We thus have max{a1, b1} ≤ max{a, b} = n.
If the conclusions of the lemma do not hold for (R1, g1), then we may repeat the

above process. Assume that after a finite number of iterations of this process we do
not achieve the conclusions of the theorem. Since ν is nondiscrete rational, we must
eventually perform a quadratic transform of the type (17) with αi+1 6= 0. Then we
have (ai+1, bi+1) = (n, 0). Since we do not achieve a reduction of max{ai+1, bi+1} in
the next iteration, we must perform a quadratic transform of the type of (18), and we
have (ai+2, bi+2) = (n, 0). Thus all quadratic transforms that we perform must be of
the type (18) from then on, which is impossible since ν is rational and nondiscrete.

Lemma 4.6. Suppose that n ∈ Z+ and (R, g) is a state such that max{a, b} = n
in (21) and there exists l,m ∈ N with l + m < np such that fl,m 6= 0, and fi,j = 0
whenever (i, j) ≡ 0 (p) with i+ j ≤ l+m. Then there exists a transformation of states
(R, g) → (R1, g1) such that a1 > 0 and there exist l1,m1 ∈ N with l1 < p, m1 < np,
(l1,m1) 6≡ 0 (p), (f1)l1,m1 6= 0, and (f1)i,j = 0 for all i < l1.

Proof. Let d = ord(f). We have d ≤ l + m. Let q be the greatest integer such
that qp ≤ d. By our assumptions, q ≤ n − 1. After possibly interchanging x and
y (the assumptions of Lemma 4.6 are symmetric in x and y), we may assume that
ω(y) ≥ ω(x).

Set l1 = d− qp < p. Let

m1 = max{j | fd−j,j 6= 0}.

By our assumptions, (d − m1,m1) 6≡ 0 (p). Thus (l1,m1) 6≡ 0 (p). We further have
m1 ≤ l +m < np.

We now perform the quadratic transform R → R1 along ν. R1 has regular
parameters x1, y1 defined by

x = x1, y = x1(y1 + α1)

for some α1 ∈ k. We have that qp ≤ d and xd
1 divides f in R1. We now make the

substitution z = xq
1z1 to construct a transformation of states (R, g) → (R1, g1). We

have

g1(z1) = zp1 + (xa+b−q
1 (y1 + α1)

b)p−1δz1 + f1
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where

f1 =
f(x1, x1(y1 + α1))

xqp
1

.

We have that

a1 = a+ b− q ≥ max{a, b} − (n− 1) ≥ 1.

Further,

f1 = xd−qp
1 (

∑
i+j=d fi,j(y1 + α1)

j + x1Ω)

= xl1
1 (fd−m1,m1y

m1
1 + lower order terms in y1 + x1Ω)

for some Ω1 ∈ R1. Thus the conclusions of the lemma hold.

Remark 4.7. We could have an increase max{a1, b1} > n in the state (R1, g1)
of the conclusions of Lemma 4.6.

Lemma 4.8. Suppose that n ∈ Z+ and (R, g) is a state such that

a > 0 in (21), and there exist l,m ∈ N with l < p, m < np, (l,m) 6≡ 0 (p),
fl,m 6= 0, and fi,j = 0 for all i < l. Then there exists a transformation of states
(R, g) → (R1, g1) such that one of the following holds:

1. (R1, g1) is resolved, or
2. max{a1, b1} < n (in (22)) or
3. The assumptions of this lemma hold, with a reduction in m; that is, a1 > 0

and there exist l1,m1 ∈ N with l1 < p, m1 < m < np, (l1,m1) 6≡ 0 (p),
(f1)l1,m1 6= 0, and fi,j = 0 for all i < l1.

Proof. By Lemma 4.4, we can make a a change of variables (a transformation of
the first type) in z, to achieve that fl,m 6= 0, fi,j = 0 for all i < l and fi,j = 0 for all
(i, j) such that (i, j) ≡ 0 (p) with i + j ≤ p max{a, b}. Assume that max{a, b} ≥ n
and (R, g) is not resolved. Then ord(f) ≥ p. We must have that m > 0, since l < p
and ord(f) ≥ p.

Perform a quadratic transform R → R1 along ν. Let x1, y1 be the regular system
of parameters in R1 determined by this transformation.

Case I. Suppose that ν(y) < ν(x), so that R1 has regular parameters x1, y1
defined by x = x1y1, y = y1. We have that yp1 divides f in R1 since ord(f) ≥ p. We
also have that a + b ≥ 1. We may thus define a transformation (R, g) → (R1, g1) by
the substitution z = y1z1. We have that

g1(z1) = zp1 + (xa
1y

a+b−1
1 )p−1δz1 + f1

where

f1 =
f(x1y1, y1)

yp1
.

Let l1 = l and m1 = l +m− p < m. Since (f1)i,j 6= 0 if and only if fi,j−i+p 6= 0, we
have that (R1, g1) is resolved, or max{a1, b1} < n or the conclusion 3 of Lemma 4.8
holds for (R1, g1) for l1,m1, with m1 < m.
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Case II. Suppose that ν(y) ≥ ν(x), so that R1 has regular parameters x1, y1
defined by x = x1, y = x1(y1 + α1) for some α1 ∈ k. Let d = ord(f). Let q be the
greatest integer such that qp ≤ d. We have that qp ≤ l+m < (n+ 1)p, so that

q ≤ n.

Suppose that i, j are such that i+ j ≤ l+m and (i, j) ≡ 0 (p). Since l+m < (n+1)p,
we have that i+ j ≤ np ≤ p max{a, b}, so that fi,j = 0 by our assumptions.

We have that xqp
1 divides f in R1 and a + b ≥ n ≥ q. We may thus define a

transformation (R, g) → (R1, g1) by the substitution z = xq
1z1. We have that

g1(z1) = zp1 + (xa+b−q
1 (y1 + α1)

b)p−1δz1 + f1

where

f1 =
f(x1, x1(y1 + α1))

xqp
1

.

We have that a1 = a + b − q and b1 = b if α1 = 0, b1 = 0 if α1 6= 0. Let xlym be
the term (with nonzero coefficient) of the expansion of f in k[[x, y]] with l +m = d
with largest value of m. By our assumptions, we must have that l ≥ l, m ≤ m, and
(l,m) 6≡ 0 (p). The monomial xd−qp

1 ym1 appears (with nonzero coefficient) in f1. Set
l1 = d− qp and m1 = m.

If max{a1, b1} ≥ n, then we must have a1 > 0. The assumptions of Lemma 4.8
then hold for (R1, g1), with m1 ≤ m. If m1 < m, then case 3 of the conclusions of the
lemma hold, and we are done.

If m1 = m (and (R1, g1) is not resolved and max{a1, b1} ≥ n), then we repeat
the algorithm of this lemma, applied to (R1, g1). If we continue to iterate and not
reach the conclusions of the lemma, then we must eventually reach the Case I, since
ω is not discrete. This is then necessarily the last iteration of the algorithm, and the
conclusions of the lemma are reached.

Lemma 4.9. Suppose that n ∈ Z+ and (R, g) is a state such that a > 0 in (21),
and there exist l,m ∈ N with l < p, m < np, (l,m) 6≡ 0 (p), fl,m 6= 0, and fi,j = 0
for all i < l. Then there exists a transformation of states (R, g) → (R1, g1) such that
either (R1, g1) is resolved, or max{a1, b1} < n (in (22)).

Proof. Lemma 4.9 follows from descending induction on l in Lemma 4.8.

Proposition 4.10. Suppose that n ∈ Z+ and (R, g) is a state such that
max{a, b} = n in (21). Then there exists a transformation of states (R, g) → (R1, g1)
such that either (R1, g1) is resolved or max{a1, b1} < n in (22).

Proof. The proposition follows from successive application (as necessary) of Lem-
mas 4.5, 4.6 and 4.9.

We now can easily finish the proof of Theorem 4.1. We start with a state (R, g).
By descending induction on n in Proposition 4.10, we can constuct a transformation
of states (R, g) → (R1, g1) such that (R1, g1) is resolved. let A = (S1)(x1,y1,z1)

∼=
(R1[z1]/(g1))(x1,y1,z1) be the associated algebraic local ring of K∗ which is dominated
by ν∗.

We have that 0 < ord(g1) < p, so that A is a hypersurface singularity of mul-
tiplicity less than p. We may now construct a birational extension A → B where
B is a regular algebraic local ring of K∗ dominated by ν∗ using characteristic zero
techniques. For instance, we can make a Tschirnhausen transformation to find a
hypersurface of maximal contact.
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5. More on the Artin-Schreier Case. Suppose that R is a regular local ring
of dimension two, containing an algebraically closed field k of characteristic p > 0
which is isomorphic to the residue field of R. Let K be the quotient field of R, and
let ν be a rational nondiscrete valuation of K which dominates R. Let

R → R1 → R2 → · · · → Rn → · · ·

be the sequence of quadratic transforms along ν. Suppose that x, y are regular param-
eters in R. Recall (Definition 2.1) that Ri has “canonical parameters” xi, yi, which
are defined inductively by x0 = x, y0 = y, xi−1 = xi, yi−1 = xi(yi + αi) with αi ∈ k
or by xi−1 = xiyi, yi−1 = yi.

Looking back at our proof of Theorem 4.1, we see that the essential part of the
proof can be restated as follows.

Theorem 5.1. Suppose that x, y are regular parameters in R, and suppose that
f(Z) = Zp + gp−1g′Z + F ∈ R[Z] where g′ ∈ R is a unit and g, F ∈ R. Let z be a
root of f(Z) = 0 in an extension field of K and suppose that ν does not split in K[z].
Then there exists n ∈ N, u, v ∈ N, regular parameters x′, y′ in Rn, an Rn-monomial
s in x′, y′ and s′ ∈ Rn such that if we set f ′(Z) = s−pf(sZ + s′), we have that

f ′(Z) = Zp + ((x′)u(y′)v)p−1δnZ + Fn

where δn ∈ Rn is a unit, Fn ∈ Rn, u+ v ≥ 1 and 0 < ordRn
f ′(Z) < p.

The following extension of Theorem 5.1 is proven in Proposition 27 [4]. The
general strategy is similar to that of the proof of Proposition 4.10.

Theorem 5.2. Suppose that x, y are regular parameters in R, and suppose that
f(Z) = Zp + (xuyv)p−1δZ + F ∈ R[Z] where δ ∈ R is a unit, F ∈ R and u, v ∈ N.
Let z be a root of f(Z) = 0 in an extension field of K and suppose that ν does not
split in K[z]. Then there exists n ∈ N, u, v ∈ N, regular parameters x′, y′ in Rn, an
Rn-monomial s in x′, y′ and s′ ∈ Rn such that if we set f ′(Z) = s−pf(sZ + s′), we
have that

f ′(Z) = Zp + ((x′)u(y′)v)p−1δnZ + (x′)a(y′)bεn

where δn, ε ∈ Rn are units, u > 0, 0 ≤ a < p, 0 ≤ b < p, (a, b) 6≡ 0(p) and if b 6= 0
then v 6= 0.

We require a version of this theorem where we do not make make operations of the
third type. A rework of the above proof, or an argument starting with the conclusions
of Theorem 5.2, as shown in Theorem 4.3 [5], proves the following theorem.

Theorem 5.3. Suppose that f(Z) = Zp+(xuyv)p−1δZ+F ∈ R[z] where u, v ∈ N,
δ ∈ R is a unit and F ∈ R. Suppose that f(Z) is irreducible in K[Z]. Let z be a
root of f(Z) = 0 in an extension field of K and suppose that ν does not split in K[z].
Then there exists n ∈ N and an Rn-translate fn(Z) of f(Z) such that (after possibly
interchanging xn and yn)

fn(Z) = Zp + (xu
ny

v
n)

p−1δnZ + xa
ny

b
nε

where δn, ε ∈ Rn are units, (a, b) 6≡ 0(p), 0 ≤ a < up and b ≤ vp.

Definition 5.4. Suppose that f(Z) ∈ R[Z] and f(Z) = Zp + GZ + F with
F,G ∈ R such that G = gp−1δ where δ ∈ R is a unit and g ∈ R.
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1. f(Z) is of standard type 1 relative to (R, x, y) if G = (xuyv)p−1δ where δ ∈ R
is a unit and F = γxayb where γ ∈ R is a unit, (a, b) 6≡ 0(p), 0 ≤ a < up and
0 ≤ b ≤ vp.

2. f(Z) is of standard type 2 relative to (R, x, y) if G = (xuyv)p−1δ where δ ∈ R
is a unit, F = xaybτ where τ ∈ R, a < up, b ≤ vp, b ≡ 0(p) and ordR/xR(τ) =
1.

Theorem 5.5. Suppose that f(Z) = Zp + GZ + F with F,G ∈ R such that
G = gp−1δ where δ ∈ R is a unit and g ∈ R. Suppose that f(Z) is irreducible in
K[Z]. Let z be a root of f(Z) = 0 in an extension field of K and suppose that ν does
not split in K[z]. Then there exists a positive integer m such that for every integer
n ≥ m there exists an Rn-translate fn(Z) of f(Z) such that fn(Z) is of standard type
1 or 2 relative to (Rn, xn, yn) if ν(yn−1) ≥ ν(xn−1) and fn(Z) is of standard type 1
relative to (Rn, xn, yn) if ν(yn−1) < ν(xn−1).

This follows from Theorem 5.3. It is proved in detail in Theorem 4.17 [5].

Lemma 5.6. Suppose that f(Z) ∈ K[Z]. Let z be a root of f(Z) = 0 in an
extension field of K and let L = K(z). Suppose that ν does not split in L. Then we
have the following

1. If f(Z) is of standard type 2 relative to (R, x, y) then [L : K] = p and ordRxR

is totally ramified in L.
2. If f(Z) is of standard type 1 relative to (R, x, y), then [L : K] = p, ordRxR

is
totally ramified in L, and ordRyR

does not split in L.

This is proven in Lemma 4.22 [5].

Theorem 5.7. Suppose that L is a p-extension of K such that ν does not split
in L. Then there exists a nonnegative integer m such that for all n ≥ m, ordRn

does
not split in L and ord(Rn)xnRn

is totally ramified in L.

Proof. First suppose that L is a separable p-cylic extension. Then there exists,
as shown in Section 4, z ∈ L and f(Z) ∈ R[Z] such that L = K[z], f(Z) is the
minimal polynomial of z over K, and f(Z) = Zp + Gp−1Z + F for some F,G ∈ R.
Then the conclusions of the theorem follow from Lemmas 5.5 and 5.6, along with
the observation that for n > 0 we have that ordRn−1 = ord(Rn)xnRn

if xn−1 = xn,
yn−1 = xn(yn + αn) and ordRn−1 = ord(Rn)ynRn

if xn−1 = xnyn, yn−1 = yn.

Now suppose that L is of arbitrary degree. Let H be the set of all subfields of L
which are separable p-cylic extensions of K. We have that L is a purely inseparable
extension of a finite Galois extension M of K. All K ′ ∈ H are subfields of M ,
and there are only finitely many subfields of M containing K. Thus H is a finite
set. Further, for K ′ ∈ H , ν does not split in K ′. For each K ′ ∈ H there exists a
nonnegative integer m(K ′) such that for all n ≥ m(K ′), ordRn

does not split in K ′

and ord(Rn)xnRn
is totally ramified in K ′. Let m be the maximum of the m(K ′) for

K ′ ∈ H . By Lemma 3.7 it follows that for all n ≥ m, ordRn
does not split in L and

ord(Rn)xnRn
is totally ramified in L.

6. On Polynomials. Let k be a field of characteristic p > 0. Let m = pn where
n is a nonnegative integer. Let

A(Z) = A0 +A1Z + · · ·+AeZ
e



388 S. D. CUTKOSKY

where e is a nonnegative integer, A0, . . . , Ae are elements of k and Ae 6= 0. Let b be
a nonnegative integer, let 0 6= D ∈ k and let Ej be the elements in k such that

(D + Z)bA(Z) =
∑

j

EjZ
j.

Remark 6.1. Ej 6= 0 for some j ≤ e.

To see this, consider the smallest i such that Ai 6= 0.

Lemma 6.2. Assume that b + e 6≡ 0(m) and b ≡ 0(m). Then there exists j such
that Ej 6= 0, j 6≡ 0(m) and j ≤ e.

This is Lemma 6.2 [5].

Lemma 6.3. Assume that b+ e 6≡ 0(m) and e < m
p . Then there exists j such that

Ej 6= 0, j 6≡ 0(m) and j ≤ m
p .

This is Lemma 6.5 [5]

Lemma 6.4. Assume that b+ e 6≡ 0(m) and e+ m
p < m. Then there exists j such

that Ej 6= 0, j 6≡ 0(m) and j ≤ e+ m
p .

This is Lemma 6.7 [5]

7. The Degree pn Case. In this section, we suppose that R is an excellent
regular local ring of dimension two, containing an algebraically closed field k of char-
acteristic p > 0 which is isomorphic to the residue field of R. Let K be the quotient
field of R, and let ν be a real nondiscrete (hence 0-dimensional) valuation of K which
dominates R. Let

R → R1 → R2 → · · · → Rn → · · ·

be the sequence of quadratic transforms along ν. Recall that Ri has “canonical
parameters” xi, yi, which are defined inductively by xi−1 = xi, yi−1 = xi(yi + αi)
with αi ∈ k or by xi−1 = xiyi, yi−1 = yi.

Suppose that f(Z) ∈ R[Z] is monic of degree m = pn. f(Z) has an expansion

f(Z) = Zm + f1Z
m−1 + · · ·+ fm−1Z + F

with fi ∈ R for 1 ≤ i ≤ m− 1 and F ∈ R.

Definition 7.1. f(Z) is Ri-permissible if for all i ≥ 0, f(Z) is of nonsplitting
type relative to ordRi

and f(Z) is of ramified type relative to ord(Ri)xiRi
. In particular,

for any R-transform f ′(Z) of f(Z), we have

ordRi
f ′
q ≥

q

m
ordRi

F ′

and

ord(Ri)xiRi
f ′
q >

q

m
ord(Ri)xiRi

F ′

for 0 < q < m.

Theorem 7.2. Suppose that L is a p-extension of K such that ν does not split
in L. Let z ∈ L be such that z 6∈ K and z is integral over R. Let m = [K(z) : K]
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and let f(Z) be the minimal polynomial of z over K. Then there exists a nonnegative
integer e such that f(Z) is Rj-permissible for all j ≥ e.

Proof. In the essential case that ν is rational nondiscrete, the result follows from
Lemmas 3.4 and 3.5 and Theorem 5.7.

Suppose that F ∈ R. F has a unique series expansion F =
∑

Fijx
iyj ∈ k[[x, y]] =

R̂ with Fij ∈ k for all i, j. We will also use the following notation. If f ′(Z) is an
R-translation of f(Z), then we have a unique expression f ′(Z) = Zm + f ′

1Z
m−1 +

· · ·+ f ′
m−1Z + F ′ with f ′

1, . . . , f
′
m−1, F

′ ∈ R, and F ′ =
∑

F ′
ijx

i
1y

j
1 with F ′

ij ∈ k.

Definition 7.3. Suppose a, b, c ∈ N. We say that f(Z) is of Ri-type (a, b, c) if
1. f(Z) is Ri-permissible
2. xa

i y
b
i divides F in Ri

3. ord(Ri)yiRi
(fq) ≥ b q

m for 0 < q < m
4. Fa,b+c 6= 0 and (a, b+ c) 6≡ 0(m).

To f(Z) of Ri-type (a, b, c) we can associate an integer [b, c] defined by

[b, c] =





0 if b ≡ 0(m) and c ≤ m
p

0 if b 6≡ 0(m) and c < m
p

c if b ≡ 0(m) and c > m
p

c+ m
p if b 6≡ 0(m) and c ≥ m

p

.

Theorem 7.7 will tell us that for large i, we obtain (after suitable translation)
stable forms of F , which have Ri-type (ai, bi, ci) with [bi, ci] = 0. The reason for the
complicated definition of [b, c] is that c can in fact go up under quadratic transforms
of the type x = x1, y = x1(y1 + α) with α 6= 0, when we start with b > 0, as can be
seen from simple examples. A critical point in the proof is that this problem does not
occur when b ≡ 0(m).

Definition 7.4. Suppose that a, b, d ∈ N. We say that f(Z) is of Ri-antitype
(b, a, d) if

1. f(Z) is Ri-permissible
2. xa

i y
b
i divides F in Ri

3. f(Z) is of nonsplitting type relative to ord(Ri)yiRi

4. Fa+d,b 6= 0 and (a+ d, b) 6≡ 0(m).
5. Fij = 0 whenever j = b and (i, j) ≡ 0(m).

Remark 7.5. The following observations will be useful.
1. Condition 3 of the definition of Ri-type is vacuous if b = 0.
2. If x = x1 and y = x1y1 then ord(R1)y1R1

= ordRyR
.

Definition 7.6. f(Z) is of R-stable-type (a, b, c) if f(Z) is of R-type (a, b, c)
with [b, c] = 0 and ordR/(x)

F
xayb = c. We will say that f(Z) is of R-stable-type if f(Z)

is of R-stable-type (a, b, c) for some (a, b, c).

We may now state the main result of this section.

Theorem 7.7. Suppose that f(Z) ∈ R[Z] is irreducible in K[Z] and f(Z) is
R-permissible. Then there exists n0 such that i ≥ n0 implies that there exists an
Ri-translate fi(Z) of f(Z) such that fi(Z) is of Ri-stable-type (ai, bi, ci) for some
(ai, bi, ci), with bi = 0 if ν(xi−1) = ν(yi−1).
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We immediately deduce from Theorems 7.2 and 7.7 the following theorem, which
will be used in our proof of Local Uniformization (Theorem 9.7 and Corollary 9.8).
Since z is integral over R, the coefficients of f(Z) are in R (Chapter V, Section 3,
Theorem 4 [47]).

Theorem 7.8. Let L be a p-extension of K, and suppose that ν does not split in
L. Suppose that z ∈ L is such that z 6∈ K and z is integral over R. Let m = [K(z) : K]
and let f(Z) ∈ R[Z] be the minimal polynomial of z over K. Then there exists n0 such
that i ≥ n0 implies that there exists an Ri-translate fi(Z) of f(Z) such that fi(Z) is
of Ri-stable-type (ai, bi, ci) for some (ai, bi, ci), with bi = 0 if ν(xi−1) = ν(yi−1).

In order to prove Theorem 7.7, we must understand how type and [b, c] transform
and antitype and d transform under appropriate translation, followed by a quadratic
transform.

Lemma 7.9. Suppose that R is excellent, f(Z) ∈ R[Z] is monic irreducible of
degree m > 1 and that R does not split in K[Z]/f(Z). Then f(Z) is irreducible in
R̂[Z] where R̂ is the completion of R with respect to M(R). In particular, f(z) 6= 0
for all z ∈ R̂.

Proof. Let z be the class of Z in K[Z]/(f(Z)), so that K[Z]/(f(Z)) = K[z]. Let
S be the integral closure of R in K[z]. S is a finite R-module since R is excellent. S is
quasilocal by assumption, so that S is an excellent local ring. S is normal of dimension
two, so that S is Cohen Macaulay. Thus S is a free R-module, of some finite rank m
(c.f. Theorem 46 [38]). Since S is local, and by Theorem 55 [38], S ⊗R R̂ ∼= Ŝ, where
R̂ denotes the completion of R with respect to its maximal ideal, and Ŝ denotes the
completion of S with respect to its maximal ideal. Thus Ŝ is a free R̂ module of rank
m. Since S is normal and excellent, Ŝ is normal, and is thus a domain. Now we have
that 1, z, . . . , zd−1 (where d = deg f(Z)) generate a free R submodule of S, so they
must generate a free R̂ submodule of Ŝ of rank d (as completion is flat). Suppose
f(Z) factors as f(Z) = f1(Z)f2(Z) with f1(Z), f2(Z) ∈ R̂[Z], and 0 < deg f1(Z),
0 < deg f2(Z). Then 0 = f(z) = f1(z)f2(z) which implies that f1(z) = 0 or f2(z) = 0
since Ŝ is a domain, which is a contradiction, since deg f1(Z) < d and deg f2(Z) < d.

Lemma 7.10. Suppose that R is excellent and f(Z) ∈ R[Z] is an irreducible
monic polynomial of degree m = pn > 1. Assume that f(Z) is of ramified type
relative to ordR and that R does not split in K[Z]/(f(Z)). Then there exists an R-
translate f ′(Z) of f(Z) such that f ′(0) 6= 0 and F ′

ij = 0 whenever (i, j) ≡ 0(m) and
i+ j ≤ ordRf

′(0).

Proof. Let R̂ be the completion of R with respect to its maximal ideal. By Lemma
7.9, f(z) 6= 0 for all z ∈ R̂. Now the desired conclusions follow from Lemma 8.14 [5].

Lemma 7.11. Suppose that x = x1 and y = x1(y1 + α1) with α1 ∈ k. Suppose
that f(Z) is of R-type (a, b, c). Then there exists an R-translate f ′(Z) of f(Z) such
that f ′(Z) is of R-type (a, b, c) and if d = ord F ′, i + j = d and (i, j) ≡ 0(m), then
F ′
i,j = 0.

This is Lemma 9.2 [5]. The essential point is that f(Z) is of ramified type relative
to ordR = ord(R1)x1R1

.
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Lemma 7.12. Suppose that f(Z) is of R-type (a, b, c). Then there exists an R-
translate f ′(Z) of f(Z) such that f ′(Z) is of R-type (a, b, c) and if (a, b) ≡ 0(m), then
F ′
a,b = 0.

This is Lemma 9.3 [5].

Lemma 7.13. Suppose that f(Z) is of R-type (a, b, c) with c < m. Then there
exists an R-translate f ′(Z) of f(Z) such that f ′(Z) is of R-type (a, b, c) and if d =
ordRF

′, i + j = d and (i, j) ≡ 0(m), then F ′
i,j = 0.

This is Lemma 9.4 [5].

Lemma 7.14. Suppose that f(Z) is of R-antitype (b, a, c) where c < m. Then
there exists an R-translate f ′(Z) of f(Z) such that f ′(Z) is of R-antitype (b, a, c) and
if d = ord F ′, i+ j = d and (i, j) ≡ 0(m), then F ′

i,j = 0.

This is Lemma 9.5 [5].

Lemma 7.15. Suppose that f(Z) is of R-type (a, b, c) where [b, c] = 0. Then there
exists an R-translate f ′(Z) of f(Z) such that f ′(Z) is of R-stable-type (a, b, c′) where
c′ ≤ c.

This is Lemma 9.6 [5].

Lemma 7.16. Suppose that f(Z) is of R-stable-type (a, b, c). Then for all i ≥ 1
there exists an Ri-translate fi(Z) of f(Z) such that fi(Z) is of Ri-stable-type (ai, bi, ci)
for some (ai, bi, ci) with bi = 0 if ν(xi−1) = ν(yi−1).

This is Lemma 9.9 [5].

Lemma 7.17. Suppose that x = x1 and y = x1(y1 + α1) with α1 ∈ k. Suppose
that f(Z) is of R-type (a, b, c). Further suppose b ≡ 0(m) or [b, c] < m. Then there
exists an R-translate f1(Z) of f(Z) such that f1(Z) is of R1-type (a1, b1, c1) with
[b1, c1] ≤ [b, c], and b1 = b if α1 = 0 and b1 = 0 if α1 6= 0.

Proof. By Lemma 7.11, after making an R-translate, we may assume that the
coefficents Fij of xiyj in the expansion of F are zero whenever i+ j = a1 and (i, j) ≡
0(m), where a1 = ordR(F ). Let q be the largest integer such that there exists i with
i+ q = a1 and Fa1−q,q 6= 0. We have

(23) q − b ≤ a1 − a− b ≤ c.

We first prove the lemma in the case when α1 = 0. We have an expression

F = xa1
1 yb1(

q−b∑

j=0

Fa1−j−b,j+by
j
1 + x1Ω)

with Ω ∈ R1. Let c1 = q − b. Then (23) implies c1 ≤ c. Since (a1 − q, q) 6≡ 0(m), we
have that (a1, b+ c1) 6≡ 0(m). Thus by Remark 7.5, f(Z) is of R1-type (a1, b, c1). We
have that [b, c1] ≤ [b, c].

Now assume that α1 6= 0. We have an expression

F = xa1
1 (y1 + α1)

b[

q−b∑

j=0

Fa1−j−b,j+b(y1 + α1)
j + x1Ω]
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with Ω ∈ R1. Expand

(y1 + α1)
b

q−b∑

j=0

Fa1−j−b,j+b(y1 + α1)
j =

q∑

i=0

Eiy
i
1

with Ei ∈ k. By remark 6.1, this polynomial has a nonzero Ei term with i ≤ q − b.
Thus if a1 6≡ 0(m), we have by Remark 7.5 that f(Z) is of R1-type (a1, 0, i) with
i ≤ q − b ≤ c, and [0, i] ≤ [b, c].

Assume that a1 ≡ 0(m), so that q 6≡ 0(m). If b ≡ 0(m) then Lemma 6.2 implies
that Ei 6= 0 for some i with i 6≡ 0(m) and i ≤ q − b. We then have by Remark 7.5
that F is of R1-type (a1, 0, i) with [0, i] ≤ [b, c].

We have two remaining cases. First assume that a1 ≡ 0(m), b 6≡ 0(m) and
[b, c] < m

p . Then c < m
p and (23) implies q − b < m

p . Since q 6≡ 0(m), Lemma 6.3

implies that Ei 6= 0 for some i with i 6≡ 0(m) and i ≤ m
p . Thus by Remark 7.5, f(Z)

is of R1-type (a1, 0, i) with [0, i] = 0.
Now assume that a1 ≡ 0(m), b 6≡ 0(m) and m

p ≤ [b, c] < m. Then [b, c] = c+ m
p <

m and

q − b+
m

p
≤ c+

m

p
< m

by (23). Since q 6≡ 0(m), Lemma 6.4 implies Ei 6= 0 for some i with i 6≡ 0(m) and
i ≤ q − b + m

p ≤ c + m
p . Thus by Remark 7.5, f(Z) is of R1-type (a1, 0, i) with

[0, i] = i ≤ c+ m
p = [b, c].

Lemma 7.18. Suppose that x = x1 and y = x1(y1 + α1) with α1 ∈ k. Suppose
that f(Z) is of R-antitype (b, a, d). Then there exists an R-translate f1(Z) of f(Z)
such that:

1. Suppose d < m and a ≡ 0(m). Then one of the following holds:
a. f1(Z) is of R1-antitype (b1, a1, d1) with d1 < d and a1 ≡ 0(m), or
b. f1(Z) is of R1-type (a1, b1, c1) with b1 ≡ 0(m) and [b1, c1] < m.

2. Suppose d ≤ m
p and either d < m

p or a + b + m
p 6≡ 0(m). Then f1(Z) is of

R1-type (a1, b1, c1) with [b1, c1] = 0 where b1 = b if α1 = 0 and b1 = 0 if
α1 6= 0.

Proof. By Lemma 7.14, after making an R-translate, we may assume that the
coefficents Fij of xiyj in the expansion of F are zero whenever i+ j = a1 and (i, j) ≡
0(m), where a1 = ordR(F ). Let q be the largest integer such that there exists i with
i+ q = a1 and Fa1−q,q 6= 0. We have

(24) q − b ≤ a1 − a− b ≤ d.

Case 1. Assume α1 = 0.

We will first establish 1 of the conclusions of the lemma. We are assuming that
d < m and a ≡ 0(m). Set b = b′ + r where b′ ≡ 0(m) and 0 ≤ r < m.

First assume that a1 − a− b′ < m. Then we have an expression

F = xa1
1 yb

′

1 (

q−b′∑

j=r

Fa1−j−b′,j+b′y
j
1 + x1Ω)
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with Ω ∈ R1. Let c1 = q − b′. We have c1 ≤ a1 − a− b′ < m. We have c1 > 0, since
if c1 = 0, we have b = b′, and combining this with the fact that a ≡ 0(m), we obtain
(a, b) ≡ 0(m), which is a contradiction.

Thus we have (a1, b
′ + c1) 6≡ 0(m), and by Remark 7.5, f1(Z) is of R1-type

(a1, b
′, c1) with b′ ≡ 0(m) and c1 < m.
Now assume that a1 − a− b′ ≥ m. Then d > 0 by (24) and since r = b− b′ < m.

Let a1 = a′ + s where a′ ≡ 0(m) and 0 ≤ s < m. Let d1 = a + d + b − a′. We have
xa+dyb = xa′

1 yb1x
d1
1 so

F = xa′

1 yb1Λ

where Λ ∈ R̂1 has a nonzero xd′

1 term. We have a+ b′ ≤ a1 −m = (a′ −m)+ s. Since
a+b′ ≡ 0(m) and (a′−m) ≡ 0(m) we have that a+b′ ≤ a′−m, so 0 < m−r ≤ a1−a−b,
which implies d1 < d. By (24), and the assumption d < m, we have a1 − a− b < m.
Since we are also assuming a1 − a − b′ ≥ m, we have b 6= b′. Thus by Remark 7.5,
f1(Z) is of R1-antitype (b, a′, d1), with a′ ≡ 0(m). We have thus established 1 of the
lemma in the case that α1 = 0.

We will now establish 2 of the conclusions of the lemma, with the assumption
that α1 = 0. We have a form

F = xa1
1 yb1(

q−b∑

j=0

Fa1−j−b,j+by
j
1 + x1Ω)

with Ω ∈ R1, Fa1−q,q 6= 0 and (a1, q) 6≡ 0(m). If q − b < m
p , then set c1 = q − b. We

have that f(Z) is of R1-type (a1, b, c1) with [b, c1] = 0 as desired.
Suppose that q − b ≥ m

p . By (24) and the assumption d ≤ m
p , we conclude that

q − b = a1 − a − b = d = m
p . By our assumptions, we must have that a + b + m

p 6≡
0(m). Thus a1 6≡ 0(m). We have Fa1−b,b = Fa+d,b 6= 0 and xa+dyb = xa1

1 yb1. Thus
F = xa1

1 yb1Λ where Λ ∈ R1 is a unit. Since (a1, b) 6≡ 0(m), we have that f(Z) is of
R1-type (a1, b, 0), with [b, 0] = 0.

Case 2. Assume α1 6= 0.

We will first establish 1 of the conclusions of the lemma. Our assumptions are
that d < m and a ≡ 0(m). We have an expression

F = xa1
1 (y1 + α1)

b[

q−b∑

j=0

Fa1−j−b,j+b(y1 + α1)
j + x1Ω]

with Ω ∈ R1. Expand

(y1 + α1)
b

q−b∑

j=0

Fa1−j−b,j+b(y1 + α1)
j =

q∑

i=0

Eiy
i
1

with Ei ∈ k. This polynomial has a nonzero Ei term with i ≤ q − b by Remark 6.1.
Thus if a1 6≡ 0(m), we have by Remark 7.5 that f(Z) is of R1-type (a1, 0, i) with
[0, i] = i ≤ q − b ≤ d < m.

Assume that a1 ≡ 0(m). Then q 6≡ 0(m). If b ≡ 0(m) then Lemma 6.2 implies
that Ei 6= 0 for some i with i 6≡ 0(m) and i ≤ q−b. We then have that F is of R1-type
(a1, 0, i) with [0, i] = i ≤ d < m.



394 S. D. CUTKOSKY

Now assume that we are in the remaining case a1 ≡ 0(m) and b 6≡ 0(m). Write
b = b′ + r with b′ ≡ 0(m) and 0 ≤ r < m. We then have an expression

F = xa1

1 (y1 + α1)
b′ [

q−b′∑

j=r

Fa1−j−b′,j+b′(y1 + α1)
j + x1Ω]

with Ω ∈ R1. Expand

(y1 + α1)
b′

q−b′∑

j=r

Fa1−j−b′,j+b′(y1 + α1)
j =

q∑

i=0

Diy
i
1

with Di ∈ k. We have q 6≡ 0(m) and b′ ≡ 0(m). Thus Lemma 6.2 implies Di 6= 0 for
some i with i 6≡ 0(m) and i ≤ q − b′ ≤ a1 − a − b′. Let c1 = i. f1(Z) is of R1-type
(a1, 0, c1). From 0 < b − b′ < m, 0 ≤ a1 − a − b < m and (b − b′) + (a1 − a − b) =
a1 − a − b′ ≡ 0(m), we infer that a1 − a − b′ = m. Thus c1 < m. We have thus
established 1 of the conclusions of the lemma in the case when α1 6= 0.

We will now establish 2 of the conclusions of the lemma, with the assumption
that α1 6= 0. We have a form

F = xa1
1 (y1 + α)b[

q−b∑

j=0

Fa1−j−b,j+b(y1 + α1)
j + x1Ω]

with Ω ∈ R1 and Fa1−q,q 6= 0. Expand

(25) (y1 + α1)
b

q−b∑

j=0

Fa1−j−b,j+b(y1 + α1)
j =

q∑

i=0

Eiy
i
1

with Ei ∈ k.
First suppose q − b < m

p . If a1 6≡ 0(m), then the polynomial (25) has a nonzero

Ei term with i ≤ q− b, by Remark 6.1, and we have that f(Z) is of R1-type (a1, 0, i)
with [0, i] = 0 as desired.

If q − b < m
p and a1 ≡ 0(m), then q 6≡ 0(m). By Lemma 6.3, there exists j such

that Ej 6= 0, j 6≡ 0(m) and j ≤ m
p . Thus f(Z) is of R1-type (a, 0, i) with [0, i] = 0.

Suppose that q− b ≥ m
p . By (24), and since d ≤ m

p , we have q− b = a1 − a− b =

d = m
p . By our assumptions, we must have that a+ b+ m

p 6≡ 0(m). Thus a1 6≡ 0(m).

We have Fa1−b,b = Fa+d,b 6= 0. Since a1 6≡ 0(m), we have that f(Z) is of R1-type
(a1, 0, 0), with [0, 0] = 0.

Lemma 7.19. Suppose that x = x1y1 and y = y1. Suppose that f(Z) is of R-type
(a, b, c). Then there exists an R-translate f1(Z) of f(Z) such that:

1. Suppose b ≡ 0(m). Then one of the following holds:
a. f1(Z) is of R1-type (a, b1, c1) with [b1, c1] < [b, c] and b1 ≡ 0(m), or
b. f1(Z) is of R1-antitype (b1, a1, d1) with d1 < m and a1 ≡ 0(m).

2. Suppose [b, c] < m. Then one of the following holds:
a) f1(Z) is of R1-type (a, b1, c1) with [b1, c1] ≤ max{0, [b, c]− 1}.
b) f1(Z) is of R1-antitype (b1, a, d1) with d1 < m

p .

c) f1(Z) is of R1-type (a1, b1, c1) with [b1, c1] = [b, c] and of R1-antitype
(b1, a, d1) with d1 = m

p and a+ b1 +
m
p 6≡ 0(m).
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Proof. Let d = ordR(F ). Let d = b1 + s where b1 ≡ 0(m) and 0 ≤ s < m. Let
a = a′ + r with a′ ≡ 0(m) and 0 ≤ r < m.

Case 1. Assume b ≡ 0(m).

By Lemma 7.12, after making an R-translate of f(Z), we may assume that

(26) Fa,b = 0 if (a, b) ≡ 0(m).

Case 1.1. Assume that b ≡ 0(m) and d− a′ − b ≥ m.

We have F = xa
1y

b1
1 Λ with Λ ∈ R1. The nonzero xayb+c term of F transforms to

a nonzero term xa
1y

b1
1 ya+b+c−b1

1 in the expansion of F in x1 and y1. Since (a, b+ c) 6≡
0(m), we have that F is of R1-type (a, b1, c1) with c1 = a + b + c − b1. From the
assumptions b ≡ 0(m) and d− a′ − b ≥ m we will show that c1 < c.

We have that b1−a′− b ≥ m since b1−a′− b ≡ 0(m) and (b1−a′− b)+(d− b1) =
d− a′ − b ≥ m. Further,

b1 − a− b = (b1 − a′ − b)− (a− a′) ≥ m− (a− a′) > 0.

Thus c1 = a+ b+ c− b1 < c. Since ordR = ord(R1)y1R1
and f(Z) is R-permissible, it

follows that f(Z) is of R1-type (a, b1, c1) with [b1, c1] < [b, c] and b1 ≡ 0(m).

Case 1.2. Assume that b ≡ 0(m) and d− a′ − b < m.

We have F = xa′

1 yd1Λ with Λ ∈ R1. We will show that F has a nonzero xiyj term
where i + j = d and (i, j) 6≡ 0(m). This is the case if d 6≡ 0(m), so suppose that
d ≡ 0(m). Since d− a′ − b ≡ d(m) and

0 ≤ d− a− b ≤ d− a′ − b < m,

we have d = a+ b. Thus (a, b) ≡ 0(m), a contradiction to (26). In particular, we have
d 6≡ 0(m).

We have that a ≤ i ≤ d − b. The xiyj term transforms to a nonzero xa′

1 yd1x
i−a′

1

term in the expansion of F in x1 and y1. Let d1 = i−a′. We have i−a′ ≤ d−b−a′ < m
by assumption. Since ordR = ordy1R1 and f(Z) is R-permissible, and d 6≡ 0(m), we
have that f(Z) is of R1-antitype (d, a′, d1) with d1 < m and a′ ≡ 0(m).

Case 2. Assume that [b, c] < m.

By Lemma 7.13, after making an R-translate of f(Z), we may assume that Fij = 0
whenever i+ j = d = ordRF and (i, j) ≡ 0(m).

Case 2.1. Assume that [b, c] < m and d− a− b ≥ m
p .

This case is like Case 1.1. We have F = xa
1y

d
1Λ with Λ ∈ R1. The xayb+c term

of F transforms to a nonzero xa
1y

d
1y

a+b+c−d
1 term in the expansion of F in x1 and y1.

Let c1 = a + b + c − d. We have that (a, a + b + c) 6≡ 0(m) since (a, b + c) 6≡ 0(m).
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Thus f(Z) is of R1-type (a, d, c1). From d− a− b ≥ m
p we conclude that c1 ≤ c− m

p .

In particular, if d− a− b > m
p we have that [d, c1] < [b, c].

Case 2.2. Assume that [b, c] < m and d− a− b < m
p .

This case is like Case 1.2. We have F = xa
1y

d
1Λ with Λ ∈ R1, and F has a nonzero

xiyj term where i + j = d and (i, j) 6≡ 0(m). We have that a ≤ i ≤ d − b. This
terms transforms to a nonzero xa

1y
d
1x

i−a
1 term in the expansion of F in x1 and y1. Let

d1 = i− a. We have i− a ≤ d− b− a < m
p by assumption. Since ordR = ordy1R1 , and

f(Z) is R-permissible, we have that f(Z) is of R1-antitype (d, a, d1) with d1 < m
p .

Case 2.3. Assume that [b, c] < m and d− a− b = m
p .

If b 6≡ 0(m) then we have from Case 2.1 that f(Z) is of R1-type (a, d, c1), with
c1 ≤ c − m

p , so that [d, c1] < [b, c]. We now analyze Case 2.3 with the additional

assumption that b ≡ 0(m). Recall that a = a′ + r with a′ ≡ 0(m) and 0 ≤ r < m,
and d = b1 + s with b1 ≡ 0(m) and 0 ≤ s < m.

Assume that b ≡ 0(m) and d − a′ − b ≥ m. We have F = xa
1y

b1
1 Λ with Λ ∈ R1.

The nonzero term xayb+c (with (a, b + c) 6≡ 0(m)) in F transforms to a nonzero
xa
1y

a+b+c
1 = xa

1y
b1
1 ya+b+c−b1

1 term in the expansion of F in x1 and y1. Let c1 =
a + b + c − b1. We have that (b1 − a′ − b) + (d − b1) = d − a′ − b ≥ m. Since
b1 − a′ − b ≡ 0(m) and 0 ≤ d− b1 < m we conclude that b1 − a′ − b ≥ m. Now from
b1 − a− b = (b1 − a′ − b)− (a− a′) ≥ m− (a− a′) we conclude that b1 − a− b > 0.
Thus c1 = a+ b+ c− b1 < c. Since b ≡ 0 and b1 ≡ 0 we have that f(Z) is of R1-type
(a, b1, c1) with [b1, c1] ≤ max {0, [b, c]− 1}.

Assume that b ≡ 0(m), d − a′ − b < m, p 6= 2 (and d − a − b = m
p ). We have

F = xa
1y

d
1Λ with Λ ∈ R1. F has a nonzero xiyj term with i+ j = d and (i, j) 6≡ 0(m).

We necessarily have a ≤ i ≤ d− b. Let d1 = i− a. This term transforms to a nonzero
xa
1y

d
1x

d1
1 term in the expansion of F in terms of x1 and y1. We have d1 ≤ d−a−b = m

p

and (a+ d1, d) 6≡ 0(m). Since ordR = ordy1R1 , and f(Z) is R-permissible, f(Z) is of
R1-antitype (d, a, d1) with d1 ≤ m

p . If d1 < m
p , then we have achieved the conclusions

2b) of the lemma.
Suppose d1 = m

p .

a− a′ +
m

p
= (a− a′) + (d− a− b) = d− a′ − b < m.

Since p 6= 2, we have that 2(a− a′ + m
p ) 6≡ 0(m). As a′ ≡ 0(m), we have 2(a+ m

p ) 6≡
0(m). Since d− a− b = m

p , we have

a+ d+
m

p
= 2(a+

m

p
) + b ≡ 2(a+

m

p
) mod (m),

and thus a+d+ m
p 6≡ 0(m). From this analysis and Case 2.1, we have the conclusions

of 2c) of the lemma.
Finally, we consider the case p = 2, b ≡ 0(m) and d − a − b = m

p . We have

F = xa
1y

d
1Λ with Λ ∈ R1. F has a nonzero xayb+c term, with (a, b+ c) 6≡ 0(m), which

transforms to a nonzero xa
1y

d
1y

c1
1 term with c1 = a+ b+ c− d in the expansion of F in
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terms of x1 and y1. We have c1 = c− m
p . Since [b, c] < m, we have c < m, and thus

c1 < m
2 . Thus f(Z) is of R1-type (a, d, c1) with [d, c1] = 0.

Lemma 7.20. Suppose that x = x1y1 and y = y1. Suppose that f(Z) is of R-
antitype (b, a, d) with d < m. Then there exists an R-translate f1(Z) of f(Z) such
that f1(Z) is of R1-antitype (b1, a, d1) with d1 ≤ d,

Proof. By Lemma 7.14, after making an R-translate of f(Z), we may assume that
Fi,j = 0 if i+ j = ordR(F ) and (i, j) ≡ 0(m). Let e = ordR(F ). We have F = xa

1y
e
1Λ

with Λ ∈ R1. F has an xiyj term with i + j = e and (i, j) 6≡ 0(m). Let d1 = i − a.
We have d1 ≤ e − a − b ≤ d. F1 has a nonzero xa

1y
e
1y

d1
1 term in its expansion in x1

and y1, with (e, a+d1) 6≡ 0(m). Since ordR = ord(R1)y1R1
, and f(Z) is R-permissible,

f(Z) is of R1-antitype (e, a, d1), with d1 ≤ d.

Now we prove Theorem 7.7 in the essential case when ν is rational nondiscrete. The
proof is in five steps.

Step 1. There exists a sequence of quadratic transforms R → Rt along ν and an
Rt-translate ft(Z) of f(Z) such that ft(Z) is of Rt-type (a, 0, c) for some a, c.

Since ν is rational nondiscrete, by Lemma 2.2, there exists a sequence of quadratic
transforms R → Rt along ν such that xt−1 = xt and yt−1 = xt(yt + αt) for some
αt ∈ k. Since f(Z) is R-permissible and ordRt−1 = ord(Rt)xtRt

, f(Z) is of ramified
type relative to ordRt−1 . By Lemma 7.10, after replacing f(Z) with an Rt−1-translate,

and we consider the expansion F =
∑

Fijx
i
t−1y

j
t−1 ∈ R̂t−1 = k[[xt−1, yt−1]], we have

that if d = ordRt−1F , i+ j = d and (i, j) ≡ 0(m), then Fij = 0. Let c be the largest
j such that there exists j such that Fi,j 6= 0 and i + j = d. Then f(Z) is of Rt-type
(d, 0, c).

Step 2. Assume that f(Z) is of R-type (a, b, c) with b ≡ 0(m) and [b, c] ≥ m. Then
there exists a sequence of quadratic transforms R → Rt along ν, and an Rt−1-translate
ft(Z) of f(Z), such that ft(Z) is of Rt-type (at, bt, ct) with bt ≡ 0(m) and [bt, ct] < m.

The proof of Step 2 follows from two algorithms.

Algorithm 1. Assume that f(Z) is of R-type (a, b, c) with b ≡ 0(m) and [b, c] ≥ m.
Then there exists a sequence of quadratic transforms R → Re along ν, and an Re−1-
translate fe(Z) of f(Z), such that either

1. fe(Z) is of Re-type (ae, be, ce) with be ≡ 0(m) and [be, ce] < [b, c] or
2. fe(Z) is of Re-antitype (be, ae, de) with ae ≡ 0(m) and de < m.

Proof of Algorithm 1.
Since ν is rational nondiscrete, by Lemma 2.2, there exists a sequence of quadratic

transforms along ν,

R = R0 → · · · → Ri → Ri+1

where R → Ri is a sequence of i ≥ 0 quadratic transforms of the type of (12) and
Ri → Ri+1 is a quadratic transform of the type of (13). Lemma 7.17 implies that
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there exists an Ri−1-translate fi(Z) of f(Z) such that fi(Z) is of type (ai, bi, ci)
where bi ≡ 0(m) and ci ≤ c. Now 1 of Lemma 7.19 implies that either there exists an
Ri-translate fi+1(Z) of f(Z) such that fi+1(Z) is of Ri+1-type (ai+1, bi+1, ci+1) with
bi+1 ≡ 0(m) and [bi+1, ci+1] < [b, c], or fi+1(Z) is of Ri+1-antitype (bi+1, ai+1, di+1)
with ai+1 ≡ 0(m) and di+1 < m. In either case, the conclusions of the algorithm have
been reached.

Algorithm 2. Assume that f(Z) is of R-antitype (b, a, d) with a ≡ 0(m) and d < m.
Then there exists a sequence of quadratic transforms R → Re along ν, and an Re−1-
translate fe(Z) of f(Z) such that either

1. fe(Z) is of Re-type (ae, be, ce) with be ≡ 0(m) and [be, ce] < m or
2. fe(Z) is of Re-antitype (be, ae, de) with ae ≡ 0(m) and de < d.

Proof of Algorithm 2.
Since ν is rational nondiscrete, by Lemma 2.2, there exists a sequence of quadratic

transforms

R = R0 → · · · → Ri → Ri+1

along ν where R → Ri is a sequence of i ≥ 0 quadratic transforms of the type of (13)
and Ri → Ri+1 is a quadratic transform of the type of (12). Lemma 7.20 implies
that there exists an Ri−1-translate fi(Z) of f(Z) such that fi(Z) has Ri-antitype
(bi, ai, di) with di ≤ d and ai ≡ 0(m). Now 1 of Lemma 7.18 implies that either there
exists an Ri-translate fi+1(Z) of f(Z) such fi+1(Z) has Ri+1 type (ai+1, bi+1, ci+1)
with bi+1 ≡ 0(m) and [bi+1, ci+1] < m, or fi+1(Z) has Ri+1-antitype (bi+1, ai+1, di+1)
with ai+1 ≡ 0(m) and di+1 < di ≤ d. In either case, the conclusions of the algorithm
have been reached.

Now we now easily prove Step 2. By successive application of Algorithms 1 and
2, we either achieve the conclusions of Step 2, or reach an Re such that there exists an
Re−1-translate fe(Z) of f(Z) such fe(Z) has Re-antitype (be, ae, de) with ae ≡ 0(m)
and de = 0. Then Lemma 7.20 and 1 of Lemma 7.18 imply that after a further
sequence of quadratic transforms along ν, the conclusions of Step 2 hold.

Step 3. Assume that f(Z) has R-type (a, b, c) with [b, c] < m. Then there exists a
sequence of quadratic transforms R → Rt along ν and an Rt−1-translate ft(Z) of
f(Z) such such that ft(Z) is of Rt-type (at, bt, ct) with [bt, ct] = 0.

To prove Step 3, we iterate the following algorithm, which gives a reduction of
[b, c].

Since ν is rational nondiscrete, by Lemma 2.2, there exists a sequence of quadratic
transforms along ν

R = R0 → · · · → Ri → Ri+1 → · · · → Rj → Rj+1

where R → Ri is a sequence of i ≥ 0 quadratic transforms of the type of (12),
Ri → Rj is a sequence of j − i ≥ 1 quadratic transforms of the type of (13) and
Rj → Rj+1 is a quadratic transform of the type of (12). Lemma 7.17 implies that
there exists an Ri−1-translate fi(Z) of f(Z) such fi(Z) is of Ri-type (ai, bi, ci) with



ABHYANKAR’S PROOF OF EMBEDDED RESOLUTION 399

[bi, ci] ≤ [b, c] < m. Now 2 of Lemma 7.19 and Lemma 7.20 implies there exists an
Rj−1 translate fj(Z) of f(Z) such that one of the following holds:

1. fj(Z) is of Rj-type (aj , bj , cj) with [bj, cj ] ≤ max{0, [bi, ci]− 1} or
2. fj(Z) is of Rj-antitype (bj , aj, dj) with dj <

m
p or

3. fj(Z) is of Rj-antitype (bj , aj, dj) with dj =
m
p and aj + bj +

m
p 6≡ 0(m).

Finally, Lemma 7.17 and 2 of Lemma 7.18 imply that there exists an Rj-translate
fj+1(Z) of f(Z) such fj+1(Z) is of Rj+1-type (aj+1, bj+1, cj+1) with [bj+1, cj+1] <
[b, c].

Step 4. Suppose that there exists an Rt−1 translate ft(Z) of f(Z) such that ft(Z) is
of Rt-type (at, bt, ct) with [bt, ct] = 0. Then there exists an Rt-translate ft(Z) of f(Z)
which is of Rt-stable-type (at, bt, c

′) where c′ ≤ ct.

Step 4 follows from Lemma 7.15.

Step 5. Let t be as in Step 4. After any further sequence of quadratic transforms
Rt → Ri along ν, and making an appropriate Ri-translate fi(Z) of f(Z), fi(Z) is of
Ri-stable-type.

Step 5 follows from Lemma 7.16.

8. Reduction of order of a polynomial. Theorem 8.1 finds a particular sub-
stitution which gives a reduction of order of a polynomial. This is used later in
Theorem 9.7 to show that after a sequence of blow ups of points along a valuation,
we reduce to a good point; that is, a point from which a reduction of multiplicity can
be obtained by only blowing up curves. The property of being a good point may not
be preserved by further blow ups of points.

Theorem 8.1. Let R0 be a two dimensional regular local ring, containing an
algebraically closed field k of characteristic p which is isomorphic to the residue field
of R0. Let K be the quotient field of R0. Let f(Z) ∈ R0[Z] be monic of degree n > 0.
Let ν be a 0-dimensional valuation of K which dominates R0. Let

R0 → R1 → · · · → Rk → · · ·
be the infinite sequence of quadratic transforms along ν. Then there exist regular
parameters x0, y0 in R0 k ∈ N, and r ∈ R̂k such that f(Z + r) = Zn or there exists
nonnegative integers u and v such that upon setting g(Z) = (xu

ky
v
k)

−nf(xu
ky

v
kZ + r)

we have that g(Z) ∈ R̂k[Z] and 0 < ordR̂k
g(Z) < n, where xk, yk are the canonical

parameters in Rk determined by x0, y0.

We will prove this theorem in the essential case when ν is rational nondiscrete.
This is by far the hardest case, and is the situation where differences between charac-
teristic zero and p are most evident. The remaining cases of valuations are essentially
“toric” (The irrational case is for instance handled in Section 1 of [1]).

In this section, we will use the following notation. Suppose that R is a two di-
mensional regular local ring containing an algebraically closed field k of characteristic
p > 0 which is isomorphic to its residue field. Let K be the quotient field of R.
Suppose that ν is a rational nondiscrete valuation of K dominating R. Let x0, y0 be
regular parameters in R, and let

R = R0 → R1 → · · · → Rk → · · ·
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be the infinite sequence of quadratic transforms along ν. Let xk, yk be the canonical
coordinates in Rk with respect to x, y. Let S = RxR and Sk = (Rk)xkRk

for k ≥ 0.
Let I be the set of integers k such that

xk−1 = xk, yk−1 = xk(yk + αk) with 0 6= αk ∈ k.

For t ∈ I, let I(t) be the set of all k ∈ I such that k ≥ t. Since ν is rational
nondiscrete, I is an infinite set (by Lemma 2.2).

Let f(Z) ∈ K[z] be monic of degree n > 0. Let L be a splitting field of f(Z) over
K, so that we have L = K(z1, . . . , zn) with f(Z) = (Z − z1) · · · (Z − zn). We define

DK(f(Z)) =
∏

i6=j

(yi − yj)
d

where y1, . . . , ym are the distinct elements amongst the elements z1, . . . , zn, and d =
[L : K]. Note that if R is any normal domain with quotient field K such that
f(Z) ∈ R[Z], then DK(f(Z)) ∈ R.

Let g(Z) be another monic polynomial of positive degree in Z with coefficients in
K. We define

D(g(Z), f(Z)) =

n∏

i=1

g(zi).

Observe that if R is any normal domain with quotient field K such that f(Z), g(Z) ∈
R[Z], then D(g(Z), f(Z)) ∈ R.

Theorem 8.2. Assume that ν is rational nondiscrete. Let L be a finite normal
extension of K such that ν does not split in L. Let [L : K] = p′q where p 6 |q and p′

is a power of p. Then
1. There exists a unique subfield K ′ of L containing K such that [K ′ : K] = q.

K ′ is a cyclic Galois extension of K and ν does not split in K ′.
2. There exists t ∈ I such that for all k ∈ I(t),

a) Sk is totally ramified in L,
b) the integral closure R′

k of Rk in K ′ is a regular local ring, with regular
parameters x′

k, y
′
k, which are canonical with respect to x′

t, y
′
t, (x′

k)
q =

δkxk where δk ∈ Rk is a unit and (x′
k, yk)R

′
k = M(R′

k),
c) S′

k = (R′
k)x′

k
R′

k
is totally ramified in L.

3. Let k ∈ I(t) and let g(Z) ∈ Rk[Z] be a monic irreducible polynomial of degree
d > 1 such that g(Z) = 0 for some z ∈ K ′ and DK(g(Z)) is an Rk-monomial
in xk. Let f(Z) = g(Z)e where e is a positive integer and let n = de. Then
there exists r ∈ Rk and a positive integer a with a 6≡ 0(n) such that for any

r∗ ∈ Rk with ordSk
r∗ ≥ a

n we have that f(r+r∗)
xa is a unit in Rk.

4. Let k ∈ I(t) and g(Z) ∈ Rk[Z] be a monic irreducible polynomial of degree
d > 0. Let f ′(Z) ∈ R′

k[Z] be a monic irreducible polynomial of degree m such
that f ′(Z) divides g′(Z) in K ′[Z], and f ′(z) = 0 for some z ∈ L. Then m
is the highest power of p which divides d. Let f(Z) = g(Z)e where e is a
positive integer and let n = de. Assume that DK(g(Z)) is an Rk-monomial
in xk and there exist nonnegative integers a′ and c′ and r′ ∈ R′

k such that

ordS′

k
f ′(r′) = a′, ordR′

k
/x′

k
R′

k
( f(r′)

(x′

k
)a′ ) = c′, (a′, c′) 6≡ 0(m) and c′ ≤ m

p . Then

there exist nonnegative integers a and c and r ∈ Rk such that (a, c) 6≡ 0(n)
and c ≤ n

p and such that for any r∗ ∈ Rk with ordSk
r∗ ≥ a

n we have that

ordSk
f(r + r∗) = a and ordRk/xkRk

f(r+r∗)
xa
k

= c.
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This is proven in Lemma 2.8, Theorem 2.9 and Lemma 2.4 of [6]. Conclusions 1
and 2 are a case of Abhyankar’s generalization of Jung’s theorem on ramification to
positive characteristic. This result is also interpreted and discussed in [23]. An essen-
tial ingredient in Abhyankar’s proof is a Theorem of Krull on the large ramification
group of a valuation ([36] and Section 12 of Chapter 6 of [47]). The proofs of 3 and
4 involve an ingenious use of Galois theory.

Lemma 8.3. (Lemma 2.5 [6]) Let f(Z) ∈ R[Z] be a monic polynomial of degree n,
and let L be a finite normal extension of K such that S does not split in L, and f(Z)
factors into linear factors in L[Z]. Write f(Z) =

∏v
i=1 gi(Z)e(i) where gi(Z) ∈ R[Z]

are the distinct monic irreducible factors of f(Z) in K[Z]. Let fi(Z) = gi(Z)e(i) for
1 ≤ i ≤ v. For 1 ≤ i ≤ v, let d(i) be the degree of gi(Z) and suppose that d(i) > 1
for all i. Let n(i) = d(i)e(i) and n = n(1) + · · · + n(v). Assume that for 1 ≤ i ≤ v
there exist a(i), c(i) ∈ N and ri ∈ R such that (a(i), c(i)) 6≡ 0(n(i)) and c(i) < n(i)

and for any r∗i ∈ R with ordS(r
∗
i ) ≥ a(i)

n(i) , we have that ordS(fi(ri + r∗i )) = a(i) and

ordR/xR(
fi(ri+r∗i )

xa(i) ) = c(i). Also assume that D(gi(Z), gj(Z)) is an R-monomial in x
whenever 1 ≤ i ≤ v, 1 ≤ j ≤ v and i 6= j. Then there exists r ∈ R such that upon
letting

F (Z) = f(Z + r) = Zn + F1Z
n−1 + · · ·+ Fn

with F1, . . . , Fn ∈ R, we either have that
1. There exists an integer u such that 0 < u < n, Fu is an R-monomial in x,

ordSFj ≥ j
uordSFu for 1 ≤ j ≤ u and ordSFj >

j
uordSFu for u < j ≤ n or

2. There exist a, c ∈ N such that (a, c) 6≡ 0(n), c ≤ c(1)+· · ·+c(v), ordS(Fn) = a,
ordR/xR(

Fn

xa ) = c, and ordS(Fj) ≥ ja
n for 1 ≤ j ≤ n.

Proof. After permuting 1, . . . , v, we may assume that a(1)
n(1) ≥ a(i)

n(i) for 1 < i ≤ v.

Let r = r1, and

F (Z) = f(Z + r) = Zn + F1Z
n−1 + · · ·+ Fn

with F1, . . . , Fn ∈ R. For 1 ≤ i ≤ v, let g′i(Z) = gi(Z + r), f ′
i(Z) = g′i(Z)e(i),

yi = zi − r, si = ri − r and b(i) = ordSf
′
i(0). Then F (Z) = f ′

1(Z) · · · f ′
v(Z) and

for each i, g′i(Z) is a monic irreducible polynomial of degree d(i) in R[Z], yi ∈ L,
g′i(yi) = 0, si ∈ R and

(27)
ordS(f

′
i(si + s∗i )) = a(i)

and ordR/xR(
f ′

i (si+s∗i )

xa(i) ) = c(i) for all s∗i ∈ R with ordS(s
∗
i ) ≥ a(i)

n(i) .

We have that s1 = 0, and thus

(28) ordS(f
′
1(0)) = a(1) = b(1).

For 1 < i ≤ v we have that D(f ′
i(Z), f ′

1(Z)) = D(fi(Z), f1(Z)) =
(D(gi(Z), g1(Z)))e(i)e(1) and hence D(f ′

i(Z), f ′
1(Z)) is an R-monomial in x. Let T

be the integral closure of S in L. By our assumption that S does not split in L, we
have that T is a one dimensional regular local ring, and for any K-automorphism G
of L, we have that G(T ) = T and hence ordT (G(y)) = ordT (y) for all y ∈ L. We also
have that ordT (y) = ordS(y)ordT (x) for y ∈ K. Since L is a finite normal extension of
K, there existK-automorphismsGij of L such that upon letting yij = Gij(yi) we have
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that g′i(Z) = (Z−yi1) · · · (Z−yid(i)) for 1 ≤ i ≤ v. We have that ordT (yij) = ordT (yi)
for 1 ≤ i ≤ v and 1 ≤ j ≤ d(i) and

f ′
i(Z) =

d(i)∏

j=1

(Z − yij)
e(i) = Zn(i) +

n(i)∑

k=1

f ′
ikZ

n(i)−k

where f ′
ik ∈ R for 1 ≤ i ≤ v and 1 ≤ k ≤ n(i). Since f ′

i(0) = f ′
in(i) =

(−1)n(i)(
∏d(i)

j=1 yij)
e(i), we have

(29) ordT (yij) = ordT (yi) =
b(i)

n(i)
ordT (x) for 1 ≤ i ≤ v and 1 ≤ j ≤ d(i).

Since f ′
ik is the elementary symmetric function of degree k in the yij , which is homo-

geneous in the yij of degree k, and by (29), we have that

(30) ordS(f
′
ik) ≥ k

b(i)

n(i)
for 1 ≤ i ≤ v and 1 ≤ k ≤ n(i).

Let i be any integer such that 1 ≤ i ≤ v and b(i)
n(i) < a(1)

n(1) . By (28) and (29), we have

that b(1) = a(1), i 6= 1, b(i)
n(i) < b(1)

n(1) and ordT (y1j) =
b(1)
n(1)ordT (x) for 1 ≤ j ≤ d(1).

Since ordSf
′
i(0) = b(i) and

f ′
i(y1j) = y

n(i)
1j +

n(i)∑

k=1

f ′
iky

n(i)−k
1j for 1 ≤ j ≤ d(1),

we get by (30) that for 1 ≤ k ≤ n(i),

ordT (f
′
iky

n(i)−k
1j ) = ordT (f

′
ik) + (n(i)− k)ordT (y1j)

≥ k
b(i)

n(i)
ordT (x) + (n(i)− k)

b(1)

n(1)
ordT (x)(31)

and ordT (y
n(i)
1j ) = n(i)

b(1)

n(1)
ordT (x).

Thus ord T f
′
i(y1j) = ordT (f

′
in(i)) = ordT f

′
i(0) = ordT (x

b(i)) and ordT (f
′
i(y1j) −

f ′
i(0)) > ordT (x

b(i)) for 1 ≤ j ≤ d(1). Thus
f ′

i(y1j)

xb(i) ∈ T ,
f ′

i(0)

xb(i) ∈ T and
f ′

i (y1j)

xb(i) ≡
f ′

i(0)

xb(i) mod Q for 1 ≤ j ≤ d(1), where Q is the maximal ideal of T , and hence

d(1)∏

j=1

(
f ′
i(y1j)

xb(i)
)e(1) ≡ (

f ′
i(0)

xb(i)
)n(1) mod Q.

We have that

d(1)∏

j=1

f ′
i(y1j)

e(1) = D(f ′
i(Z), f ′

1(Z)) = txb′

where t is a unit in R and b′ is a nonnegative integer. Hence

txb′−b(i)n(1) ≡ (
f ′
i(0)

xb(i)
)n(1) mod Q.
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Since txb′−b(i)n(1) and (
f ′

i(0)

xb(i) )
n(1) are in K and K ∩Q = xS, we obtain

(32) txb′−b(i)n(1) − (
f ′
i(0)

xb(i)
)n(1) ∈ xS.

Since f ′
i(0) ∈ R and ordS(f

′
i(0)) = b(i), we obtain

f ′

i(0)

xb(i) ∈ R and
f ′

i (0)

xb(i) is a unit in S.

Thus by (32), we get that txb′−b(i)n(1) is a unit in S. Since t is a unit in R, we have

that b′ − b(i)n(1) = 0 and hence by 32 we obtain t − (
f ′

i (0)

xb(i) )
n(1) ∈ (xS) ∩ R = xR.

Since t is a unit in R we conclude that
f ′

i(0)

xb(i) is a unit in R. Thus we have shown that:

(33)
if i is any integer such that 1 ≤ i ≤ v and b(i)

n(i) < a(1)
n(1) ,

then
f ′

i(0)

xb(i) is a unit in R.

Now let i be an integer such that 1 ≤ i ≤ v and b(i)
n(i) ≥

a(1)
n(1) . Since

a(1)
n(1) ≥

a(i)
n(i) we

have b(i) ≥ a(i), and by 30 we have that ordS(f
′
ik) ≥ k a(i)

n(i) for 1 ≤ k ≤ n(i). Setting

s∗i = 0 in (27), we get ordS(f
′
i(si)) = a(i). We have

f ′
i(si) = s

n(i)
i +

n(i)∑

k=1

f ′
iks

n(i)−k
i

and hence (by an analysis similar to (31)) we must have ordS(si) ≥ a(i)
n(i) . Thus after

taking s∗i = −si in (27), we get that ordS(f
′
i(0)) = a(i) and ordR/xR(

f ′

i (0)

xa(i) ) = c(i).

Since b(i)
n(i) ≥ a(1)

n(1) ≥ a(i)
n(i) and b(i) = ordS(f

′
i(0)) = a(i), we get that a(i)

n(i) =
a(1)
n(1) . Thus

we have shown that

(34)
if i is any integer such that 1 ≤ i ≤ v and b(i)

n(i) ≥
a(1)
n(1) , then

ordS(f
′
i(0)) = a(i), ordR/xR(

f ′

i (0)

xa(i) ) = c(i), b(i) = a(i) and a(i)
n(i) = a(1)

n(1) .

We will now show that if b(i)
n(i) <

a(1)
n(1) for some i then condition 1 of the conclusions of

the theorem hold, and if b(i)
n(i) ≥ a(1)

n(1) for all i with 1 ≤ i ≤ v, then condition 2 of the

conclusions of the theorem hold. This will complete the proof.

First suppose that b(i)
n(i) < a(1)

n(1) for some i. Let a′ = min{ b(1)
n(1) , . . . ,

b(v)
n(v)}, let V be

the set of all integers i such that 1 ≤ i ≤ v and b(i)
n(i) = a′, and let V ′ be the set of all

integers i such that 1 ≤ i ≤ v and i 6∈ V . Then V 6= ∅, and by (28), we have that
1 ∈ V ′, so that V ′ 6= ∅. Let

u =
∑

i∈V

n(i) and a =
∑

i∈V

b(i).

Then 0 < u < n and a = ua′. Let

A(Z) =
∏

i∈V

f ′
i(Z) = Zu +

u∑

j=1

AjZ
u−j ,

B(Z) =
∏

i∈V ′

f ′
i(Z) = Zn−u +

n−u∑

j=1

BjZ
n−u−j
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with A1, . . . , Au, B1, . . . , Bn−u ∈ R. We have that

Au = A(0) =
∏

i∈V

f ′
i(0).

By (33), we know that
f ′

i (0)

xb(i) is a unit in R for all i ∈ V . Thus

(35) ordS(Au) = ua′ and Au

xua′ is a unit in R.

Since b(i)
n(i) = a′ for i ∈ V and b(i)

n(i) > a′ for i ∈ V ′, by (29) we obtain ordT (yij) =

a′ordT (x) whenever i ∈ V and 1 ≤ j ≤ d(i), and ordT (yij) > a′ordT (x) whenever
i ∈ V ′ and 1 ≤ j ≤ d(i). Since

A(Z) =
∏

i∈V

d(i)∏

j=1

(Z − yij)
e(i)

and

B(Z) =
∏

i∈V ′

d(i)∏

j=1

(Z − yij)
e(i),

we have that

(36) ordS(Aj) ≥ ja′ for 1 ≤ j ≤ u and ordS(Bj) > ja′ for 1 ≤ j ≤ n− u.

We have that F (Z) = A(Z)B(Z). Setting A0=1, we have

(37) Fj =

{
Aj +

∑min{j,n−u}
k=1 BkAj−k for 1 ≤ j ≤ u

∑min{u,n−j}
k=1 Bj−u+kAu−k for u < j ≤ n.

It follows from (35), (36) and (37) that ordS(Fu) = ua′, Fu

xua′ is a unit in R, ordS(Fj) ≥
j
uordS(Fu) for 1 ≤ j ≤ u, and ordS(Fj) >

j
uordS(Fu) for u < j ≤ n.

Finally, suppose that b(i)
n(i) ≥ a(1)

n(1) for 1 ≤ i ≤ v. by (34) we obtain ordS(f
′
i(0)) =

a(i), ordR/x(
f ′

i(0)

xa(i) ) = c(i) and b(i)
n(i) = a(i)

n(i) = a(1)
n(1) for 1 ≤ i ≤ v. Let a = a(1)+· · ·+a(v)

and c = c(1)+ · · ·+c(v). Since Fn = F (0) = f ′
1(0) · · · f ′

v(0), we get that ordS(Fn) = a

and ordR/x(
Fn

xa ) = c. Let λ be the common ratio λ = a(i)
n(i) = b(i)

n(i) for 1 ≤ i ≤ v.

Substituting a(i) = λn(i) into a
n , we obtain a(i)

n(i) = a
n for 1 ≤ i ≤ v. Hence by (29),

we get that ordT (yij) =
a
nordT (x) for 1 ≤ i ≤ v and 1 ≤ j ≤ d(i). Since

F (Z) =
v∏

i=1

d(i)∏

j=1

(Z − yij))
e(i),

we deduce that ordS(Fk) ≥ k a
n for 1 ≤ k ≤ n. Since c(i) < n(i) for 1 ≤ i ≤ v we get

that c < n. If c 6= 0, then we have (a, c) 6≡ 0(n). If c = 0 then c(1) = 0 and hence

a(1) 6≡ 0(n(1)), so that a 6≡ 0(n) since a
n = a(1)

n(1) . Thus in both cases (a, c) 6≡ 0(n).

Lemma 8.4. Let F (Z) ∈ R[Z] be a monic polynomial of degree n > 0. Assume
that F (Z) is of prenonsplitting type relative to ordS and there exist a, c ∈ N such that
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ordxRF (0) = a, ordR/xR
F (0)
xa = c, (a, c) 6≡ 0(n) and c ≤ n

2 . Then there exist k, d, e ∈ N

and an Rk-translate F ′(Z) of F (Z) such that upon letting f(Z) =
F ′(xd

ky
e
kZ)

(xd
k
ye
k
)n

, we have

that k ≤ n
2 , f(Z) ∈ Rk[Z] and 0 < ordRk

f(Z) < n.

This is Lemma 2.6 [6]. Since ν is rational nondiscrete, there exists a sequence of
quadratic transforms

R = R0 → R1 → · · · → Ri → Ri+1

where i ≥ 0 and Rj has canonical coordinates xi, yi for 0 ≤ j ≤ i + 1 such that
Rj → Rj+1 is of the type of (13) for j < i and Ri → Ri+1 is of the type of (12). A
direct calculation shows that the conclusions of the lemma hold with k = i+ 1.

Lemma 8.5. Let F (Z) = Zn + F1Z
n−1 + · · · + Fn ∈ F [Z] with n > 0 and

F1, . . . , Fn ∈ R. Assume that there exists an integer u with 0 < u < n such that Fu

is an R-monomial in x, ordSFj ≥ j
uordSFu for 1 ≤ j ≤ u and ordSFj >

j
uordSFu for

u < j ≤ n. Let d be the greatest integer such that du ≤ ordSFu, and let f(Z) = f(xdZ)
xnd .

Then f(Z) ∈ R[Z] and 0 < ordRf(Z) < n.

This is Lemma 2.7 [6].

Theorem 8.6. Assume that ν is rational nondiscrete. Suppose that R is an
excellent local ring (in addition to our other assumptions), and L is a finite normal
extension of K such that V does not split in L. Let [L : K] = p′q where p 6 | q and p′ is
a power of p, and let K ′ be the intermediate field of Theorem 8.2. Let g(Z) ∈ R[Z] be
a monic irreducible polynomial of degree d, and suppose that g(z) = 0 for some z ∈ L.
Let f(Z) = g(Z)e where e is a positive integer, and let n = de. Then there exists
t′ ∈ I such that for each k ∈ I(t′) there exists rk ∈ Rk and nonnegative integers a(k)
and c(k) such that (a(k), c(k)) 6≡ 0(n), c(k) = 0 if d 6≡ 0(p), c(k) ≤ n

p if d ≡ 0(p),

and ordSk
f(rk + r∗k) = a(k) and ordRk/xkRk

f(rk+r∗k)

xa(k) = c(k) for all r∗k ∈ Rk with

ordSk
r∗k ≥ a(k)

n .

Proof. Let notation be as in Theorem 8.2. In particular, let t be as in 2 of Theorem
8.2. By embedded principalization of ideals in dimension two, there exists t′′ ∈ I(t)
such that DK(g(Z)) is an Rk-monomial in xk for all k ∈ I(t′′). Let m = [K ′(z) : K ′],
and let f ′(Z) be the minimal monic polynomial of z over K ′.

First suppose that m = 1. Then z ∈ K ′ and hence d 6≡ 0(p). By 3 of Theorem
8.2, we have that for each k ∈ I(t′′) there exists rk ∈ Rk and a positive integer a(k)

with a(k) 6≡ 0(n) such that for all r∗k ∈ Rk with ordSk
r∗k ≥ a(k)

n we have that
f(rk+r∗k)

x
a(k)
k

is a unit in Rk, and hence ordSk
f(rk + r∗k) = a(k) and ordRk/xkRk

f(rk+r∗k)

x
a(k)
k

= c(k)

with c(k) = 0.
Now assume that m > 1. Suppose k ∈ I(t′′). Since z is integral over R, we have

that the coefficients of f ′(Z) are in the integral closure R′
k of Rk in K ′ (by Theorem

4, Section 3, Chapter V [47]), and R′
k is excellent since R is. Further, R′

k is a regular
local ring by 2 of Theorem 8.2. By the first part of 4 of Theorem 8.2, we have that
m is the highest power of p which divides d. Applying Theorems 7.2 and 7.8 to
f ′(Z) ∈ R′

k[Z], we can find t′ ∈ I(t′′) such that for each k ∈ I(t′) there exists r′k ∈ R′
k

and nonnegative a′(k) and c′(k) such that ordS′

k
f ′(r′k) = a′(k), ordR′

k
/x′

k
R′

k

f ′(r′k)

x′

k
a′(k) =

c′(k), (a′(k), c′(k)) 6≡ 0(m), and c′(k) ≤ m
p . Now by 4 of Theorem 8.2, there exists
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rk ∈ Rk and nonnegative integers a(k) and c(k) such that ordSk
f(rk + r∗k) = a(k),

ordRk/xkRk

f(rk+r∗k)

xk
a(k) = c(k), (a(k), c(k)) 6≡ 0(n), and c(k) ≤ n

p for all r∗k ∈ Rk with

ordSk
r∗k ≥ a(k)

n .

Now we prove Theorem 8.1 in the essential case when ν is rational nondiscrete.

Let R′′ = R̂ be the completion of R, and let K ′′ be the quotient field of R′′. Let
L be a splitting field of f(Z) over K ′′. Let ν′′ be the unique extension of ν to K ′′

which dominates R′′. ν′′ is rational nondiscrete.
Let L′ be the maximal separable extension of K ′′ in L, and let ω be an extension

of ν′′ to L′. Let K ′ be the splitting field of ω overK ′′, and let ω′ be the restriction of ω
to K ′. Then ω and ω′ are rational, nondiscrete. ω′ does not split in L′ by Proposition
1.46 [3]. Since L is a purely inseparable extension of L′, ω′ does not split in L. Let
Qb be the localization of the integral closure T ′

b of the b-th quadratic transform R′′
b of

R′′ along ν′′ in L′ at the maximal ideal T ′
b ∩M(Vω). By Lemma 14 [4], there exists a

number b0 such that for b ≥ b0, we have that K ′ is the splitting field of Qb over R′′
b .

Suppose b ≥ b0 and let R′
b be the localization of the integral closure Tb of R′′

b

in K ′ at the maximal ideal Tb ∩ M(Vω′). From Section 3 and Theorem 1.47 [3], we
obtain that R′

b is an unramified extension of R′′
b , so that M(Rb)R

′
b = M(R′

b), the

residue field of R′
b is the algebraically closed field k, R′

b is regular, R̂b = R̂′
b = R̂′′

b and
R′

b → R′
b+1 is the quadratic transform of R′

b along ω′. We have thus reduced to the
case where R is complete and ν does not split in a splitting field L of f(Z). We make
these assumptions for the remainder of the proof. In particular, Rk is excellent for all
k.

By Lemmas 8.4 and 8.5, it suffices to show that one of the following three condi-
tions hold:

(38) Zn is an R-translate of f(Z) or

(39)

There exists t′ ∈ I and an Rt′ -translate F (Z) = Zn + F1Z
n−1 + · · ·+ Fn of f(Z)

with F1, . . . , Fn ∈ Rt′ , and an integer u with 0 < u < n such that for all k ∈ I(t′)

we have that Fu is an Rk-monomial in xk, ordSk
Fj ≥ j

u
ordSk

Fu

for 1 ≤ j ≤ u and ordSk
Fj > j

u
ordSk

Fu for u < j ≤ n or

(40)
There exists t′ ∈ I such that for each k ∈ I(t′) there exists an Rk-translate fk(Z)
of f(Z) and nonnegative integers a(k) and c(k) such that fk(Z) is of prenonsplitting-

type relative to ordSk
, ordSk

fk(0) = a(k), ordRk/xkRk

fk(0)

x
a(k)
k

= c(k), (a(k), c(k)) 6≡ 0(n),

c(k) = 0 if the degree of every nonconstant monic irreducible factor of f(Z) in K[Z]
is nondivisible by p, and c(k) ≤ n

p
if the degree of some nonconstant monic irreducible

factor of f(Z) in K[Z] is divisible by p.

Let g1(Z), . . . , gv(Z) be the distinct nonconstant monic irreducible factors of
f(Z) in K[Z]. Then g1(Z), . . . , gv(Z) are in R[Z] and there exists positive integers
e(1), . . . , e(v) such that f(Z) = f1(Z) · · · fv(Z) where fi(Z) = gi(Z)e(i) for 1 ≤ i ≤ v.
Let d(i) be the degree of gi(Z) in Z, and let n(i) = d(i)e(i) for 1 ≤ i ≤ v. Then
n = n(1) + · · ·+ n(v). Let z1, . . . , zv ∈ L be such that gi(zi) = 0 for 1 ≤ i ≤ v.

First suppose that d(i) = 1 for some i. Let F (Z) = f(Z + zi). Then F (Z) is an
R-translate of f(Z) and F (Z) = Zn+F1Z

n−1+ · · ·+Fn−1Z where F1, . . . , Fn−1 ∈ R.
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Let V be the set of all integers j with 1 ≤ j ≤ n − 1 such that Fj 6= 0. If V is
empty then F (Z) = Zn and (38) holds. Suppose that V is nonempty. By embedded
principalization of ideals in two dimensional regular local rings, there exists t′ ∈ I
such that Fj is an Rt′ -monomial in xt′ for all j ∈ V . Let u be the greatest integer in
V such that

1

u
ordSt′

Fu = minj∈V
1

j
ordSt′

Fj .

Then 0 < u < n and for all k ∈ I(t′) we have that Fu is an Rk-monomial in xk,
ordSk

Fj ≥ j
uordSk

Fu for 1 ≤ j ≤ u, and ordSk
Fj > j

uordSk
Fu for u < j ≤ n. Thus

(39) holds.
We have reduced to the case where d(i) > 1 for 1 ≤ i ≤ v, which we will assume

from now on. We have that 0 6= D(gi(Z), gj(Z)) ∈ R whenever 1 ≤ i ≤ v, 1 ≤ j ≤ v
and i 6= j. By embedded principalization of ideals in two dimensional regular local
rings, there exists t′′ ∈ I such that D(gi(Z), gj(Z)) is an Rk-monomial in xk whenever
k ∈ I(t′′), 1 ≤ i ≤ v, 1 ≤ j ≤ v, and i 6= j. By 2 of Theorem 8.2, there exists t ∈ I(t′′)
such that Sk is totally ramified in L for all k ∈ I(t). For 1 ≤ i ≤ v, by Theorem
8.6, there exists ti ∈ I such that for each k ∈ I(ti), there exists rik ∈ Rk and
nonnegative integers a(i, k) and c(i, k) such that (a(i, k), c(i, k)) 6≡ 0(n(i)), c(i, k) = 0

if d(i) 6≡ 0(p), c(i, k) ≤ n(i)
p if d(i) ≡ 0(p) and ordSk

fi(rik + r∗ik) = a(i, k) and

ordRk/xkRk

fi(rik+r∗ik)

x
a(i,k)
k

= c(i, k) for all r∗ik ∈ Rk with ordSk
r∗ik ≥ a(i,k)

n(i) .

Let t′ = max{t, t1, . . . , tv}. For any k ∈ I(t′), by Lemma 8.3, there exists an
Rk-translate fk(Z) of f(Z) such that the conclusion (39) holds or there exist non-
negative integers a(k) and c(k) such that fk(Z) is of prenonsplitting type relative
to ordSk

, (a(k), c(k)) 6≡ 0(n), c(k) ≤ c(1, k) + · · · + c(v, k), ordSk
fk(0) = a(k) and

ordRk/xkRk

fk(0)

x
a(k)
k

= c(k). It follows that c(k) = 0 if d(i) 6≡ 0(p) for 1 ≤ i ≤ v, and

c(k) ≤ n
p if d(i) ≡ 0(p) for some i, so that the conclusions of (40) hold.

9. Local uniformization and global resolution of singularities. In this
section, suppose that k is an algebraically closed field of characteristic p > 0, and X
is a nonsingular projective 3-dimensional variety over k; that is an integral projective
scheme of dimension 3. Let k(X) be the function field of X . Suppose that Y is a
surface; that is a projective integral 2-dimensional subscheme of X .

Let e be the largest multiplicity of a point on Y , and let

Singe(Y ) = {p ∈ Y | Y has multiplicity νp(Y ) = e at p}.
Singe(Y ) is a closed subset of Y , which is a proper subset if e > 1. Y is nonsingular
if e = 1. We will suppose that e > 1.

Suppose that p ∈ Singe(Y ) is a closed point, f ∈ OX,p is such that f = 0 is a local

equation of Y at p, or f ∈ ÔX,p is such that f = 0 is a formal local equation of Y at

p, and (x, y, z) are regular parameters in OX,p (or in ÔX,p). There is an expansion

f =
∑

i+j+k≥e

aijkx
iyjzk

with aijk ∈ k in ÔX,p = k[[x, y, z]]. The leading form of f with respect to x, y, z is
defined to be

L(x, y, z) =
∑

i+j+k=e

aijkx
iyjzk.
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The invariant τ(p) is the dimension of the smallest linear subspace T of the k-subspace
spanned by x, y and z in k[x, y, z] such that L ∈ k[T ]. This dimension is independent
of choice of regular parameters (x, y, z) at p. If x, y, z are regular parameters in OX,p,
we will call the subvarietyM = V (T ) of spec(OX,p) an approximate manifold to Y at p.

If (x, y, z) are regular parameters in ÔX,p, we call M = V (T ) ⊂ spec(ÔX,p) a (formal)
approximate manifold to Y at p. M is dependent on our choice of regular parameters
at p. Observe that 1 ≤ τ(q) ≤ 3. If there is a non-singular curve C ⊂ Singe(Y ) such
that p ∈ C, then τ(p) ≤ 2, and there exists an approximate manifold M such that M
contains the germ of C at p.

The following lemma is proven in Lemmas 7.4 and 7.5 of [17].

Lemma 9.1. Suppose that Z ⊂ Singe(Y ) is a nonsingular subvariety of X (a
point or a curve), Φ1 : X1 → X is the blow up of Z, Y1 is the strict transform of Y
on X1, p ∈ Z, Mp is an approximate manifold to Y at p containing the germ of Z at
p, and q ∈ Φ−1

1 (p). Then
1. νq(Y1) ≤ e.
2. νq(Y1) = e implies q is on the strict transform M ′

p of Mp and τ(p) ≤ τ(q).
3. Suppose that νq(Y1) = e and τ(p) = τ(q). Then there exists an approximate

manifold Mq to Y1 at q such that Mq ∩ Φ−1
1 (p) = M ′

p ∩ Φ−1
1 (p) where M ′

p is
the strict transform of Mp on X1.

Definition 9.2. A projective morphism Φ : X1 → X is a permissible blow up
(for Y ) if Φ is the blow up of a nonsingular curve or point which is contained in
Singe(Y ). Φ is a strictly permissible blow up if Φ is a permissible blow up of an
irreducible component of Singe(Y ).

Definition 9.3. Y is prepared if Singe(Y ) is a union of points and nonsingular
curves such that two curves intersect in at most one point, at most two curves of
Singe(Y ) pass through any given point of Y , and if two curves C1, C2 pass through
a point p of Y , then they have normal crossings there (there exist regular parameters
x, y, z in OX,p such that x = z = 0 are local equations of C1 at p and y = z = 0 are
local equations of C2 at p).

The following theorems 9.4 and 9.5 are proven in Theorem 7.7 [17].
By a sequence of permissible blow ups Xm → · · · → X1 → X0 = X , we mean a

sequence of morphisms such that each Φi : Xi → Xi−1 is permissible for Yi−1, where
Yi is the strict transform of Y on Xi.

Theorem 9.4. There exists a sequence of permissible blow ups

Xm → Xm−1 → · · · → X0 = X

such that Ym is prepared. Further, if

Xn → Xn−1 → · · · → Xm

is any sequence of permissible blow ups, then Yn is prepared.

Theorem 9.5. Suppose that Y is prepared. Suppose that

(41) · · · → Xm → Xm−1 → · · · → X0 = X
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is a sequence of permissible blow ups of curves. Then the sequence is finite. In
particular, if (41) is any maximal sequence, then Singe(Ym) is a finite union of points.

Lemma 9.6. Let S be an n-dimensional regular local ring with a regular system
of parameters x1, . . . , xn. Let f(Z) ∈ S[Z] be monic of degree e > 0. Let r ∈ S and
let s = txa1

1 · · ·xan
n where t is a unit in S and a1, . . . , an are nonnegative integers. Let

g(Z) = s−ef(sZ + r). Assume that g(Z) ∈ S[Z] and 0 < ordSg(Z) < e.
Let r′ ∈ S and let s′ = t′xb1

1 · · ·xbn
n where t′ is a unit in S and b1, . . . , bn are

nonnegative integers. Let g′(Z) = s′
−e

f(s′Z + r′), r∗ = r′−r
s′ , ci = ai − bi for

1 ≤ i ≤ n, t∗ = t
t′ and s∗ = t∗xc1

1 · · ·xcn
n , so that g(Z) = s∗−eg′(s∗Z − r∗). Assume

that g′(Z) ∈ S[Z]. Then r∗ ∈ S and ci ≥ 0 for 1 ≤ i ≤ n.

This is proven in (4.10) of [7].

Theorem 9.7 shows that after a sequence of blow ups of points along a valuation,
we reduce to a good point; that is, a point from which a reduction of multiplicity can
be obtained by only blowing up curves.

Theorem 9.7. Suppose that Y is prepared and ν is a 0-dimensional valuation of
k(X). Then there exists a sequence of permissible blow ups

(42) Xm → Xm−1 → · · · → X0 = X

such that the center of ν on Xm is not in Singe(Ym).

Proof. Let

· · · → Xm → Xm−1 → · · · → X0 = X

be the possibly infinite sequence of permissible blow ups obtained by blowing up the
center pn of ν onXn, if pn ∈ Singr(Yn) (the center exists and is uniquely determined by
the valuative crieterion of perperness, and is a closed point since ν is 0-dimensional).
If this sequence is finite then we have constructed the desired sequence (42). Suppose
that the sequence is not finite. Let Ri = OXn,pn

. Then we have an infinite sequence
of quadratic transforms of two dimensional regular local rings

R0 → R1 → · · · → Rn → · · ·

which are dominated by ν. Let f ∈ R0 be such that f = 0 is a local equation
of Y at p. Since k is infinite and by the Weierstrass preparation theorem, there
exist regular parameters x, y, z in R, a unit λ ∈ R̂ and ai ∈ k[[x, y]] such that f =

λ(ze + a1z
e−1 + · · ·+ ae) ∈ k[[x, y, z]] = R̂. Let f(z) = ze + a1z

e−1 + · · ·+ ae. Then
f = 0 is a formal local equation of Y at p. Let S = k[[x, y]]. S[z] is isomorphic to
a polynomial ring S[Z] in a variable Z. We have that f(Z) is reduced in S[Z] since
f is irreducible in R, and R is excellent. By Lemma 9.1, for all i, we have regular
parameters xi+1, yi+1, zi+1 in Ri+1 such that

xi = xi+1, yi = xi+1(yi+1 + αi+1), zi = xi+1(zi+1 + λi+1) with αi+1 ∈ k, λi+1 ∈ k[xi, yi],

or

xi = xi+1yi+1, yi = yi+1, zi = yi+1(zi+1 + λi+1) with λi+1 ∈ k[xi, yi].

Let Si = S0[xi, yi](xi,yi) which is a regular local ring of dimension two.
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Let ν′ be an extension of ν to the quotient field of R̂ which dominates R̂. When
we restrict to the quotient field of K of S, we get a valuation ν. The infinite sequence
of quadratic transformations

S0 → S1 → · · · → Sn → · · ·

is dominated by ν. Since f is reduced, by Theorem 8.1, after possibly making a change
of regular parameters in S, we have that

(43)
There exists n > 0, r ∈ Ŝn and nonnegative integers u and v
such that after setting g(Z) = (xu

ny
v
n)

−ef(xu
ny

v
nZ + r)

we have that g(Z) ∈ Sn[Z] and 0 < ordSn
g(Z) < e.

We have an expression zn = s′z + r′, where s′ = t′xa′

n yb
′

n with t′ ∈ Sn a unit and
r′ ∈ Sn. Set g′(Z) = s′−ef(s′Z + r′). g′(Z) ∈ Sn[Z] and g′(zn) = 0 is a formal local
equation of Yn at pn.

Set r∗ = r′−r
s′ , a = u−a′, b = v−b′ and s∗ = (t′)−1xa

ny
b
n. By Lemma 9.6, we have

that r∗ ∈ Ŝn, a, b ∈ N and g(Z) = s∗−eg′(s∗Z − r∗). Now g′(zn) ∈ M(R̂n)
e implies

g′(Z)−Ze ∈ M(Ŝn)[Z]. Now g′(s∗zn−r∗) = s∗eg(zn) ∈ M(R̂n) implies r∗ ∈ M(R̂n).
Thus r∗ ∈ M(Ŝn). Set z

∗ = zn+r∗. Then xn, yn, z
∗ is a regular system of parameters

in R̂n. Let g
∗(Z) = (t′)−eg(t′Z). Then g∗(Z) ∈ Ŝn[Z] and ordŜn

g∗(Z) = ordŜn
g(Z).

Hence

g∗(Z) = Ze + g1Z
e−1 + · · ·+ ge

where g1, . . . , ge are elements in Ŝn such that ge ∈ M(Ŝn) and gj′ 6∈ M(Ŝn)
j′ for some

j′ with 1 ≤ j′ ≤ e. Let w = g′(zn). Then w = 0 is a formal local equation of Yn at
pn. Also g′(zn) = xae

n yben g∗(x−a
n y−b

n z∗), and hence

(44) w = (z∗)e +

e∑

j=1

gjx
aj
n ybjn (z∗)e−j

with ge ∈ M(Ŝn), and ordŜn
gj′ < j′ for some j′ with 1 ≤ j′ ≤ e. Since pn ∈ Singr(Yn),

we must have that a+ b ≥ 1. Let L be the leading form of w in k[[xn, yn, z
∗]]. Since

ge ∈ M(R̂n), we have that

(45) z∗ divides L.

Without loss of generality, we can assume that a ≥ 1. Let I = xnÔXn,pn
+

z∗ÔXn,pn
. Then w ∈ Ie. Since w = 0 is a formal local equation of Yn at pn (and

OXn,pn
is excellent), there exists a permissible curve C in Xn, with ideal sheaf IC on

Xn such that ÎC,pn
= I. Let Ψn+1 : X̃n+1 → Xn be the blow up of C. Suppose that

there exists a point q ∈ Singe(Ỹn+1) such that Ψn+1(q) = pn. Let T = ÔX̃n+1,q
. Then

by Lemma 9.1 and (45), we have that T has regular parameters x̃, ỹ, z̃ where xn = x̃,
yn = ỹ and z∗ = x̃z̃. Substituting into (44), we obtain a formal local equation of Ỹn+1

of the same form as (44), but with a reduction of a+ b by 1.
Repeating this process, we construct a sequence of blow ups of permissible curves

which terminates with a drop in the multiplicity of the strict transform of Y at the
center of ν after at most a+ b blow ups.
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Corollary 9.8. (Local Uniformization) Suppose that Y ⊂ X is a surface con-
tained in a nonsingular 3-fold X over an algebraically closed field k of characteristic
p > 0 and ν is a valuation of the function field k(X) of X. Then there exists a
sequence of blow ups of points and nonsingular curves

(46) Xm → Xm−1 → · · · → X0 = X

such that if the center p of ν on Xm is on the strict transform Ym of Y , then p is a
nonsingular point of Ym.

Proof. We can (if necessary) compose ν with a 0-dimensional valuation of the
residue field of Vν to obtain a 0-dimensional valuation ν of k(X) (Section 16, Chapter
VI [47] or Section 10 [3]). Then the corollary for ν follows from induction on e from a
local version of Theorems 9.4 and 9.5 and from Theorem 9.7. Since ν is a specialization
of ν, the local ring of the center of ν on Xm is a localization of the local ring of the
center of ν on Xm. Thus the corollary hold for ν on Xm also.

Lemma 9.9. Suppose that Y is prepared and p ∈ Singe(Y ). Suppose that C1, C2

are two curves in Singe(Y ) containing p. Let Φ1 : X1 → X be the blow up of C1 and
let Φ2 : X2 → X1 be the blow up of the strict transform of C2. Suppose that there
exists p2 ∈ Singe(Y2) such that Φ1 ◦Φ2(p2) = p (so that p2 is the unique such point by
Lemma 9.1). Let ν be a 0-dimensional valuation of k(X) whose center on X2 is p2.

Let Ψ1 : X1 → X be the blow up of C2 and let Ψ2 : X2 → X1 be the blow up of
the strict transform of C1. Let q2 be the center of ν on X2.

Then OX2,q2
= OX2,p2 and q2 ∈ Singe(X2)

Proof. There exist regular parameters x, y, z in OX,p such that IC1,p = (x, z)
and IC2,p = (y, z). Let f ∈ OX,p be such that f = 0 is a local equation of Y at p.

f ∈ (x, z)e ∩ (y, z)e so that the leading form of f in ÔX,p = k[[x, y, z]] is a constant
time ze.

Let p1 ∈ Singe(X1) be the point on the strict transform of C2. We have by Lemma
9.1 that OX1,p1 has regular parameters x1, y1, z1 where x = x1, y = y1 and z = x1z1.

Let f1 = f
xe . f1 = 0 is a local equation of Y2 at p1. By Lemma 9.1, the leading form

L1 of f1 has the form L1 = (z1 − αy1)
e times a constant for some α ∈ k.

Thus OX2,p2 has regular parameters x2, y2, z2 where x1 = x2, y1 = y2 and z1 =
y2(z2 + α). Set z = z − αxy. Then x, y, z are regular parameters in OX,p and
x = x2, y = y2, z = x2y2z2. Thus there exists a point q ∈ (Ψ1Ψ2)

−1(p) such that
OX2,q

= OX2,p2 , and thus q = q2 ∈ Singe(Y 2).

The following lemma, which follows from (3.10.6) [7], is proved in a similar way.

Lemma 9.10. Suppose that Y is prepared. Suppose that C is a curve in Singe(Y )
and p ∈ C is a point. Let Φ1 : X1 → X be the blow up of C and Φ2 : X2 → X1 be a
permissible blow up of a point p1 in Φ−1

1 (p). Suppose that p2 ∈ Singe(Y2) is a point
such that Φ2Φ1(p2) = p. Let ν be a 0-dimensional valuation of k(X) whose center on
X2 is p2.

Let Ψ1 : X1 → X be the blow up of p. Then there is a unique curve C in Singe(Y 1)
such that Ψ1(C) = p. Let Ψ2 : X2 → X1 be the blow up of C, and let Ψ3 : X3 → X2

be the blow up of the strict transform of C.
Let q3 be the center of ν on X3. Then OX3,q3

= OX2,p2 , and q3 ∈ Singe(X3).

Lemma 9.11. Suppose that Y is prepared. Let

(47) Xn → Xn−1 → · · · → X1 → X0 = X
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be a sequence of strictly permissible blow ups, such that Φi : Xi → Xi−1 is the blow
up of a curve for i < n and Φn : Xn → Xn−1 is the blow up of a point pn−1.

Let pn ∈ Φ−1
n (pn−1) ∩ Singe(Yn), and let ν be a 0-dimensional valuation of k(X)

whose center on Xn is pn. Suppose that Ψ : Z1 → X is a permissible blow up. Then
there exists a sequence of strictly permissible blow ups

Zm → · · · → Z1

such that if qm is the center of ν on Zm, then OZm,qm = OXn,pn
.

Proof. We may assume that each Φi : Xi → Xi−1 is the blow up of a subvariety
containing the center pi of ν on Xi. The lemma is trivial if p = p0 is not in the
subvariety of X blown up by Ψ, so we will assume that p is in this subvariety. We
prove the lemma by induction on n. Let pi be the center of ν on Xi for i ≤ m, and
let q1 be the center of ν on Z1. If n = 1, we must have that Singe(X) is a finite union
of points. Hence Z1 → X must be the blow up of p, so that Z1

∼= X1.
Suppose that n = 2. Then there is a unique curve C in Singe(X) containing p,

X1 → X is the blow up of this curve and X2 → X1 is the blow up of a point on the
exceptional divisor over C. Thus either Z1 = X1, in which case the conclusions of the
lemma are trivially true, or Z1 → X1 is the blow up of p. In this case, the conclusions
of the lemma follow from Lemma 9.10.

Now assume that n ≥ 3 and the lemma is true for sequences (47) of length n− 1.
Since n > 1, p must lie on a curve C1 in Singe(Y ) such that X1 → X is the blow up
of C1. If Z1 → X is the blow up of C1 then Z = X1. The remaining cases are when
Z → X is a blow up of another curve C2 in Singe(Y ) containing p and when Z → X
is the blow up of p. We will consider these cases separately.

Suppose that Z1 → X is the blow up of another curve C2 in Singe(Y ) containing
p. Let C̃2 be the strict transform of C2 on X1. Since C̃2 is contained in Singe(Y1)
and p1 must be the only point in Ψ−1

1 (p) ∩ Singr(Y1) (by Lemma 9.1), we have that
p1 ∈ C̃2. Let X ′

1 → X1 be the blow up of C̃2, and let q′1 be the center of ν on X ′
1.

By induction on n, there exists a strict permissible sequence X ′
m → · · · → X ′

1 such
that if q′i is the center of ν on X ′

i, then OX′

m,q′m = OXn,pn
. Let C̃1 be the strict

transform of C1 on Z1, and let Z2 → Z1 be the (strictly permissible) blow up of C̃2.
Now by Lemma 9.9, The local ring of the center of ν on Z2 is equal to the local ring
of the center of ν on X ′

1, and thus we may splice the permissible sequences together
to obtain the conclusions of the lemma in this case.

Now suppose that Z1 → X is the blow up p. Let X ′
1 → X1 be the blow up of p1.

By induction on n, there exists a strictly permissible sequence X ′
m → · · · → X ′

1 such
that if q′i is the center of ν on X ′

i, then OX′

m,q′m
= OXn,pn

.
By Lemma 9.10, applied to the permissible sequence X ′

1 → X1 → X , there exists
a permissible sequence Z3 → Z2 → Z1 such that Z3 → Z2 and Z2 → Z1 are strictly
permissible, and if q3 is the center of ν on Z3, then OZ3,q3 = OX′

1,q
′

1
. Now we may

splice the permissible sequences together to obtain the conclusions of the lemma.

Theorem 9.12. (The Theorem of Beppo Levi) Suppose that Y is prepared. Let

(48) · · · → Xn → Xn−1 → · · · → X1 → X0 = X

be any sequence of strictly permissible blow ups. Then the sequence terminates af-
ter a finite number of blow ups. In particular, this algorithm leads to a reduction
Singe(Yn) = ∅ if the sequence has maximal length.
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Proof. Suppose that the sequence (48) has infinite length. Since the center of each
blow up Φi : Xi → Xi−1 in the sequence is an irreducible component of Singe(Yi),
and for each i, Singe(Yi) has only a finite number of irreducible components, there
exists an infinite sequence of points {pi} such that pi ∈ Xi, Φi(pi) = pi−1 for all i and
infinitely many of the Φi are not isomorphisms at pi. We may then replace (48) with
the infinite sequence consisting only of blow ups of points and curves in (48) which
contain pi. We then obtain an infinite sequence

(49) R = R0 → R1 → · · · → Ri → · · ·

of monoidal transforms of 3-dimensional regular local rings Ri = OXi,pi
. Let Ii =

IYi,pi
. We have that Ii is a principal ideal of multiplicity e for all i.

Let D = ∪∞
i=0Ri. D is a (possibly non noetherian) quasi local domain. By

Theorem 5, Section 4, Chapter VI [47], there exists a valuation ν of k(X) such that ν
dominates D, and hence dominates all of the Ri in the sequence (49). After possibly
composing ν with a valuation of the residue field of Vν , we may assume that ν is
0-dimensional (Section 16, Chapter VI [47] or Section 10 [3]).

Suppose that

Xm → · · · → X0 = X

is a sequence of permissible blow ups. Let qi be the center of ν on Xi for 1 ≤ i ≤ m.
We will prove that for all i with 1 ≤ i ≤ m, there exist positive integers σ(i) and

τ(i), and a sequence of strictly permissible blow ups

(50) Zi
τ(i) → · · · → Zi

i+1 → Xi

such that if the center of ν on Zi
τ(i) is q

i
τ(i), then OZ

τ(i),qi
τ(i)

= OXσ(i),pσ(i)
.

We prove this assertion, constructing sequences (50), by induction on m. We first
prove the case m = 1. Since (49) is infinite, there exists by Theorem 9.5, an n1 ≥ 1
such that Xn1 → Xn1−1 is the blow up of the point pn1−1, and Xi → Xi−1 is the
blow up of a curve for i < n1. By Lemma 9.11, we can construct a sequence (50) for
i = 1, with σ(1) = n1.

Now suppose that the assertion is true for m − 1, so that we have constructed
a sequence (50) with i = m − 1. We may thus construct an infinite sequence of
permissible blow ups

(51) · · · → Zm−1
j → Zm−1

τ(m−1)+1 → Zm−1
τ(m−1) → · · · → Zm−1

m → Xm−1

by performing the corresponding blowups of

· · · → Xn → · · · → Xσ(m−1)

above Zm−1
τ(m−1), so that if qm−1

j is the center of ν on Zm−1
j , then

OZm−1
j

,qm−1
j

∼= OXσ(m−1)−τ(m−1)+j ,pσ(m−1)−τ(m−1)+j

for j ≥ τ(m − 1). Now by Theorem 9.5, there exists an n ≥ m − 1 such that
Zm−1
n+1 → Zm−1

n is the blow up of qm−1
n , and Zm−1

i+1 → Zm−1
i is the blow up of a curve

for m− 1 ≤ i < n. By Lemma 9.11, we can construct a sequence (50) for i = m.
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We conclude that the center qm of ν on Xm must be in Singe(Y m). Apply-
ing this result to the sequence (42) of the conclusions of Theorem 9.7, we obtain a
contradiction, as qm 6∈ Singe(Y m).

Corollary 9.13. (Resolution of Surface Singularities) Suppose that Y ⊂ X is
a surface. Then there exists a sequence of blow ups of points and nonsingular curves,
contained in the singular locus of the strict transform of Y ,

(52) Xn → Xn−1 → · · · → X1 → X0 = X

such that the strict transform Yn of Y on Xn is nonsingular.

Our proof of Theorem 9.12 extends without difficulty to the case where Y is a
reduced, but not necessarily integral, surface. The analysis in Sections 5 - 8 and 11
of [18] reduces the proof of the following theorems to the Theorem of Beppo Levi
for reduced surfaces. This part of the proof involves no essential differences between
characteristic zero and characteristic p > 0. in Sections 9 and 10 of [18], we use
Hironaka’s resolution algorithm to prove the Theorem of Beppo Levi for reduced
surfaces.

Theorem 9.14. (Embedded Resolution of Surface Singularities) Suppose that X
is a nonsingular 3-dimensional variety over an algebraically closed field k of char-
acteristic p > 0, Y is a reduced surface in X (a pure 2-dimensional reduced closed
subscheme) and E is a simple normal crossings divisor on X. Then there exists a
sequence of morphisms

π : Xn → Xn−1 → · · · → X1 → X

such that the strict transform Yn of Y on Xn is nonsingular, and the divisor π∗(Y +E)
is a simple normal crossings divisor on Xn. Further, each Xi → Xi−1 is the blow up
of a point or nonsingular curve in the locus in Xi−1 where the preimage of Y + E is
not a simple normal crossings divisor.

Theorem 9.15. (Principalization of Ideals) Suppose that X is a nonsingular
3-dimensional variety over an algebraically closed field k of characteristic p > 0. Sup-
pose that I is a nonzero ideal sheaf on X. Then there exists a sequence of morphisms

Xn → Xn−1 → · · · → X1 → X

such that IOXn
is invertible. Further, each Xi → Xi−1 is the blow up of a point or

nonsingular curve in the locus in Xi−1 where IOXi−1 is not invertible.
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