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SOME NATURAL PROPERTIES OF CONSTRUCTIVE
RESOLUTION OF SINGULARITIES ∗

ANGÉLICA BENITO† , SANTIAGO ENCINAS‡ , AND ORLANDO E. VILLAMAYOR U.§

To Professor H. Hironaka on his 80th birthday

Abstract. These expository notes, addressed to non-experts, are intended to present some of
Hironaka’s ideas on his theorem of resolution of singularities. We focus particularly on those aspects
which have played a central role in the constructive proof of this theorem.

In fact, algorithmic proofs of the theorem of resolution grow, to a large extend, from the so
called Hironaka’s fundamental invariant. Here we underline the influence of this invariant in the
proofs of the natural properties of constructive resolution, such as: equivariance, compatibility with
open restrictions, with pull-backs by smooth morphisms, with changes of the base field, independence
of the embedding, etc.
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1. Introduction.

1.1. Hironaka’s fundamental theorem in [26] proves resolution of singularities in
characteristic zero.

Theorem 1.2 (Hironaka). If X is a variety over a field of characteristic zero,
there is a proper and birational morphism

(1.2.1) X
π
←− X ′

such that:
i) π is an isomorphism over the open set U = Reg(X) of regular points.
ii) X ′ is smooth.
iii) π−1(Sing(X)) is a union of smooth hypersurfaces in X ′ having only normal

crossings.

A morphism X
π
←− X ′, as above, is called a resolution of singularities of X . He

also shows that this morphism can be constructed as a composition, say

(1.2.2) X0 = X X1

πY1
oo . . .

πY2
oo Xr = X ′

πYr
oo

where each πYi
is the blow-up along a smooth center Yi(⊂ Xi).

There can be many resolutions of X , and the proof in [26] shows that a resolution
always exists. Constructive proofs of Hironaka’s theorem go one step beyond. They
provide, for each singular reduced scheme X , a specific resolution, called the construc-
tive resolution of X . In other words, they give a procedure to resolve singularities
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in such a way that it has very natural properties. Suppose now that (1.2.2) is the
resolution of X provided by this procedure, it has the property:

1. Compatibility with smooth morphisms : A smooth morphism X̃
σ
−→ X pro-

vides, by taking successive pull-backs, a sequence

(1.2.3) X̃ X̃1

π
Ỹ1

oo . . .
π
Ỹ2

oo X̃r

π
Ỹr

oo ;

and the property is that (1.2.3) is the constructive resolution of X̃ .
2. Lifting of group action: If a group acts on X it also acts on the resolved

scheme Xr.
3. Compatibility with change of the base field (Similar to (1)).

We shall later formulate the theorem of embedded resolution, say of X embedded in a
smooth scheme W , and another property of constructive resolution is that it can be
easily adapted so that the resolution X is independent of the embedding in W . These
matters will be discussed along this paper.

1.3. Essential to the argument used in Hironaka’s proof is a reduction of the
problem of resolution of singularities. A new problem is formulated, in terms of the
data (W, (J, b)), where W is a smooth scheme over a field k, J a non-zero sheaf of
ideals, and b a positive integer. This new problem is stated as a resolution of (W, (J, b))
as we describe below. These data define a closed subset in W

Sing(J, b) = {x ∈ W | νx(J) ≥ b},

where νx(J) denotes the order of J at the point x. If Y is a smooth irreducible

subscheme included in Sing(J, b), and if W
πY←− W1 is the blow-up along Y , then

there is a factorization

JOW1 = I(H)bJ1,

where H ⊂ W1 denotes the exceptional hypersurface. The pair (J1, b) is said to be
the transform of (J, b). We will consider J1 together with the factorization

J1 = I(H)cJ1,

where c = νy(J)− b and y is the generic point of Y .
Similarly, given an iteration of transformations, say

(1.3.1) (J, b) (J1, b) (Jr, b)

W W1

πY1
oo . . .

πY2
oo Wr

πYr
oo

the transform Jr is endowed with a factorization of the form Jr =
I(H1)

c1 . . . I(Hr)
crJr, where each Hi is the exceptional hypersurface introduced by

the blow-up Wi−1

πYi←−Wi.
We will always assume that such a sequence is constructed in such a way that the

strict transforms of the r exceptional hypersurfaces, say {H1, . . . , Hr}, have normal
crossings in Wr .

Hironaka’s reformulation (the reduction) of the problem of resolution can be
stated as follows:
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Problem. Given (W, (J, b)), construct a sequence (1.3.1) in such a way that
Sing(Jr, b) = ∅.

We will explain in Section 2, starting in 2.7, why the solution of this problem
leads to resolution of singularities.

Given a sequence of transformations (1.3.1), Hironaka defines, for all index i, the
functions:

ordi : Sing(Ji, b) −→ Q, ordi(x) =
νx(Ji)

b
.

These are called Hironaka’s functions, and they paved the way to constructive proofs
of resolution of singularities. A by-product of Hironaka’s functions, which makes use
of the factorization Ji = I(H1)

c1 . . . I(Hi)
ciJ i, are the functions

w-ordi : Sing(Ji, b) −→ Q, w-ordi(x) =
νx(J i)

b
.

All these functions take only finitely many values. Denote by maxw-ordi the maxi-
mum value achieved by w-ordi. If (1.3.1) is constructed with the extra condition that
Yi ⊂ Maxw-ordi, where

Maxw-ordi = {x ∈Wi | w-ordi(x) = maxw-ordi},

then it can be shown that

(1.3.2) maxw-ord0 ≥ maxw-ord1 ≥ · · · ≥ maxw-ordr .

Note that maxw-ordr = 0 if and only if Jr = OWr
and Jr = I(H1)

c1 . . . I(Hr)
cr . If

this happens, then it is easy to extend the sequence (1.3.1) to a resolution.

In the constructive resolution treated here, we view W as a smooth subscheme of
a smooth scheme N . We also consider a set F of smooth hypersurfaces in N having
only normal crossings.

The sequence (1.3.1) gives rise to a sequence

(1.3.3) N N1

πY1
oo . . .

πY2
oo Nr

πYr
oo

(same blow-ups) together with closed immersions Wi ⊂ Ni (for any index i), where
each Wi is identified with the strict transform of Wi−1. A main problem in construc-
tive resolution can be formulated as follows:

Main Problem. Fix:
• (W, (J, b)), as above.
• A smooth scheme N and F = {H ′

1, . . . , H
′
s} a set of smooth hypersurfaces in

N with only normal crossings.
• A closed embedding W ⊂ N .

The problem is to construct a sequence (1.3.1), with centers Yi, so that:
1. Sing(Jr, b) = ∅, and
2. the sequence (1.3.3) of r blow-ups over the smooth scheme N , induced by

the sequence (1.3.1), is such that the strict transform of hypersurfaces in F
together with the r exceptional hypersurfaces introduced (all together) have
normal crossings in Nr.
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Note here that there is an added difficulty over the previous Problem. The task
is to construct a sequence (1.3.1), which fulfills the property (1.3.2) and leads to
Sing(Jr, b) = ∅ , with an additional constraint on each center Yi. For instance the first
center Y1, included in W1(⊂ N1), should have normal crossings with the hypersurfaces
in F , and there is no information on how hypersurfaces of F intersect the closed
subscheme W .

For each index i, let Fi be the set of hypersurfaces with normal crossings in
Ni, which consists of the strict transform of hypersurfaces in F , together with the i
exceptional hypersurfaces introduced.

This main problem can be solved by giving a canonical choice of centers Yi. The
key for this will be our two coordinate functions:

(w-ord
(d)
i , n

(d)
i ) : Sing(Ji, b) −→ Q× Z,

where d = dimW , called the inductive functions. Essentially, it is through these
function, and induction on d, that we can define a string of invariants which indicates
how to choose each Yi.

Here each w-ord
(d)
i is the function previously defined, and n

(d)
i is defined by count-

ing the hypersurfaces of a certain subset of Fi, say F−
i . This set F−

i is entirely defined

in terms of the inequalities (1.3.2). Hence, the function n
(d)
i is also a by-product of

Hironaka’s functions.
We follow here, with some variations, the scheme and notation in [38] and [39],

particularly on the latter where some of the natural properties of constructive resolu-
tion are addressed. The goal of this presentation is to explain Hironaka’s approach in
[27]. So we put here special emphasis on Hironaka’s reformulation (reduction) of the
resolution problem, and why this led to the proofs of the natural properties of con-
structive resolution mentioned before. We refer to [7] (see also [20]) for the relation
of this development with more recent work on the subject, and for some technical
aspects of the algorithm.

We thank the referee for here/his many useful suggestions, which have helped us
to improve the presentation of this paper.

2. First definitions and formulation of the Main Theorems.

2.1. Recall that Constructive Resolution is a procedure that indicates, given a
singular reduced scheme X , how to choose the centers Yi to construct a resolution of
singularities as in (1.2.2). We can think of it as an algorithm in which, at each step,
the input are the equations defining X , and the output are the equations defining the
center Y ; and the same for each index 1 ≤ i ≤ r. But if we think of equations defining
X , it is natural to embed the scheme in a smooth scheme, say X ⊂ W . This can be
done locally, as we shall always consider here X to be a scheme of finite type (see [10]
for an implementation).

2.2. Let us fix some notation needed for the formulation of the theorem of
embedded resolution. A pair (W0, E0) denotes here a smooth scheme W0, and a set
E0 = {H1, . . . , Hs} of hypersufaces with normal crossings in W0. The sequence

(2.2.1) (W0, E0) (W1, E1)
πY1

oo . . .
πY2

oo (Wr, Er)
πYr

oo

denotes a composition of blow-ups, where each center Yj ⊂Wj is closed, smooth, and
has normal crossings with Ej . If Hs+j+1 ⊂ Wj+1 denotes the exceptional hypersur-

face of Wj

πYj+1
←− Wj+1, then Ej+1 is defined as the union of the strict transform of
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hypersurfaces in Ej , together with Hs+j+1. Centers Yj which have normal crossings
with Ej are said to be permissible for (Wj , Ej).

Theorem 2.3 (Embedded Resolution of Singularities). Given a smooth scheme
W0 over a field k of characteristic zero, and X0, a closed and reduced subscheme of
W0, there is a sequence of blow-ups as in (2.2.1), say

(2.3.1) X0 X1 Xr

(W0, E0) (W1, E1)
πY1

oo . . .
πY2

oo (Wr, Er)
πYr

oo

where each Xi denotes the strict transform of Xi−1, and so that:
(i) The hypersurfaces of Er have normal crossings in Wr.
(ii) W0 \ [Sing(X0) ∪

⋃
Hi∈E0

Hi] = Wr \
⋃

Hi∈Er
Hi.

(iii) Xr is smooth and has normal crossings with
⋃

Hi∈Er
Hi.

So if E0 = ∅, the morphism X0
π
←− Xr, induced by (2.3.1), is a resolution of

singularities as in 1.2.

2.4. On constructive resolution. Fix a topological space X , and a totally
ordered set (T,≥). In this work an upper semi-continuous function g : X → T is a
function with the following properties:

(i) g takes only finitely many values, and
(ii) for any α ∈ T the set {x ∈ X | g(x) ≥ α} is closed in X .

The largest value achieved by g will be denoted by max g. And Max g will denote the
set of points in X where g takes its highest value (max g). So Max g is closed in X .

In Theorem 2.3, X0 is a reduced closed subscheme in a smooth scheme W0.
Constructive resolution also applies in this context. It makes use of a specific totally
ordered set (T,≥). Fix a closed immersion, sayX0 ⊂W0, and (W0, E0) as before, then
either X0 is smooth and has normal crossings with E0, or an upper semi-continuous
function f0 : X0 −→ T is defined. It has the property that if Y0 = Max f0 (the set of
points where the function takes its maximum value), then Y0 is smooth, has normal
crossings with E0, and the blow-up along Y0 provides a diagram, say:

(2.4.1) X0 X1

(W0, E0) (W1, E1)
πY0

oo

where X1 ⊂ W1 is the strict transform of X0. Again, either X1 is smooth and has
normal crossings with E1 or f1 : X1 −→ T is defined.

In this latter case, the function is such that Y1 = Max f1 is smooth, and has
normal crossing with E1. The blow-up along Y1 provides

(2.4.2) X0 X1 X2

(W0, E0) (W1, E1)
πY0

oo (W2, E2)
πY1

oo

Assume inductively that for a given index s, a sequence
(2.4.3)

X0 X1 X2 Xs

(W0, E0) (W1, E1)
πY0

oo (W2, E2)
πY1

oo . . .
πY2

oo (Ws, Es)
πYs−1

oo

is constructed by setting Yi in terms of the function fi : Xi −→ T , 0 ≤ i ≤ s − 1.
Then, either Xs is smooth and has normal crossings with Es (the sequence is an
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embedded resolution), or a function fs : Xs −→ T is defined with the property that
Ys = Max fs is smooth, and has normal crossings with Es.

Note here that we take as initial data: X0 ⊂W0, (W0, E0), and that the functions
with values on T enables us to construct a sequence (2.4.3). The point is that for some
index r the sequence
(2.4.4)

X0 X1 X2 Xr

(W0, E0) (W1, E1)
πY0

oo (W2, E2)
πY1

oo . . .
πY2

oo (Wr, Er)
πYr−1

oo

is such that Xr is smooth and has normal crossings with the hypersurfaces in Er.
Moreover, all centers Yi will be included in Sing(Xi)

⋃
(∪Hi), which ensures that this

is an embedded resolution.
It is essential to point out that the set T is universal, namely for any X0 ⊂ W0,

(W0, E0), the functions fi, which provide the embedded resolution (2.4.4), take values
on the same T . We shall indicate later how T and the functions fi are defined. Here
(2.4.4) is said to be the Constructive Resolution of the data X0 ⊂W0, (W0, E0). It is
constructed by the upper semi-continuous functions:

(2.4.5) f0 : X0 −→ T, f1 : X1 −→ T, . . . fr−1 : Xr−1 −→ T,

and these functions depend also on E0 (and on each Ei). Note that (2.4.4) is deter-
mined by the centers Yi, and Yi = Max fi(⊂ Xi). So (2.4.4) can be reconstructed
from (2.4.5).

Neglecting the ambient spaces Wi, 0 ≤ i ≤ r in (2.4.4) we get

(2.4.6) X0 X1

πY1
oo . . .

πY2
oo Xr,

πYr
oo

which is also determined by the functions in (2.4.5), as Yi = Max fi, and fi is a
function on Xi.

Note that if E0 = ∅ then the latter fulfills the three conditions in Theorem 1.2. In
other words if the initial data is X0 ⊂W0, (W0, E0 = ∅), then the functions in (2.4.5)
(which depend on E0), provide a resolution of singularities of X0. We say that the
embedded resolution of X0 ⊂W0 defines a non-embedded resolution of X0.

A property of the algorithm is that it can be defined so that the non-embedded
resolution is independent of the embedding in W0. In fact it suffices that X0 be only
locally embedded, and the induced non-embedded resolutions is well defined: Suppose
that X0 is embedded in another smooth scheme, say X0 ⊂W ′

0, and we take as initial
data X0 ⊂W ′

0, (W
′
0, E

′
0 = ∅). A property of this procedure will be that, in this case,

we get the same data (2.4.5) (the same schemes Xi, and the same functions fi). In
particular, when the input datum is simply X0, we get the same resolution (2.4.6).
In this way constructive resolution leads to the resolution of abstract varieties.

2.5. A property of constructive resolution. Take X0 ⊂W0, (W0, E0), and
let (2.4.4) be the sequence obtained by the constructive resolution. Let σ0 : V0 −→W0

be a smooth morphism. For each index i, 0 ≤ i ≤ r, consider the sequence of blow-ups

(2.5.1) W0 W1

πY1
oo . . .

πY2
oo Wi,

πYi
oo

By taking fiber products of σ0 with this sequence one obtains smooth schemes Vi and
smooth morphisms, say σi : Vi −→Wi. Now set X ′

i = σ−1
i (Xi), and let E′

i be defined
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by taking pull-backs of the hypersurfaces in Ei. Define also

f ′
i : X

′
i −→ T

by setting f ′
i(x) = fi(σi(x)), for each fi in (2.4.5).

In this way, if we fix X0 ⊂W0, (W0, E0), and a smooth morphism σ0 : V0 −→W0,
the constructive resolution (2.4.4) gives rise to a sequence

(2.5.2) X ′
0 X ′

1 X ′
r

(V0, E
′
0) (V1, E

′
1)

π
σ
−1
0 (Y0)

oo . . .
π
σ
−1
1 (Y1)

oo (Vr, E
′
r)

π
σ
−1
r−1

(Yr−1)

oo

and to functions:

(2.5.3) f ′
0 : X ′

0 −→ T, f ′
1 : X ′

1 −→ T, . . . , f ′
r−1 : X

′
r−1 −→ T.

With the setting as above, the data in (2.5.3), and hence (2.5.2), will coincide with
those obtained from the constructive resolution when the input data are X ′

0 ⊂ V0,
(V0, E

′
0). Namely, the functions f ′

i : X ′
i −→ T coincide with the functions defining

the constructive resolution.
We express this property by saying that the constructive resolution is compatible

with pull-backs obtained by smooth morphisms. This will encompass restrictions to
open sets, and also to étale neighborhoods. This last property is useful when ap-
plying arguments which require étale topology. Further properties of constructive
resolution, such as equivariance (by group actions on X), compatibility with change
of the base fields (at least for finite field extensions), and others, grow from this naive
compatibility.

A similar property will hold for the non-embedded case, or say for the constructive
resolution of an abstract variety. Let (2.4.6) be the resolution obtained when the input
datum is X0, and let σ0 : X ′

0 −→ X0 be a smooth morphism. By taking fiber products
with (2.4.6) we get

(2.5.4) X ′
0 X ′

1

πY ′

1
oo . . .

πY ′

2
oo X ′

r = X ′
πY ′

r
oo

(Y ′
i = σ−1

i (Yi)), and smooth morphisms σi : X
′
i −→ Xi, and also functions, say

f ′
0 : X ′

0 −→ T, f ′
1 : X ′

1 −→ T, . . . , f ′
r−1 : X

′
r−1 −→ T,

(f ′
i(x) = fi(σi(x))). The property is that this is the constructive resolution of X ′

0.
In other words, the functions f ′

i : X ′
i −→ T are those defined by the constructive

resolution when the input datum is X ′
0.

Closely related to resolution of singularities is Hironaka’s principalization theo-
rem. Also known as Log-principalization of Ideals.

Theorem 2.6 (Principalization of ideals). Let W0 be a smooth scheme over a
field k of characteristic zero. Given J ⊂ OW0 , a non-zero sheaf of ideals, there is a
sequence of blow-ups along closed smooth centers, say (2.2.1), such that:

(i) The morphism W0 ←−Wr is an isomorphism over W0 \ V (J).
(ii) The sheaf JOWr

is invertible and supported on a divisor with normal cross-
ings, i.e.,

(2.6.1) L = JOWr
= I(H1)

c1 · · · · · I(Hs)
cs ,

where E′ = {H1, H2, · · · , Hs} are regular hypersurfaces with only normal
crossings.
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Here some hypersurfaces in E′ might not be components of the exceptional locus
of W0 ←−Wr.

2.7. A first reformulation of the problem. There is a reformulation of the
resolution problems. It applies to Theorem of Embedded Resolution of Singularities
(and consequently to Theorem of Non-Embedded Resolution of Singularities ), and
also to Theorem of Principalization of ideals. The rest of this Section 2 is devoted to
the discussion of this reformulation, which appears already in [26].

Recall that the input data in constructive (embedded) resolution are of the form
X ⊂ W , (W,E), and that the outcome is a resolution (2.4.4). Each step is obtained
by blowing up along a smooth scheme:

(2.7.1) X0 X1

(W0, E0) (W1, E1)
πY0

oo

Here X1 is the strict transform of X0, and one can view each Xi as a closed subset
of Wi (i = 0, 1). Hironaka points out that there is another context in which the
data undergo a very similar law of transformation: Fix (W0, E0) as before, a coherent
non-zero sheaf of ideals J0 in OW0 , and an integer b > 0. We say that the 2-tuple
(J0, b) is a pair, and that B0 = (W0, (J0, b), E0) is a basic object.

Let νx(J0) denote the order of (J0)x at OW0,x. Define the singular locus of (J, b)
as:

Sing(J0, b) = {x ∈W0 | νx(J0) ≥ b}

which is a closed subset in W0.
Let Y0 be a closed smooth subscheme included in Sing(J0, b) (Y0 ⊂ Sing(J0, b)),

and assume that it has normal crossings with the hypersurfaces in E0. Let W0

πY0←−W1

denote the blow-up along Y0, and let H1 be the exceptional hypersurface. There is a
factorization

J0OW1 = I(H1)
bJ1

for some sheaf of ideals J1 in W1. Define now (J1, b) as the transform of (J0, b) in
W1; and set

(2.7.2) (J0, b) (J1, b)

(W0, E0) (W1, E1)
πY0

oo

We also say that B1 = (W1, (J1, b), E1) is the transform of B0. Note that the data are
B0 = (W0, (J0, b), E0), and that the transformation is defined when the center Y0 is
included in Sing(J0, b) and has normal crossings with E0. So, we always require this
condition Y0 ⊂ Sing(J0, b), and if not, the transformation is not defined.

Given B0 = (W0, (J0, b), E0), we say that

(2.7.3) (J0, b) (J1, b) (Jr, b)

(W0, E0) (W1, E1)
πY0

oo · · ·
πY1
oo (Wr, Er)

πYr−1
oo

is a resolution of the basic object B0 if Sing(Jr, b) = ∅.
We introduce now the notion of the pull-back of a basic objects by a smooth

morphism. This might seem artificial at first sight as the resolution problem involves
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only blow-ups, which are birational, whereas a smooth morphism might not be bi-
rational. Special attention will be drawn here to the compatibility of constructive
resolution with the pull backs by smooth morphisms(see 2.5), and the importance of
this property will show up along the exposition.

Fix a basic object B = (W, (J, b), E) and a smooth morphism σ : W ′ −→ W .
Define B′ = (W ′, (J ′, b), E′) where J ′ = JOW ′ , and E′ the set of pull-backs of hyper-
surfaces in E. Note that Sing(J ′, b) = σ−1(Sing(J, b)). Here B′ is called the pull-back
of B by σ : W ′ −→W , and it is denoted by

(2.7.4) (J, b) (J ′, b)

(W,E) (W ′, E′)oo

To avoid confusion it will be explicitly indicated when this notation applies to the
pull-backs of basic objects, and when to the transformations obtained by a blow-up.

2.8. Constructive resolution also applies to basic objects. It constructs a reso-
lution of a basic object by means of suitably defined upper semi-continuous functions
gi with values on a fixed totally ordered set T . More precisely, given the input data
B0 = (W0, (J0, b), E0), it provides a specific resolution sequence as (2.7.3), defined by
upper semi-continuous functions:
(2.8.1)
g0 : Sing(J0, b) −→ T, g1 : Sing(J1, b) −→ T, . . . , gr−1 : Sing(Jr−1, b) −→ T,

where

(2.8.2)
(J0, b) (J1, b)

(W0, E0)
πY0←− (W1, E1)

is defined by setting Y0 = Max g0, the set of points where g0 : Sing(J0, b) −→ T takes
its maximum value. Then set

(2.8.3)
(J1, b) (J2, b)

(W1, E1)
πY1←− (W2, E2)

where Y1 is defined as above by g1 : Sing(J1, b) −→ T , and so on. And it has the
property that for some r it provides a resolution. Namely, Sing(Jr, b) = ∅.

A smooth morphism σ0 : W ′
0 −→ W0 defines, say B′

0 = (W ′
0, (J

′
0, b), E

′
0), by

taking pull-backs, and Sing(J ′
0, b) = σ−1

0 (Sing(J0, b)). Moreover, by taking successive
pull-backs, (2.7.3) defines

(2.8.4) (J ′
0, b) (J ′

1, b) (J ′
r, b)

(W ′
0, E

′
0) (W ′

1, E
′
1)

πY ′

0
oo · · ·

πY ′

1
oo (W ′

r, E
′
r),

πY ′

r−1
oo

together with smooth morphisms σi : W
′
i −→Wi, and functions:

(2.8.5)
g′0 : Sing(J ′

0, b) −→ T, g′1 : Sing(J ′
1, b) −→ T, . . . , g′r−1 : Sing(J

′
r−1, b) −→ T,

by setting g′i(x) = gi(σi(x)).
This constructive procedure that leads to the resolution of basic objects, also has

the property of compatibility with pull-backs, as discussed in 2.5. In fact, this last
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compatibility will lead us to the compatibility of constructive resolution with smooth
morphism in 2.5.

2.9. Why do we consider basic objects? Hironaka points out that the
problem of resolution of basic objects appears as a common ancestor of the theorem
of embedded resolution and that of Log-principalization.

As for the latter, it is simple to check that a resolution of a basic object of the
form B0 = (W0, (J, 1), E0) (with b = 1) defines a Log principalization of J .

Let us focus here on the relation with resolution of singularities. Unfortunately it
is not possible to attach to X0 ⊂W0, (W0, E0), a basic object B0 = (W0, (J0, b), E0),
with the condition that Sing(J0, b) = Sing(X0), and that this equality be preserved by
transformations. When applying a blow-up as in (2.7.1), the law of transformations
relating the ideal of definition of X0, say I(X0) ⊂ OW0 , with that of I(X1) ⊂ OW1 is
called the strict transform of ideals. A law which is quite involved, whereas the law
of transformation of basic objects in 2.7 is very simple.

So the relation of resolution of basic objects with that of resolution of singularities
requires some clarification. This leads us to the so called Hilbert Samuel function and
the Hilbert Samuel stratification.

Fix x ∈ X , and define h : N −→ N, where h(k) = l(OX,x/m
k
x) (length of the

artinian ring). The graph is an element in NN, say h again. OrderNN lexicographically,
and define the function

HSX : X −→ NN, HSX(x) = h.

This function is upper semi-continuous along the closed spectrum ofX (the subset
of closed points of X), and can be easily extended (uniquely) to an upper semi-
continuous function on X . Let h = maxHSX denote the maximum value achieved
by the function, and let X(h) ⊂ X be the set of points where such value is achieved.
A closed point x is in X(h) if and only if HSX(x) = h.

In general X(h) is not smooth. A Theorem of Bennett (see [3]) states that if
Y ⊂ X(h) is a closed and smooth subscheme, and if X ′ is as in (2.7.1) (the strict
transform of X), then

(2.9.1) HSX(π(x)) ≥ HSX′(x)

for any x ∈ X ′. This is known as Bennett’s inequality. It ensures, in particular, that

(2.9.2) h = maxHSX ≥ maxHSX′ .

Now set X ′(h) as the points in X ′ where the function HSX′ takes value h. If
h = maxHSX > maxHSX′ then X ′(h) = ∅. But if h = maxHSX′ , then X ′(h) is
not empty and it makes sense to define

(2.9.3)
X X ′ X ′′

W
πY←− W ′ πY ′

←− W ′′

by taking Y ′ ⊂ X ′(h) as before. In this case h = maxHSX = maxHSX′ ≥
maxHSX′′ .

Define now X ′′(h) as before, thus it is empty if and only if h > maxHSX′′ . The
following result of Hironaka shows that basic objects relate to this setting, in which
we start with a closed immersion X ⊂ W , and consider h = maxHSX . The next
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theorem assigns to these data a basic object, and one should draw attention to the
fact that this assignment is only local.

Theorem 2.10 (Hironaka). (First version) Fix X ⊂ W and (W,E), and set
h = maxHSX . After replacing X ⊂W and (W,E) by restriction to an étale cover of
W , we may assume that there is a basic object B = (W, (J, b), E), so that

1. Sing(J, b) = X(h).
2. Set X0 = X, W0 = W , E0 = E, J0 = J . For any sequence of transformations

(2.10.1)
X0 X1 X2 Xr

(W0, E0)
πY0←− (W1, E1)

πY1←− (W2, E2) · · ·
πYr−1
←− (Wr , Er)

constructed with centers Yi ⊂ Xi(h), there is a sequence of transformations
of basic objects, obtained with the same centers, say
(2.10.2)

(J0, b) (J1, b) (J2, b) (Jr, b)

(W0, E0)
πY0←− (W1, E1)

πY1←− (W2, E2) · · ·
πYr−1
←− (Wr , Er)

and

Sing(Ji, b) = Xi(h)

for all index 0 ≤ i ≤ r. Moreover, any sequence (2.10.2) induces a sequence
(2.10.1), and the previous equalities hold.

The theorem says that if HSXi
is the Hilbert Samuel function of Xi, then

Sing(Ji, b) is the closed set of points x where HSXi
(x) = h. It also says that

h = maxHSX > maxHSXr

if and only if (2.10.2) is a resolution of the basic object.
In particular, if (2.10.2) is a resolution of the basic object, then

h = maxHSX = maxHSX1 = · · · = maxHSXr−1 > maxHSXr
.

Note here that the Theorem says that after restriction to a cover there are basic
objects attached to the highest value h. Theorem 2.10 guarantees the existence of
a basic object satisfying the properties as described there. However, there may be
many such basic objects, and a priori we don’t know if the resolutions of these basic
objects, only locally defined over an étale cover, would patch to provide the global
resolution. Still, we state the following optimism that such a patching can be done.

Claim 2.11 (Optimistic). If we know how to construct resolutions of the basic
objects attached to the highest value h by this Theorem, then a sequence of blow-
ups at closed smooth centers over X ⊂ W , (W,E), can be constructed so that the
maximum value of the Hilbert Samuel function, say h, drops.

Before we carry on with the discussion and justification of the claim, let us indicate
that there is another Theorem of Hironaka which says that, in order to prove resolution
of singularities of X , it suffices to prove that given X ⊂ W , (W,E), a sequences of
transformation as above can be constructed so that h = maxHSX > maxHSXr

(see
Chapter 8 in [20]). Namely, this procedure will not go for ever, and if X is a reduced
variety, then this procedure applied finitely many times, will lead to say Xr′ regular.
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In other words, this last Theorem together with Theorem 2.10 says that resolution
of singularities can be achieved if we know how to obtain resolution of basic objects
in some clever way (so that the claim holds).

Theorem 2.10 says that givenX ⊂W , (W,E), and setting h = maxHSX , one can
attach to this value a basic object after restriction to a cover of W . Let us emphasize
that this provides local solutions to the problem of resolution of singularities over the
open subsets of a cover, and that the remaining issue is to figure out how to patch
these local solutions to provide a global solution.

2.12. On weak equivalence and a closer view of our Optimistic Claim.
Fix X ⊂ W , (W,E) and a smooth morphism σ : W ′ −→ W , then new data, say
X ′ ⊂ W ′, (W ′, E′), are obtained by taking pull-backs. If σ : W ′ −→ W is an open
immersion what we get is the usual restriction. Of course the formulation of reso-
lution of singularities involves only blow-ups along smooth centers, and not smooth
morphisms. Pull-backs by smooth morphisms are to be thought of as auxiliary maps,
and they will be essential in the proof of the previous claim.

Definition 2.13. Given a basic object B0 = (W0, (J0, b), E0), define a local
sequence as

(2.13.1)
(J0, b) (J1, b) (J2, b) (Jr, b)

(W0, E0) ←− (W1, E1) ←− (W2, E2) · · · ←− (Wr, Er)

where each

(2.13.2)
(Ji, b) (Ji+1, b)

(Wi, Ei) ←− (Wi+1, Ei+1)

is either:
A) a blow-up with center Yi ⊂ Sing(Ji, b) as in (2.7.4), say

(2.13.3)
(Ji, b) (Ji+1, b)

(Wi, Ei)
πYi←− (Wi+1, Ei+1)

B) or obtained by a smooth morphism σi : Wi+1 −→ Wi, and setting (Ji+1, b)
and (Wi+1, Ei+1) by pull-backs.

A basic object B0 = (W0, (J0, b), E0) defines a closed set Sing(J0, b) in W0. More-
over, for any local sequence as above it defines the closed set Sing(Ji, b) in Wi,
0 ≤ i ≤ r. There can be many local sequences defined for B0. So there are many
closed sets defined in different smooth schemes, starting with B0 and considering all
possible local sequences (2.13.1).

Now we introduce an equivalence among basic objects, so that two basic objects
are equivalent if and only if they define the same family of closed sets:

Definition 2.14. Let B0 = (W0, (J0, b), E0), and B′
0 = (W0, (K0, d), E0) be two

basic objects (same (W0, E0)). They are said to be weakly equivalent if every local
sequence of B0, say

(2.14.1)
(J0, b) (J1, b) (Jr, b)

(W0, E0) ←− (W1, E1) ←− · · · ←− (Wr , Er)

defines a local sequence of B′
0, say

(2.14.2)
(K0, d) (K1, d) (K2, d) (Kr, d)
(W0, E0) ←− (W1, E1) ←− (W2, E2) · · · ←− (Wr, Er)
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and Sing(Ji, b) = Sing(Ki, d) 0 ≤ i ≤ r. And conversely, any local sequence of B′
0

defines a local sequence of B0 and both define the same closed sets.

Intuitively we think of a basic object as an tool to define closed sets. In fact
B0 = (W0, (J0, b), E0) defines a closed set in W0, namely Sing(J0, b), it also defines
closed sets by taking pull-backs by smooth morphisms and also by taking trans-
forms as defined in (2.13.3). So two basic objects B0 = (W0, (J0, b), E0), and B′

0 =
(W0, (K0, d), E0) are weakly equivalent when they define the same closed sets. As a
first example one can check that B0 = (W0, (J0, b), E0) and B′

0 = (W0, (J
2
0 , 2b), E0)

are equivalent. This abstract notion of equivalence will find now its justification as
we formulate below the link of Hilbert Samuel stratification with basic objects in
Theorem 2.18.

Let us first extend the notion of local sequence for data of the form X ⊂ W ,
(W,E).

Definition 2.15. Given X ⊂ W , (W,E), set X0 = X , W0 = W , E0 = E, and
define a local sequence as

(2.15.1)
X0 X1 Xr

(W0, E0) ←− (W1, E1) ←− · · · ←− (Wr , Er)

where each

(2.15.2)
Xi Xi+1

(Wi, Ei) ←− (Wi+1, Ei+1)

is either:
A) A blow-up with center Yi having normal crossings with Ei and included in

Xi as in (2.4.1), say

(2.15.3)
Xi Xi+1

(Wi, Ei)
πYi←− (Wi+1, Ei+1)

Here Xi+1 denotes the strict transform of Xi.
B) A smooth morphism σi : Wi+1 −→ Wi, and setting Xi+1 and (Wi+1, Ei+1)

by pull-backs.

2.16. The Hilbert Samuel function HSX : X −→ NN can be defined for any
scheme Xi in the sequence, and they were compared in (2.9.1) for transformations of
type A).

If σi : Wi+1 −→Wi is smooth and x ∈ Xi+1, we cannot claim that HSXi+1(x) =
HSXi

(σi(x)) unless the morphism is étale. But the value HSXi+1(x) can be obtain
from HSXi

(σi(x)) if we know the dimension of the fibers of σi : Wi+1 −→ Wi. So
even if it is not strictly true we will say that

(2.16.1) HSXi+1(x) = HSXi
(σi(x)).

Strictly speaking HSXi+1 stands here for a function which is not the Hilbert Samuel
function but gives equivalent information. A precise statement about these facts can
be found in [20]. The following is a natural generalization of (2.9.2).

Remark 2.17. Fix X ⊂ W , (W,E). Set X0 = X , W0 = W , E0 = E, and fix a
local sequence (2.15.1). Let the functions HSXi

be defined as above, and set

Fi = MaxHSXi
= {x ∈ Xi | HSXi

(x) = maxHSXi
}.
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Assume that Yi ⊂ Fi for every transformation of type A) in the sequence. Then

maxHSX0 ≥ maxHSX1 ≥ · · · ≥ maxHSXr
.

For each sequence as above set h = maxHSX and let Xi(h) be the set of points
x ∈ Xi so that HSXi

(x) = h. Note that Xr(h) is not empty if and only if

maxHSX0 = maxHSX1 = · · · = maxHSXr
.

The following extends the results in Theorem 2.10, as it extends the class of
morphisms involved among the transformations. It says that the link between the
basic objects and Hilbert Samuel functions is even stronger as pull-backs obtained by
smooth morphism are also considered.

Theorem 2.18 (Hironaka). Fix X ⊂ W and (W,E), and set h = maxHSX .
After replacing X ⊂W and (W,E) by restriction to a finite étale cover of W , a basic
object (W, (J, b), E) can be defined so that:

1. Sing(J, b) = X(h).
2. Set X0 = X, W0 = W , E0 = E, J0 = J . If a local sequence

(2.18.1)
X0 X1 Xr

(W0, E0) ←− (W1, E1) ←− · · · ←− (Wr , Er)

is constructed with centers Yi ⊂ Xi(h) every time when Wi ←− Wi+1 is a
transformation of type A), then the same sequence is a local sequence of the
basic object, say

(2.18.2)
(J0, b) (J1, b) (Jr, b)

(W0, E0)
πY0←− (W1, E1)

πY1←− · · ·
πYr−1
←− (Wr , Er)

and

Sing(Ji, b) = Xi(h)

for all index 0 ≤ i ≤ r. Moreover, any local sequence of the basic object
(2.18.2) induces a local sequence (2.18.1) with the previous conditions.

Remark 2.19. 1) Fix X ⊂W and (W,E), h = maxHSX . Let B = (W, (J, b), E)
be a basic object attached to the value h as in Theorem 2.18.

Assume now that there is another basic object B′ = (W, (K, d), E), which is
weakly equivalent to B = (W, (J, b), E). Then one can replace B by B′ = (W, (K, d), E)
in Theorem 2.18. In fact both B and B′ are basic objects that provide the same closed
sets.

2) On the cover and the problem of patching. Note that Theorem 2.18 does not
claim that given X ⊂ W , (W,E), there is a basic object B = (W, (J, b), E) attached
to the value h with the prescribed property. It says that this holds after restriction
to an étale cover. Let us insist on this point as it is the key for the definition of the
functions in Constructive Resolution.

Suppose that Uλ, Uβ are two charts of the cover ofW , and thatXλ ⊂ Uλ, (Uλ, Eλ)
and Xβ ⊂ Uβ, (Uβ, Eβ) are obtained by restriction. Hironaka asserts that there is a
basic object Bλ = (Uλ, (Jλ, bλ), Eλ) attached to the value h = maxHSX (and a basic



NATURAL PROPERTIES OF CONSTRUCTIVE RESOLUTION 155

object Bβ = (Uβ, (Jβ , bβ), Eβ) attached to the same value h = maxHSX). Note in
particular that a resolution of this first basic object defines a sequence of blow-ups
of Xλ ⊂ Uλ, (Uλ, Eλ) so that the final strict transform of Xλ has a Hilbert-Samuel
function which takes values strictly smaller than h at any point. As was indicated
before, if we want to claim that there is a similar global statement for X ⊂W , (W,E)
we have to make sure that the resolutions of the different basic objects, say Bλ and
Bβ, somehow patch to provide a sequence of blow-ups along W . In this case the
resolutions of these locally defined basic objects can be expressed as restrictions of a
sequence of blow-ups along (W,E).

Set formally Uλ,β = Uλ ∩ Uβ . Here Uλ,β −→ Uλ is smooth and defines pull-
backs both of Xλ ⊂ Uλ, (Uλ, Eλ) and of Bλ = (Uλ, (Jλ, bλ), Eλ). We denote them by

Xλ,β ⊂ Uλ,β , (Uλ,β , Eλ,β) and B
β
λ = (Uλ,β , (J

β
λ , bλ), Eλ,β), respectively.

Similarly, Uλ,β −→ Uβ is smooth and defines pull-backs both of Xβ ⊂ Uβ ,
(Uβ , Eβ) and of (Jβ , bβ), (Uβ , Eβ), say Xλ,β ⊂ Uλ,β , (Uλ,β , Eλ,β) and Bλ

β =

(Uλ,β , (J
λ
β , bβ), Eλ,β).

Recall now Definition 2.14 in which two basic objects are defined to be weakly
equivalent when they define the same closed sets, in a very precise way, involving all
possible local sequences.

Main observations.
1. Each Bλ = (Uλ, (Jλ, bλ), Eλ) is well defined only up to weak equivalence.

2. The basic objects Bβ
λ and Bλ

β are weakly equivalent.
These two main observations follow from the fact that the Theorem applies to

the same value h = maxHSX , both for Xλ ⊂ Uλ, (Uλ, Eλ) and the basic object Bλ,
and also for Xβ ⊂ Uβ , (Uβ , Eβ) and the basic object Bβ.

Main Challenge. Define, as in 2.8, a totally ordered set T and a procedure of
resolution of basic objects, by means of upper semi-continuous functions with values
on T , so that two basic objects, say B0 = (W0, (J0, b), E0) and B

′
0 = (W0, (K0, d), E0),

which are weakly equivalent, undergo the same resolution (2.14).
The constructive resolution of basic objects will accomplish this requirement.

Moreover, suppose that the constructive resolution of B0 is

(2.19.1)
(J0, b) (J1, b) (Jr, b)

(W0, E0)
πY0←− (W1, E1)

πY1←− · · ·
πYr−1
←− (Wr , Er)

defined recursively in terms of functions hi : Sing(Ji, b) −→ T ; and that

(2.19.2)
(K0, d) (K1, d) (Kr, d)

(W0, E0)
πY ′

0←− (W1, E1)
πY ′

1←− · · ·
πY ′

r−1
←− (Wr , Er)

is the resolution of B′
0, defined in terms of functions, say h′

i : Sing(Ki, d) −→ T . Then,

hi = h′
i, 0 ≤ i ≤ r

as functions on Sing(Ji, b) = Sing(Ki, d), and in particular Yi = Y ′
i . This guarantees

that two weakly equivalent basic objects will undergo the same constructive resolution.
The resolution of each basic object obtained by the constructive procedure will be

defined so as to be compatible with weak equivalence. This will ensure the patching
required, in order to come from Theorem 2.18 to that of Resolution of singularities a
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la Hironaka, namely by lowering, successively, the highest value of the Hilbert-Samuel
function.

This is what we had previously formulated here as the Optimistic Claim.

2.20. The elegance of Hironaka’s philosophy: Functions compatible
with weak equivalence. Theorem 2.18 indicates that basic objects are to be con-
sidered up to weak equivalence. So Hironaka suggests us to view B = (W0, (J0, b), E0))
simply as a tool to define closed sets. And our Main Challenge is to find a totally
ordered set T , and a procedure of constructive resolution of basic objects, by means
of functions with values on T , in such a way that two weakly equivalent basic objects
are treated in the same manner. This means that the upper semi-continuous func-
tions defining the resolution should be the same for two basic objects that are weakly
equivalent.

The functions defining a resolution are expected to take maximum value on a
smooth subschemes. But let us first leave aside this aspect of smoothness at this
point, and simply draw attention on the definition of functions on basic objects which
are compatible with weak equivalence.

The strategy is simple:

Find a totally ordered set T and assign to any B = (W0, (J0, b)E0) an upper
semi-continuous function

hB : Sing(J0, b) −→ T

in such a way that the value hB(x) ∈ T (x ∈ Sing(J0, b)) can be expressed
in terms of the closed sets defined by B.

Recall here that by “closed sets defined by a basic object” Hironaka does not
mean the closed set Sing(J0, b), he means the closed sets Sing(Ji, b) in Wi, for all
possible local sequences of B (2.13.1).

No matter how abstract this approach might seem at first sight, what is clear is
that if B = (W0, (J0, b), E0), and B′ = (W0, (K0, d), E0) are weakly equivalent the two
functions

hB : Sing(J0, b) −→ T and hB′ : Sing(K0, d) −→ T

are the same (recall that Sing(J0, b) = Sing(K0, d)).
The following is the main example of a totally ordered set T and of functions hB

which fulfill the previous condition:

Theorem 2.21. Take T = Q as the totally ordered set. Given B =

(W0, (J0, b), E0), and a point x ∈ Sing(J0, b), the rational number νx(J0)
b

can be ex-
pressed by the closed sets defined by B. Here νx(J0) denotes the order of J0 at the
regular local ring OW0,x.

As νx(J0) is an upper semi-continuous function on x, the function

(2.21.1) ordB : Sing(J0, b) −→ Q; ordB(x) =
νx(J0)

b

is also upper semi-continuous.
The proof will be addressed in 6.1 (see also 2.23). The discussion in the following

example already gives a nice motivation.
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Take W0 = A1
k = Spec(k[X ]) and set B = (W0, (J0, b), E0 = ∅), J0 = 〈Xa〉, for

some a ∈ Z>0 such that a ≥ b (otherwise Sing(J0, b) = ∅). Now Sing(J0, b) = O is the
origin and ordB(O) = a

b
.

If we blow up O what we get is the identity map, but if we follow the law of
transformation of basic objects we obtain (J1, b) where J1 = 〈Xa−b〉. If a−b ≥ b then
Sing(J1, b) = O and if we blow up this point we obtain (J2, b) where J2 = 〈Xa−2b〉.
We can blow up r-times at O if and only if a− (r− 1)b ≥ b. In particular the biggest
integer r for which one can blow up r-times, is the biggest positive integer r so that

a− (r − 1)b ≥ b.

Note that such integer, say r0, is the integral part of the fraction a
b
, say r0 = ⌊a

b
⌋.

So r0 can be expressed as the largest integer r for which there is a sequence of
local transformations of B consisting of r successive blow ups at O. There is a local
sequence of length r0:

(2.21.2)
(J0, b) (J1, b) (Jr0 , b)
(A1, E0) ←− (A1, E1) ←− · · · ←− (A1, Er0)

obtained by blowing up at the origin at each step, and Sing(Jr0 , b) = ∅. So there is
no local sequence of length r0 + 1 obtained by blowing up at the origin.

In other words r0 = ⌊a
b
⌋ is information encoded by the closed set defined by this

particular sequence of transformations of B:

Sing(J0, b) = O, Sing(J1, b) = O, . . . , Sing(Jr0−1, b) = O, Sing(Jr0 , b) = ∅.

Of course the integral part of the fraction is only an approximation, but there are
many other local sequences of transformations of B as local sequences also allow us to
take pull-backs by smooth morphisms. What Hironaka shows, and it is well illustrated
in the proof in 6.1, is that using this larger class of local sequences, one can find out
exactly the value a

b
.

Corollary 2.22. If B = (W0, (J0, b), E0) and B′ = (W0, (K0, d), E0) are weakly
equivalent, then

νx(J0)

b
=

νx(K0)

d

at any x ∈ Sing(J0, b) = Sing(K0, d).

Proof. This occurs because the weakly equivalent basic objects B and B′ define
the same closed sets.

Remark 2.23. The argument that Hironaka uses in his proof of Theorem 2.21,
to be developed in 6.1, can be expressed roughly as follows: Fix a basic object B0 =
(W0, (J0, b), E0), and a point x0 ∈ Sing(J0, b). Consider a local sequence, say

(2.23.1)
(J0, b) (J1, b) (J2, b) (Jr, b)

(W0, E0) ←− (W1, E1) ←− (W2, E2) · · · ←− (Wr, Er)

together with points xi ∈ Sing(Ji, b)(⊂Wi), 0 ≤ i ≤ r, so that each xi maps to xi−1 (in

particular all xi map to x0). He proves that the rational number ordB0(x0) =
νx0 (J0)

b

can be specified once you know the local codimension of Sing(Ji, b)(⊂Wi) at xi, for all
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local sequences, and for all choices of xi as above. The argument makes essential use
of maps of type B) in the definition of a local sequence in 2.13 (namely, of pull-backs
of basic objects by smooth morphisms).

2.24. A common frame in the previous discussions. Once we fix B =
(W0, (J0, b), E0), the local sequences of transformations of B define closed sets. The
following definitions will apply naturally to this situation.

Definition 2.25. Fix (W0, E0) as in 2.2 and define a sequence over (W0, E0) as:

(2.25.1) (W0, E0) (W1, E1)oo . . .oo (Wr , Er)oo

for some integer r, where each (Wi, Ei)←− (Wi+1, Ei+1) is either:
A) A blow-up along a smooth center Yi having normal crossings with Ei, in which

case Ei+1 is as in 2.2.
B) A pull-back by a smooth morphismWi ←−Wi+1 in which case Ei+1 is defined

as in 2.5.

Many sequences can be constructed over (W0, E0). We now introduce a notion
of an assignment of closed set over (W0, E0). The idea is to assign closed sets Fi in
Wi, 0 ≤ i ≤ r, to a sequence (2.25.1); however such assignment of closed sets will be
defined only to some of these sequences.

For example, if we take B = (W0, (J0, b), E0), then we will assign F0 = Sing(J0, b)
to W0. If (W0, E0)←− (W1, E1) is obtained by a blow-up along Y , then a closed set
will be assigned to W1, namely F1 = Sing(J1, b), only if Y ⊂ F0 (see 2.27).

Therefore the definition of an assignment has to indicate which are the sequences
for which closed sets will be assigned. We do this by induction on the integer r.

Definition 2.26. Define an assignment of closed sets over (W0, E0), say
(F , (W0, E0)), to be given by:

(1) A (unique) closed set F0 ⊂W0.
(2) Fix a sequence (2.25.1), and assume that, for the sequence defined by the first

r − 1 steps, an assignment of closed sets, say

(2.26.1)
F0 F1 Fr−1

(W0, E0) ←− (W1, E1) ←− . . . ←− (Wr−1, Er−1)

is defined. Here F0 is as above. We now give conditions in order to decide when closed
sets are assigned to (2.25.1). In such a case we will denote them by
(2.26.2)

F0 F1 Fr−1 Fr

(W0, E0) ←− (W1, E1) ←− . . . ←− (Wr−1, Er−1) ←− (Wr , Er)

(same F0, . . . , Fr−1 as above):

2A) If (Wr−1, Er−1)
πr−1
←− (Wr , Er) is a blow-up along a smooth center, we require

that the center Yr−1 be included in Fr−1. If so, a unique closed Fr is assigned in Wr,
with the property that

Fr \Hr = Fr−1 \ Yr−1,

where Hr = π−1
r−1(Yr−1) denotes the exceptional hypersurface of the blow-up.

Sometimes we will impose some extra condition on the choice of the smooth
centers; but these conditions will arise quite naturally.
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2B) If (Wr−1, Er−1) ←− (Wr, Er) is a pull-back by a smooth morphism, say
σ : Wr −→Wr−1, then a closed set Fr is assigned to Wr, and moreover

Fr = σ−1(Fr−1).

We would like to emphasize that, as it was previously indicated, an assignment
of closed sets over (W0, E0) defines closed sets for a sequence (2.25.1) only when this
sequence fulfills the specific extra condition indicated as above. In each case we dictate
the specification telling which sequences are the ones for which there is an assignment.
Note that the specific and extra condition is imposed only for transformations of type
2A).

Example 2.27. A basic object B = (W0, (J0, b), E0) defines an assignment of
closed sets on (W0, E0), say

(FB, (W0, E0)),

in the following way:
1) F0 = Sing(J0, b).
2) For any local sequence (2.13.1), the assignment of closed sets is

(2.27.1)
Sing(J0, b) Sing(J1, b) Sing(Jr, b)
(W0, E0) ←− (W1, E1) ←− · · · ←− (Wr, Er)

Remark 2.28. 1) In Example 2.27 (of the assignment of closed sets defined
by B = (W0, (J0, b), E0)), the only sequences over (W0, E0) for which closed sets are
assigned are the local sequences of the basic objects in Definition 2.13. There are
many sequences (2.25.1) over (W0, E0), but closed sets are assigned only to those in
Definition 2.13.

Recall that a local sequence of the basic object B = (W0, (J0, b), E0), say (2.27.1),
was defined with the only condition that for any index i for which

(2.28.1)
Sing(Ji, b) Sing(Ji+1, b)
(Wi, Ei) ←− (Wi+1, Ei+1)

is given by a blow-up, its center Yi should be included in Sing(Ji, b) (and have nor-
mal crossings with Ei). It is clear that properties 2A) and 2B) in 2.26 hold for
(FB, (W0, E0)).

2) Important: Two basic objects B and B′ = (W0, (K0, d), E0) are weakly equiv-
alent if and only if they define the same assignment of closed sets.

The main example of assignment of closed sets is the one defined by a basic object
as above. The following parallels the definition in (2.7.3).

Definition 2.29 (Resolution of an assignment of closed sets). Let (F , (W,E))
be an assignment of closed sets. A sequence

(2.29.1)
F0 F1 Fr

(W0, E0)
π0←− (W1, E1)

π1←− . . .
πr−1
←− (Wr , Er)

(with closed sets Fi assigned to Wi, 0 ≤ i ≤ r) is a resolution of (F , (W,E)), if Fr = ∅
and each πi is a blow-up ( see 2A) in Definition 2.26).
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Example 2.30. Fix a reduced subscheme X0 ⊂ W0 and (W0, E0), then an
assignment of closed sets is defined in 2.15 by taking:

1) F0 = X0 in W0.
2) for any local sequence, set Fi = Xi, namely

(2.30.1)
X0 X1 Xr

(W0, E0) ←− (W1, E1) ←− · · · ←− (Wr , Er)

So closed sets are assigned in this case, only for sequences over (W0, E0) that arise
from a local sequence as those defined in 2.15.

2.31. Assignments of closed sets and functions: A useful Lemma. The
reader might want to look first into Example 2.33 to motivate the following definition.

Definition 2.32. Define an assignment of closed sets and functions over
(W0, E0), say (EF, (W0 , E0), T ), as an assignment of closed sets over (W0, E0), say
(F , (W0, E0)), together with upper semi-continuous functions on a totally ordered set
T . Namely,

1. A (unique) closed set F0 in W0, and a unique upper semi-continuous function
g0 : F0 → T .

2. Given a sequence over (W0, E0), say

(2.32.1) (W0, E0)←− (W1, E1)←− . . . ←− (Wr, Er)

and assuming that closed set are assign to it by (F , (W0, E0)), say

(2.32.2)
F0 F1 Fr

(W0, E0) ←− (W1, E1) ←− . . . ←− (Wr, Er)

then (unique) upper semi-continuous functions, say

gi : Fi −→ T 0 ≤ i ≤ r,

are defined, and they have the following properties:
A) If Wi ←−Wi+1 is monodal trasformation with center Yi, then

gi+1(x) = gi(x)

for any x ∈ Fi+1 \Hi+1 = Fi \ Yi.

B) If Wi
σ
←−Wi+1 is a smooth morphism then

gi+1(x) = gi(σ(x))

for any x ∈ Fi+1 = σ−1(Fi).

Example 2.33 (Hironaka’s assignment). Take T = Q. For any basic object B0 =
(W0, (J0, b), E0), an assignment of closed sets and functions, say (HF, (W0, E0), T =
Q), is defined by setting:

1. F0 = Sing(J0, b) and g0 = ordB0 : Sing(J0, b) −→ T (see (2.21.1)).
2. Assign, for any sequence (2.27.1), Fi = Sing(Ji, b) and gi = ordBi

:
Sing(Ji, b) −→ T .
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Here the role of (F , (W0, E0)) in the previous Definition 2.32 is played by
(FB0 , (W0, E0)) in 2.27. Corollary 2.22 ensures that if B0 = (W0, (J0, b), E0) and
B′
0 = (W0, (K0, d), E0) are weakly equivalent, then they define the same assignment

of closed sets (FB0 , (W0, E0)), and also the same assignment of closed sets and func-
tions.

Example 2.34. Fix T = NN with the lexicographic order. Given a reduced
subscheme X0 ⊂ W0 and (W0, E0), consider the assignment of closed sets in 2.30
together with the Hilbert Samuel functions:

1. Assign to W0 the closed set F0 = X0, and the function HSX0 : X0 −→ T ,
the Hilbert Samuel function of X0.

2. For any sequence (2.30.1), set Fi = Xi and HSXi
: Xi −→ T , the Hilbert

Samuel function of Xi, 0 ≤ i ≤ r.

Recall Bennett’s inequality in (2.9.1) as a first motivation for the next definition:

Definition 2.35. An assignment of closed sets and functions, say
(EF, (W0, E0), T ), will be said to be non-increasing if the following property holds:

Whenever sets and functions are assigned to a sequence (2.32.1), say

(2.35.1)
F0 F1 Fr

(W0, E0) ←− (W1, E1) ←− . . . ←− (Wr , Er)

and functions

g0 : F0 −→ T, g1 : F1 −→ T, . . . gr : Fr −→ T,

and if, in addition, for each index i for which Wi
πi←−Wi+1 is a monodal trasformation

the center is included in Max gi (i.e., Yi ⊂Max gi), then

(2.35.2) gi(πi(x)) ≥ gi+1(x)

for any x ∈ Fi+1.

Remark 2.36. Note that in the setting of the previous definition:

max g0 ≥ max g1 · · · ≥ max gr.

Check that the assignment of closed sets and functions in Example 2.34 is non-
increasing (see (2.9.1)), whereas the assignment in Example 2.33 does not have this
property.

Non-increasing assignments will be very useful for the further development, as we
indicate below. The reader might want to look into the Example 2.39.

Lemma 2.37 (Handy Lemma). Suppose that the assignment of closed sets
and functions (EF, (W0, E0), T ), is non-increasing. Let max g0 be the highest value
achieved by g0 : F0 −→ T .

Then a new assignment of closed set, say (F(max g0), (W0, E0)), is defined by
setting

1. F0(max g0) = Max g0 in W0 (the closed subset of points of F0 where the
function g0 takes the maximum value max g0).
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2. Firstly, assume that a sequence (2.32.1) is such that sets and functions are
assigned by (EF, (W0, E0), T ), say

(2.37.1)
F0 F1 Fr

(W0, E0) ←− (W1, E1) ←− . . . ←− (Wr, Er)

and

gi : Fi −→ T, 0 ≤ i ≤ r.

Secondly assume that Yi ⊂ Fi(max g0) for any index i for which (Wi, Ei)←−
(Wi+1, Ei+1) is a blow-up with center Yi, where Fi(max g0) denotes the subset
of Fi at which gi takes the value max g0.
When these conditions hold, attach to this sequence the closed sets

(2.37.2)
F0(max g0) F1(max g0) Fr(max g0)
(W0, E0) ←− (W1, E1) ←− . . . ←− (Wr , Er)

2.38. One can check from 2.36 that either Fr(max g0) = ∅ or

max g0 = max g1 · · · = max gr

and Fi(max g0) = Max gi for 0 ≤ i ≤ r. A first example in which the Handy Lemma
applies is on the assignment of closed sets and functions in 2.34:

Example 2.39 (The Hilbert Samuel assignment of closed sets). Fix X0 ⊂ W0,
(W0, E0), and set h = maxHSX0 . We now define an assignment of closed sets over
(W0, E0) corresponding to the value h = maxHSX0 , say

(F(h), (W0, E0)).

Recall the definition of a local sequence (2.15.1):

(2.39.1)
X0 X1 Xr

(W0, E0) ←− (W1, E1) ←− · · · ←− (Wr , Er)

where each

(2.39.2)
Xi Xi+1

(Wi, Ei) ←− (Wi+1, Ei+1)

is obtained either by a suitable blow-up with center Yi ⊂ Xi, or by a smooth morphism
σi : Wi+1 −→Wi. Recall also the assignment of closed sets and functions in Example
2.34, obtained from the functions HSXi

: Xi −→ NN.
Remark 2.17 shows that a new assignment of closed sets is defined by setting
1. F0 = X(h)
2. For any local sequence (2.39.1), with the extra condition that Yi ⊂ Xi(h) if

(2.39.2) is obtained by a blow-up, set

Fi = Xi(h) 0 ≤ i ≤ r.
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3. On generalized basic objects.

3.1. General basic objects of dimension d. We want to identify the basic
objects that are weakly equivalent. The notion of assignment of closed sets was
appropriate since two basic objects are weakly equivalent if and only if they define
the same assignment (see Remark 2.28).

Moreover, Theorem 2.21 of Hironaka says that a basic object defines an assign-
ment of closed sets and functions, with the functions order introduced in (2.21.1).

The objective of this section is to introduce new examples of assignments. They
will all be relevant for our further discussion:

1. In Definition 3.6 new assignments will be introduced by patching assignments
obtained from basic objects.

2. In 3.11 and 3.12 we introduce an assignment of closed sets in terms of a basic
object together with a closed immersion (Embedded Basic Objects).

3. In Definition 3.13 a class of assignments of closed sets is defined by patching
assignments as in 2).

Fix notation as in Definition 2.26 for an assignment (F , (W0, E0)). Assume now
that a short sequence

(3.1.1) (W0, E0)←− (W1, E1)

(obtained either by a smooth morphism or by a blow-up) is such that there are closed
sets assigned to it, say

(3.1.2)
F0 F1

(W0, E0) ←− (W1, E1)

Consider now all sequences over (W0, E0) of the form

(3.1.3) (W0, E0)←− (W1, E1)←− . . . ←− (Wr , Er)

namely all those sequences which begin with the short sequence (3.1.1), for which
closed sets, say

(3.1.4)
F0 F1 Fr

(W0, E0) ←− (W1, E1) ←− . . . ←− (Wr , Er)

are assigned.
One can check that a new assignment of closed sets is defined now on (W1, E1),

say (F1, (W1, E1)), by setting F1 in W1, and taking, in general, all sequences (3.1.4)
where we neglect the first step.

Definition 3.2. Fix the notation as above, define (F1, (W1, E1)) as the transform
of (F , (W0, E0)), and denote it by

(3.2.1)
F F1

(W0, E0) ←− (W1, E1)

Example 3.3. Let the notation be as in Example 2.30, where the assignment of
closed sets defined by X0 ⊂W0, (W0, E0) is introduced. Set r = 1 in (2.30.1), say

(3.3.1)
X0 X1

(W0, E0) ←− (W1, E1).
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The transform (F1, (W1, E1)), in (3.2.1), is the assignment defined by X1 ⊂ W1,
(W1, E1).

Example 3.4. A similar observation applies to the assignment in Example 2.27,
defined by B0 = (W0, (J0, b), E0). If we set r = 1 in (2.27.1), say

(3.4.1)
Sing(J0, b) Sing(J1, b)
(W0, E0) ←− (W1, E1),

the assignment (F1, (W1, E1)) in (3.2.1) is that defined by B1 = (W1, (J1, b), E1).

3.5. A transformation of an assignment (F , (W0, E0)) arises naturally if we take
W0 ←−W1 to be an open immersion in (3.2.1). In this case, set W1 = U open in W0,
and set (3.2.1) as

(3.5.1)
F (F)U

(W0, E0) ←− (U,EU )

This is a natural notion of restriction, which we also apply when W0 ← U is étale.

A new class of assignments of closed sets will be introduced, called general basic
objects. There will be two such notions: embedded and non-embedded, we begin by
the latter.

Definition 3.6. Fix (W0, E0), where W0 is smooth of dimension d. An assign-
ment of closed sets (F , (W0, E0)) is said to be a non-embedded general basic object
of dimension d if there is an étale cover of W0 by charts, say {Uλ}, so that each
restriction

((F)Uλ
, (Uλ, Eλ))

is the assignment defined by a basic object Bλ = (Uλ, (Jλ, bλ), Eλ).

Remark 3.7. 1) If (FB, (W0, E0)) is the assignment defined by a basic object
B = (W0, (J0, E0), E0)), as in (2.27), it is clearly a general basic object.

2) If Bλ = (Uλ, (Jλ, bλ), Eλ) and B′
λ = (Uλ, (Kλ, dλ), Eλ) are weakly equivalent

(see Definition 2.14), then Bλ can be replaced in the previous definition by B′
λ as both

define the same assignment.
3) Take two charts of the cover, say Uλ and Uβ. The restrictions of Bλ =

(Uλ, (Jλ, bλ), Eλ) and of Bβ = (Uβ, (Jβ , bβ), Eβ) to Uλ ∩ Uβ are weakly equivalent
as both define the same assignment.

4) If

(3.7.1)
F F1

(W0, E0) ←− (W1, E1)

is a transformation as in (3.2.1), then (F1, (W1, E1)) is also a general basic object. To
check this, take the natural lifting of the cover {Uλ} on W0, say

(3.7.2)
(Jλ, bλ) ((Jλ)1, bλ)
(Uλ, Eλ) ←− ((Uλ)1, (Eλ)1)

5) If F0 ⊂W0 is the closed set assigned by (F , (W0, E0)), then there is a function

ord : F0 −→ Q
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obtained by patching the functions ordλ : Sing(Jλ, bλ) −→ Q (see 3) and Corollary
2.22).

Corollary 3.8. A non-embedded general basic object, say (F , (W0, E0)),
defines an assignment of closed sets and functions (see Definition 2.31), say
(HF, (W0, E0),Q), by choosing Hironaka’s functions order:

1. Set g0 = ord : F0 −→ Q as above.
2. Consider a sequence over (W0, E0), say (W0, E0) ←− (W1, E1) ←− . . . ←−

(Wr, Er) for which closed sets are assigned, say

(3.8.1)
F0 F1 Fr

(W0, E0) ←− (W1, E1) ←− . . . ←− (Wr, Er).

Set gi = ordi : Fi −→ Q for all 0 ≤ i ≤ r.

Let us reformulate Hironaka’s Theorem 2.18 in terms of assignments. More pre-
cisely, in terms of general basic objects as defined in 3.6.

Theorem 3.9 (Hironaka). Fix X0 ⊂ W0 and (W0, E0). Set h = maxHSX0 .
The assignment of closed sets (F(h), (W0, E0)) defined by X0 and h in Example 2.39,
is a non-embedded general basic object of dimension d = dimW0.

3.10. We generalize now the concept of a basic object, by taking a basic object
together with a closed immersion. This will define an assignments of closed sets and,
in order to ease the notation, we shall call it an embedded basic object.

So here an embedded basic object will be an assignment of closed sets defined by a
basic object and a closed immersion. This notion will be essential for our forthcoming
discussion. There will be two distinguished cases: tame, and non-tame, according to
the conditions on the immersion.

3.11. Embedded basic objects: The tame case. Fix (N0, E
′′
0 ), where

N0 is smooth and E′′
0 = {H1, . . . , Hs} is a set of hypersurfaces with only normal

crossings. Let W0 be a closed smooth subscheme in N0 and assume that each Hi ∈ E′′
0

intersects W0 transversally, defining a smooth hypersurface Hi. Moreover, assume
that E0 = {H1, . . . , Hs} have normal crossings in W0. In what follows this strong
transversality condition will be indicated by:

(3.11.1) E0 = E′′
0 ⋔ W0.

Fix a non-zero ideal J0 in OW0 , a positive integer b and the basic object B0 =
(W0, (J0, b), E0). Set F0 = Sing(J0, b), which is closed in W0 and hence in N0. B0
defines an assignment of closed sets over (W0, E0) (see Example 2.27). We claim that
it also defines an assignment of closed sets over (N0, E

′′
0 ), say

(F ′, (N0, E
′′
0 )),

that we call an embedded basic object in the tame case: If Y0 ⊂ F0 = Sing(J0, b) ⊂W0

is permissible for B0, then the same Y0 defines (N0, E
′′
0 ) ←− (N1, E

′′
1 ) (due to the

condition E0 = E′′
0 ⋔ W0, which ensures that Yi has normal crossing with E′′

0 ).
This defines a transform of B0, say B1 = (W1, (J1, b), E1), a closed immersion

W1 ⊂ N1, and again E1 = E′′
1 ⋔ W1.
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On the other hand, a smooth morphism (N0, E
′′
0 )←− (N1, E

′′
1 ) induces:

(3.11.2)
(J0, b) (J1, b)

(W0, E0) ←− (W1, E1)

also smooth, where W1 is the pull-back of W0 in N1. Moreover, E1 = E′′
1 ⋔ W1 as

before.

3.12. Embedded basic objects: The non-tame case. We generalize now
the setting in 3.11. Consider

• (N0, E
′
0) with E′

0 = (E′
0)

+ ∪ (E′
0)

− (a partition of E′
0 as a disjoint union).

• A closed immersion W0 ⊂ N0 and (W0, E0) where E0 = (E′
0)

+ ⋔ W0.
• A basic object B0 = (W0, (J0, b), E0) (see 2.7).

So we assume here that E0 = W0 ⋔ (E′
0)

+ (3.11.1), but we know nothing about
the intersection of hypersurfaces of (E′

0)
− with W0. If (E

′
0)

− = ∅, or if hypersurfaces
of (E′

0)
− do not intersect F0 = Sing(J0.b), then we are back to the case in 3.11 (in

the tame case).
If Y0 ⊂ F0 = Sing(J0, b) ⊂ W0 , and if Y0 has normal crossings with E′

0 (in N0),
then it has normal crossings with E0 (in W0), and defines a transformation of B0, say
B1, and

(3.12.1)
(J0, b) (J1, b)

(W0, E0) ←− (W1, E1).

We define now an assignment of closed sets

(F ′, (N0, E
′
0)),

(an embedded basic object) which will rely on the three previous conditions: on the
partition of E′

0, on B0 = (W0, (J0, b), E0), and on the embedding W0 ⊂ N0.
A) If Y0 ⊂ F0 = Sing(J0, b) ⊂ W0, and if Y0 has normal crossings with E′

0 (in
N0), then set

(3.12.2) F0 = Sing(J0, b) F1 = Sing(J1, b)

(N0, E
′
0) (N1, E

′
1)

oo

and define a partition

E′
1 = (E′

1)
+ ∪ (E′

1)
−

where (E′
1)

− consists of the strict transform of hypersurfaces in (E′
0)

−, and (E′
1)

+

consists of the strict transform of hypersurfaces in (E′
0)

+ together with the new ex-
ceptional hypersurface. Note that E1 = (E′

1)
+ ⋔ W1.

B) If (N0, E
′
0)←− (N1, E

′
1) is obtained from a smooth morphism, then set

• (N1, E
′
1) with E′

1 = (E′
1)

+ ∪ (E′
1)

−,
• W1 ⊂ N1 and (W1, E1) where E1 = (E′

1)
+ ⋔ W1,

• a basic object B1 = (W1, (J1, b), E1),
simply by taking pull-backs.

Definition 3.13. A) Fix, as above, (N0, E
′
0) together with a partition E′

0 =
(E′

0)
+∪(E′

0)
− (disjoint union). An assignment (F , (N0, E

′
0)) is said to be an embedded
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general basic object of dimension d if there is a cover of N0, say {Uλ}, and for each
restriction

((F)Uλ
, (Uλ, (E

′
0)λ)) and (E′

0)λ = (E′
0)

+
λ ∪ (E′

0)
−
λ

there is a closed smooth d-dimensional subscheme Uλ of Uλ, and a basic object

Bλ = (Uλ, (Jλ, bλ), (E
′+

0 )λ),

where (E
′+

0 )λ = E′+
0 ⋔ Uλ (3.11.1), so that the conditions in 3.12 holds. Namely

that ((F)Uλ
, (Uλ, (E

′
0)λ)) is the assignment of closed sets defined, as above, by the

partition (E′
0)λ = (E′

0)
+
λ ∪ (E′

0)
−
λ and Bλ.

B) Fix (F , (N0, E
′
0)) as in A), and let F0 be the closed set assigned to (N0, E

′
0).

Then (F , (N0, E
′
0)) is a tamely embedded general basic object, or simply a tame general

basic object, if no hypersurface of (E′
0)

−
λ intersects F0 (e.g., if (E′

0)
−
λ = ∅).

The following Theorem of Hironaka, which is an extension of Theorem 2.22, will
allow us to define Hironaka’s functions on general basic objects.

Theorem 3.14. Fix (N0, E
′
0), and E′

0 = (E′
0)

+∪(E′
0)

− (disjoint union). Assume
that:

1. there are closed smooth subschemes of N0, say W 0 and V 0.

2. there are basic objects (W 0, (J0, b), E
′+

0 )) (where E
′+

0 = (E′
0)

+ ⋔ W0) and

(V 0, (K0, d), F
′+

0 )) (where F
′+

0 = (E′
0)

+ ⋔ V0) defining assignments of closed
sets over (N0, E

′
0) as in 3.12.

If dim W 0=dim V 0, and if both assignments of closed sets over (N0, E
′
0) coincide

(i.e., define the same closed sets), then

νx(J0)

b
=

νx(K0)

d

at any x ∈ Sing(J0, b) = Sing(K0, d).

Remark 3.15. Note that Remark 3.7 extends to this context:

1) The transform of an embedded general basic object is an embedded general
basic object.

2) If F0 ⊂W0 ⊂ N0 is the closed set assigned by the d-dimensional general basic
object (F , (N0, E0)), then there is a function ordd : F0 −→ Q defined by patching
orddλ : Sing(Jλ, bλ) −→ Q.

Also Corollary 3.8 extends word by word.

The last reformulation of Hironaka’s Theorem 3.9 can now be strengthen as fol-
lows:

Theorem 3.16 ([14], Prop 11.4). Fix X0 ⊂ N0 and (N0, E
′
0). Set h =

maxHSX0 . The assignment of closed sets (F(h), (W0, E0)) defined by X0 and h in
Example 2.39, is an embedded general basic object of dimension d, where d is dimen-
sion of X0 locally at all closed point of its highest Hilbert-Samuel stratum.
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4. The ingredients for constructive resolution.

4.1. In this section we aim to define a set T and the function g, with values at
T , leading to the constructive resolution of basic objects as was stated in 2.8.

Recall that a basic object was defined by B0 = (W0, (J0, b), E0), where J0 ⊂
OW0 is a non-zero ideal, b is a positive integer and E0 = {H1, . . .Hs} are smooth
hypersurfaces in W0 with only normal crossings. So (J0)ξ 6= 0 for any ξ ∈ W0. The
singular locus is the closed set F0 = Sing(J0, b) = {ξ ∈W0 | νξ(J0) ≥ b} ⊂W0.

A center Y0 is said to be permissible for the basic object if Y0 is permissible for

(W0, E0) (see 2.2) and Y0 ⊂ F0. Let W0
πY0←− W1 be the blow-up with center Y0,

and denote by Hs+1 the exceptional hypersurface. Assume that Y0 is irreducible with
generic point y0 (∈ Sing(J0, b)). There is an ideal J̄1 ⊂ OW1 such that J0OW1 =
I(Hs+1)

c1 J̄1 where c1 = νy0(J0) ≥ b.
We fix on J1 the factorization

(4.1.1) J1 = I(Hs+1)
c1−bJ̄1

and set

(4.1.2)
(J0, b) (J1, b)

(W0, E0)
πY0←− (W1, E1)

as the transformation of the basic object. Here E1 = {H ′
1, . . .H

′
s, Hs+1}, and H ′

i

is the strict transform of Hi, for 1 ≤ i ≤ s. To ease the notation we write E1 =
{H1, . . .Hs, Hs+1}.

The value
νy0 (J0)

b
(= ord(y0)) depends only on the weak equivalence class of B0

and so does

c1 − b

b
=

νy0(J0)

b
− 1 = ord(y0)− 1.

Note also that c1 − b is the highest exponent of I(Hs+1) that one can factor of J1 in
(4.1.1).

Consider now a sequence of transformations of basic objects:

(4.1.3)
(J0, b) (J1, b) (Jr, b)

(W0, E0)
πY0←− (W1, E1)

πY1←− · · ·
πYr−1
←− (Wr, Er)

with irreducible centers Yi−1. For each index i we fix a factorization

(4.1.4) Ji = I(Hs+1)
a1 · · · I(Hs+i)

ai J̄i

so that

(4.1.5)
aj
b

= ord(yj−1)− 1,

where yj−1 denotes the generic point of Yj−1 ⊂ Wj−1. Note that aj is the highest
power of the ideal I(Hs+j) that divides Ji, so this factorization is unique.

4.2. Recall that a sequence (4.1.3) is said to be a resolution of B0 =
(W0, (J0, b), E0) if Sing(Jr, b) = ∅ (2.7.3). A resolution involves only blow-ups but
we will also take into account smooth morphisms. These auxiliary morphisms appear
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in the proof of Theorem 2.21 (see 6.1). From the point of view of constructive reso-
lution it is natural to consider upper semi-continuous functions which are defined up
to weak equivalence.

Definition 4.3. If

(4.3.1)
(Jk, b) (Jk+1, b)

(Wk, Ek) ←− (Wk+1, Ek+1)

is given by a smooth morphism, lift Jk together with its factorization in (4.1.4), and
set

(4.3.2) Jk+1 = I(Hs+1)
a1 · · · I(Hs+k)

ak J̄kOWk+1

by taking pull back on the previous data.

This definition allows us to extend expressions (4.1.4) to local sequences (Defi-
nition 2.13). Furthermore, Corollary 2.22 ensures also that

aj

b
is determined by the

weak equivalence class of (W0, (J0, b), E0). Note also that aj is the highest power of
I(Hs+j) that divides Ji.

Definition 4.4. For any local sequence, say

(4.4.1)
(J0, b) (J1, b) (Jr, b)

(W0, E0) ←− (W1, E1) ←− · · · ←− (Wr, Er)

and any index i, we have fixed an expression of Ji in (4.1.4). We now define functions

w-ordi : Sing(Ji, b) −→
1

b
Z ⊂ Q, w-ordi(ξ) =

νξ(J̄i)

b
,

and ordi : Sing(Ji, b) −→
1

b
Z ⊂ Q, ordi(ξ) =

νξ(Ji)

b
.

The second is Hironaka’s function ord (see (2.21.1)). This defines two different assign-
ments of functions (see Definition 2.32), and both depend only on the weak equivalence
class of B0 = (W0, (J0, b), E0). Note that for i = 0, w-ord0 = ord0.

Remark 4.5. Constructive resolution of singularities is built around Hironaka’s
function ord. We argue by looking at the rational numbers in (4.1.5), and the new
function w-ord. Note that

w-ordi(ξ) = ordi(ξ)−
∑

j ξ∈Hj

aj
b

for ξ ∈ Sing(Ji, b), and that the right hand side is expressed in terms of Hironaka’s
function. In fact, each rational number

aj

b
is defined in terms of Hironaka’s functions

(see (4.1.5)), and hence every ai

b
depends only on the weak equivalence class of B0 =

(W0, (J0, b), E0). The function w-ordi is one of the so called satellite functions, as it
is expressed entirely in terms of the function ord.

If B0 = (W0, (J0, b), E0) is replaced by a weakly equivalent (W0, (K0, d), E0), the
invariants introduced here do not distinguish them. This is a good starting point in
the search of invariants for constructive resolution.
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Note finally that if σ : W ′
0 −→ W0 is smooth, then successive pull-backs ap-

plied to (4.4.1) will define a local sequence of (W ′
0, (J0, b), E

′
0) (the pull-back of

(W0, (J0, b), E0)), say

(4.5.1)
(J ′

0, b) (J ′
1, b) (J ′

r, b)
(W ′

0, E
′
0) ←− (W ′

1, E
′
1) ←− · · · ←− (W ′

r , E
′
r),

and smooth morphisms σi : Sing(J
′
i , b) −→ Sing(Ji, b). It follows from (4.3.2) that

(4.5.2) w-ordi(σi(ξ)) = w-ordi(ξ)

for any ξ ∈ Sing(J ′
i , b), and that also the rational numbers

aj

b
coincide (at the pull-

back).

Remark 4.6. (Non-increasing property). It is easy to check that ifWi−1
πi−1
←− Wi

in (4.4.1) is obtained by blowing up Yi−1 ⊂ Maxw-ordi−1 ⊂ Sing(Ji−1, b), then

(4.6.1) w-ordi−1(πi−1(ξi)) ≥ w-ordi(ξi)

for any ξi ∈ Sing(Ji, b). So if Yi−1 ⊂ Maxw-ordi−1 for any index i for which Wi−1 ←−
Wi is a blow-up with center Yi−1, then

(4.6.2) maxw-ord0 ≥ · · · ≥ maxw-ordr

Corollary 4.7. Fix a basic object B0 = (W0, (J0, b), E0) and consider the as-
signment of closed sets (FB, (W0, E0)) in Example 2.27. Namely, for any local se-
quence as in (2.13.1) set
(4.7.1)

F0 = Sing(J0, b) F1 = Sing(J1, b) Fr = Sing(Jr, b)

(W0, E0) (W1, E1)oo · · ·oo (Wr, Er),oo

and define functions

w-ordi : Fi −→ Q for 0 ≤ i ≤ r.

Then:
1. This defines an assignment of closed sets and functions which is non-

increasing (2.35).
2. This assignment is independent of the weak equivalence class of B0 =

(W0, (J0, b), E0) (i.e., if B0 = (W0, (J0, b), E0) and B′
0 = (W0, (K0, d), E0)

are weakly equivalent, they both define the same assignment of closed sets and
functions).

Remark 4.8. The functions w-ord are defined in terms of the functions order, and
satisfies the condition of our Handy Lemma 2.37. In particular, the inequalities (4.6.2)
are as in Remark 2.36. This is our second example of an assignment of closed sets
and functions with the non-increasing property in Definition 2.35 (see also Example
2.34).

Remark 4.9 (Strategy for resolution of basic objects). Fix a basic object B0 =
(W0, (J0, b), E0) and a sequence (4.7.1); note that for each index k (0 ≤ k ≤ r),
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maxw-ordk ∈
1

b
Z. We shall indicate below that if maxw-ordr = 0 in (4.6.2) then it

is simple to “extend” (4.7.1) to a resolution. A resolution of a basic object involves
only blow-ups. Consider a sequence of blow-ups

(4.9.1) (J0, b) (J1, b) (Jr, b)

(W0, E0) (W1, E1)
πY0

oo . . .
πY1

oo (Wr, Er)
πYr−1

oo

with centers Yi ⊂Maxw-ordi for all index i. So

(4.9.2) maxw-ord0 ≥ · · · ≥ maxw-ordr (as in (4.6.2)).

As maxw-ordk ∈
1

b
Z, in order to define a resolution of the basic object it would be

enough to have a procedure of choosing centers Yi so that we may extend (4.9.1) in
such a way that

maxw-ord0 ≥ · · · ≥ maxw-ordr = · · · = maxw-ordR−1 > maxw-ordR,

for some index R ≥ r. In fact, this would lead ultimately to the case maxw-ordR = 0.
If maxw-ordr = 0, then J̄r = OWr

in the factorization of Jr presented in (4.1.4),
so

(4.9.3) Jr = I(Hs+1)
a1 · · · I(Hs+r)

ar

(in a neighborhood of Sing(Jr , b)). In this case it is simple to define a totally ordered
set Γ, and an upper semi-continuous function

(4.9.4) hr : Sing(Jr, b) −→ Γ,

defined entirely in terms of the rational numbers

(4.9.5)
ai
b

for 1 ≤ i ≤ r

so that (4.9.1) can be extended to a resolution, say

(4.9.6) (Jr, b) (Jr+1, b) (JN , b)

(Wr , Er) (Wr+1, Er+1)
πYr

oo . . .
πYr+1

oo (WN , EN )
πYN−1

oo

by setting Yr+j = Maxhr+j for r ≤ r + j < N (see [20]).
So the real difficulty, at least for the construction of a resolution of a basic objects

B0 = (W0, (J0, b), E0), is to construct a sequence (4.9.1) so as to come to the case
maxw-ordk = 0.

We now introduce a function, called the “inductive function” as it is the key for
inductive arguments in resolution of basic objects. It will takes values at Q×Z, which
will be ordered lexicographically.

Definition 4.10. Fix a basic object B0 = (W0, (J0, b), E0) and a local sequence
as in Remark 4.6, say

(4.10.1) (J0, b) (J1, b) (Jr, b)

(W0, E0) (W1, E1)
πY0

oo . . .
πY1

oo (Wr, Er)
πYr−1

oo
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with centers Yi ⊂Maxw-ordi for all i for which Wi ←Wi+1 is a blow-up. So

(4.10.2) maxw-ord0 ≥ · · · ≥ maxw-ordr (see (4.6.2)).

Set dr = dimWr and let s0 be the smallest index so that

(4.10.3) maxw-ords0−1 > maxw-ords0 = · · · = maxw-ordr

(so s0 = 0 if maxw-ord0 = · · · = maxw-ordr). Set Er = E+
r ⊔ E−

r , where E−
r are

the hypersurfaces of Er which are the strict transforms of hypersurfaces of Es0 (and
pull-backs if smooth morphisms appear in the sequence). If maxw-ordr 6= 0 define

t(dr)
r : Sing(Jr, b) −→ (Q× Z,≤) (lexicographic order)

t(dr)
r (ξ) = (w-ordr(ξ), nr(ξ)),

where nr(ξ) =

{
#{H ∈ Er | ξ ∈ H} if w-ordr(ξ) < maxw-ordr
#{H ∈ E−

r | ξ ∈ H} if w-ordr(ξ) = maxw-ordr

In the same way we define functions t
(dr−1)
r−1 , t

(dr−2)
r−2 , . . . , t

(dr−r0)
s0 .

We shall later study in 4.21 the role of this function when constructing resolutions
of basic objects. However, the setting of interest here is not only that of basic objects,
but also that of basic objects with closed immersions of smooth schemes W0 ⊂ N0,
which we discuss below.

4.11. Immersions in the tame case (1). A closer look at the setting in
3.11 is necessary for a better comprehension of our further discussion. Fix B0 =
(W0, (J0, b), E0), and assume now that:

• W0 is a (smooth) closed subscheme in a smooth scheme N0, say W0 ⊂ N0.
• There is a set E′′

0 of hypersurfaces with normal crossings in N0, and E0 =
E′′

0 ⋔ W0 (see (3.11.1)).
Let (F , (N0, E

′′
0 )) denote the assignment of closed sets defined over (N0, E

′′
0 ) by the

previous data. The condition E0 = E′′
0 ⋔ W0 ensures that any sequence of blow-ups,

say

(4.11.1)
(J0, b) (J1, b) (Jk, b)

(W0, E0)
πY0←− (W1, E1)

πY1←− · · ·
πYk−1
←− (Wk, Ek),

induces a sequence of blow-ups

(4.11.2) (N0, E
′′
0 )

πY0←− (N1, E
′′
1 )

πY1←− · · ·
πYk−1
←− (Nk, E

′′
k ),

where Wk is closed in Nk, and Ek is defined by restricting to Wk the hypersurfaces
of E′′

k .

4.12. In Def 2.14 two basic objects B0 = (W0, (J0, b), E0), and B′
0 =

(W0, (K0, d), E0) are said to be weakly equivalent when they define the same closed
sets for any local sequence. On the other hand, the notion of local sequence in Def
2.13 makes use of two kinds of transformations, namely: A) defined by monoidal
transformation, B) those defined by a smooth morphism.
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It is natural to ask if it suffices to check weak equivalence of B0 and B1, by checking
the equality of closed sets in Def 2.14, for a certain subclass of local sequences. It can
be proved that this is in fact the case. It suffices to consider local sequences where
transformations of type B), defined by a smooth morphism σi : Wi+1 −→ Wi, a are
restricted to the following two cases:

• Wi+1 = An
k ×Wi, and σi is the projection on the first coordinate.

• Wi+1 is an open subset of Wi and σi is the inclusion.

This fact is well know (see e.g. [13]). So throughout this paper one could also
have consider only smooth maps of these two prescribed forms. We will not use this
fact in this presentation.

4.13. Immersions in the tame case (2). Neglecting the ambient space.
In 4.11 only blow-ups were considered. If (N0, E

′′
0 ) ←− (N1, E

′′
1 ) is now the pull-

back defined by a smooth morphism, then the inclusion W0 ⊂ N0 can be lifted to
W1 ⊂ N1. Moreover, this gives rise to a smooth morphism (W0, E0) ←− (W1, E1),
and E1 = E′′

1 ⋔ W1. But, unfortunately, not every smooth morphism (W0, E0) ←−
(W1, E1) arises from one over (N0, E

′′
0 ). The claim is clearly true if we consider smooth

morphism as in 4.12, and if the reader is willing to accept the statement therein, then
Prop 4.14, below, is easy to check, and Lemma 4.15 is avoidable.

Firstly we show that if the basic objects B1 = (W0, (J0, b), E0) and B2 =
(W0, (K0, d), E0) are weakly equivalent, then they both define the same assignment
of closed sets, say (F , (N0, E

′′
0 )), (see 4.11). Fix (F , (N0, E

′′
0 )), and the notation as in

Definition 2.26, and set

(4.13.1)
F0 F1 Fr

(N0, E
′′
0 ) ←− (N1, E

′′
1 ) ←− . . . ←− (Nr, E

′′
r )

a sequence of blow-ups and smooth morphisms for which closed sets are assigned.
This induces

(4.13.2)
F0 F1 Fr

(W0, E0) ←− (W1, E1) ←− . . . ←− (Wr , Er)

(same Fi), where
1. Wi is a (closed) smooth subscheme in Ni.
2. Fi = Sing(Ji, b).

So (4.13.1) induces (4.13.2), and (4.13.2) is a local sequence of the basic object
B1 = (W0, (J0, b), E0). Thus, if B1 and B2 are weakly equivalent they both define the
same (F , (N0, E

′′
0 )).

Secondly, we claim that the converse holds, namely that B1 and B2 must be weakly
equivalent if they both define (F , (N0, E

′′
0 )). This converse will be essential for some

inductive arguments that we will be used later. Recall that basic objects are to be
considered up to weak equivalence.

The difficulty in proving this converse, addressed in Proposition 4.14, is that
it is not clear that any local sequence of B1 = (W0, (J0, b), E0) will arise in this
way (from a local sequence over (N0, E

′′
0 )). In fact, given an immersion Wi ⊂ Ni,

and a smooth morphism Wi ←− Wi+1, it is not clear that there will be a smooth
morphism Ni ←− Ni+1 inducing the latter. For this reason it could be expected
that two basic objects, say (W0, (J0, b), E0) and (W0, (K0, d), E0), define the same
(F , (N0, E

′′
0 )) without being weakly equivalent. The following Proposition 4.14 settles
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this point. Moreover, it says that the ambient space N0, in which W0 is included, can
be neglected for the purpose of resolution.

Proposition 4.14. Fix (N0, E
′′
0 ) and (W0, E0) as above, so E0 = E′′

0 ⋔ W0 as
in (3.11.1).

1. Two basic objects B1 = (W0, (J0, b), E0) and B2 = (W0, (K0, d), E0), define
the same assignment of closed sets over (N0, E

′′
0 ) if and only if they are weakly

equivalent.
2. Neglecting the ambient space: A resolution of the basic object

(W0, (J0, b), E0) defines a resolution of (F , (N0, E
′′
0 )) (see Definition 2.29).

Proof. Suppose B1 and B2 are not weakly equivalent. There must be an index
r ≥ 0, and a common local sequence for both, say

(4.14.1)
(J0, d) (J1, d) (Jr, d)

(W0, E0)
γ0
←− (W ′

1, E1)
γ1
←− . . .

γr−1
←− (W ′

r , Er)

and

(4.14.2)
(K0, d) (K1, d) (Kr, d)

(W0, E0)
γ0
←− (W ′

1, E1)
γ1
←− . . .

γr−1
←− (W ′

r , Er)

so that Sing(Jr, b) 6= Sing(Kr, d) in W ′
r. (Take r = 0 if Sing(J0, b) 6= Sing(K0, d)).

If all γi are blow-ups, then the discussion in 4.11 says that this sequence can be
lifted to a sequence over (N0, E

′′
0 ), and this is a contradiction as we assume that both

B1 and B2 define the same assignment over (N0, E
′′
0 ). The problem arises if, for some

index i, γi is smooth.
Fix a point xr ∈ W ′

r so that Sing(Jr, b) 6= Sing(Kr, d) locally at xr. Let xi ∈ W ′
i

denote the image of xr for each index 0 ≤ i ≤ r − 1. There is no harm in modifying
this sequence by restrictions to neighborhoods of xi. If one could lift this restricted
sequence to a sequence over (N0, E

′′
0 ), this would also lead to a contradiction, as

Sing(Jr, b) 6= Sing(Kr, d) locally at xr.
The following Lemma ensures that such restriction can be defined, by replacing

Wi by an étale neighborhood of xi (sayWi again), so that it can be lifted to a sequence
over (N0, E

′′
0 ). This also leads to a contradiction as Sing(Jr, b) 6= Sing(Kr, d) at an

étale neighborhood of xr. It suffices to treat the case in which Sing(Ji, b) = Sing(Ki, d)
locally at xi, for each index 0 ≤ i ≤ r − 1.

Part (2) follows from 4.11.

Lemma 4.15. Fix a closed immersion of smooth schemes W ⊂ N , a smooth

morphism W
γ
←−W1 and a closed point x1 ∈W1. After restriction to a suitable étale

neighborhood of x1 ∈W1, we may assume that there is a smooth morphism N
Λ
←− N1,

so that W1 = Λ−1(W )(⊂ N1), and γ is defined by restriction of Λ to W1.

Proof. Recall the characterization of smooth morphisms. In this case, if n denotes

the dimension of the fiber of W
γ
←− W1 locally at x1, then (W1, x1) is an étale

neighborhood of (x,O) in W × An (x = γ(x1)). There is a natural lifting of the
inclusion W ⊂ N to W × An ⊂ N × An.

An étale neighborhood of N × An at (x,O) induces, by taking the pull-back of
the inclusion, an étale neighborhood of W ×An at (x,O). It suffices to show that this
induced neighborhood can be defined so as to dominate (W1, x1). In other words, fix
an inclusion of smooth schemes, say Z1 ⊂ Z2, a closed point x ∈ Z1, and an étale
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neighborhood (Z ′
1, x

′) of (Z1, x). It remains to prove that there is a étale neighborhood
(Z2, x), which induces on the subscheme Z1 an étale neighborhood that dominates
(Z ′

1, x
′). To prove this last claim make use of a well known property of étale topology

for schemes over perfect fields: given smooth scheme and a closed immersion, as is
the case for Z1 ⊂ Z2 (locally at x), after restriction to a suitable étale neighborhood
of (Z2, x), there is a retraction of Z2 on the restriction of Z1 (see, e.g. [14]). Note
that if Z1 ⊂ Z2 admits a retraction, say Z2 → Z1, then the fiber product with an
étale morphism Z ′

1 → Z1 define a scheme with an étale morphism over Z2 that fulfills
the required condition.

4.16. Functions on embedded basic objects (non-tame case). Set
(N0, E

′
0), and consider, as in 3.12, the assignment of closed sets on (N0, E

′
0) defined

by a closed immersion W0 ⊂ N0, a partition E′
0 = (E′

0)
+ ∪ (E′

0)
−, and a basic object

B0 = (W0, (J0, b), E0) where E0 is defined by restriction to W0 of hypersurfaces in
(E′

0)
+ (namely, E0 = (E′

0)
+ ⋔ W0 as in (3.11.1)). Let (F , (N0, E

′
0)) be the assignment

defined in this way.

Assumption 1. Suppose that (F , (N0, E
′
0)) assigns closed sets to the local se-

quence

(4.16.1) (N0, E
′
0) ←− (N1, E

′
1) ←− · · · ←− (Nk, E

′
k).

In such a case this sequence induces a local sequence over B0, say

(4.16.2)
(J0, b) (J1, b) (Jk, b)

(W0, E0) ←− (W1, E1) ←− · · · ←− (Wk, Ek),

where

(4.16.3)
(Ji, b) (Ji+1, b)

(Wi, Ei) ←− (Wi+1, Ei+1)

is obtained by a pull-back if (Ni, E
′
i)←− (Ni+1, E

′
i+1) is given by a smooth morphism,

or (4.16.3) is a blow-up with a center Yi with normal crossings with E′
i in Ni (in

particular with Ei in Wi); and of course the closed sets assigned to (4.16.1) are
Fi = Sing(Ji, b), i = 0, . . . , k.

Assumption 2. Suppose that Yi ⊂ Maxw-ordi for each index i for which
(Ni, E

′
i) ←− (Ni+1, E

′
i+1) is a blow-up. According to (4.6.2), this second assump-

tion ensures that

maxw-ord0 ≥ · · · ≥ maxw-ordk .

Definition 4.17. Set E′
k = (E′)+k ⊔ (E

′)−k , where (E
′)−k consists of all hypersur-

faces of E′
k which are strict transforms of hypersurfaces of (E′

0)
−. Set dk = dimWk

and define

t(em)
(dk)
k : Sing(Jk, b) −→ (Q× Z,≤) (lexicographic order)

t(em)
(dk)
k (ξ) = (w-ordk(ξ), n(em)k(ξ)),

n(em)k(ξ) = #{H ∈ (E′)−k | ξ ∈ H}
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for ξ ∈ Sing(Jk, b). In the same way we define functions

t(em)
(dk−1)
k−1 , t(em)

(dk−2)
k−2 , . . . , t(em)

(d0)
0 .

Corollary 4.18. Let (FB, (N0, E
′
0)) be defined by B0 = (W0, (J0, b), E0), and by

(N0, E
′
0) with a partition E′

0 = (E′
0)

+∪(E′
0)

−, as in 4.16. Consider all local sequences

(4.18.1) F0 = Sing(J0, b) F1 = Sing(J1, b) Fr = Sing(Jr, b)

(N0, E
′
0) (N1, E

′
1)oo · · ·oo (Nr, E

′
r)oo

with Yi ⊂ Maxw-ordi whenever Wi ←− Wi+1 is a blow-up with center Yi; and the
functions t(em)i : Fi −→ Q× Z 0 ≤ i ≤ r. Then:

1. This defines an assignment of closed sets and functions which are non-
increasing (see Definition 2.35). Namely, if Yi ⊂ Max t(em)i(⊂ Maxw-ordi),
then t(em)i−1(πi(x)) ≥ t(em)i(x) for any x ∈ Sing(Ji, b).

2. This assignment depends only on the weak equivalence class of B0 =
(W0, (J0, b), E0).

In particular, it follows that

max t(em)0 ≥ · · · ≥ max t(em)r,

if Yi ⊂Max t(em)i for every index i for which Ni ← Ni+1 is defined with center Yi.

Remark 4.19. A similar statement as that in Corollary 4.18 holds for the
functions ti in 4.10, defined for a basic object B0 = (W0, (J0, b), E0), and setting
(FB0 , (W0, E0)) as in Example 2.27, and a sequence (4.10.1). Note that the functions
t are defined in terms of the functions order, and that

(4.19.1) max t0 ≥ · · · ≥ max tr

holds for a sequence satisfying the conditions of Definition 2.35 (see Remark 2.36).

4.20. Our Handy Lemma 2.37 and Corollary 4.18, (2), say that one can
attach to the maximum value max t(em)0 an assignment of closed sets. Say
(F0(max t(em)0), (N0, E

′
0)).

Similarly, the Handy Lemma and 4.19 also say that one can attach to the maxi-
mum value max t0 an assignment of closed sets. Say (FB0(max t0), (W0, E0)).

Let us emphasize here that max t(em) = (p, q) ∈ Q×N can have first coordinate
p = 0 (as opposed to max t = (p, q), defined with p > 0 in 4.10).

Remark 4.21. On the inductive nature of the function t(d). The inductive
functions t(d) were defined in Definition 4.10 for basic objects. Theorem 4.22 will
show how these functions lead to a unique resolution by induction on the dimension
d.

One can check that a basic object B0 = (W0, (J0, b), E0) is, in particular, a tame
general basic object by setting N0 = W0 and E′

0 = E0 in Definition 3.13, B). We shall
ultimately show, in Section 5, that the inductive functions t(d) can also be defined in
the context of tame general basic objects. Moreover, the form of induction on d, given
in Theorem 4.22, is defined in terms of general basic objects (of smaller dimension)
which are also tame.

This will ultimately lead to Theorem 4.26, which ensure that the functions t(d)

define, by induction, a unique resolution for general basic objects which are tame.
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In particular they define resolutions for basic objects, and here we discuss why these
functions lead to this particular strategy of resolution, starting with a basic object.
Fix B0 = (W0, (J0, b), E0) and a sequence of blow-ups

(4.21.1) (J0, b) (J1, b) (Jr, b)

(W0, E0) (W1, E1)
πY0

oo · · ·
πY1

oo (Wr, Er)
πYr−1

oo

with centers Yi ⊂Maxw-ordi for all index i. So maxw-ord0 ≥ · · · ≥ maxw-ordr (see
(4.6.2)).

As was indicated in Remark 4.9, in order to achieve a resolution of B0 it suffices
to construct the sequence so that maxw-ordr = 0. So if maxw-ordr = 0 we are
done. Suppose in what follows that maxw-ordr 6= 0. Let us indicate why a sequence

with this condition can be constructed in terms of the functions t
(d)
r : Sing(Jr, b) −→

(Q × Z,≤) (lexicographic order) (d = dimW0). Recall that t
(d)
r is defined under

the assumption that maxw-ordr 6= 0, and the second coordinate is bounded by the
dimension d. In particular max tr = (p, q), p 6= 0, p ∈ 1

b
N, and q is bounded by d.

1) Canonical choice of centers. Note that Max t
(d)
r is a closed set in Wr. Let

R(1)(Max t
(d)
r ) denote the union of components of the closed set Max t

(d)
r of codimen-

sion one (in Wr). Then R(1)(Max t
(d)
r ) is both open and closed in Max t

(d)
r . After

open restriction we may assume that R(1)(Max tr) = Max tr. The property is that
R(1)(Max tr) is a smooth permissible center, and setting Yr = R(1)(Max tr), we get
(4.21.2)

(J0, b) (J1, b) (Jr , b) (Jr+1, b)

(W0, E0)
πY0←− (W1, E1)

πY1←− . . .
πYr−1
←− (Wr , Er)

πYr←− (Wr+1, Er+1)

and max tr > max tr+1. This shows that R(1)(Max tr) is our canonical choice of center,
and reduces the problem to the case R(1)(Max tr) = ∅.

2) The case max t(d) = (p, q) and R(1)(Max t
(d)
r ) = ∅. According to 4.20, one

can attach to the maximum value, say max tr, an assignment of closed sets; say
(Fr(max tr), (Wr , Er)), and the property is that this assignment can be endowed with

a structure of a tame (d − 1)-dimensional general basic object over (Wr, E
(1)
r ), for a

suitable subset E
(1)
r ⊂ Er.

Theorem 4.22 (Inductive property of t(d)). Set Br = (Wr, (Jr, b), Er) as
above and d = dimWr. If Max tr has no component of dimension d − 1 (i.e., if

R(1)(Max t
(d)
r ) = ∅), then the assignment of closed sets (Fr(max tr), (Wr , Er)) is

equivalent to a tamely embedded general basic object of dimension d− 1, defined over

(Wr, E
(1)
r ), in terms of a suitable basic object (Wr , (Dr, b), E

(1)
r ).

Proof. We refer to Lemma 6.12 in [20] for details and a precise statement. First

set s0 as in (4.10.3), and let E
(1)
r be the set of exceptional hypersurfaces that arise

by blowing up at Ys0 , Ys0+1, . . . , Yr−1. We attach a basic object (Wr, (Dr, b), E
(1)
r ) (a

so called simple basic object) which in turn gives rise to a d − 1-dimensional tame

general basic object over (Wr , E
(1)
r ). This d − 1-dimensional structure is defined by

local restrictions to smooth hypersurfaces of maximal contact.

In particular, if we assume by induction, the existence of resolutions for tame
general basic objects of dimension d − 1, then there is an integer R > r, and a
sequence
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(4.22.1)
(J0, b) (J1, b) (Jr, b) (Jr+1, b)

(W0, E0)
πY0
←− (W1, E1)

πY1
←− . . .

πYr−1
←− (Wr, Er)

πYr
←− . . .

πYR−1
←− (WR, ER)

so that (p, q) = max t
(d)
r = max t

(d)
r+1 = · · · = max t

(d)
R−1 > max t

(d)
R .

As p ∈
1

b
Z, and q is a positive integer bounded by d, at some point the value p

must drop. So by successive applications of this method we finally come to the case
in which maxw-ordR = 0, as was required.

4.23. As for the uniqueness of the resolution of B0 = (W0, (J0, b), E0), recall

that if we choose centers Yi ⊂ Max t
(d)
i , then max t0 ≥ max t1 ≥ · · · ≥ max tr (Remark

4.19). Set r0 as the smallest index for which max tr0 = max tr0+1 = · · · = max tr, and
apply Theorem 4.22 at r0, which states that (Fr0(max tr0), (Wr0 , Er0)) is equivalent

to a tame assignment of dimension d− 1 over (Wr0 , E
(1)
r ).

So far we have discussed matters over the basic object B0 = (W0, (J0, b), E0),
but the same applies for a tamely embedded basic object, say (FB0 , (N0, E

′′
0 )) defined

by B0 = (W0, (J0, b), E0), and (N0, E
′′
0 ), as in 4.11. Recall that a sequence (4.11.1)

induces a sequence (4.11.2)
We can reformulate Theorem 4.22 by:

Theorem 4.24 (Inductive property of t(d) for tamely embedded basic objects).
Set (FB0 , (N0, E

′′
0 )), B0, r and r0 as above. Set Br = (Wr, (Jr, b), Er) and d = dimWr.

If Max t
(d)
r has no component of dimension d − 1, then the assignment of closed sets

(Fr(max t
(d)
r ), (Nr, E

′′
r )) is equivalent to a tamely embedded general basic object of

dimension d − 1, defined over (Nr, (E
′′
r )

(1)), where (E′′
r )

(1) are the hypersurfaces of
E′′

r that arise by blowing up at Ys0 , Ys0+1,. . . , Yr−1, and s0 is as in (4.10.3).

4.25. The definition of the inductive functions t(d) for tamely embedded general
basic objects, to be discussed Section 5, will be done by patching the functions on the
d-dimension basic objects involved in Definition 3.13, B). Once this point is settled,
the Theorem will be:

Theorem 4.26 (Inductive property of t(d) for tamely embedded general basic
objects). Let (F , (Nr, Er)) be a tamely embedded general basic object of dimen-

sion d (see Definition 3.13). If Max t
(d)
r has no component of dimension d − 1 then

(F(max t
(d)
r ), (Nr, Er)) is d−1-dimensional and tamely embedded over (Nr, E

′
r), where

E′
r is a suitable subset of Er.

4.27. On the role of the function t(em)(d). The functions t(em)(d) where
defined in Definition 4.17 only for embedded basic objects of dimension d (for the
non-tame case). These are, in particular, general basic objects (3.13). In Section
5, we also prove that the functions t(em)(d) can be defined for any d-dimensional
general basic object. We shall also indicate why these functions are well adapted
to the Hilbert-Samuel stratification and particularly with Theorem 3.16. They will
enable us to reduce the resolution of a d-dimensional general basic object to that of
resolution of a tame general basic object of the same dimension d. The latter will be
guaranteed by the inductive function t(d).
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In this section we explain why this property will hold by studying the functions
t(em)(d) in the (restricted) context of embedded basic objects.

4.28. Let (FB, (N0, E
′
0)) be the assignment defined by a basic object B0 =

(W0, (J0, b), E0), and by (N0, E
′
0) with a partition E′

0 = (E′
0)

+ ∪ (E′
0)

−. Consider
assignments over (N0, E

′
0) defined by (FB0 , (N0, E

′
0)), say

(4.28.1) F0 = Sing(J0, b) F1 = Sing(J1, b) Fr = Sing(Jr, b)

(N0, E
′
0) (N1, E

′
1)oo · · ·oo (Nr, E

′
r)oo

with Yi ⊂ Max t(em)i for each i for which Wi ←−Wi+1 is defined with center Yi. Set

Br = (Wr , (Jr, b), Er),

where Wr ⊂ Nr, and E′
r = (E′

r)
+ ∪ (E′

r)
− as in Definition 4.17. In particular,

Er = Wr ⋔ (E′
r)

+.
In this setting

max t(em)
(d)
0 ≥ · · · ≥ max t(em)(d)r (see Corollary 4.18)

and the Handy Lemma says that a new assignment (Fr(max t(em)
(d)
r ), (Nr, E

′
r)) is

defined for (FBr
, (Nr, E

′
r)) with the previous partition E′

r = (E′
r)

+ ∪ (E′
r)

−.

The closed set assigned by (Fr(max t(em)
(d)
r ), (Nr, E

′
r)) to (Nr, E

′
r) is

Max t(em)
(d)
r . To ease the notation assume that (4.28.1) is a sequence of blow-ups,

so dimWr = dimW0 = d.

Theorem 4.29 (Descending property of t(d)(em) for embedded basic objects).
Set Br = (Wr , (Jr, b), Er) and E′

r = (E′
r)

+ ∪ (E′
r)

− as above, and d = dimWr.
The assignment of closed sets (Fr(max t(em)r), (Nr, E

′
r)) is equivalent to a tamely

embedded basic object, of the same dimension d, defined over (Nr, (E
′
r)

+) by a basic
object Dr = (Wr, (Dr, e), Er).

Note that Er is the same for Dr and Br (in particular Er = W0 ⋔ (E′
r)

+).
Before we address the proof of Theorem 4.29 let us indicate that it states that
(Fr(max t(em)r), (Nr, E

′
r)) can be identified with an assignment of closed sets

over (Nr, (E
′
r)

+) defined by the closed immersion Wr ⊂ Nr and a basic object
(Wr, (Dr, b), Er). This is an embedded assignment in the setting of 4.11 and 4.13
(in the tame case). We may therefore apply Proposition 4.14 which says that a reso-

lution of (Fr(max t(em)
(d)
r ), (Nr, E

′
r)) is achieved by a resolution of the basic object

(Wr, (Dr, b), Er) (disregarding the embedding in Nr).
Since we know how to achieve resolution of basic objects of dimension d (see

Remark 4.21), one may extend the previous sequence to, say
(4.29.1)

F0 = Sing(J0, b) Fr = Sing(Jr, b) FR = Sing(JR, b)

(N0, E
′
0) . . .oo (Nr, E

′
r)oo · · ·oo (NR, E

′
R)

oo

for some R ≥ r, so that

max t(em)
(d)
0 ≥ · · · ≥ max t(em)(d)r = max t(em)

(d)
r+1 = · · · = max t(em)

(d)
R−1 > max t(em)

(d)
R
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Let us emphasize here that max t(em)(d) = (p, q) ∈ Q×N can have first coordinate
p = 0 (as opposed to max t(d) = (p, q) with p > 0). After successive applications

of resolution of basic objects we come to the case in which max t(em)
(d)
R = (0, 0),

which is the natural analog of the case maxw-ord = 0 for basic objects, and can be
therefore resolved, as was indicated in 4.9, by means of the functions h with values

on Γ (see 4.9.4). In fact, as the second coordinate of max t(em)
(d)
R = (0, 0) is zero, no

hypersurface of (E′
R)

− intersects FR so the conditions in Proposition 4.14 apply for
(FBR

, (NR, E
′
R)).

Proof of Theorem 4.29. The sequence (4.28.1) defines:
1) (Nr, E

′
r) and a partition E′

r = (E′
r)

+ ∪ (E′
r)

−.
2) The basic object Br = (Wr, (Jr, b), Er) and a closed immersion Wr ⊂ Nr.
3) A factorization

(4.29.2) Jr = I(Hs+1)
a1 · · · I(Hs+r)

ar J̄r

as in (4.1.4).

Set max t(em)
(d)
r = (p, q), so p = maxw-ordr = a

b
∈ 1

b
N, and of course

Max t(em)
(d)
r is a closed subset in Sing(Jr, b).

Note first that if a 6= 0 then Maxw-ordr = Sing(Jr, b) ∩ Sing(J̄r, a). Note also
that the second coordinate q is a non-negative integer, and that there are points
in Maxw-ordr which may be in q different hypersurfaces of (E′

r)
−, but no point of

Maxw-ordr is contained in q + 1 hypersurfaces of (E′
r)

−.
Assume that (E′

r)
− has M hypersurfaces, say (E′

r)
− = {H1, H2, . . . , HM}, and

let C(q) denote the set of all subsets of {1, 2, . . . ,M} with q elements.
Set K(q) =

∏
F∈C(q)

∑
i∈F I(Hi). Here K(q) is an ideal over Nr. As a closed set

in Wr is closed also in Nr and one can check that:
A) If a 6= 0, then

Max t(em)(d)r = Sing(Jr, b) ∩ Sing(J̄r, a) ∩ Sing(K(q), 1).

B) If a = 0, then

Max t(em)(d)r = Sing(Jr, b) ∩ Sing(K(q), 1)

One can also check that the following properties hold:
P1) If Y is a closed and smooth subscheme in Sing(K(q), 1), then Y ⊂ Hi

whenever Hi ∩ Y 6= ∅ and Hi ∈ E−
r . In particular, if Y ⊂ Max t(em)

(d)
r , then Y has

normal crossings with (Nr, E
′
r) if and only if it has normal crossings with (Nr, (E

′)+r ).
P2) If

Fr = Sing(Jr, b) Fr+1 = Sing(Jr+1, b)
(Nr, E

′
r) ←− (Nr+1, E

′
r+1)

is defined by choosing a center Y as above, then it induces transforms of the ba-
sic objects (Wr, (Jr, b), Er), (Wr, (J̄r, a), Er), (Wr , (K(q), 1), Er), and either (p, q) =

max t(em)
(d)
r > max t(em)

(d)
r+1, or (p, q) = max t(em)

(d)
r = max t(em)

(d)
r+1.

In this last case either A) or B) holds for Max t(em)
(d)
r+1, where the pairs in the

right hand side of the equalities are replaced by their transforms.
There is a standard argument to define (D, e) so that Sing(D, e) is the right hand

side in A), or in B), and that such equality is preserved by transformations as in P2)
(see Exercise 14.4 in [20]).
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4.30. It will be shown in Section 5, that the functions t(em)(d) can be defined
for embedded general basic objects.

Theorem 4.31 (Descending property of t(d)(em) for embedded general basic
objects). Let (F , (N0, E

′
0)) and E′

0 = (E′
0)

+ ∪ (E′
0)

− define a general basic object of
dimension d, and let (F ′

r, (Nr, E
′
r)) and E′

r = (E′
r)

+ ∪ (E′
r)

− be defined by a sequence

of transformations as in (4.28.1). Then (Fr(max t(em)
(d)
r ), (Nr, E

′
r)) is equivalent to

a tame embedded assignment of dimension d, defined over (Nr, (E
′
r)

+).

5. Adaptability of the inductive function t and resolution of singulari-
ties.

5.1. Summarizing the previous discussion. We want to prove that resolu-
tion of singularities grows from resolution of basic objects, subjects to the condition
that the later is compatible with Hironaka’s notion of equivalence (see Definition 2.14).
In 3.12 and in 3.11 we introduce the notions of embedded and of tamely embedded
basic objects, respectively. Finally these two notions led us to the notions of embed-
ded general basic objects in 3.13 (and tamely embedded in 3.13, B)). This extension
requires some patching which we discuss below.

The functions t(d) and t(em)(d) were studied in the setting of embedded basic
objects. We show now that:

I) The inductive function t(d) can be defined for any tamely embedded gen-
eral basic object. And a resolution is attained (essentially) in terms of t(d),
t(d−1),. . . .

II) The function t(em)(d) can be defined for any embedded general basic object.
And it allows us to reduce the resolution of embedded general basic objects to
that of tamely embedded general basic objects. Resolution of embedded gen-
eral basic objects of dimension d is obtained (essentially) in terms of t(em)(d),
t(d), t(d−1),. . . , t(1).

These two results will be discussed in Case 0). Some more generality will be
needed to come from resolution of general basic objects to resolution of singularities.
This is discussed in Case 1 and Case 2. The point is that we have defined the notion
of general basic objects making use of an embedding in a smooth scheme N and more
precisely as an assignment of closed sets on, say (N,E), where E are hypersurfaces in
N with only normal crossings. A property of constructive resolution of singularities
is that one can easily adapt it so that it provides a resolution of singularities which
is independent of the embedding: Suppose that a reduced scheme X is embedded in
two different smooth schemes, say X ⊂ N and X ⊂ M , where N and M may have
different dimension. The problem of resolution of singularities of X will lead us to
that of constructing a resolution of a general basic object over N , on the one hand,
and that of constructing a resolution of a general basic object over M , on the other.
So we will want to know that the two general basic objects, embedded in different
spaces, undergo the same constructive resolution. Precise statements of these facts
are discussed in cases 1) and 2).

5.2. Case 0: Two basic object and the same embedding. Fix, as in 3.12,
a smooth scheme N0, a set E′

0 of hypersurfaces with normal crossings at N0, together
with a partition in two disjoint sets: say (E′

0)
+ and (E′

0)
−. Assume now that there

are two closed immersions W0 ⊂ N0, and V0 ⊂ N0 of smooth schemes, both W0 and
V0 of the same dimension d.
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Moreover, suppose that there are two basic objects, say B = (W0, (J0, b), E0), and
B′ = (V0, (K0, d), F0), so that E0 = (E′

0)
+ ⋔ W0 and F0 = (E′

0)
+ ⋔ V0.

Assume finally that both basic objects B and B′ define the same assignment of
closed sets over (N0, E

′
0), say (F , (N0, E

′
0)).

Strictly speaking, our proof in 6.1 will show that Hironaka’s functions order, intro-
duced in (2.21.1), coincide for two weakly equivalent basic objects say, (W0, (J0, b), E0)
and (W0, (K0, d), E0) (both with the same (W0, E0), which is not the case in our set-
ting). And the main argument in such proof is that two such basic objects define the
same closed sets. If we expect to argue similarly in our context, in which Sing(J0, b)
is a closed set in W0 and Sing(K0, d) is a closed set in V0 then, in principle, it makes
no sense to say that two closed sets in different spaces are the same.

We overcome this difficulty simply by viewing them as the same closed set in N0.
This suffices to show that Hironaka’s function order is well defined on a d-dimensional
general basic object (F , (N0, E

′
0)) (see Theorem 3.14). So in this case we do not

want to disregard the embedding in N0, because its is through this embedding that
(W0, (J0, b), E0), and (V0, (K0, d), F0) define the same closed sets (see Corollary 2.22).

The previous discussion already ensures that the functions t(d)(em) are well de-
fined for the embedded basic object (F , (N0, E

′
0)) and its transforms, independently

of the choice of (W0, (J0, b), E0) or (V0, (K0, d), F0).
In the particular case in which the embedded basic objects are tame (3.11)

(namely, if (E′
0)

− = ∅) a similar argument proves that the inductive function t(d)

is well defined on (F , (N0, E
′
0)) and its transforms (they are the same independently

of the choice of (W0, (J0, b), E0) or (V0, (K0, d), F0) and their transforms).
Theorem 4.29 says that after a suitable sequence of, say r transformations,

(Fr(max t(em)(d)r ), (Nr, E
′
r))

is equivalent to:
1) a tamely embedded basic object of dimension d, defined over (Nr, (E

′
r)

+) by
a basic object (Wr, (Dr, b), Er), where Er = Wr ⋔ (E′

r)
+.

2) a tamely embedded basic object of dimension d, defined over (Nr, (E
′
r)

+) by
a basic object (Vr, (Gr, c), Fr), where Fr = Vr ⋔ (E′

r)
+.

We claim now that the resolution of the d-dimensional basic objects
(Wr, (Dr, b), Er) and that of (Vr, (Gr, c), Fr) define the same sequence of transfor-
mations over (Nr, (E

′
r)

+).

We argue again as before. Here Max t(em)
(d)
r = Sing(Dr, b) = Sing(Gr, c) and

the same holds for transformations on centers included in Max t(em)
(d)
r′ , r′ ≥ r.

So again, these two d-dimensional basic objects define the same closed sets if we
view them in (Nr, (E

′
r)

+) (or in a transform (Nr′ , (E
′
r′)

+), r′ ≥ r). So both
basic objects give rise now to the same tamely embedded basic object, namely

(Fr(max t(em)
(d)
r ), (Nr, (E

′
r)

+)), of dimension d.
The previous discussion also applies to shows that the inductive functions t(d)

are defined for tamely embedded general basic objects. As these inductive functions
are well defined, the closed sets Max t(d) are well defined. Now the theorems of
the inductive property of the functions t(d) apply again, and defines now a d − 1
dimensional tamely embedded general basic object. These leads to a full resolution

of (Fr(max t(em)
(d)
r ), (Nr, (E

′
r)

+)), which is defined, by induction on d, essentially
in terms of the inductive functions, namely t(d), t(d−1), . . . , t(0). Here each t(d−i)

is applied on a (d − i)-dimensional tamely embedded general basic object, and a
(d− i−1)-dimensional tamely embedded general basic object is defined by max t(d−i).
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5.3. Case 1: A same basic object and two different embeddings. In the
definition of an embedded basic object (F , (N0, E

′
0)) in 3.12 we fix

1. (N0, E
′
0), and a decomposition E′

0 = (E′
0)

+ ∪ (E′
0)

−,
2. a closed embedding W0 ⊂ N0 and a basic object (W0, (J0, b), E0), where

(E′
0)

+ ⋔ W0 = E0.
Suppose that another assignment, say (G, (M0, F

′
0)), is defined by

1. (M0, F
′
0), and a decomposition F ′

0 = (F ′
0)

+ ∪ (F ′
0)

−,
2. a closed embedding W0 ⊂M0 and (W0, (J0, b), E0), where (E

′
0)

+ ⋔ W0 = E0.
Note that both make use of the same (W0, (J0, b), E0). Moreover, quite often this
situation arises together with a natural bijection of hypersurfaces in (E′

0)
+ with those

in (F ′
0)

+, and a bijection of hypersurfaces in (E′
0)

− with those in (F ′
0)

−, in such a
way that the functions t(em) naturally coincide. For example, take (W0, (J0, b), E0)
with E0 = ∅, and two different closed embeddings: say W0 ⊂ N0 and W0 ⊂ M0 in
arbitrary smooth schemes.

A sequence of blow-ups over (W0, (J0, b), E0 = ∅), say

(5.3.1)
(J0, b) (J1, b) (Jk0 , b)

(W0, ∅)
πY0←− (W1, E1)

πY1←− · · ·
πYk0−1

←− (Wk0 , Ek0)

defines, via the two immersions, two sequences, say

(5.3.2) (N0, E
′
0 = ∅) ←− (N1, E

′
1) ←− · · · ←− (Nk0 , E

′
k0
)

and

(5.3.3) (M0, F
′
0 = ∅) ←− (M1, F

′
1) ←− · · · ←− (Mk0 , F

′
k0
)

Now we obtain two inclusions, say: Wk0 ⊂ Nk0 and Wk0 ⊂ Mk0 , and two different
assignments defined by:

1. (Wk0 , (Jk0 , b), Ek0) and (Nk0 , E
′
k0
),

2. (Wk0 , (Jk0 , b), Ek0) and (Mk0 , F
′
k0
).

Each exceptional hypersurface arises from a blow-up. This provides a natural
correspondence of hypesurfaces in E′

k0
(in Nk0) with hypersurfaces in F ′

k0
(in Mk0).

These last two embedded basic objects are tame. But we can also modify them
so as to be non-tame. For example by taking

1. (Wk0 , (Jk0 , b), ∅) and (Nk0 , E
′
k0
),

2. (Wk0 , (Jk0 , b), ∅) and (Mk0 , F
′
k0
),

where now both are in the setting of 4.16: each is an immersion which is not tame.
Let (F , (Nk0 , E

′
k0
)) denote the first assignment and let (G, (Mk0 , F

′
k0
)) denote

the second where now both are non-tame. One check that this is a situation in
which the functions t(em)(d) (d = dimW0) are the same both for (F , (Nk0 , E

′
k0
)), for

(G, (Mk0 , F
′
k0
)), and for simultaneous transforms.

Following the notation of Theorem 4.29, this leads, on the one

hand to (Fk0(max t(em)
(d)
k0

), (Nk0 , E
′
k0
)), and, on the other hand to

(Fk0(max t(em)
(d)
k0

), (Mk0 , F
′
k0
)). The theorem asserts that both are now tamely

embedded basic objects of dimension d = dim(Wk0 ), and both defined by basic
objects on Wk0 .

Proposition 4.14 ensures that these two tamely embedded basic object define two
basic objects on Wk0 which are weakly equivalent. For the resolution of a tamely
embedded basic object we make use of the function t(d). In this case the descending
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properties in Theorem 4.24 says that the (Fk0(max t
(d)
k0

), (Nk0 , E
′
k0
)) defines a general

basic object on Wk0 , and also (Fk0(max t
(d)
k0

), (Mk0 , F
′
k0
)) defines a basic object on

Wk0 , and both are weakly equivalent. So both (Fk0(max t(em)
(d)
k0

), (Nk0 , E
′
k0
)) and

(Fk0(max t(em)
(d)
k0

), (Mk0 , F
′
k0
)) lead to the same non-embedded d-dimensional gen-

eral basic object on Wk0 . And here it makes sense to say that the two assignments

(Fk0(max t(em)
(d)
k0

), (Nk0 , E
′
k0
)) and (Fk0(max t(em)

(d)
k0

), (Mk0 , F
′
k0
)) are the same, as

their closed sets lie as subsets of the same space (Wk0 or a transform of Wk0 ).

5.4. Case 2: Two different basic objects and two different embeddings.
The problem of resolution of singularities will lead us to this further generalization.
The following example illustrates this fact.

Fix a singular reduced scheme X0 and:
1. a closed embedding X0 ⊂W0, and
2. a closed embedding X0 ⊂ V0,

where V0 and W0 are smooth schemes which might have different dimension.
Hironaka says that (after taking suitable étale neighborhoods), there are two basic

objects:
(1’) (W0, (J0, b), ∅),
(2’) (V0, (K0, c), ∅),

and satisfying the following conditions: Here (1’) defines an assignment of closed sets,
say (F, (W0, ∅)), and 2’) defines (G, (V0, ∅)). The closed set assigned to W0, and to
V0, is the Hilbert-Samuel stratum of X0. The embedded dimension (and also the
dimension) of X0 locally at any closed point in the Hilbert stratum is constant. Take
d to be, for example, the dimension. Then Theorem 3.16 says that both (F, (W0, ∅))
and (G, (V0, ∅)) have a structure of d-dimensional general basic objects. Actually both
are tame in this case as the second coordinates are ∅.

The closed set defined by (F0, (W0, ∅)) and by (G0, (V0, ∅)) are Sing(J0, b) and
Sing(K0, c) which we naturally identify with the Hilbert-Samuel stratum of X0. The
same holds for transformations.

As both are general basic objects of the same dimension d, 6.1 will show that
there is a well defined function

ord(d) : Sing(J0, b) −→ Q and ord(d) : Sing(K0, d) −→ Q,

which coincide as functions on the Hilbert stratum. The same will hold if we take
a common sequence of blow-ups as both are the basic objects corresponding to the
highest Hilbert Samuel function of X0 and its transforms. So the inductive functions
t(d) will coincide via this identification, and moreover, if

(5.4.1)
F0 F1 Fk0

(W0, E
′
0 = ∅) ←− (W1, E

′
1) ←− · · · ←− (Wk0 , E

′
k0
)

and

(5.4.2)
G0 G1 Gk0

(V0, F
′
0 = ∅) ←− (V1, F

′
1) ←− · · · ←− (Vk0 , F

′
k0
)

are the resolutions defined by blowing up at the maximum of the functions (essentially
t(d), t(d−1), . . . ,t(1)), they both induce a sequence of blow-ups over X0, say

(5.4.3) X0

πY0←− X1

πY1←− · · ·
πYk0−1

←− Xk0 ,
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together with closed immersions Xi ⊂ Wi, and Xi ⊂ Vi. In fact, for each index i,
centers Yi in (5.4.1) and in (5.4.2) coincide as subsets of the Hilbert-Samuel stratum
of Xi. Note that Yi arises as the maximum of a function defined in terms of the
inductive functions t(d), t(d−1),. . . . Moreover:

• maxHSX0 = maxHSX0 = · · · = maxHSXk0−1
> maxHSXk0

.
• There are closed immersions Xk0 ⊂ Wk0 , Xk0 ⊂ Vk0 , and a natural corre-
spondence between E′

k0
and F ′

k0
as discussed in Case 1).

Hironaka says that (after taking suitable étale neighborhoods), there are two basic
objects:

(1’) (Wk0 , (Jk0 , b
′), E′

k0
),

(2’) (Vk0 , (Kk0 , c
′), F ′

k0
),

where (1’) defines an assignment of closed sets, say (Fk0 , (Wk0 , E
′
k0
)) and (2’) defines

(Gk0 , (Vk0 , F
′
k0
)) both attached to the Hilbert-Samuel stratum of Xk0 .

Take d to be the dimension of Xk0 at any closed point of the stratum. Then The-
orem 3.16 says both (Fk0 , (Wk0 , E

′
k0
)) and (Gk0 , (Vk0 , F

′
k0
)) are d-dimensional gen-

eral basic objects. In addition there is a natural bijection of E′
k0

with F ′
k0
. Set

(E′
k0
)− = E′

k0
and (F ′

k0
)− = F ′

k0
.

As both are general basic objects of the same dimension d, the previous discussion,
and that in Case 1), show that the inductive functions t(em)(d) will coincide via this
identification, and moreover, if

(5.4.4)
Fk0 Fk0+1 Fk1

(Wk0 , E
′
k0
) ←− (Wk0+1, E

′
k0+1) ←− · · · ←− (Wk1 , E

′
k1
)

and

(5.4.5)
Gk0 Gk0+1 Gk1

(Vk0 , F
′
k0
) ←− (Vk0+1, F

′
k0+1) ←− · · · ←− (Vk1 , F

′
k1
)

are the resolutions defined by blowing up at centers included in the maximum of the
functions, they both induce a sequence of blow-ups over Xk0 , say

(5.4.6) Xk0 Xk0+1

πYk0
oo · · ·

πYk0+1
oo Xk1

πYk1−1
oo

together with closed immersions Xi ⊂ Wi, and Xi ⊂ Vi. In fact, for each index i,
centers Yi in (5.4.4) and in (5.4.5) coincide as subsets of the Hilbert-Samuel stratum of
Xi. Note that Yi arises as the maximum of a function defined in terms of the function
t(em)(d) (see Case 1)), and the inductive functions t(d), t(d−1),. . . . Moreover:

• maxHSXk0
= maxHSXk0+1

= · · · = maxHSXk1−1
> maxHSXk1

.
• There are closed immersions Xk1 ⊂ Wk1 , Xk1 ⊂ Vk1 , and a natural corre-
spondence between E′

k1
and F ′

k1
as discussed in Case 1).

so again we set (E′
k1
)− = E′

k1
and (F ′

k1
)− = F ′

k1
and repeat the previous argument.

Finally, Hironaka proves that a sequence of transformations as above, so that

maxHSX0 > maxHSXk0
> maxHSXk1

> . . .

leads to a resolution of singularities of X0 if it is reduced, since maxHSXi
cannot

decrease infinitely many times.

5.5. Constructive resolution. We first address the constructive resolution
of a basic objects B0 = (W0, (J0, b), E0) as stated in 2.8. It also applies to tame
embedded general basic objects.
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Definition 5.6. Set T d = {∞} ⊔ (Q × Z) ⊔ Γ where this disjoint union is
totally ordered by setting that ∞ is the biggest element, (Q × Z) is ordered by the
lexicographic order, and that α < β if β ∈ (Q × Z) and α ∈ Γ (see (4.9.4)). Set now
Id = T d × Id−1 ordered lexicographically, and define gdr : Sing(Jr, b) −→ Id.

(i) If maxw-ordr = 0: gdr (x) = (h(x),∞d−1) (see (4.9.4)).
(ii) If maxw-ordr > 0, then it will be enough to define the function for x ∈

Max t
(d)
r (⊂ Sing(Jr, b)) In fact, we will define the resolution function, and

hence the resolution sequence, so that centers be included in Max t
(d)
r . Let

(J ′′, b′′) be the d-dimensional basic object attached to max t
(d)
r (defining the

closed set Max t
(d)
r , (see 4.24)), and finally set:

A) gdr (x) = (max t
(d)
r ,∞d−1) if x ∈ R(1)(Max t

(d)
r ) (see Remark 4.21).

B) gdr (x) = (max t
(d)
r , gd−1

r (x)), if x /∈ R(1)(Max t
(d)
r ), where gd−1

r (x) is
defined in accordance to the (d − 1)-dimensional general basic object
attached to (J ′′, b′′) (see Theorem 4.24).

The precise definition in this case B) requires some clarification: Assume, by

induction, that Id−1 has been introduced, and also functions g
(d−1)
r which define

resolution of (d− 1)-dimensional general basic objects.
T d is the totally ordered set introduced for constructive resolution for tame general

basic objects, in terms of the functions gdr . The string of invariants attached to max gdr
looks like:

1) max gdr = (α1, α2, . . . , αe,∞,∞, . . . ,∞), where αi ∈ (Q× Z).
2) max gdr = (α1, α2, . . . , αe, γ,∞,∞, . . . ,∞), αi ∈ (Q × Z), where γ ∈ Γ. One

can also read the dimension of the canonically defined center Max gdr from
this datum (see [7]).

Remark 5.7. Resolution of a d-dimensional reduced scheme over fields of char-
acteristic zero is achieved by setting the totally ordered set NN× (Q×Z)×Id, ordered
lexicographically, and for any such scheme X set the functions

f (d)(x) : (HSX(x), t(em)(d)(x), g(d)(x)).

Follow the indication in Definition 5.6 for the definition of the third coordinate in
terms of the first two coordinates.

The compatibility of the constructive resolution with smooth morphisms in 2.5,
follows from:

1. the discussion in 2.16, and
2. the discussion in Remark 4.5 which shows that this property relies entirely

on the compatibility of Hironaka’s function ord with smooth morphisms.

6. On Hironaka’s main invariant.

6.1. On Hironaka’s tricks.

Proof of Theorem 2.21. Fix a basic object B0 = (W0, (J0, b), E0), and set d =
dimW0. Recall that this basic object defines an d-dimensional assignment of closed
sets (F0, (W0, E0)) by assigning for all local sequence (see Definition 2.13):

(6.1.1)
(J0, b) (J1, b) (Jr, b)

(W0, E0) ←− (W1, E1) ←− · · · ←− (Wr, Er)
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closed sets

(6.1.2)
Sing(J0, b) Sing(J1, b) Sing(Jr, b)
(W0, E0) ←− (W1, E1) ←− · · · ←− (Wr , Er)

This is an assignment of closed sets where Fi = Sing(Ji, b).
Hironaka indicates that if you consider all possible sequences (6.1.2), then you can

find out the rational number
νx0 (J0)

b
at any x0 ∈ Sing(J0, b). More precisely, if you

consider all sequences (6.1.2) together with points xi ∈ Fi, each xi mapping to xi−1

(and hence all mapping to x0 ∈ F0), then the rational number
νx0(J0)

b
is completely

determined by the codimension of Fi in Wi locally at xi, for all sequences as before. In
particular, if B0 = (W0, (J0, b), E0) and B′

0 = (W0, (K0, d), E0) are weakly equivalent,
then at any point x0 ∈ Sing(J0, b) = Sing(K0, d),

νx0(J0)

b
=

νx0(K0)

d
.

Set νx0(J0) = b′, so
νx0 (J0)

b
= b′

b
.

Assume first that x0 is closed. Define

W0
π0←−W1 = W0 × A1

k

as the projection, so the fiber over x0 is a line, say L1 = {x0}×A1
k. Set x1 = (x0, 0) ∈

L1. Here π1 is smooth and defines, by taking pull-backs:

(6.1.3)
(J0, b) (J1, b)

(W0, E0)
π0←− (W1, E1)

Now x1 is a closed point on the line L1, and we define, for any integer N , a sequence

(6.1.4) (W1, E1)
π1←− (W2, E2)

π2←− · · ·
πN−1
←− (WN , EN )

defined as follows: Let π1 be the blow-up at x1.
For any index i > 1, set Hi the exceptional locus of πi−1, Li the strict transform

of Li−1 and xi = Li ∩Hi, finally define πi as the blow-up at the closed point xi.
In our example x1 ∈ L1 ⊂ Sing(J1, b). One can check by induction that for any

index i, xi ∈ Li ⊂ Sing(Ji, b). So the sequence (6.1.4) induces

(6.1.5)
(J0, b) (J1, b) (JN , b)

(W0, E0)
π0←− (W1, E1)

π1←− · · ·
πN−1
←− (WN , EN )

and closed sets

(6.1.6)
Sing(J0, b) Sing(J1, b) Sing(JN , b)

(W0, E0)
π0←− (W1, E1)

π1←− · · ·
πN−1
←− (WN , EN )

Now check that locally at xN :

(6.1.7) JN = I(HN )(N−1)(b′−b)J̄N .

Recall that dimW0 = d, so

dimW1 = dimW2 = · · · = dimWN = d+ 1.
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Set FN = Sing(JN , b). Note that dimFN ≤ d. Formula (6.1.7) says that

(6.1.8) (N − 1)(b′ − b) ≥ b ⇐⇒ dim (FN ∩HN ) = d ⇐⇒ HN ⊂ FN .

Note that b′ − b = 0 (i.e.
b′

b
= 1) if and only if for all N , dim(FN ∩ HN ) < d (a

formula that involves only the assignment of closed sets (F0, (W0, E0)) defined by B0).
On the other hand, if b′− b > 0, for any integer N big enough HN ⊂ FN , we may

define a blow-up πN with center YN = HN :

(6.1.9)
(JN , b) (JN+1, b)

(WN , EN )
πYN←− (WN+1, EN+1)

.

Note that HN ⊂ WN is a hypersurface and the blow-up at a hypersurface is an
isomorphism, so WN may be identified with WN+1, HN with the exceptional locus of
πN , say HN+1, and xN with a unique point, say xN+1 ∈ WN+1.Note that locally at
xN+1

JN+1 = I(HN+1)
(N−1)(b′−b)−bJ̄N+1.

Set FN+1 = Sing(JN+1, b) and note that

(N − 1)(b′ − b)− b ≥ b ⇐⇒ dim (FN+1 ∩HN+1) = d ⇐⇒ HN+1 ⊂ FN+1.

If these equivalent conditions hold we may blow-up again along the hypersurface
HN+1. So, whenever possible, set

(6.1.10) (JN , b) (JN+1, b) (JN+S , b)

(WN , EN ) (WN+1, EN+1)
πN

oo · · ·
πN+1

oo (WN+S , EN+S)
πN+S−1

oo

by blowing-up the same hypersurface. One can check that locally at xN+S (mapping
to xN via the identity map):

JN+S = I(HN+S)
(N−1)(b′−b)−bS J̄N+S .

Now sequences (6.1.5) and (6.1.10) induce a sequence over the assignment of closed
sets (F0, (W0, E0)):

(6.1.11) (F0, (W0, E0))←− (F1, (W1, E1))←− · · · ←− (FN , (WN , EN ))←−

←− (FN+1, (WN+1, EN+1))←− · · · ←− (FN+S , (WN+S , EN+S))

where Fi = Sing(Ji, b) for i = 0, 1, . . . , N + S.

Finally the sequence (6.1.11) can be defined if and only if:

(N − 1)(b′ − b)− (S − 1)b ≥ b ⇐⇒ (N − 1)(b′ − b) ≥ Sb

⇐⇒ S ≤

⌊
(N − 1)(b′ − b)

b

⌋
=

⌊
(N − 1)

(b′
b
− 1

)⌋

where ⌊ ⌋ denotes the integer part.
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This means that, for a fixed integer N ,
⌊
(N − 1)

b′

b
− 1

⌋
is the biggest integer S

so that (6.1.11) is defined. Thus for any integer N the integer
⌊
(N − 1)

b′

b
− 1

⌋
is

determined by the assignment of closed sets defined by B0. Finally note that

νx0(J0)

b
− 1 =

b′

b
− 1 = lim

N→∞

1

N − 1

⌊
(N − 1)

b′

b
− 1

⌋
.

In particular the rational number
νx0(J0)

b
is defined in terms of the assignment

of closed sets (F0, (W0, E0)) defined by B0, at least when x0 is a closed point in
Sing(J0, b).

Suppose now that x0 is not closed. In this case restrict W0 to an open subset so
that the closure of x0 is a smooth scheme, say Y0, which has normal crossings with
E0. Define, as before

W0
π1←−W1 = W0 × A1

k

as the projection, so the fiber over Y0 is a smooth subscheme, say L1 = {Y0} × A1
k.

Set Y1 = (Y0, 0) ⊂ L1.
As π0 is smooth, define as before:

(6.1.12)
(J0, b) (J1, b)

(W0, E0)
πY1←− (W1, E1)

Y1 is a smooth subscheme in L1 and a permissible center Y1 ⊂ Sing(J1, b). We define,
for any integer N , a sequence

(6.1.13) (W1, E1) (W2, E2)
π1

oo · · ·
π2

oo (WN , EN )
πN−1

oo

defined as follows: Let π1 be the blow-up at Y1. For all index i > 1, set Hi the
exceptional locus of πi−1, Li the strict transform of Li−1 and Yi = Li ∩ Hi, finally
define πi as the blow-up at Yi which turns to be a permissible center Yi ⊂ Sing(Ji, b).
The extension of the previous discussion to this context is now straightforward.
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