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AUTODUAL CONNECTION IN THE FOURIER TRANSFORM OF A
HIGGS BUNDLE∗

JUHANI BONSDORFF†

Abstract. The Fourier transform of a stable Higgs bundle of degree zero and rank ≥ 2 on a
curve of genus ≥ 2 is a locally free sheaf on the cotangent bundle T ∗J(X) of the Jacobian of the
curve. The base T ∗J(X) can be identified with the fine moduli space of Higgs bundles of rank 1 and
degree 0 on X and carries a natural hyper-Kähler structure.

We use a combination of generalised D-module theory and twistor methods to show that the
Fourier transform admits a natural connection which is autodual with respect to the hyper-Kähler
structure. The construction exploits Deligne’s and Simpson’s description of the twistor space of the
base in terms moduli spaces of λ-connections.
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1. Introduction. Let X be a smooth complete algebraic curve over an alge-
braically closed field k (i.e., a compact Riemann surface in case k = C), and let
E = (E , θ) be a stable Higgs bundle of degree zero on X . In [4] we introduced a

Fourier-Mukai transform Ê of E, which is an algebraic vector bundle on the cotangent
bundle T ∗J(X) of the Jacobian of X , and proved that it extends to an algebraic vector
bundle on projectivisation of the base.

Following a suggestion of N.J. Hitchin, one expects that in the case where k =
C this Fourier transform should carry a natural connection, thus completing the
construction of an essentially Nahm-type transformation for Higgs bundles on curves.
Taking cue from Jardim [15], one expects that the connection should be autodual in
a suitable sense, corresponding to the doubly-periodic instantons in the genus-1 case.
This paper confirms these expectations and completes the construction of the Nahm-
type transformation announced in [4] by exhibiting a construction of a connection in
the Fourier transform with the expected properties. The results appearing here have
been originally proved in the author’s thesis [3].

The base manifold T ∗J(X) of the Fourier transform Ê can be identified with the
fine moduli space MDol(X, 1) of Higgs bundles of rank 1 and degree 0 on X . By
Hitchin [12] it carries a natural hyper-Kähler structure: it is Kähler with respect to
three complex structures I, J and K satisfying IJK = −1, with I being the complex
structure of the Higgs bundle moduli space and J , K being associated to the same
underlying set as the moduli space of flat line bundles on X .

We show that Ê admits a natural connection ∇, which is autodual with respect
to this natural hyper-Kähler structure: its curvature is invariant under the action of
the group SU(2) of unit quaternions, specified by the actions of the three complex
structures I , J and K on the tangent bundle. Equivalently, the connection is hyper-
holomorphic, or has curvature of type (1, 1) with respect to all the complex structures
in the hyper-Kähler family of the base (Kaledin-Verbitsky [16]).

Using a result of Kaledin and Verbitsky [16] (generalising one from Capria-
Salamon [6]), we reduce the construction of the autodual connection to the construc-
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tion of a suitable holomorphic vector bundle on the twistor space of the base. More
precisely, the twistor transform gives a bijective correspondence between bundles with
autodual connections on a hyper-Kähler manifold M and those holomorphic bundles
on the twistor space of M that are trivial along the ”horizontal” twistor lines.

The ideas of Deligne [8] (see Simpson [26]) give a description of the twistor space
of MDol(X, 1) in terms of moduli spaces of λ-connections, objects that interpolate
between Higgs bundles and flat bundles. More precisely, the twistor space can be ob-
tained by glueing the moduli space MHod(X, 1) of rank-1 degree-0 λ-connections to its
own complex conjugate via a canonical antiholomorphic involution. This reduces the
construction of the autodual connection to the construction of a locally free sheaf ex-
tending the Fourier transform Ê to the larger moduli space MHod(X, 1) ⊃ MDol(X, 1)
in such a way that this extension can be glued to its conjugate to produce a holomor-
phic bundle trivial along the horizontal twistor lines.

The most convenient set-up for working with λ-connections and their cohomol-
ogy is provided by Simpson rings (called split almost-polynomial sheaves of oper-
ators in Simpson [24]), a generalisation of the ring DX of holomorphic linear dif-
ferential operators. We show that one can extend the usual homological formalism
of DX -modules, including de Rham functors, to modules over Simpson rings. The
description of the base of the Fourier transform as the fine moduli space of Higgs
bundles then allows us to describe Ê on M = MDol(X, 1) as the first de Rham sheaf

R1prM∗

(
DRX×M/M

(
pr∗XE

L

⊗ U

))
of E tensored with the universal rank-1 Higgs

bundle.

The moduli space MHod(X, 1) is also fine, which provides us with a universal
family U of rank-1 λ-connections extending the universal Higgs bundle. On the other
hand, the analytical results of Hitchin [12], Donaldson [9] Corlette [7] and Simpson

[22, 23] associate to Ê a natural family E
′ of λ-connections. The first de Rham sheaf

of E
′ tensored with U now provides the required extension of Ê to a locally free sheaf

F over the moduli space MHod(X, 1). The usual cohomological formalism extended
to Simpson rings guarantees that the fibre-wise cohomology spaces combine into a
holomorphic (indeed algebraic) vector bundle over the moduli space.

This approach to constructing the auto-dual connection has the advantage of
being completely geometric; indeed, with the exception of the antiholomorphic in-
volution in the construction of the twistor space, our constructions stay within the
holomorphic category. The analytical input needed to prove the main result is concen-
trated in the use of the Hitchin-Donaldson-Corlette-Simpson result in the construction
of the “horizontal” family E

′ of λ-connections and proof of the triviality of F along
the horizontal twistor lines.

In this paper, the next section develops the cohomology of Simpson modules and
reviews and complements the theory of λ-connections and their moduli spaces. The
following Section 3 reviews the hyper-Kähler structure of the moduli space of Higgs
bundles as well as Deligne’s description of its twistor space. Finally, in the last section
we review the twistorial characterisation of autodual connections and carry out the
construction of the twistor transform of the connection in the Fourier transform.

Acknowledgements. The idea of constructing a type of autodual connection in
the Fourier transform of a Higgs bundle is due to Nigel Hitchin. I would like to thank
him for a number of very useful discussions.
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Notation and conventions. All schemes are of finite type and separated over
C. All morphisms are C-morphisms and all products are products over Spec(C)
unless stated otherwise. A curve always means a smooth irreducible complete (i.e.,
projective) curve over C, i.e., a compact Riemann surface. We move freely between
a scheme X and the associated analytical space Xan, and typically denote both by
X . When the spaces are non-singular we freely make implicit use of the underlying
smooth manifold. All schemes occuring in the construction of the autodual connection
in Section 4 are non-singular (i.e., smooth over C), and a reader that so wishes can
safely limit attention to non-singular schemes throughout the paper.

Gm denotes the multiplicative group scheme Spec(Z[T, T−1]) (or in our con-
text Spec(C[T, T−1])). It acts naturally on the affine line A1 by multiplication.
For a scheme S recall that Gm(S) denotes the points of Gm with values in S, i.e.,
Hom(S,Gm). Thus in particular Gm(C) = C∗. We denote canonical isomorphisms
by ”=”.

2. Simpson modules and λ-connections. In this section we set up technical
tools that will be applied to study the Fourier transformation. Cohomology of Simp-
son modules, generalising standard D-module methods, provides a uniform language
for treating the cohomology of Higgs bundles and flat bundles varying in universal
families. Such families needed in our construction will be parametrised by moduli
spaces of λ-connections that interpolate between flat and Higgs bundles.

2.1. Cohomology of Simpson modules. We recall and complement the the-
ory of generalisedDX -modules, introduced in [24] as modules over split almost-complex
sheaves of operators, showing in particular that the usual cohomological machinery
including de Rham functors works in this context. We shall state and prove the few
results that we need in slightly more general form than needed in the sequel as we
expect that there should be applications beyond λ-connections.

In this subsection we let S be a scheme over C and we fix a smooth S-scheme
f : X → S.

Definition 2.1.1. An OX -algebra A equipped with an exhaustive increasing
filtration A(0) ⊂ A(1) ⊂ . . . is a Simpson ring on X over S if it satisfies the following
conditions:

S1. The OX -module A(0) is equal to OX ,
S2. The pull-back f−1OS is contained in the centre of A,
S3. The associated graded OX -algebra gr•A is isomorphic to Sym•T for a locally

free OX -module T , and
S4. The projection A(1) → gr1A has an OX -linear section σ : gr1A → A(1) for

the left OX -module structure of A.

A left (resp. right) Simpson module shall mean an OX -coherent left (resp. right)
module over a Simpson ring A.

2.1.2. The structure of an A-module is fixed already by the action of A(1) since
by (S4) A is generated as a ring by A(1). It follows that to give a coherent OX -module
M an A-module structure it is sufficient to give the action of σ(gr1A) on M. This
action has to satisfy certain commutation relations depending on A, see Simpson [24]
Lemma 2.13.
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Examples 2.1.3.
1. The sheaf DX/S of relative linear differential operators on X is the canonical

example of a Simpson ring: D
(k)
X/S is the subsheaf of operators of order ≤ k,

and the associated graded is Sym•TX/S , the symmetric algebra of the relative
tangent sheaf. An OX -coherent DX/S-module is precisely a locally free sheaf
equipped with a flat connection relative to S, and the action of σ(TX/S) is
simply the covariant derivative in the direction specified by a vector field. See
Björk [2], Borel [5] or Mebkhout [19] for details about D-modules.

2. The OX -algebra A = Sym•TX/S = gr•DX/S is a Simpson ring. An A-module
structure on a coherent sheaf F is an OX -linear morphism θ : F → F⊗OX

Ω1
X

which satisfies [θ, θ] = 0. In other words, a left A-module is the same thing
as a Higgs sheaf; see Simpson [24] p. 86 for details.

3. Let D ⊂ X be a divisor with relative normal crossings. Then there is a Simp-
son ring DX/S(log D), with gr1DX/S(log D) equal to the dual of the sheaf
Ω1

X/S(log D) of logarithmic differentials, such that a DX/S(log D)-module is
the same thing as a sheaf E with a logarithmic connection

∇ : E → ΩX/S(log D) ⊗OX
E

relative to S.

Remark 2.1.4. If A is a Simpson ring on X/S, then OX has a canonical A-
module structure with a section t of T = gr1A acting as the commutator [σ(t), •]
on A(0) = OX . For A = DX/S this gives the canonical relative flat connection
dX/S : OX → Ω1

X/S , and for A = Sym•TX/S , one has the trivial Higgs bundle OX

with θ = 0.

2.1.5. Let A be a Simpson ring on X over S. We denote by Db(A) the bounded
derived category of left A-modules, not necessarily OX -coherent. The subcategory
of objects with OX -quasi-coherent cohomology is denoted by Db

qc(A). The standard
arguments guarantee the existence of enough injectives and hence right-derived func-
tors.

2.1.6. Let M and N be A-modules. We give the tensor product M⊗OX
N a

structure of an A-module by letting the action of a section t of T be

t(m ⊗ n) = tm ⊗ n + m ⊗ tn.

There are enough A-flat modules, as can be seen by the same argument that applies
to D-modules (see Borel [5], VI.2.4). It follows from (S3) that A is OX -flat, and thus
any A-flat resolution is also OX -flat. Hence we have the left derived bifunctor

(•)
L

⊗OX
(•) : Db(A) × Db(A) → Db(A)

of tensor product over OX . The underlying OX -modules of H−p(M
L

⊗ N ) are the
ordinary tor-sheaves T orp

OX
(M,N ) of the underlying OX -modules. It follows that

L

⊗OX
maps Db

qc(A)×Db
qc(A) to Db

qc(A). Furthermore, if M or N is locally free over
OX , all the higher tors vanish.

Next we show that Spenser resolutions of D-modules generalise to Simpson mod-
ules.
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2.1.7. Let A be a Simpson algebra with gr1A = T of rank n, and consider the
augmented complex of Simpson modules

(2.1.7.1) 0 → A⊗OX

∧n T
δ
→ A⊗OX

∧n−1 T → · · · → A
ǫ
→ OX ,

where δ : A⊗OX

∧k T → A⊗OX

∧k−1 T is given by

(2.1.7.2) δ(a ⊗ (t1 ∧ . . . ∧ tk)) = −
k∑

i=1

(−1)iati ⊗ (t1 ∧ . . . ∧ t̂i ∧ . . . ∧ tk)

+
∑

1≤i<j≤k

(−1)i+ja ⊗ ([ti, tj ] ∧ . . . ∧ t̂i ∧ . . . ∧ t̂j ∧ . . . ∧ tk),

with t̂i denoting omission. Notice that by (S3) the commutator

[ti, tj ] = σ(ti)σ(tj) − σ(tj)σ(ti)

belongs to A(1) and gives thus an element of T . The augmentation ǫ is simply the
A-linear morphism specified by 1 7→ 1.

Lemma 2.1.8. The augmented complex (2.1.7.1) gives a locally free left resolution
of the A-module OX .

Proof. Since T is locally free over OX , so are the terms of the resolution over
A. For exactness, one may check that the proof of the stronger statement (2.1.18)
in Mebkhout [19] for ordinary D-modules does not use assumptions that go beyond
(S1) to (S4).

Remark 2.1.9. When A = DX/S , the resolution is the usual Spencer resolution.
In the case where A = Sym•TX/S , one can check that the resolution reduces to a
Koszul complex, the exactness of which is easy to verify.

Definition 2.1.10. The functor DR = DRX/S : Db
qc(A) → Db(f−1OS) given

by

DR(M) = RHomA(OX ,M)

is called the (generalised) de Rham functor.

Proposition 2.1.11. Let M be an A-module.
1. If A = DX/S , the complex DR(M) is the usual relative de Rham complex

0 → M
∇
→ M⊗ Ω1

X/S
∇
→ M⊗ Ω2

X/S
∇
→ · · ·

with ∇(m ⊗ α) = ∇m ∧ α − (−1)degαm ⊗ dα
2. If A = Sym•TX/S , the complex DR((E , θ)) is

0 → E
θ
→ E ⊗ Ω1

X/S
θ
→ E ⊗ Ω2

X/S
θ
→ · · · ,

where θ(e ⊗ α) = θ(e) ∧ α. In particular, this complex is OX-linear.
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Proof. We use the generalised Spencer resolution (2.1.7) of OX to compute the
de Rham object DR(M) = RHomA(OX ,M). Part (1) is well-known, see any of the
references on DX -modules. For (2), we notice that in (2.1.7.2) the terms involving
commutators [ti, tj ] vanish for A = Sym•TX/S . Thus the second term −(−1)deg αm⊗
dα of the formula in case (1) vanishes.

Remark 2.1.12. Let M be a DX -module. It follows from (2.1.11) that the hy-
percohomology H• (X,DR(M)) is precisely the cohomology of X with coefficients
the local system L(M) of horizontal sections of the flat connection, denoted by
H•

dR(X,M) in Simpson [23]. Similarly, for a Higgs bundle E = (E , θ), the hyper-
cohomology H• (X,DR(E)) is Simpson’s Dolbeault cohomology H•

Dol(X, E).

Proposition 2.1.13. If f : X → S is proper, then Rf∗DR(M)) is coherent for
an OX-coherent A-module M.

Proof. This follows from the first hypercohomology spectral sequence with first-
degree terms

(2.1.13.1) Epq
1 = Rqf∗DR(M)p ⇒ Rp+qf∗DR(M).

Indeed, each term of DR(M) is a coherent OX -module, and hence each sheaf
Rqf∗DR(M)p is OS-coherent. On the other hand, since DR(M) is f−1OS-linear,
the differentials in (2.1.13.1) are OS-linear, whence the proposition.

2.2. λ-connections. We resume and complement the treatment of λ-connec-
tions in Simpson [26]. λ-connections interpolate between bundles with flat connection
and Higgs bundles; their description as suitable Simpson modules relates this to de-
formation of DX to its associated graded algebra. The theory was first outlined in
Deligne [8] and it was developed by Simpson in [26]. What follows is essentially a
quick review of Simpson’s results needed in the sequel.

In this subsection X is a smooth projective C-scheme and thus is equipped with
a very ample line bundle OX(1). The first Chern class c1(OX(1)) is the polarisation
[ω] of X . If X is given the Kähler metric induced by the projective embedding, then
the polarisation class is represented by the Kähler form ωX .

Definition 2.2.1. Let λ : S → A1 be a morphism of schemes, and let E be a
locally free OX×S-module. A λ-connection on E is a morphism of sheaves

∇ : E → E ⊗O Ω1
X×S/S,

satisfying the following conditions:
1. ∇(ae) = λe ⊗ da + a∇(e) ”Leibnitz rule”
2. ∇2 = ∇ ◦∇ = 0,

where ∇ is extended to a map E ⊗ Ω1
X×S/S → E ⊗ Ω2

X×S/S by the rule ∇(e ⊗ α) =

∇(e) ∧ α + λ · e ⊗ dα.

If λ is the constant map with value c ∈ C, then we call a λ-connection also
a (family of) c-connection(s). It is clear that a 1-connection is just a (relative) flat
connection. Similarly, for λ = 0, the first condition says that ∇ is OX×S-linear and the
second condition is simply [∇,∇] = 0; in other words, a bundle with a 0-connection
is precisely a Higgs bundle. Notice that the condition [∇,∇] = 0 is vacuous if X is a
curve.



AUTODUAL CONNECTION IN FOURIER TRANSFORM 159

2.2.2. Define the sheaf of algebras Λ on X × A1 to be the subsheaf of pr∗XDX

generated by sections of the form

∑

k

tkuk,

where the uk are sections of D
(k)
X and t is the linear coordinate on A1. Then Λ|X×{t}

is isomorphic to DX for any t 6= 0, and Λ|X×{0} is isomorphic to gr•DX (see the
discussion in Section 5 of Simpson [26]). So Λ gives a deformation of DX to Sym•TX .
Furthermore, Λ is a Simpson ring on X ×A1 over A1, with gr1Λ = pr∗XTX (Simpson
[24] p. 81).

2.2.3. Let us consider the situation of (2.2.1). For λ : S → A1, the pull-back
Λλ = (1X × λ)∗Λ on X × S is also a Simpson ring over S, with gr1Λλ = pr∗XTX . It
is easy to see that to give a locally free OX×S-module a λ-connection is precisely the
same thing as to give it a structure of Λλ-module.

2.2.4. Recall that the slope µ(E) of a locally free OX -module E on manifold X
with polarisation given by a Kähler form ωX is µ(E) = deg E/ rankE , where deg E =∫

X c1(E) ∧ ωdim X−1
X . Thus if dimX ≥ 2, the degree and hence stability of E depends

on the polarisation [ωX ].

Definition 2.2.5. Let a ∈ A1. Then a sheaf E on X with an a-connection ∇
is stable (resp. semi-stable) if for each locally free subsheaf F ⊂ E stable under ∇ we
have µ(F) < µ(E) (resp. µ(F) ≤ µ(E)).

Let λ : S → A1 be a morphism. Then a sheaf E on X×S with a λ-connection ∇ is
stable (resp. semi-stable) if E is flat over S and (Es,∇s) is a stable (resp. semi-stable)
sheaf with λ(s)-connection for all s ∈ S.

Remark 2.2.6. For a 6= 0 each bundle E with an a-connection is semi-stable;
indeed, the slope of a subsheaf preserved by a flat connection is necessarily the same
as the slope of E , i.e., zero.

Theorem 2.2.7 (Simpson). Consider the functor M : Sch/A1 → Set which to

each A1-scheme λ : S → A1 associates the set of isomorphism classes of pairs (E ,∇),
where E is a locally free sheaf of rank n on X × S having vanishing (rational) Chern
classes along the fibres of λ, and ∇ is a λ-connection making (E ,∇) semi-stable. Then:

1. There is a quasi-projective moduli space MHod(X, n) for M , i.e., a quasi-
projective scheme that universally co-represents M .

2. MHod(X, n) has a natural projection π to A1, and the geometric points of
the fibre π−1 {a} correspond bijectively to Jordan equivalence classes of semi-
stable bundles with a-connections on X.

Proof. Apply Theorem 4.7. of Simpson [24] to the sheaf of rings Λ of (2.2.2) on
X×A1. This gives disjoint moduli spaces for A1-flat Λ-modules with fixed normalised
Hilbert polynomials. Let P0 be the Hilbert polynomial of OX , and let MnP0 be the
moduli space corresponding to nP0. Consider the subfunctor MnP0

0 of MnP0 which
classifies the relative λ-connections on X × S with vanishing Chern classes along the
fibres X ×{s}. Since the Chern classes ci of a flat family (Es)s∈S of coherent sheaves
on a scheme X smooth and projective over S (considered as sections of the relative
de Rham cohomology R2iprS∗Ω

•
X/S) are horizontal with respect to the Gauss-Manin
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connection, the vanishing of ci(Es) depends only on the connected component of S
containing s. It follows that the functor MP0

0 is universally co-represented by a union
of connected components of MnP0 ; this open subset is MHod(X, n).

Remarks 2.2.8.
1. The fibres of MHod(X, n) over 0 and 1 are respectively the moduli spaces

MDol(X, n) of semi-stable Higgs bundles and MdR(X, n) of flat bundles.
2. The moduli space MDol(X, 1) of rank-1 Higgs bundles on a smooth projective

curve X can be identified with J(X)×H0(X, Ω1
X), or the (trivial) cotangent

bundle of the Jacobian.
3. Let X be a curve; choosing a principal polarisation of the Jacobian J(X) lets

us identify the Jacobian with its dual. Given this identification, the moduli
space MdR(X, 1) is identified with Grothendieck’s universal vector extension

J(X)
♮

of J(X), see Mazur-Messing [18] or Laumon [17]. In particular, for a
scheme S, the (algebraic group) extensions of J(X) × S by a vector bundle
V(E∨) on S correspond bijectively to the morphisms H0(X, ωX) ⊗OS → E .
We obtain the following description of the moduli space MHod(X, 1): there
is an exact sequence

0 → V(H0(X, ωX)∨) × A1 → MHod(X, 1)
π
→ J(X) × A1 → 0

of group schemes over A1, where π takes a λ-connection to its underlying line
bundle. This extension is now just the ”push-out” of the universal extension
by the multiplication-by-λ ∈ A1 morphism

[λ] : H0(X, ωX) ⊗OA1 → H0(X, ωX) ⊗OA1 .

3. Hyper-Kähler structure. We first review the existence of a hyper-Kähler
structure on the base manifold MDol(X, 1) of the Fourier transform of a Higgs bundle
on X . This is a consequence of the Hitchin-Simpson correspondence, relating a Higgs
field to a flat connection in the same underlying vector bundle and leading to the
existence of two different moduli space structures on the same underlying set.

A hyper-Kähler manifold has an associated twistor space, which we shall use to
characterise autodual connections later on. In subsection 3.2 we review Deligne’s
approach to describing the twistor space of MDol(X, n) in terms of moduli spaces of
λ-connections.

3.1. Harmonic metrics and the hyper-Kähler structure of MdR(X, n).
We continue to assume that X is a smooth projective variety, and hence a fortiori a
compact Kähler manifold. Let ω be the the corresponding Kähler form. What follows
is essentially a resumé of the results of Hitchin, Donaldson, Simpson, Corlette and
Fujiki, made explicit to the extent that the details of the arguments are needed in the
sequel.

3.1.1. Let E be a locally free OX -module with a flat connection ∇, and let E
be the underlying smooth complex vector bundle of E . We continue to denote the
corresponding flat connection on E by ∇; it has the decomposition ∇ = ∇′ +∇′′ into
operators of type (1, 0) and (0, 1) respectively. Assume that E is equipped with a
Hermitean metric h. Then we define operators δ′ and δ′′ to be the unique operators
of types (1, 0) and (0, 1) such that ∇′ + δ′′ and δ′ +∇′′ are connections preserving the
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metric h. We set

∂ = ∂h = (∇′ + δ′)/2 θ = θh = (∇′ − δ′)/2

∂̄ = ∂̄h = (∇′′ + δ′′)/2 θ̄ = θ̄h = (∇′′ − δ′′)/2.

Notice that

(3.1.1.1) ∇′ = ∂ + θ and ∇′′ = ∂̄ + θ̄.

Since ∇ is flat, ∇′2 = ∇′′2 = ∇′∇′′ + ∇′′∇′ = 0. This implies for the operators
induced by h that δ′2 = δ′′2 = δ′δ′′ + δ′′ + δ′ = 0. Hence ∂̄h is a complex structure
operator in E if and only if

(3.1.1.2) ∂̄2
h = ∇′′δ′′ + δ′′∇′′ = 0.

If this is the case, then θh is holomorphic with respect to ∂̄h precisely when

(3.1.1.3) ∂̄h(θh) = ∇′δ′′ + δ′′∇′ −∇′′δ′ − δ′∇′′ = 0.

Finally, for θh to be a Higgs field it needs to satisfy

(3.1.1.4) θ2
h = −∇′δ′ − δ′∇′ = 0.

The sum Gh = ∂̄2
h+∂̄h(θh)+θ2

h of the operators above is an End(E)-valued differential
2-form, the pseudo-curvature of the metric h (with respect to ∇). Hence (E, ∂̄h, θh)
is a Higgs bundle precisely when Gh = 0. In this case we call the metric h harmonic.
Notice that the Higgs bundle structure on E is completely specified by the operator
DE = ∂̄h + θ.

Theorem 3.1.2 (Simpson). Let (E ,∇) be a flat vector bundle on X and let E
be the underlying smooth complex bundle.

1. There is in E an (essentially unique) Hermitean metric h with vanishing
pseudo-curvature Gh if and only if the monodromy representation

ρ∇ : π1(X, x) → GL(Ex)

is semi-simple.
2. The construction of (3.1.1) establishes an equivalence between the category

of flat bundles on X with semisimple monodromy and the category of direct
sums of stable Higgs bundles on X with vanishing Chern classes.

Proof. For claim (1), let Λ denote the adjoint of wedging with ω. The equivalence
of the existence of a metric h such that ΛGh = 0 and the semi-simplicity of the
monodromy representation is a deep analytic theorem of Corlette [7]. That ΛGh = 0
implies Gh = 0 is Lemma 1.1. of Simpson [23].

Claim (2) is Corollary 1.3 of Simpson [23]. There is an inverse construction of
a connection on E starting from a Higgs bundle structure and a a metric h on E,
similar to the one in (3.1.1) (see ibid. p. 13). The existence of a metric h making
this connection flat if the Higgs bundle is a direct sum of stable Higgs bundles with
vanishing Chern classes is a hard theorem of non-linear analysis in Simpson [22]. That
this construction and the one of (3.1.1) are inverses to each other is esteblished on p.
13 of Simpson [23]. This establishes the action of the equivalence functor on objects.
The functor acts trivially on morphisms of the underlying smooth bundle. More
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precisely, let (E,∇E) and (F,∇F ) be two vector bundles with flat connections. Then
the morphisms between them correspond precisely to the smooth sections of E∗ ⊗ F
killed by the natural flat connection ∇E∗⊗F on the tensor product. On the other hand,
let (E, θE) and (F, θF ) be the corresponding Higgs bundles; then E∗ ⊗ F carries also
a natural Higgs bundle structure (the Higgs field is 1⊗θF −θt

E ⊗1). Now it is easy to
see that a section of E∗ ⊗F is a morphism of Higgs bundles precisely if it is killed by
the operator DE∗⊗F specified in (3.1.1). Moreover, the harmonic metrics on E and F
relating their flat connections and Higgs bundles structures define a harmonic metric
on E∗ ⊗ F (ibid. p.14) which similarly relates the connection ∇E∗⊗F to the operator
DE∗⊗F specifying the Higgs bundle structure. But then it follows from ibid. Lemma
1.2. that if ϕ is a section of E∗⊗F , then ∇E∗⊗F (ϕ) = 0 if and only if DE∗⊗F (ϕ) = 0.
Hence precisely the same morphisms of the underlying smooth bundles underlie the
morphisms between the flat bundles and the corresponding Higgs bundles.

Remark 3.1.3. We keep the assumptions of (3.1.1). Let X be the complex
conjugate manifold of X . Conjugation switches the roles of (1, 0) forms and (0, 1)
forms and the roles of ∂ and ∂̄. It follows that in the construction (3.1.1), ∂h and ∂̄h

get exchanged, as do θh and θ̄h.
We may then ask if ∂h is a holomorphic structure operator for E and whether θ̄h

is a Higgs field. It is immediate that the corresponding pseudo-curvature operator is
−Gh. It follows that (E, ∂h, θ̄h) is a Higgs bundle precisely when h is harmonic or in
other words when (E, ∂̄h, θh) is a Higgs bundle. Clearly the Higgs bundle (E, ∂h, θ̄h)
on X is stable precisely when (E, ∂̄h, θh) is stable on X .

Theorem 3.1.4. The equivalence of categories of (3.1.2) induces a homeo-
morphism between the moduli spaces MdR(X, n) and MDol(X, n). Restricted to the
smooth loci of the moduli spaces it induces a real-analytic isomorphism between the
manifolds MdR(X, n)sm and MDol(X, n)sm.

Proof. For the homeomorphism see Theorem 7.18. of Simpson [25]. By Theorem
(8.3.1) in Fujiki [11] the complex manifolds MdR(X, n)sm and MDol(X, n)sm both
belong to same hyper-Kähler family of complex structures on the underlying space.
Hence the real-analyticity follows from Proposition 6.5. of Verbitsky [29].

Example 3.1.5. Let X be a smooth complete curve of genus g, the case that is
the focus of our interest in applications to the Fourier transform. We notice first that
the abelianisation of π1(X) is Z2g, and hence the monodromy of a flat connection in
a line bundle is specified by 2g non-zero complex numbers. Thus by the Riemann-
Hilbert correspondence MdR(X, 1) is G2g

m = (C∗)2g. On the other hand, it is clear
that MDol(X, 1) = J(X) × H0(X, Ω1

X).
The underlying smooth complex vector bundle for all flat line bundles classified

by MdR(X, 1) is the trivial line bundle L = X×C. The canonical Hermitean product
metric on L is seen to be harmonic for all flat line bundles. But then one sees
from the construction of (3.1.1) that Higgs bundles with zero Higgs field θ correspond
precisely to unitary connections. Thus the homeomorphism MDol(X, 1) → MdR(X, 1)
of (3.1.4) takes J(X) bijectively to U(1)2g ⊂ (C∗)2g.

Let ∇ be the flat connection corresponding to a holomorphic line bundle L =
(L, ∂̄). Then the connection corresponding to (L, θ) is ∇+ θ + θ̄. The monodromy of
∇ + θ + θ̄ around a generator γi of π1(X) is given by

(3.1.5.1) Monγi
(∇ + θ + θ̄) = Monγi

(∇) exp

(
−

∫

γi

θ + θ̄

)
.
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Hence the homeomorphism MDol(X, 1) → MdR(X, 1) of (3.1.4) is a homomorphism
J(X) × H0(X, Ω1

X) → U(1)2g × (R∗
+)2g, and gives us a natural non-holomorphic

“polar” coordinate system on MdR(X, 1).

3.1.6. Let M be the differentiable manifold underlying the smooth loci of both
MdR(X, n) and MDol(X, n). Then M has two complex structures I and J given by
MdR(X, n) and MDol(X, n) respectively. The tangent space at E of MdR(X, n) (resp.
E of MDol(X, n)) is isomorphic to H1(X,DR(E)) = H1

dR(X, E) (resp. H1(DR(E)) =
H1

Dol(X, E)) – see sections 8 and 9 in Fujiki [11] or p. 88 in Hitchin [12]. Both
cohomology spaces can be described as spaces of suitable harmonic forms and hence
come with L2-metrics. These give M two Riemannian metrics gdR and gDol, which
in fact agree up to multiplication by a constant.

Theorem 3.1.7. M equipped with the metric gdR (or gDol) and the complex
structures I, J and K = IJ is a hyper-Kähler manifold.

In other words, the complex structures I, J and K satisfy the quaternionic iden-
tities

I2 = J2 = K2 = IJK = −1,

and gdR (resp. gDol) is Kähler with respect to I, J and K.
Proof. For the case where X is a curve, see Hitchin [12]; the general case is

Theorem (8.3.1) in Fujiki [11].

3.2. Twistor space of MDol(X, n). We recall the definition of the twistor space
of a hyper-Kähler manifold and explain P. Deligne’s description of the twistor spaces
of the moduli spaces MdR(X, n) and MDol(X, n).

3.2.1. Let (M, h) be a hyper-Kähler manifold with complex structures I, J and
K satisfying the relation IJK = I2 = J2 = K2 = −1 and with respect to which
the metric h is Kähler. We identify the unit sphere S2 ⊂ R3 with P1

C
. For any

z = (a, b, c) ∈ S2 we get an almost complex structure Iz = aI + bJ + cK on M . It is
straightforward to check that Iz is integrable and that h is Kähler with respect to Iz .

The tangent space T(m,z)

(
M × P1

C

)
splits as TmM ⊕ TzP

1
C

. Give it the almost
complex structure

(
Iz 0
0 IP1

)
,

where IP1 is the standard complex structure of P1. We have the following theorem of
Atiyah, Hitchin and Singer (see Salamon [21] and Hitchin et al. [14]):

Theorem 3.2.2. The almost complex structure above is integrable. The projec-
tion pr

P
: Tw(M) → P1

C
is holomorphic, whereas the projection prM : Tw(M) → M

is only real analytic.

Definition 3.2.3. The complex manifold Tw(M) = M×P1
C

is called the twistor
space of M . The holomorphic sections of the form m̃ : P1 → {m}×P1 for m ∈ M are
called horizontal twistor lines.

For the moduli spaces MdR(X, n) and MDol(X, n) there is a complex-analytic
description of the twistor space, due to P. Deligne [8], worked out in Simpson [26]:
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3.2.4. The multiplicative group scheme Gm acts on A1 by multiplication. This
action lifts to an action of Gm on MHod(X, n) over A1: if t ∈ Gm(S) and (E ,∇) is
a λ-connection on X × S, then (E , t∇) is a tλ-connection, and this action gives an
isomorphism MHod(X, n) → MHod(X, n) covering [t] : A1 → A1. In particular, this
action identifies the fibres of MHod(X, n) over any λ, λ′ 6= 0 – they are all isomorphic
to MdR(X, n). Thus we have the isomorphism

(3.2.4.1) MHod(X, n) ×A1 Gm
∼= MdR(X, n) × Gm.

On the other hand, by the ”Riemann-Hilbert correspondence” associating to a
flat connection its monodromy representation, MdR(X, n) is canonically complex-
analytically (but not algebraically, see Simpson [25]) isomorphic to the moduli space
MB(X, n) of representations

ρ : π1(X) → GL(n,C).

Let ˇ̄ρ denote the contragredient conjugate representation

ˇ̄ρ(γ) = tρ(γ)
−1

,

i.e., the complex conjugate of the transposed inverse. Then ρ 7→ ˇ̄ρ induces a com-
plex anti-holomorphic involution τ of MB(X, n), hence an anti-holomorphic involu-
tion τ ′ of MdR(X, n). Let σ : P1 → P1 denote the antipodal map, which is also
an anti-holomorphic involution (indeed the real structure of P1 without real points).
Restricted to Gm(C) = C∗, it is given by z 7→ −z̄−1.

Putting these together, we get an anti-holomorphic involution σ′ of MdR(X, n)×
Gm by

(3.2.4.2) σ′(u, t) = (τ ′(u), σ(t)).

But with the identifications above, this gives an isomorphism

σ′ : MHod(X, n) ×A1 Gm → MHod(X, n) ×A1 Gm

between the complex conjugate schemes. Let T be the scheme obtained by glueing
MHod(X, n) to MHod(X, n) over Gm using σ′. Since P1 is glued from A1 and A1

using σ, the projection MHod(X, n) → A1 gives a projection π : T → P1.

Theorem 3.2.5. The smooth locus T sm of T an is complex-analytically isomorphic
to the twistor space Tw(MDol(X, n)sm) of the smooth locus of MDol(X, n).

Proof. Theorem 4.2 of Simpson [26].

Proposition 3.2.6. Let E = (E , θ) be a stable Higgs bundle with vanishing
Chern classes, and let ρ : π1(X) → GL(n,C) be the monodromy of the associated
flat bundle. Then the Higgs bundle on X corresponding to the flat connection with
monodromy τ(ρ) = ˇ̄ρ is (E ,−θ).

Proof. This proof is due to Simpson. We choose a harmonic metric h in the
underlying smooth bundle E. Let E be the complex conjugate bundle. Let ∂̄ be the
holomorphic structure of E . In (3.1.3) we made E into a Higgs bundle on X with
same associated flat bundle using ∂h as the holomorphic structure operator and θ̄h as
the Higgs field. By conjugating again, we can make E into a Higgs bundle E on X .
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Indeed, sections of E are of the form ē for e ∈ Γ(X, E), and we take ē 7→ ∂h(e) to

be holomorphic structure operator, and ē 7→ θ̄h(e) to be the Higgs field. Moreover,
we equip E with the induced metric (ē|f̄) = (e|f)h; this metric is clearly harmonic.
The flat connection associated to E is seen to be ∇(ē) = ∇(e), where ∇ is the flat
connection associated to E. The monodromy representation of (E,∇) is the complex
conjugate of the monodromy representation of (E,∇).

The metric gives a bundle map M : E ⊗ E → X × C by M(e ⊗ f̄) = (e|f)h. Let
F = (E, ∂̄,−θ), and consider the Higgs bundle F ⊗ E. We have

M(∂̄(e), f̄) + M(e, ∂h(f)) = (∂̄(e)|f)h + (e|∂h(f))h = ∂̄((e|f)h)

since ∂̄+∂h is compatible with h. But this means that M is a morphism of holomorphic
bundles. Similarly,

M(θ
F⊗E

(e ⊗ f̄)) = −(θ(e)|f)h + (e|θ̄h(f))h = 0

since θ and θ̄h are adjoint with respect to h. But this means that M is a morphism
of Higgs bundles

M : F ⊗ E → (OX , 0).

M comes from the metric and hence it is a perfect pairing, which shows that F

is the dual Higgs bundle of E. Since the correspondence between Higgs bundles
and flat bundles preserves duality, the monodromy representation associated to F is
the contragredient of the representation associated to E. But this is precisely the

representation γ 7→ tρ(γ)
−1

.

3.2.7. The horizontal twistor lines are described in this framework by harmonic
metrics on the underlying bundles of the λ-connections: Let m ∈ MdR(X, n) corre-
spond to a semi-simple flat bundle (E,∇), and consider the decomposition (3.1.1.1)
of ∇ issuing from the harmonic metric. For λ ∈ A1(C) define in E an almost complex
structure

∂̄λ = ∂̄ + λθ̄

and an operator

∇λ = λ∂ + θ.

Then ∂̄λ is integrable and ∇λ is a λ-connection in (E, ∂̄λ). This family is clearly
holomorphic in λ, and so we have a relative λ-connection on A1 × X/A1 and thus a
section σ of the canonical map λ : MdR(X, n) → A1.

We produce similarly a conjugate line in MHod(X, 1), and we have to check that
these glue together under σ′ to give the horizontal twistor line. The verification of
this is straightforward, see pp.233-234 in Simpson [26].

Proposition 3.2.8. If X is a smooth projective curve, then MHod(X, 1) is a
fine moduli space, i.e., a universal family U exists globally on MHod(X, 1).

Proof. We shall give an explicit construction since it will be useful for us in what
follows; it would also be possible to modify the proof of the analogous statement for
vector bundles with co-prime rank and degree in Newstead [20] to apply to Simpson’s
GIT construction of the moduli space MHod(X, 1) in Simpson [24, 25].
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By (3.1.5) and (3.2.5), we have a real-analytic isomorphism

MHod(X, 1) ∼= A1 × J(X) × H0(X, Ω1
X).

On MDol(X, 1) there is obviously a universal family of Higgs bundles with under-
lying sheaf pr∗J(X)P ; we wish to expand this to a family over MHod(X, 1) using the
twistor lines.

At a point (ξ, θ) ∈ J(X) × H0(X, Ω1
X), denote the complex structure operator of

Lξ by ∂̄ξ. At (λ, ξ, θ) ∈ A1 × J(X) × H0(X, Ω1
X) choose as in (3.2.7) the complex

structure operator ∂̄ξ + λθ̄ and a λ-connection λ∂ξ + θ. This gives a real-analytic
family U of rank-1 λ-connections on MHod(X, 1) × X , which clearly restricts to the
universal family on MDol(X, 1).

The holomorphicity of the family U in the λ-direction is clear since λ is linear in
the defining equations. Due to the trivialisation

MHod(X, 1) ×A1 Gm
∼= MdR(X, 1) × Gm

in (3.2.4), it is enough to check the holomorphicity in the fibre direction for MdR(X, 1).
But it follows from (3.1.5) that the monodromy of U at

(c1, . . . , c2g) ∈ MdR(X, 1) = (C∗)2g ∼= (U(1) × R∗
+)2g

is (c1, . . . , c2g), and thus the restriction of U to MdR(X, 1)×X is indeed the universal
family of flat line bundles.

4. Autodual connection in the Fourier transform. After the technical pre-
liminaries in the previous two sections, we shall now describe the construction of a
canonical autodual connection in the Fourier transform Ê of a Higgs bundle E on a
curve X . The base space of Ê is the hyper-Kähler manifold MDol(X, 1), the moduli
space of Higgs bundles of degree zero and rank 1. The Fourier transform can be in-
terpreted in the set-up of Section 2 as the first de Rham object of a Simpson module
on MDol(X, 1)×X corresponding to the (external) tensor product E⊗UDol of E with
the universal Higgs bundle UDol.

The first step in the construction of the autodual connection reduces the problem
to the construction of a suitable holomorphic vector bundle on the twistor space (Theo-
rem (4.2.7)). Using Deligne’s description of the twistor space from the previous section
we can then further reduce this to the problem of constructing suitable holomorphic
bundles on the “halves” of the twistor space given by MHod(X, 1) ⊃ MDol(X, 1).
These required bundles can be constructed as the first de Rham sheaves of a natural
extension of E ⊗ UDol to a sheaf with λ-connection on MHod(X, 1) × X .

4.1. The Fourier transformation. We recall the construction in [4] of the
Fourier transformation for Higgs bundles and provide a translation into the set-up of
this paper.

Notation 4.1.1. Let X be a smooth projective curve of genus g ≥ 2. We
denote by M the moduli space MDol(X, 1) of rank-1 Higgs bundles on X . It is
naturally isomorphic to the cotangent bundle of the Jacobian J(X) of X , i.e., to
J(X) × H0(X, Ω1

X).

4.1.2. Let E = (E , θ) be a stable Higgs bundle of degree 0 on X . By adding to θ
the ”Abelian” Higgs fields α⊗ 1E for α ∈ H0(X, Ω1

X), one gets a family E(α) of Higgs
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bundles parametrised by the affine space V = H0(X, Ω1
X). We consider this family

as a complex of sheaves

H(E) =
(
pr∗XE

Θ
→ pr∗X(E ⊗ Ω1

X)
)

in degrees 0 and 1 on X × V , and hence as an object of Db
c(X × V ).

Let MV be the pull-back to X × J(X) × V = X × M of the universal sheaf M
on X × J(X). The Fourier transform of E is by definition the relative Fourier-Mukai
transform

Ê = H1
(
ΦMV

X×V →J(X)×V/V (H(E))
)

(see (2.4.4) of [4]). In other words, it is the higher direct image

Ê = R1(prM )∗
(
pr∗X×V H(E) ⊗MV

)
.

We recall that by Proposition (3.1.8) in [4] the Fourier transform of a stable Higgs
bundle E of rank ≥ 2 and degree 0 is a locally free sheaf.

4.1.3. We translate the above definition into the framework of this paper. The
base manifold of Ê is the moduli space M = MDol(X, 1) of rank-1 Higgs bundles.
The complex prX×V

∗H(E)⊗MV as an object of Db
c(X ×M) is clearly the ”de Rham

complex”

DRX×M/M

(
pr∗XE

L

⊗ U

)
,

where U is the universal rank-1 Higgs bundle on X × M and the tensor product is
taken in the derived category of Sym•(TX×M/M )-modules (see section 2.1). Thus

Ê = R1prM∗

(
DRX×M/M

(
pr∗XE

L

⊗ U

))
.

We shall show that this locally free sheaf admits an autodual connection by using
a twistorial description reviewed below.

4.2. Autodual connections and twistor transform. We recall the definition
of an autodual connection in a bundle on a hyper-Kähler manifold. We then quickly
review the results of Kaledin-Verbitsky [16] that provide a characterisation of autodual
connections in terms of their twistor transforms, which are holomorphic sheaves on
the twistor space. Theorem (4.2.7) then allows us to reduce to the construction of
autodual connection to that of a suitable holomorphic vector bundle on the twistor
space.

4.2.1. Let M be a hyper-Kähler manifold. The complex structures I, J and
K give an action of the quaternions on the tangent bundle TM and hence an action
of the group SU(2) = Sp(1) of unit quaternions. This action extends to tensor and
exterior powers, and so in particular to the bundles of differential forms.

Definition 4.2.2. A connection ∇ in a smooth vector bundle E on M is auto-
dual if its curvature 2-form F∇ is invariant under the action of SU(2).
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This generalises the autoduality condition from 4-manifolds to (not necessarily
Hermitean) connections on hyper-Kähler manifolds.

4.2.3. Let E be a complex vector bundle on M , equipped with a connection
∇. The pull-back pr∗ME on Tw(M) has the natural pull-back connection pr∗M∇.
By Lemma 5.1 of [16] the curvature of pr∗M∇ is of type (1, 1) precisely when ∇ is
auto-dual. In particular, for autodual ∇ the pull-back pr∗M∇ defines a holomorphic
structure on pr∗ME; the resulting holomorphic bundle on Tw(M) is called the twistor
transform of the autodual bundle (E,∇). Notice that in particular that the (0, 1)-
part ∇0,1 of the connection defines a holomorphic structure on E with respect to each
complex structure on M belonging to the hyper-Kähler family parametrised by P1.

Definition 4.2.4. A holomorphic bundle F on Tw(M) is called twistorial if the
restrictions m̃∗F are trivial for all horizontal twistor lines m̃ : P1 → Tw(M).

Proposition 4.2.5. The twistor transform of an auto-dual connection is twisto-
rial.

Proof. This follows directly from the construction.

4.2.6. Let F be a twistorial holomorphic bundle on Tw(M) with underlying
smooth complex vector bundle F and holomorphic structure operator ∂̄. The real-
analytic isomorphism Tw(M) ∼= M × P1 induces a splitting

A0,1(Tw(M)) = pr∗MA0,1(M) ⊕ pr∗
P1A0,1(P1)

of the type (0, 1) forms. This gives the decomposition

∂̄ = ∂̄M + ∂̄P1

of ∂̄ : F → F ⊗A0,1 into operators

∂̄M : F → F ⊗ pr∗MA0,1
M ,

∂̄P1 : F → F ⊗ pr∗
P1A

0,1
P1 .

We call smooth sections of F in the kernel Γtw(Tw(M), F ) of ∂̄P1 twistor holo-
morphic sections, and define a twistorial direct image sheaf prM+(F) on M by

Γ(U, prM+(F)) = Γtw(pr−1
M (U), F ).

Then prM+F is a sheaf of sections of a smooth complex vector bundle on M . More-
over, since F is twistorial, pr∗MprM+F = F , and the operator ∂̄M gives by adjunction
an operator

(4.2.6.1) ∇ : prM+F → prM+

(
F ⊗A0,1

M

)
= prM+F ⊗A1(M),

where the isomorphism results from a version of the projection formula for prM+.
It follows from Lemmas 5.8. and 5.9. of [16] that ∇ is an autodual connection in
prM+F ; the complex vector bundle prM+F with the autodual connection ∇ is called
the inverse twistor transform of F .

Theorem 4.2.7. The twistor transformation and the inverse twistor transfor-
mation are quasi-equivalences to each other and establish an equivalence between the
categories of bundles with autodual connections on M and holomorphic bundles on
Tw(M) that are trivial along the horizontal twistor lines.

Proof. Theorem 5.12 of Kaledin-Verbitsky [16].
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4.3. Construction of the twistor transform. We complete the construction
of the autodual connection by constructing a suitable twistorial bundle on the twistor
space of the base manifold MDol(X, 1). The construction of the restrictions of the
twistorial bundle to the “halves” of the twistor space isomorphic to the moduli space
MHod(X, 1) and its conjugate rely on the cohomological machinery developed in Sec-
tion 2.1. The glueing together of the bundle on the twistor space and the verification
that it be twistorial relies on the analytical results of Simpson and Corlette reviewed
in Section 3.

Notation 4.3.1. Let X be a smooth comple curve of genus ≥ 2. We continue
to denote by M the hyper-Kähler moduli space MDol(X, 1). Let T = Tw(M) be

the twistor space. By (3.2.5) it is glued together from MHod(X, 1) and MHod(X, 1)
by means of the anti-holomorphic involution σ′ of (3.2.4.2); we denote these ”halves”
of the twistor space by T + and T− respectively. Let U be the universal rank-1 λ-
connection on T + × X , and denote by λ : T + → A1 the natural fibration.

4.3.2. Let E be a stable degree-0 Higgs bundle on X . The construction in
(3.2.7) of the (half of the) horizontal twistor line through the point in MDol(X, n)
corresponding to E gives us a bundle with a λ-connection E

′ on A1×X , which restricts
to E on {0} × X . Let

E
+ = (λ × 1X)∗E′

L

⊗ U .

We consider the object

F+ = R1prT+∗

(
DRX×T+/T+

(
E

+
))

of Db
c(T

+). By construction the restriction of F+ to M ⊂ T + is the Fourier transform

Ê.

Lemma 4.3.3. The sheaf F+ constructed above is locally free OT+-module.

Proof. Since X is complete, it follows from (2.1.13) that F+ is a coherent OT+ -
module. Hence it suffices to show that the dimension of the fibres F+(m) is constant
for m ∈ T + = MHod(X, 1). For m ∈ MDol(X, 1) this follows as the Fourier transform
is locally free. But by Corollary 2.3. of Simpson [23]

F+(m) ∼= F+(m′),

where m′ ∈ MdR(X, 1) corresponds to m ∈ MDol(X, 1) under the homeomorphism of
(3.1.4). Finally, for general m /∈ M = MDol(X, 1) this follows from the trivialisation of
MHod(X, 1)\MDol(X, 1) in (3.2.4) and the fact that multiplication of the differential
of a de Rham complex by a constant does not affect its hypercohomology.

4.3.4. Consider the universal Higgs bundle (X × C, ∂̄ξ, θ) on the base J(X) ×
H0(X, Ω1

X) × X = MDol(X, 1) × X . Using the harmonic (i.e., product) metric on
L = X × C, we get by (3.1.1) the operators θ̄ and ∂ξ. By (3.1.3), (L, ∂ξ,−θ̄ξ) is a

(in fact universal) family of Higgs line bundles on MDol(X, 1) × X. As in the proof
of (3.2.8), for each λ ∈ C, ∂ξ − λ̄θξ is a complex structure operator for L on X, and
λ̄∂̄ξ − θ̄ is a λ̄-connection in (L, ∂ξ − λ̄θξ). It is clear that the family is holomorphic
with respect to T−. We denote this family of rank-1 λ-connections on T−×X by U−.
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Lemma 4.3.5. The anti-holomorphic involution τ of the moduli space of represen-
tations of π1(X) used in the glueing of T from T + and T− exchanges the monodromies
of the restrictions of U and U− to moduli spaces of flat connections.

Proof. First, by 3.1.3, the conjugate family of U with complex structure operator
∂ξ + λ̄θξ and λ̄-connection λ̄∂̄ξ + θ̄ restricted to MdR(X, 1) has the same monodromy
as U .

It follows from (3.1.5.1) that the map θ 7→ −θ corresponds to

(ϕ1, . . . , ϕ2g, r1, . . . , r2g) 7→ (ϕ1, . . . , ϕ2g, 1/r1, . . . , 1/r2g)

in polar coordinates on (C∗)2g. But this is just the map

(c1, . . . , c2g) 7→ (c1
−1, . . . , c2g

−1),

i.e., the involution of the moduli space.

4.3.6. Let E and ∂̄ denote the underlying smooth complex vector bundle and
the holomorphic structure operator of the Higgs bundle E. Using a harmonic metric
h on (E, ∂̄, θ) we get by (3.1.1) and (3.1.2) operators θ̄h and ∂h such that

∇ = ∂h + ∂̄ + θ + θ̄h

is the flat connection corresponding to E by (3.1.2). Now by (3.1.3) the operator ∂h

defines in E a structure of a holomorphic bundle on the complex conjugate curve X,
and the operator −θ̄h makes (Eh, ∂h) into a stable Higgs bundle we denote by E.

4.3.7. As in (4.3.2), the Higgs bundle E gives us a holomorphic family

E
′
= (E, λ̄∂̄ − θ̄h + ∂h − λ̄θ)

of λ-connections on X parametrised by A1. This is just the family giving a half of
the horizontal twistor line corresponding E in the twistor space T− = MDol(X, 1) =
MDol(X, 1). Let

E
− = (λ × 1X)∗E

′ L

⊗ U−.

Consider the object

F− = R1prT−∗

(
DRX×T−/T−E

−
)
.

It is a locally free OT−-module by the same argument that was used for F+ in (4.3.3).

Proposition 4.3.8. Let σ′ : T + ×A1 Gm → T− ×
A1 Gm be the morphism used

to glue together the twistor space T in (3.2.4). Then the pulled-back vector bundle
σ′∗ (F−) is isomorphic to the restriction of F+ on T + ×A1 Gm.

Proof. Consider the morphism

f = (σ′ × 1X) : T + ×A1 Gm × X → T− ×
A1 Gm × X.

Notice that f is a morphism of schemes, but not a morphism of C-schemes. Since
F− = R1prT−∗(E

−) is locally free, it follows by base change that

σ′∗(F−) = R1prT+∗(f
∗(E−)).
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Denote N = MdR(X, 1). Let E
+
1 be the restriction of E

+ to N × X , and let
F+

1 = R1prN∗E
+
1 be the restriction of F+ to N ⊂ T +. Now on T +×A1Gm = N×Gm

we have the family λ−1
E

+ of flat connections by (3.2.4). But since multiplication of
the differentials in a complex does not affect its hypercohomology, it follows that
the restriction of F+ to N × Gm is the pull-back pr∗NF+

1 . Similarly, let E
−
1 denote

the restriction of E
− to MdR(X, 1) × X; then we see that the restriction of F− to

T− ×
A1 ×Gm = N × Gm is the pull-back of F−

1 = R1prN∗E
−
1 .

Hence it is enough to find an isomorphism

R1prN∗

(
E

+
1

) ∼
→ R1prN∗

(
f∗

E
−
1

)

But now the proposition follows from the following lemma.

Lemma 4.3.8.1. There is an isomorphism f∗(E−) → E
+ on T + ×A1 {1} =

MdR(X, 1).

Let L+ be the family of local systems (i.e., locally constant sheaves) on N × X
for which E

+
1 = L+ ⊗C ON×X , and let L− be the family of local systems on N × X

for which E
−
1 = L− ⊗C ON×X . Then f∗

E
−
1 = f−1L− ⊗C ON×X . But it follows from

(3.1.3), (3.2.6) and (4.3.5) that f−1L− ∼= L+, whence the lemma.

4.3.9. The proposition allows us to glue the sheaves F+ on T + and F− on T−

together into a sheaf on T . Let us denote this sheaf by F . Notice that the glueing
map is essentially constant in the Gm-direction, being pulled back from the glueing
map for MdR(X, 1) ⊂ T .

Lemma 4.3.10. The glued-together sheaf F constructed in (4.3.9) is a twistorial
locally free OT -module.

Proof. That F is locally free is clear since it is glued from two locally free sheaves.
We need to show that it is twistorial. Let m̃ : P1 → T be a horizontal twistor line.
Then formality Lemma 2.2 in Simpson [23] gives trivialisations of m̃∗F over A1 and
A1. Since the glueing in (4.3.9) is propagated from the isomorphism m̃∗F(1) →
m̃∗F(−1), the transition function will be constant. Hence the locally free sheaf m̃∗F
is in fact globally free.

Proposition 4.3.11. The underlying vector bundle of the inverse twistor trans-
form of F is Ê.

Proof. Let (E,∇) be the inverse twistor transform of F . Then by (4.2.7) F
is the twistor transform of (E,∇), i.e., pr∗ME with the complex structure given by
the (0, 1)-part of the pull-back connection pr∗M∇. But it is clear that the underlying

smooth bundle of Ê = F|M is E.

Theorem 4.3.12. The Fourier transform Ê of a stable Higgs bundle E of rank
≥ 2 and degree 0 on a smooth complete curve X of genus ≥ 2 has a natural autodual
connection.

Proof. This follows from (4.3.10), (4.2.7) and (4.3.11).

Remarks 4.3.13.
1. A second, alternative, construction of the Fourier transform and the autodual

connection for stable Higgs bundles on curves was outlined in [3, page 66].
That approach, originally suggested by Nigel Hitchin (see the discussion in
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Hitchin [13, Section 7]), represents the Fourier transform as the bundle of
kernels of a suitable family of Dirac operators coupled to the Higgs field,
modelled on the Nahm transform for monopoles. This was also effectively
the approach taken in Jardim [15] for the case of singular Higgs bundles on
genus-1 curves. This alternative construction has been recently carried out for
stable Higgs bundles on curves of genus ≥ 2 by Frejlich-Jardim in [10]. They
obtain analytic proofs for many of the results in [4] (specialised to the setting
of complex geometry) as well as the existence of the autodual connection,
thereby confirming the expectations stated in [3].

2. Related questions have been studied in a few other recent articles. A Nahm
transform for singular Higgs bundles on curves of genus 0 is defined by an
analytic approach in Szabó [27]. Tejero-Prieto [28] relates the general Fourier
transformation for curves defined in [4] (used to construct the Fourier trans-
formation for Higgs bundles) to a corresponding Nahm-type transformation,
and applies these to study certain spectral bundles on the Jacobian. This
effectively describes related Fourier and Nahm transforms for stable bundles
(the case of vanishing Higgs field). In addition, in [1] Bartocci and Biswas
described a different type of Fourier-Mukai transform for Higgs bundles over
varieties of arbitrary dimension.
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