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SUBGRADIENT ESTIMATE AND LIOUVILLE-TYPE THEOREM

FOR THE CR HEAT EQUATION ON HEISENBERG GROUPS∗

SHU-CHENG CHANG† , JINGZHI TIE‡ , AND CHIN-TUNG WU§

Abstract. In this paper, we first get a subgradient estimate of the CR heat equation on a
closed pseudohermitian (2n + 1)-manifold. Secondly, by deriving the CR version of sub-Laplacian
comparison theorem on an (2n + 1)-dimensional Heisenberg group Hn, we are able to establish a
subgradient estimate and then the Liouville-type theorem for the CR heat equation on Hn.
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1. Introduction. In the paper of [Y], S.-T. Yau derived a gradient estimate
for positive harmonic functions on a complete noncompact Riemannian manifold. As
a consequence, Liouville-type theorems can be proved for manifolds of nonnegative
Ricci curvature. Moreover, in the paper of [LY], P. Li and S.-T. Yau established the
parabolic Li-Yau gradient estimate and Li-Yau Harnack inequality for the positive
solution of the heat equation on a complete Riemannian manifold.

However for a pseudohermitian (2n + 1)-manifold (M,J, θ), the corresponding
estimates are not clear due to a lack of sub-Laplacian comparison theorem and CR
Bochner formula. In this paper, we consider the CR heat equation (1.6) with respect
to the sub-Laplacian on (M,J, θ). By using the arguments of [LY] and CR Bochner
formula (2.1), we are able to derive the CR version of parabolic Li-Yau gradient es-
timate and the so-called reversed Li-Yau Harnack inequality for the positive solution
of CR heat equation. Then by combining the standard parabolic Li-Yau gradient
estimate, we derive a subgradient estimate of the CR heat equation on closed pseudo-
hermitian (2n+1)-manifolds. Moreover, by deriving the CR version of sub-Laplacian
comparison theorem on (2n + 1)-dimensional Heisenberg groups Hn, we are able to
establish the subgradient estimate and the Liouville-type theorem for the CR heat
equation on Hn.

The main key step is to derive the CR version of Bochner formula. This formula
(2.1) involving a third order operator P which characterizes CR-pluriharmonic func-
tions ([L1]), is hard to control. However after integrating by parts (see 1.5), we are
able to relate this extra term to the CR Paneitz operator P0.

We first give a brief introduction to pseudohermitian geometry (see [L1] for more
details). Let (M, ξ) be a (2n + 1)-dimensional, orientable, contact manifold with
contact structure ξ, dimR ξ = 2n. A CR structure compatible with ξ is an en-
domorphism J : ξ → ξ such that J2 = −1. We also assume that J satisfies the
following integrability condition: If X and Y are in ξ, then so is [JX, Y ] + [X, JY ]
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and J([JX, Y ]+ [X, JY ]) = [JX, JY ]− [X,Y ]. A CR structure J can extend to C⊗ξ
and decomposes C⊗ξ into the direct sum of T1,0 and T0,1 which are eigenspaces of J
with respect to i and −i, respectively. A manifold M with a CR structure is called
a CR manifold. A pseudohermitian structure compatible with ξ is a CR structure J
compatible with ξ together with a choice of contact form θ. Such a choice determines
a unique real vector field T transverse to ξ, which is called the the characteristic vec-
tor field of θ, such that θ(T ) = 1 and LT θ = 0 or dθ(T, ·) = 0. Let {T, Zα, Zᾱ} be a
frame of TM ⊗ C, where Zα is any local frame of T1,0, Zᾱ = Zα ∈ T0,1 and T is the
characteristic vector field. Then {θ, θα, θᾱ}, which is the coframe dual to {T, Zα, Zᾱ},
satisfies

(1.1) dθ = ihαβ̄θ
α ∧ θβ̄ ,

for some hermitian matrix of functions (hαβ̄). Actually we can always choose Zα such
that hαβ̄ = δαβ ; hence, throughout this paper, we assume hαβ̄ = δαβ .

The Levi form 〈 , 〉Lθ
is the Hermitian form on T1,0 defined by

〈Z,W 〉Lθ
= −i

〈

dθ, Z ∧W
〉

.

We can extend 〈 , 〉Lθ
to T0,1 by defining

〈

Z,W
〉

Lθ

= 〈Z,W 〉Lθ
for all Z,W ∈ T1,0.

The Levi form induces naturally a Hermitian form on the dual bundle of T1,0, denoted
by 〈 , 〉L∗

θ

, and hence on all the induced tensor bundles. Integrating the Hermitian

form (when acting on sections) over M with respect to the volume form dµ = θ ∧ dθ,
we get an inner product on the space of sections of each tensor bundle. We denote
the inner product by the notation 〈 , 〉. For example

〈ϕ, ψ〉 =

∫

M

ϕψ̄ dµ,

for functions ϕ and ψ.
The pseudohermitian connection of (J, θ) is the connection ∇ on TM ⊗ C (and

extended to tensors) given in terms of a local frame Zα ∈ T1,0 by

∇Zα = θα
β ⊗ Zβ, ∇Zᾱ = θᾱ

β̄ ⊗ Zβ̄, ∇T = 0,

where θα
β are the 1-forms uniquely determined by the following equations:

dθβ = θα ∧ θα
β + θ ∧ τβ ,

0 = τα ∧ θα,

0 = θα
β + θβ̄

ᾱ,

(1.2)

We can write (by Cartan lemma) τα = Aαγθ
γ with Aαγ = Aγα. The curvature of the

Webster-Stanton connection, expressed in terms of the coframe {θ = θ0, θα, θᾱ}, is

Πβ
α = Πβ̄

ᾱ = dθβ
α − θβ

γ ∧ θγ
α,

Π0
α = Πα

0 = Π0
β̄ = Πβ̄

0 = Π0
0 = 0.

Webster showed that Πβ
α can be written

Πβ
α = Rβ

α
ρσ̄θ

ρ ∧ θσ̄ +Wβ
α

ρθ
ρ ∧ θ −Wα

βρ̄θ
ρ̄ ∧ θ + iθβ ∧ τα − iτβ ∧ θα
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where the coefficients satisfy

Rβᾱρσ̄ = Rαβ̄σρ̄ = Rᾱβσ̄ρ = Rρᾱβσ̄, Wβᾱγ = Wγᾱβ .

We will denote components of covariant derivatives with indices preceded by
comma; thus write Aαβ,γ . The indices {0, α, ᾱ} indicate derivatives with respect
to {T, Zα, Zᾱ}. For derivatives of a scalar function, we will often omit the comma, for
instance, fα = Zαf, fαβ̄ = Zβ̄Zαf − θα

γ(Zβ̄)Zγf, f0 = Tf for a (smooth) function.
For a real function f , the subgradient ∇b is defined by ∇bf ∈ ξ and 〈Z,∇bf〉Lθ

=
df(Z) for all vector fields Z tangent to contact plane. Locally ∇bf =

∑

α fᾱZα+fαZᾱ.
We can use the connection to define the subhessian as the complex linear map

(∇H)2f : T1,0 ⊕ T0,1 → T1,0 ⊕ T0,1,

by

(∇H)2f(Z) = ∇Z∇bf.

Also

∆bf = Tr
(

(∇H)2f
)

=
∑

α(fαᾱ + fᾱα).

The Webster-Ricci tensor and the torsion tensor on T1,0 are defined by

Ric(X,Y ) = Rαβ̄X
αY β̄,

and

Tor(X,Y ) = i
∑

α,β(Aᾱβ̄X
ᾱY β̄ −AαβX

αY β),

where X = XαZα, Y = Y βZβ, Rαβ̄ = Rγ
γ

αβ̄ . The Webster scalar curvature is

R = Rα
α = hαβ̄Rαβ̄.

Next we recall some definitions.

Definition 1.1. (i) A piecewise smooth curve γ : [0, 1] → M is said to be
horizontal if γ ′(t) ∈ ξ whenever γ ′(t) exists. The length of γ is then defined by

l(γ) =

∫ 1

0

〈γ ′(t), γ ′(t)〉 1
2 dt.

The Carnot-Carathéodory distance between two points p, q ∈M is

dc(p, q) = inf {l(γ)| γ ∈ Cp,q} ,

where Cp,q is the set of all horizontal curves joining p and q.
(ii) By Chow connectivity theorem [Cho], there always exists a horizontal curve

joining p and q, so the distance is finite. We say M is complete if it is complete as a
metric space.

Definition 1.2. A smooth real-valued function u in M is said to be CR-
pluriharmonic function if for any point p ∈ M, there is an open neighborhood U
of p in M and a smooth real-valued function v on U such that ∂b(u+ iv) = 0.
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Definition 1.3. ([L1]) Let (M2n+1, J, θ) be a complete pseudohermitian mani-
fold. Define

Pϕ =
n
∑

α=1

(ϕα
α

β + inAβαϕ
α)θβ = (Pβϕ)θβ , β = 1, 2, · · ·, n

which is an operator that characterizes CR-pluriharmonic functions. Here

(1.3) Pβϕ =
n
∑

α=1

(ϕα
α

β + inAβαϕ
α)

and Pϕ = (P βϕ)θβ , the conjugate of P . Moreover we define

(1.4) P0ϕ = 4
(

δb(Pϕ) + δb(Pϕ)
)

which is the so-called CR Paneitz operator P0. Here δb is the divergence operator that
takes (1, 0)-forms to functions by δb(σαθ

α) = σα,
α and δ̄b(σαθ

α) = σα,
α. If we define

∂bϕ = ϕαθ
α and ∂̄bϕ = ϕαθ

α, then the formal adjoint of ∂b on functions (with respect
to the Levi form and the volume form dµ) is ∂∗b = −δb.

We observe that if (M,J, θ) is a closed pseudohermitian (2n+ 1)-manifold, then

(1.5) −
∫

M

〈Pϕ+ Pϕ, dbϕ〉 dµ =
1

4

∫

M

P0ϕ · ϕ dµ.

In particular if (M,J, θ) has zero torsion, we have

P0ϕ = LnLn = [∆2
bϕ+ n2T 2ϕ].

Here

Lnϕ = −∆bϕ+ inTϕ = −2ϕα
α.

For the details about these operators, the reader can make reference to [GL], [H] and
[L1].

Remark 1.1. ([H], [GL]) (i) Let (M,J, θ) be a closed pseudohermitian (2n+1)-
manifold with n ≥ 2. Then a smooth real-valued function f satisfies P0f = 0 on M if
and only if Pβf = 0 on M. It holds also for a closed pseudohermitian 3-manifold of
zero torsion.

(ii) Let Pβf = 0. If M is the boundary of a connected strictly pseudoconvex
domain Ω ⊂ Cn+1, then f is the boundary value of a pluriharmonic function u in Ω.
That is, ∂∂u = 0 in Ω. Moreover, if Ω is simply connected, there exists a holomorphic
function w in Ω such that Re(w) = u and u|M = f.

In this paper, we consider the positive solution u(x, t) of the CR heat equation
with respect to the sub-Laplacian

(1.6)
∂

∂t
u(x, t) = ∆bu(x, t)

on M × [0, T ).



SUBGRADIENT ESTIMATE FOR THE CR HEAT EQUATION 45

Proposition 1.1. Let (M,J, θ) be a closed pseudohermitian (2n+ 1)-manifold.
If u(x, t) is the positive smooth solution of (1.6) on M × [0,∞). Suppose that

[2Ric− (n+ 2)Tor](Z,Z) ≥ −l0|Z|2,

for all Z ∈ T1,0 and l0 is a nonnegative constant. Then the function

(1.7) G = t

[

|∇bϕ|2 +

(

1 +
2

n

)

ϕt

]

satisfies the inequality

(

∆b − ∂
∂t

)

G ≥ − 2n
n+2 〈∇bϕ,∇bG〉

+ 2n
(n+1)(n+2)2tG

(

G− (n+1)(n+2)2

2n

)

−l0t |∇bϕ|2 − 8
n tu

−2
〈

Pu+ P̄ u, dbu
〉

L∗

θ

.

Let u(x, t) be a positive solution of (1.6) on M × [0,∞). In section 2, it is proved
that if Pβu = 0 at t = 0, then Pβu = 0 for all t on a closed pseudohermitian (2n+ 1)-
manifold of zero torsion. Then the extra term of CR Bochner formula (2.1) becomes

(1.8) 〈Pu+ Pu, dbu〉 = 0

on M × [0,∞).
Now by using the arguments of [LY], (2.1) and (1.8), we are able to derive the

CR version of parabolic Li-Yau gradient estimate for the positive solution u(x, t) of
(1.6) on M × [0,∞).

Corollary 1.2. Let (M,J, θ) be a closed pseudohermitian (2n+ 1)-manifold of
zero torsion and nonnegative pseudohermitian Ricci tensors. If u(x, t) is the positive
solution of (1.6) on M × [0,∞) such that

Pβu = 0

at t = 0. Then u satisfies the estimate

(1.9a)
|∇bu|2
u2

+
n+ 2

n

ut

u
≤ (n+ 1)(n+ 2)2

2n

1

t

on M × [0,∞).

By combining the result of [CY] and Corollary 1.2, we get the following subgradient
estimate of the logarithm of a positive solution to (1.6).

Theorem 1.3. Let (M,J, θ) be a closed pseudohermitian (2n + 1)-manifold of
zero torsion and nonnegative pseudohermitian Ricci tensor. If u(x, t) is the positive
solution of (1.6) on M × [0,∞) such that

Pβu = 0, β = 1, 2, · · ·, n

at t = 0. Then there exist constants C1, C2 such that u satisfies the subgradient
estimate

(1.10) t |∇b log u|2 ≤ C1 + C2t
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on M × [0,∞).

Note that the arguments of [LY] can be extended easily to complete noncompact
pseudohermitian (2n+ 1)-manifold if one can have the CR version of Laplacian com-
parison theorem. Indeed, this is the case for a (2n+1)-dimensional Heisenberg group
Hn (see section 5 for details). Then we have

Theorem 1.4. If u(x, t) be a positive smooth solution of (1.6)

(

∆b −
∂

∂t

)

u(x, t) = 0

on Hn × [0, T ) with

Pβu = 0

at t = 0, then u satisfies the subgradient estimate

t |∇b log u|2 ≤ (n+ 2)(n2 + 5n+ 2)

4(n+ 1)
+ ǫ

on Hn × [0, T ) for any ǫ > 0.

Remark 1.2. For the CR Yamabe flow on a closed pseudohermitian 3-manifold
of zero torsion and nonnegative Tanaka-Webster curvature, we have the similar result
on CR version of Li-Yau-Hamilton inequality ([CCW]).

As a consequence, we have the following Liouville-type theorems for CR heat
equation on Hn × [0,∞).

Corollary 1.5. Let (Hn, J, θ) be the standard (2n+ 1)-dimensional Heisenberg
group. If u(x, t) is a positive solution of (1.6) on Hn × [0,∞) with a positive smooth
CR-pluriharmonic function as an initial. Then u is a constant.

Remark 1.3. It is true that there are no nontrivial positive harmonic functions
on Hn. See [KS] for details.

Now for any L2-function u(x, t), we may write

u(x, t) = uker(x, t) + u⊥(x, t)

with P0(uker(x, t)) = 0. From Lemma 2.2, we may split the CR heat equation (1.6)
into the following heat equations respectively :

(1.11)
∂

∂t
u⊥ = ∆bu

⊥

and

(1.12)
∂

∂t
uker = ∆buker

on Heisenberg group (Hn, J, θ). Observe that H(x, y, t) ∈ C∞(Hn ×Hn × R+) and
for any fixed y, t, H(x, y, t) ∈ L2(Hn). Then for any L2-function u(x, 0) = f(x), we
have

f(x) = fker(x) + f⊥(x)
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and

H(x, y, t) = Hker(x, y, t) +H⊥(x, y, t)

with P0(fker(x)) = 0 and P0(Hker(x, y, t)) = 0. Hence

u⊥(y, t) =

∫

H⊥(x, y, t)f⊥(x)dx

and

uker(y, t) =

∫

Hker(x, y, t)fker(x)dx.

As a consequence from Theorem 1.4 and Corollary 4.4, we have the following
subgradient estimate of the heat kernel.

Corollary 1.6. Let H(x, y, t) be the heat kernel of (1.6) on Hn × [0, T ) with
H(x, y, t) = Hker(x, y, t) +H⊥(x, y, t). Then for some constant δ and 0 < ǫ < 1,

|∇bHker(x, y, t)| ≤ C(ǫ)
δ

2 t−
(2n+3)

2 exp

(

− d2
c(x, y)

2(4 + ǫ)t

)

with C(ǫ) → ∞ as ǫ→ 0.

For simplicity, we first prove Theorems of this paper on a pseudohermitian (2n+
1)-manifold (M,J, θ) with n = 1 as in section 3, 4. The higher dimensional cases will
be given in section 5, 6.

Acknowledgments. The first named author would like to express his thanks to
Prof. S.-T. Yau for constant encouragement, Prof. J.-P. Wang for valuable discussions
during his visit at NCTS, Hsinchu, Taiwan. The first and second named authors would
like to express their thanks to Prof. Jih-Hsin Cheng for his supports and Institute of
Mathematics, Academia Sinica for the hospitality during the visit. Also the authors
would like to express their thanks to the referee for valuable comments.

2. CR Bochner formula and preserving property. In this section, we will
drive the CR version of Bochner formula and the preserving property for (1.6) on a
pseudohermitian (M2n+1, J, θ).

We first derive the following CR version of Bochner formula on a complete pseudo-
hermitian (M2n+1, J, θ).

Lemma 2.1. Let (M2n+1, J, θ) be a complete pseudohermitian manifold. For a
real smooth function u on (M,J, θ),

(2.1)

1
2∆b|∇bu|2 = |(∇H)2u|2 + (1 + 2

n ) < ∇bu,∇b∆bu >Lθ

+[2Ric− (n+ 2)Tor]((∇bu)C, (∇bu)C)

− 4
n < Pu+ Pu, dbu >L∗

θ
.

Here (∇bu)C = uαZα is the corresponding complex (1, 0)-vector field of ∇bu and
dbu = uαθ

α + uαθ
α.

Remark 2.1. In [Chi] and [CC], the CR Bochner formulae (2.1) was derived for
n = 1.
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Proof. First from [Gr], we have for a real function u

(2.2)

1
2∆b|∇bu|2 = |(∇H)2u|2+ < ∇bu,∇b∆bu >Lθ

+(2Ric− nTor)((∇bu)C, (∇bu)C)
−2i

∑n
α=1(uαuα0 − uαuα0).

We use the matrix hαβ to raise and lower indices. In the following we always
compute at one point. Then one may assume hαβ = δαβ to lower the index. For
instance,

Pβϕ =

n
∑

α=1

(ϕααβ + inAβαϕα)

and

u0α − uα0 =
n
∑

γ=1

A γ αuγ

and

iu0 = uγβ − uβγ .

Compute

iuαuα0

= iuαu0α − i
∑n

γ=1A γ αuαuγ

= 1
nuα

∑n
β=1(uββα − uββα) − i

∑n
γ=1A γ αuγuα

= 1
nuαPαu+ i

∑n
γ=1A γ αuαuγ − 1

n

∑n
β=1(uαuββα)

−i∑n
γ=1A γ αuγuα

= 1
nuαPαu− 1

n

∑n
β=1(uαuββα)

and

−iuαuα0 = conj(iuαuα0).

Then

−2i
∑n

α=1(uαuα0 − uαuα0) = − 2
n < Pu+ Pu, dbu >L∗

θ

+ 2
n

∑n
α,β=1(uαuββα + uαuββα).

But

< ∇bu,∇b∆bu >Lθ

=
∑n

α,β=1[uα(uββ + uββ)α + uα(uββ + uββ)α]

=
∑n

α,β=1(uαuββα + uαuββα) +
∑n

α,β=1(uαuββα + uαuββα)

=
∑n

α,β=1(uαuββα + uαuββα)+ < Pu+ Pu, dbu >L∗

θ

+in
∑n

γ,α=1(A γ αuαuγ −A γ αuαuγ)

=
∑n

α,β=1(uαuββα + uαuββα)+ < Pu+ Pu, dbu >L∗

θ

+nTor((∇bu)C, (∇bu)C).

It follows that

(2.3)
−2i

∑n
α=1(uαuα0 − uαuα0) = − 4

n < Pu+ Pu, dbu >L∗

θ

−2Tor((∇bu)C, (∇bu)C)
+ 2

n < ∇bu,∇b∆bu >Lθ
.
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Finally from (2.2) and (2.3), we have

1
2∆b|∇bu|2 = |(∇H)2u|2 + (1 + 2

n ) < ∇bu,∇b∆bu >Lθ

+[2Ric− (n+ 2)Tor]((∇bu)C, (∇bu)C)
− 4

n < Pu+ Pu, dbu >L∗

θ
.

Lemma 2.2. Let (M,J, θ) be a closed pseudohermitian (2n+ 1)-manifold of zero
torsion. If u(x, t) is a solution of

(

∆b −
∂

∂t

)

u(x, t) = 0

on M ×[0,∞) with Pβu(x, 0) = 0. Then Pβu(x, t) = 0 for all t ∈ (0,∞).

Proof. Let (M,J, θ) be a closed pseudohermitian (2n+1)-manifold of zero torsion.
From Remark 1.1, we have P0u = 0 if and only if Pβu = 0 and

P0u = ((∆b)
2u+ nT 2u).

It follows that ∆bP0u = P0∆bu. Apply P0 to the heat equation, we obtain

(

∆b −
∂

∂t

)

P0u(x, t) = 0

on M × [0,∞) with P0u(x, 0) = 0. Hence the Lemma follows from the maximum
principle and Remark 1.1.

Lemma 2.3. Let (Hn, J, θ) be the standard (2n+1)-dimensional Heisenberg group.
If u(x, t) is a solution of

(

∆b −
∂

∂t

)

u(x, t) = 0

on M ×[0,∞) with Pβu(x, 0) = 0, β = 1, ..., n. Then Pβu(x, t) = 0 for all t ∈ [0,∞).

Remark 2.2. Since (Hn, J, θ) is complete noncompact, Pβu is not necessarily
vanishing even if P0u = 0. So we need to have a different proof from Lemma 2.2.

Proof. We first do it for n = 1. We need the following commutation relation ([L1])

(2.4)

CI,01 − CI,10 = CI,1A11 − kCIA11,1,

CI,01 − CI,10 = CI,1A11 + kCIA11,1,

CI,11 − CI,11 = iCI,0 + kWCI ,

Here CI denotes a coefficient of a tensor with multi-index I consisting of only 1 and
1, and k is the number of 1 minus the number of 1 in I.

For

∂
∂tu111 = (∆bu)111

= (u
11

+ u
11

)111
= (u

11111
+ u

11111
),
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it follows from (2.4) that

u
11111

= u11111 − iu1101 = u11111 − iu1110

and

u
11111

= u
11111

+ iu
0111

= (u
11111

− iu1101) + iu
0111

= (u
11111

− iu
1110

) − iu1101 + iu
0111

= u
11111

− iu
1110

.

Thus for L2 = −∆b + 2iT

(2.5)
∂

∂t
u111 = ∆bu111 − 2iu

1110
= −L2u111.

This plus (2.5) imply

∂

∂t
(P1u) = −L2(P1u).

Similarly for n ≥ 2, we have

∂

∂t
(Pβu) =

∂

∂t
(

n
∑

α=1

uααβ) =

n
∑

α=1

(∆bu)ααβ =

n
∑

γ,α=1

(uγγ + uγγ)ααβ.

Now by commutation relations

(2.6)

uγγααβ = uγγααβ + iu0ααβ

= uγγαβα + iuααβ0

= uγγβαα − iuγγ0α + iuααβ0

= uγγβαα − iuγγα0 + iuααβ0

and

(2.7)
uγγααβ = uγγαβα

= uγγβαα − iuγγ0α

= uγγβαα − iuγγβ0 − iuγγα0.

It follows from (2.6) and (2.7) that

∂
∂t (Pβu) =

∑n
γ,α=1(uγγααβ + uγγααβ)

= ∆b(Pβu) − 2i
∑n

γ,α=1 uγγα0 + i
∑n

γ,α=1 uααβ0 − i
∑n

γ,α=1 uγγβ0

= ∆b(Pβu) − 2i
∑n

γ,α=1 uγγα0

= ∆b(Pβu) − 2iT (
∑n

α=1 Pαu).

Hence

∂

∂t
(

n
∑

β=1

Pβu) = ∆b(

n
∑

β=1

Pβu) − i2nT (

n
∑

β=1

Pβu).

That is

∂

∂t
(

n
∑

β=1

Pβu) = −L2n(

n
∑

β=1

Pβu).

Here L2n = −∆b + i2nT. Since 2n is not an odd integer, −L2n is a subelliptic op-
erator again. Then by the uniqueness of solution to subelliptic parabolic equation,
Pβu(x, t) = 0 for all t ∈ [0,∞) if Pβu(x, 0) = 0, β = 1, ..., n.
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3. Subgradient estimate of the CR heat equation. In this section, we first
establish the subgradient estimate of Theorem 1.3 for n = 1. For n ≥ 2, we refer it
to section 6.

Let (M,J, θ) be a closed pseudohermitian 3-manifold. By using the arguments of
[LY], we are able to derive the CR version of parabolic Li-Yau gradient estimate for
the positive solution u(x, t) of (1.6) on M × [0,∞).

Let ϕ = log u. Then ϕ satisfies

(

∆b −
∂

∂t

)

ϕ = − |∇bϕ|2 .

On the other hand, from Cao-Yau’s ([CY]) paper, one has the standard parabolic
Li-Yau gradient estimate.

Proposition 3.1. ([CY, Theorem 2.1]) Let (M,J, θ) be a closed pseudohermitian
(2n + 1)-manifold and u(x, t) be a positive smooth solution of (1.6) on M × [0,∞).
Then there exist constants C

′

, C
′′

and δ0 > 1 such that for any δ ≥ δ0, u satisfies the
estimate

(3.1)
|∇bu|2
u2

− δ
ut

u
≤ C

′

t
+ C

′′

on M × [0,∞).

Now we derive the CR version of parabolic Li-Yau gradient estimate for the
positive solution of the CR heat equation. First, we need the following Lemma.

Lemma 3.2. Let (M,J, θ) be a closed pseudohermitian (2n + 1)-manifold. Let
ϕ = ln f , for f > 0. Then

(3.2)

〈

Pϕ+ P̄ϕ, dbϕ
〉

L∗

θ

= f−2
〈

Pf + P̄ f, dbf
〉

L∗

θ

− 1
2

〈

∇bϕ,∇b|∇bϕ|2
〉

− 1
2f

−1∆bf |∇bϕ|2.

Proof. In the following, we use the Einstein convention notation. Let Q(x) =

|∇bϕ|2 (x). We compute

∇bQ = QαZα +QαZα = 2∇b(ϕαϕα)
= 2f−4(f2fαfαβ + f2fαfαβ − 2fαfαfβ)Zβ + complex conjugate.

It follows that

Pβϕ

= ϕααβ + inAβαϕα

= f−4(f3fααβ − f2fαfαβ − f2fαfαβ − f2fβfαα + 2ffαfβfα) + inAβαf
−1fα

= f−1(Pβf − 1

2
fQβ − f−1fβfαα)

= f−1(Pβf − 1

2
fQβ − ϕβfαα),
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thus

〈

Pϕ+ P̄ϕ, dbϕ
〉

L∗

θ

=
〈

(Pβϕ) θβ +
(

P̄βϕ
)

θβ , ϕβθ
β + ϕβθ

β
〉

L∗

θ

= (Pβϕ)ϕβ +
(

P̄βϕ
)

ϕβ

= f−1(Pβf − 1

2
fQβ − ϕβfαα)ϕβ + complex conjugate

= f−2
〈

Pf + P̄ f, dbf
〉

L∗

θ

− 1

2

〈

∇bϕ,∇b|∇bϕ|2
〉

− 1

2
f−1∆bf |∇bϕ|2 .

This implies the Lemma.

Lemma 3.3. Let (M,J, θ) be a closed pseudohermitian 3-manifold. If u(x, t) is
the positive smooth solution u(x, t) of (1.6) on M × [0,∞). Suppose that

(2Ric− 3Tor)(Z,Z) ≥ −k0|Z|2,

for all Z ∈ T1,0 and k0 is a nonnegative constant. Then the function

(3.3) F = t
(

|∇bϕ|2 + 3ϕt

)

satisfies the inequality

(

∆b −
∂

∂t

)

F ≥ −2

3
〈∇bϕ,∇bF 〉 +

1

9t
F (F − 9) +

−k0t |∇bϕ|2 − 8tu−2
〈

Pu+ P̄ u, dbu
〉

L∗

θ

.

Proof. First differentiating (3.3) w.r.t. the t-variable, we have

Ft =
1

t
F + t

(

|∇bϕ|2 + 3ϕt

)

t

=
1

t
F + t

(

4 |∇bϕ|2 + 3∆bϕ
)

t
(3.4)

=
1

t
F + t [8〈∇bϕ,∇bϕt〉 + 3∆bϕt] .

By using the CR version of Bochner formula (2.1) and Lemma 3.2, one obtains

∆bF = t
(

∆b |∇bϕ|2 + 3∆bϕt

)

= t[2|(∇H)2ϕ|2 + 6 〈∇bϕ,∇b∆bϕ〉
+2(2Ric− 3Tor)((∇bϕ)C, (∇bϕ)C)

−8〈Pϕ+ Pϕ, dbϕ〉L∗

θ
+ 3∆bϕt]

≥ t[4 |ϕ11|2 + (∆bϕ)2 + 6 〈∇bϕ,∇b∆bϕ〉 − k0 |∇bϕ|2(3.5)

−8〈Pϕ+ Pϕ, dbϕ〉L∗

θ
+ 3∆bϕt]

= t[4 |ϕ11|2 + (∆bϕ)2 + 6 〈∇bϕ,∇b∆bϕ〉 − k0 |∇bϕ|2

−8u−2
〈

Pu+ P̄ u, dbu
〉

L∗

θ

+ 4ϕt|∇bϕ|2

+4
〈

∇bϕ,∇b|∇bϕ|2
〉

+ 3∆bϕt].
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Here we have used the inequalities

(3.6)
∣

∣(∇H)2ϕ
∣

∣

2
= 2 |ϕ11|2 +

1

2
(∆bϕ)2 +

1

2
ϕ2

0 ≥ 2 |ϕ11|2 +
1

2
(∆bϕ)2,

(2Ric− 3Tor)((∇bϕ)C, (∇bϕ)C) ≥ −k0 |(∇bϕ)C|2 = −k0

2
|∇bϕ|2 ,

and

ϕt =
ut

u
=

∆bu

u
.

Applying the formula

(3.7) ∆bϕ = ϕt − |∇bϕ|2 =
1

3t
F − 4

3
|∇bϕ|2

and combining (3.4), (3.5), we conclude

(

∆b −
∂

∂t

)

F ≥ −1

t
F + t[4 |ϕ11|2 + (∆bϕ)2 + 6 〈∇bϕ,∇b∆bϕ〉

+4
〈

∇bϕ,∇b|∇bϕ|2
〉

− 8〈∇bϕ,∇bϕt〉
−k0 |∇bϕ|2 + 4ϕt|∇bϕ|2 − 8u−2

〈

Pu+ P̄ u, dbu
〉

L∗

θ

]

= −1

t
F + t[− 2

3t
〈∇bϕ,∇bF 〉 −

4

3

〈

∇bϕ,∇b|∇bϕ|2
〉

+ 4 |ϕ11|2

+(∆bϕ)2 − k0 |∇bϕ|2 + 4ϕt|∇bϕ|2 − 8u−2
〈

Pu+ P̄ u, dbu
〉

L∗

θ

].

Now it is easy to see that

〈

∇bϕ,∇b|∇bϕ|2
〉

= 4Re(ϕ11ϕ1ϕ1) + ∆bϕ|∇bϕ|2.

Thus

− 4
3

〈

∇bϕ,∇b|∇bϕ|2
〉

= − 16
3 Re(ϕ11ϕ1ϕ1) − 4

3∆bϕ|∇bϕ|2
≥ −4 |ϕ11|2 − 16

9 |ϕ1|4 − 4
3∆bϕ|∇bϕ|2

= −4 |ϕ11|2 − 4
9 |∇bϕ|4 − 4

3∆bϕ|∇bϕ|2.

Here we have used the basic inequality 2Re(zw) ≤ ǫ|z|2 + ǫ−1|w|2 for all ǫ > 0. All
these imply

(

∆b − ∂
∂t

)

F ≥ − 1
tF − 2

3 〈∇bϕ,∇bF 〉 + t[(∆bϕ)2 + 8
3∆bϕ|∇bϕ|2

+ 32
9 |∇bϕ|4 − k0 |∇bϕ|2 − 8u−2

〈

Pu+ P̄ u, dbu
〉

L∗

θ

]

≥ − 2
3 〈∇bϕ,∇bF 〉 + 1

9tF (F − 9)

−k0t |∇bϕ|2 − 8u−2
〈

Pu+ P̄ u, dbu
〉

L∗

θ

.

This completes the proof of Lemma 3.3.

Theorem 3.4. Let (M,J, θ) be a closed pseudohermitian 3-manifold of zero
torsion and nonnegative Tanaka-Webster scalar curvature. If u(x, t) is the positive
solution of (1.6) on M × [0,∞) such that

P1u = 0
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at t = 0. Then u satisfies the estimate

(3.8)
|∇bu|2
u2

+ 3
ut

u
≤ 9

t

on M × [0,∞).

Proof. Applying Lemma 3.3 to ϕ by setting A11 = 0, k0 = 0 and

〈

Pu+ P̄ u, dbu
〉

= 0.

Then we have

(3.9)

(

∆b −
∂

∂t

)

F ≥ −2

3
〈∇bϕ,∇bF 〉 +

1

9t
F (F − 9).

The theorem claims that F is at most 9. If not, at the maximum point (x0, t0) of F
on M × [0, T ] for some T > 0,

F (x0, t0) > 9.

Clearly, t0 > 0, because F (x, 0) = 0. By the fact that (x0, t0) is a maximum point of
F on M × [0, T ], we have

∆bF (x0, t0) ≤ 0,

∇bF (x0, t0) = 0,

and

Ft(x0, t0) ≥ 0.

Combining with (3.9), this implies

0 ≥ 1

9t0
F (x0, t0)(F (x0, t0) − 9),

which is a contradiction. Hence F ≤ 9 and the theorem follows.

Then by combining Proposition 3.1 and Theorem 3.4, the subgradient estimate
Theorem 1.3 follows easily for n = 1.

4. Subgradient estimates in the Heisenberg group H1. In this section, we
first establish Liouville-type theorems for the CR heat equation on a 3-dimensional
Heisenberg group H1. Secondly, we derive the subgradient estimate for CR Heat
Kernel on H1.

From [PP], we recall the following result.

Proposition 4.1. If u(x, t) be a positive smooth solution of (1.6) on Hn× [0, T ),
then u satisfies the estimate

|∇bu|2
u2

− ut

u
≤ n

t

on Hn × [0, T ).
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Theorem 4.2. If u(x, t) be a positive smooth solution of (1.6)

(∆b −
∂

∂t
)u(x, t) = 0

on H1 × [0, T ) with

P1u = 0

at t = 0, then u satisfies the subgradient estimate

|∇bu|2
u2

+ 3
ut

u
≤ 9 + ǫ

t

on H1 × [0, T ) for any ǫ > 0.

Proof. Let B2R be a ball of radius 2R center at O ∈ H1. Let ϕ = log u and
F = t(|∇bϕ|2 + 3ϕt), then

sup
BR

(

|∇bu|2
u2

+ 3
ut

u

)

= sup
BR

F

t
.

Let ψ ∈ C∞
0 (R) be a cut-off function ([DT]) such that 0 ≤ ψ ≤ 1, ψ(t) ≡ 1 for

t ∈ [0, 1], ψ(t) ≡ 0 for t ≥ 2. We also require

(4.1) ψ′ ≤ 0, ψ′′ ≥ −C1, and
|ψ′|2
ψ

≤ C2,

where C1 and C2 are positive constants. Denote by dc(x) be the Carnot-Carathéodory

distance from O to x in H1. Then we define η(x) = ψ
(

dc(x)
R

)

. It is clear that

suppη ⊂ B2R and η|BR
≡ 1.

We want to apply the maximum principle to ηF. The function η may not be
smooth at the cut locus of O ∈ H1. However, when applying the maximum principle,
we can assume η is differentiable as in [LY].

If ηF attains its maximum at (x0, t0) ∈ B2R × [0, T ′] with 0 < T ′ < T, clearly
we may assume (ηF )(x0, t0) > 0 (otherwise F ≤ 0, and the theorem is true). So
x0 ∈ B2R, t0 > 0, and by the maximum principle, at (x0, t0)

(4.2) ∇b(ηF ) = F∇bη + η∇bF = 0,

(4.3) ∆b(ηF ) ≤ 0,

and

(4.4)
∂

∂t
(ηF ) = ηFt ≥ 0.

In the sequel, all computations will be at the point (x0, t0). By (4.2), ∇bF =
−F∇bη/η, and by (4.3)

0 ≥ ∆b(ηF ) = F∆bη + η∆bF + 2〈∇bη,∇bF 〉(4.5)

= F∆bη + η∆bF − 2F
|∇bη|2
η

.
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By (4.1), we have

(4.6)
|∇bη|2
η

=
|ψ′|2|∇bdc|2

R2ψ
=

|ψ′|2
R2ψ

≤ C2

R2
,

and

∆bη =
ψ′′|∇bdc|2

R2
+
ψ′∆bdc

R
=
ψ′′

R2
+
ψ′

R
∆bdc ≥ −C1

R2
−

√
C2

R
∆bdc.

Since in H1, we have the sub-Laplacian comparison (∗) (see the proof in next section)

(∗) ∆bdc ≤ C

dc
,

for some constant C. Then

∆bη ≥ −C3

R2
.

Substituting this into (4.5) and applying Lemma 2.3 and Lemma 3.3 with A11 = 0,
k0 = 0, all these imply

0 ≥ ∆b(ηF ) ≥ −C3

R2
F − 2F

|∇bη|2
η

+ η∆bF

≥ −C3

R2
F − 2F

|∇bη|2
η

+ η[Ft + 2〈∇bϕ,∇bF 〉 +
1

9t
F (F − 9)].

Since ηFt = (ηF )t ≥ 0, 2η〈∇bϕ,∇bF 〉 = 2
3F 〈∇bϕ,∇bη〉, the above inequality can be

reduced as

0 ≥ −C3

R2
F − 2F

|∇bη|2
η

+
2

3
F 〈∇bϕ,∇bη〉 +

1

9t
ηF (F − 9),

and multiplying by η, we get

0 ≥ −C3

R2
ηF − 2F |∇bη|2 +

2

3
Fη〈∇bϕ,∇bη〉 +

1

9t
η2F (F − 9)

= (ηF )

(

−C3

R2
− 2

|∇bη|2
η

− η

t

)

+
2

3
ηF 〈∇bϕ,∇bη〉 +

1

9t
(ηF )2

≥ (ηF )

(

−C3

R2
− 2

|∇bη|2
η

− η

t

)

− 2ηF |∇bϕ| |∇bη| +
1

9t
(ηF )2

Using 0 ≤ η ≤ 1, and (4.6), we get

0 ≥ (ηF )

(

−C3

R2
− 2

C2

R2
− 1

t

)

− 2η3/2F

√
C2

R
|∇bϕ| +

1

9t
(ηF )2

= (ηF )

(

−1

t
− C4

R2

)

− 2η3/2F

√
C2

R
|∇bϕ| +

1

9t
(ηF )2,

where C4 = C3 + 2C2. Multiplying by t to the above inequality, this leads to

0 ≥ (ηF )

(

1

9
ηF − 1 − C4

R2
t

)

− 2tη3/2F

√
C2

R
|∇bϕ|

= (ηF )

(

1

9
ηF − 1 − C4

R2
t− 2

√
C2

R
η1/2 |∇bϕ| t

)

.
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Therefore, we get

ηF ≤ 9 +
9C4

R2
t+

18
√
C2

R
η1/2 |∇bϕ| t.

(i) If ϕt(x0, t0) < 0, then, by the Proposition 4.1, |∇bϕ|2 ≤ |∇bϕ|2−ϕt ≤ 1/t and
using 0 ≤ η ≤ 1, we have

ηF ≤ 9 +
C4

R2
t+

18
√
C2

R
t1/2.

Recall that all the computations are at (x0, t0) and (x0, t0) is the maximum point,
t0 ≤ T ′, so we have

(ηF )(x, T ′) ≤ (ηF )(x0, t0) ≤ 9 +
C4

R2
T ′ +

18
√
C2

R

√
T ′.

But η ≡ 1 on BR, hence

(4.7) sup
x∈BR

(|∇bϕ|2 + 3ϕt)(x, T
′) ≤ C4

R2
+

18
√
C2

R

1√
T ′

+
9

T ′ .

Now for any fixed time t ∈ (0,∞), by letting R → ∞, one obtains

|∇bu|2
u2

+ 3
ut

u
≤ 9

t

on H1 × [0, T ).
(ii) If ϕt(x0, t0) ≥ 0, then t1/2 |∇bϕ| ≤ F 1/2. The above inequality leads to

ηF − 18
√
C2

R
t1/2(ηF )1/2 −

(

9 +
C4

R2
t

)

≤ 0.

Hence

ηF ≤ 9 +
C4

R2
t+

18
√
C2

R
t1/2(ηF )1/2.

If (ηF ) ≤ 1, then

ηF ≤ 9 +
C4

R2
t+

18
√
C2

R
t1/2.

Otherwise,

ηF ≤ 9 +
C4

R2
t+

18
√
C2

R
t1/2(ηF ).

For fix t, we can choose R such that 18
√

C2

R t1/2 ≤ 1
2 , thus

ηF ≤ 18 +
C4

R2
t

and similar argument as before

(4.8) sup
x∈BR

(|∇bϕ|2 + 3ϕt)(x, T
′) ≤ C4

R2
+

18

T ′ .
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Now for any fixed time t ∈ (0,∞), by letting R → ∞ such that 18
√

C2

R t1/2 → 0, one
obtains

|∇bu|2
u2

+ 3
ut

u
≤ 9 + ǫ

t

on H1 × [0, T ) for any ǫ > 0.
Then, by combining Theorem 4.2 and Proposition 4.1, Theorem 1.4 follows for

n = 1 easily.
Now we will apply the subgradient estimates in Theorem 4.2 and Proposition

4.1 to obtain the following Harnack inequality for positive solutions of the CR heat
equation (1.6) on H1 × [0, T ).

Theorem 4.3. If u(x, t) be a positive smooth solution of (1.6)

(

∆b −
∂

∂t

)

u(x, t) = 0

on H1 × [0, T ) with

P1u = 0

at t = 0, then for all points x1, x2 in H1 and times 0 < t1 < t2 < T, we have the
inequality

t1
t2

exp

(

−d
2
c(x1, x2)

4(t2 − t1)

)

≤ u(x2, t2)

u(x1, t1)
≤
(

t2
t1

)(3+ǫ)

exp

(

3d2
c(x1, x2)

4(t2 − t1)

)

for any ǫ > 0.

Proof. Let γ be a horizontal curve with γ(t1) = x1 and γ(t2) = x2. We define
η : [t1, t2] →M × [t1, t2] by

η(t) = (γ(t), t).

Clearly η(t1) = (x1, t1) and η(t2) = (x2, t2). Let ϕ = log u(x, t), integrate d
dtϕ along

η, we get

ϕ(x2, t2) − ϕ(x1, t1) =

∫ t2

t1

d

dt
ϕdt

=

∫ t2

t1

{

〈 ·γ,∇bϕ〉 + ϕt

}

dt.

Applying Theorem 4.2 to ϕt, this yields

ϕ(x2, t2) − ϕ(x1, t1) ≤
∫ t2

t1

{

|
·
γ| |∇bϕ| + ϕt

}

dt

≤
∫ t2

t1

{

3

4
|
·
γ|

2

+
3 + ǫ

t

}

dt

=

∫ t2

t1

3

4
|
·
γ|

2

dt+ (3 + ǫ) log

(

t2
t1

)

.
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Then the right-hand side inequality in theorem 4.3 follows by taking exponentials of
the above inequality. Similarly, we can also get the left-hand side inequality.

As a consequence of Theorem 4.3 and [CY], we have

Corollary 4.4. Let H(x, y, t) be a L2-heat kernel of (1.6) on H1× [0, T ). Then
for some constant δ and 0 < ǫ < 1, we have the inequality

H(x, y, t) ≤ C(ǫ)δ

V (Bx(
√
t))

exp

(

−d
2
c(x, y)

(4 + ǫ)t

)

≤ C(ǫ)δ

t2
exp

(

−d
2
c(x, y)

(4 + ǫ)t

)

with C(ǫ) → ∞ as ǫ→ 0.

Remark 4.1. Here we use the volume V (Bx(R)) ≤ CR(2n+2) in an (2n + 1)-
dimensional Heisenberg group Hn ([DT]). One should compare this result with [BGG].

Then Corollary 1.6 follows easily from Theorem 1.4 and Corollary 4.4.

5. Sub-Laplacian of Carnot-Caratheodory distance on Heisenberg

groups Hn. In this section, we prove the sub-Laplacian comparison (∗) as in previous
section. We consider the following two vector fields defined on R3 with coordinates
(x, t) = (x1, x2, t):

X1 =
∂

∂x1
+ 2ax2

∂

∂t
and X2 =

∂

∂x2
− 2ax1

∂

∂t

with a > 0. It is easy to check that

[X1, X2] = −4a
∂

∂t
.

Now we consider the following operator

∆H = −1

2
(X2

1 +X2
2 )

The vector fields X1, X2 and T = ∂
∂t and the operator ∆H are left-invariant with

respect to the “Heisenberg translation”: for (x, t) = (x1, x2, t) and (y, s) = (y1, y2, s) ∈
R3,

(x, t) ◦ (y, s) = (x1 + y1, x2 + y2, t+ s+ 2a[x2y1 − x1y2]).

Actually, the above multiplicative law defines a group structure on R3 which we call
the 1-dimensional Heisenberg group with (x, t)−1 = (−x,−t).

Remark 5.1. By comparing the previous notations, we first put some conventions
as followings: for a = 1

2

Z1 =
1

2
(X1 − iX2) and Z1 =

1

2
(X1 + iX2)

and

J(X1) = X2 and J(X2) = −X1

and

∆b = −∆H .



60 S.-C. CHANG, J. TIE AND C.-T. WU

The symbol of ∆H is

H(x, ξ, θ) =
1

2
(ξ1 + 2ax2θ)

2 +
1

2
(ξ2 − 2ax1θ)

2 =
1

2
(ζ2

1 + ζ2
2 ),

where ζ1 = ξ1 + 2ax2θ and ζ2 = ξ2 − 2ax1θ.
In this notation, Hamilton-Jacobi equations for the bicharacteristic curve

(x1(s), x2(s), t(s), ξ1(s), ξ2(s), θ(s)) take the form:
(5.1)
ẋ1(s) = ∂H

∂ξ1
= ξ1 + 2ax2θ = ζ1(s),

ẋ2(s) = ∂H
∂ξ2

= ξ2 − 2ax1θ = ζ2(s),

ṫ(s) = ∂H
∂θ = (ξ1 + 2ax2θ)(2ax2) − (ξ2 − 2ax1θ)(2ax1) = 2a(ζ1x1 − ζ2x2),

ξ̇1(s) = − ∂H
∂x1

= (2aθ)(ξ2 − 2ax1θ) = (2aθ)ζ2,

ξ̇2(s) = − ∂H
∂x2

= −(2aθ)(ξ1 + 2ax2θ) = −(2aθ)ζ1,

θ̇(s) = −∂H
∂t = 0,

where the dot denotes d
ds . We let s run along the ray from 0 to a point τ ∈ C.

Because of group invariance we need to consider paths relative to the origin and a
point (x, t) = (x1, x2, t) only, and assume boundary conditions

(5.2) x1(0) = 0, x2(0) = 0, x1(τ) = x1, x2(τ) = x2, t(τ) = t.

Then it is easy to see that the Hamiltonian,

1

2
ẋ2

1(s) +
1

2
ẋ2

2(s) = H(x, ξ, θ) = H0 ≡ 1

2
(ζ1(0)ζ1(0) + ζ2(0)ζ2(0)).

is constant along a given bicharacteristic. The projection of the bicharacteristic curve
onto the base is a subRiemannian geodesic connecting the point (x, t) to the origin.

From (5.1), we know that θ(s) = θ(0) = θ and we may take it to be the free
parameter. Equations (5.1) imply that

ζ̇1 = ξ̇1 + 2aθẋ2 = 2aθζ2 + 2aθζ2 = 4aθζ2,

ζ̇2 = ξ̇2 − 2aθẋ1 = −2aθζ1 − 2aθζ1 = −4aθζ1.

Hence,

ζ1(s) = cos(4aθs)ζ1(0) + sin(4aθs)ζ2(0),

ζ2(s) = − sin(4aθs)ζ1(0) + cos(4aθs)ζ2(0).

Therefore, we may solve for x(s) as a function of x, τ and θ, and then solve for t(s)
as a function of x, t, τ and θ. Here are the calculations.

x1(s) =

∫ s

0

ζ1(ρ)dρ = − 1

4aθ
{ζ2(s) − ζ2(0)}

= − 1

4aθ
{− sin(4aθs)ζ1(0) + [cos(4aθs) − 1]ζ2(0)}

=
sin(2aθs)

2aθ
{cos(2aθs)ζ1(0) + sin(2aθs)}

and

x2(s) =
1

4aθ
{ζ1(s) − ζ1(0)}

=
1

4aθ
{[cos(4aθs) − 1]ζ1(0) + sin(4aθs)ζ2(0)}

=
sin(2aθs)

2aθ
{− cos(2aθs)ζ1(0) + sin(2aθs)} .
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Therefore,

[

ζ1(0)
ζ2(0)

]

=
2aθ

sin(2aθτ)

[

cos(2aθτ) − sin(2aθτ)
sin(2aθτ) cos(2aθτ)

] [

x1

x2

]

.

It follows that

H0 =
1

2
(ζ1(0)ζ1(0) + ζ2(0)ζ2(0)) =

(2aθ)2

2 sin2(2aθτ)
(x2

1 + x2
2) =

(2aθ)2

2 sin2(2aθτ)
‖x‖2.

When θ = 0, we have ζ(s) = ζ(0), x(s) = ζ(0)s and t(s) = t(0). Substituting these
calculations into (5.1), we have

t− t(s) = 2a
∫ τ

s
[ζ1(ρ)x2(ρ) − ζ2(ρ)x1(ρ)] dρ

= 1
2θ

∫ τ

s
[1 − cos(4aθρ)]dρ ·

[

ζ2
1 (0) + ζ2

2 (0)
]

= (τ − s) 2a2θ
sin2(2aθτ)‖x‖2 − a

2 · sin(4aθτ)−sin(4aθs)
sin2(2aθτ) ‖x‖2.

Theorem 5.1. The solution of equations (5.1) with boundary conditions (5.2) is

(5.3)

x1(s) = sin(2aθs)
sin(2aθτ) {cos[2aθ(s− τ)]x1 + sin[2aθ(s− τ)]x2} ,

= sin(2aθs)
sin(2aθτ) {− sin[2aθ(s− τ)]x1 + cos[2aθ(s− τ)]x2} ,

=
[

a
2

sin(4aθτ)−sin(4aθs)
sin2(2aθτ) − (τ − s) 2a2θ

sin2(2aθτ)

]

(x2
1 + x2

2) − t.

The value of the Hamiltonian H on this path is

H0 =
2a2θ2

sin2(2aθτ)
(x2

1 + x2
2).

Next (5.3) yields

t− t(0) = aµ(2aθτ)‖x‖2,

where we set

µ(z) =
z

sin2 z
− cot z.

The action integral associated to the Hamiltonian curve is

S(x, t, τ ; θ) =

∫ τ

0







2
∑

j=1

ξj(s)ẋj(s) + θṫ(s) −H(x(s), ξ(s), θ)







ds.

H is homogeneous of degree 2 with respect to (ξ1, ξ2, θ), so

(5.4) S =

∫ τ

0







2
∑

j=1

ξj
∂H

∂ξj
+ θ

∂H

∂θ
−H







ds =

∫ τ

0

(2H −H)ds = τH0.

From formulas (5.3), we have the following theorem:
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Theorem 5.2. The action integral S(x, t, τ, θ) is given by

S(x, t, τ, θ) =
τ(2aθ)2

2 sin2(2aθτ)
‖x‖2,

= [t− t(0)]θ + aθ cot(2aθτ)(x2
1 + x2

2), θ ∈
[

0,
π

a

)

.

It is convenient to fix τ , τ = 1. Then the Hamiltonian paths are determined
entirely by the parameter θ. We may take the end points to be (0, 0) and (x, t). Then
θ must satisfy

t = aµ(2aθ)(x2
1 + x2

2) = aµ(2aθ)‖x‖2.

It can be shown that µ is a monotone increasing diffeomorphism of the interval (−π, π)
onto R. On each interval (mπ, (m+ 1)π), m = 1, 2, . . . , µ has a unique critical point
zm. On this interval µ decreases strictly from +∞ to µ(zm) and then increases strictly
from µ(zm) to +∞. Now the complete picture of the geodesics is given in the following
two theorems.

Theorem 5.3. There are finitely many geodesics that join the origin to (x, t) if
and only if x 6= 0. These geodesics are parametrized by the solutions θ of

(5.5) aµ(2aθ)‖x‖2 = |t|,

and their lengths increase strictly with θ. There is exactly one such geodesic if and
only if

|t| < aµ(z1)‖x‖2,

and the number of geodesics increases without bound as |t|
a‖x‖2 → ∞.

The square of the length of the geodesic associated to a solution θ of (5.5) is

(5.6)

2S(x, |t|, 1, θ) = (2aθ)2

sin2(2aθ)(x
2
1 + x2

2)

= (2aθ)2

sin2(2aθ)
(x2

1+x2
2)

(x2
1+x2

2)+|t|/a

[

|t|
a + (x2

1 + x2
2)
]

= (2aθ)2

sin2(2aθ)
1

1+µ(2aθ)

[

|t|
a + (x2

1 + x2
2)
]

= ν(2aθ)
(

|t|
a + ‖x‖2

)

,

where ν(0) = 2 and otherwise

ν(z) =
z2

sin2 z

1

1 + µ(z)
=

z2

z + sin2 z − sin z cos z
.

Consequently, if 2aθ ∈ (mπ, (m+ 1)π) the length dθ of the geodesic satisfies

m2π2

(m+ 1)π + 2

( |t|
a

+ ‖x‖2

)

< (dθ)
2 <

(m+ 1)2π2

mπ

( |t|
a

+ ‖x‖2

)

.

When x = 0, we need to find the Hamiltonian paths connecting the origin to (0, t),
i.e., x1(1) = 0, x2(1) = 0, t(1) = t. This implies that ζ1(1) = ζ1(0) and ζ2(1) = ζ2(0).
It follows that

ζ1(1) = cos(4aθ)ζ1(0) + sin(4aθ)ζ2(0) = ζ1(0),

ζ2(1) = − sin(4aθ)ζ1(0) + cos(4aθ)ζ2(0) = ζ2(0).
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This implies that

sin(4aθ) = 0, and cos(4aθ) = 1

i.e.,

2aθ = mπ, with m = 1, 2, 3, . . . .

In this case,

t =
1

2θ
(ζ2

1 (0) + ζ2
2 (0)),

therefore, θ 6= 0 and m 6= 0 in (5.4). We also know that

d2
m =

mπ|t|
a

.

Summarizing, we have the following theorem.

Theorem 5.4. The geodesics that join the origin to a point (0, 0, t) have lengths
d1, d2, d3,..., where

d2
m =

mπ|t|
a

.

Since x1(1) = x2(1) = 0, we may use (ζ1(0), ζ2(0)) to obtain the geodesics as
follows:

x
(m)
1 (s) = − 1

2mπ
{− sin(2mπs)ζ1(0) + [cos(2mπs) − 1]ζ2(0)}

=

(

t

4amπ

)
1
2
{

sin(2mπs)
ζ1(0)

‖ζ(0)‖ + [1 − cos(2mπs)]
ζ2(0)

‖ζ(0)‖

}

,

where ‖ζ(0)‖ =
√

ζ2
1 (0) + ζ2

2 (0). Similarly, we have

x
(m)
2 (s) =

1

2mπ
{[cos(2mπs) − 1]ζ1(0) + sin(2mπs)ζ2(0)}

=

(

t

4amπ

)
1
2
{

[cos(2mπs) − 1]
ζ1(0)

‖ζ(0)‖ + sin(2mπs)
ζ2(0)

‖ζ(0)‖

}

,

and

t(m)(s) = [2mπs− sin(2mπs)]
t

2mπ
.

This shows that for each fixed m, m = 1, 2, . . . , the geodesics

(x
(m)
1 (s), x

(m)
2 (s), t(m)(s)) can be parametrized by a unit vector ζ(0)/‖ζ(0)‖ on

the unit circle. These curves lie in a cylinder around the t-axis whose radius is
O(1/

√
m).

A special case of (5.6) is the square of the Carnot-Caratheodory distance [dc(x, t)]
2:

[dc(x, t)]
2 = 2S(x, |t|, 1; θc) =

[

2aθc

sin(2aθc)

]2

‖x‖2 = ν(2aθc)

( |t|
a

+ ‖x‖2

)

,
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where θc is the unique solution of aµ(2aθ)‖x‖2 = |t| in the interval [0, π/2a). Introduce
a new parameter φ = 2aθc. Then the Carnot-Caratheodory distance between the
origin and point (x1, x2, t) can be expressed as

dc(x, t) =
φ

sinφ
‖x‖ with aµ(φ)‖x‖2 = |t| and φ ∈ [0, π).

We will compute ∆Hdc(x, t). In polar coordinates,

−∆H =
1

2
(
∂2

∂r2
+

1

r

∂2

∂r∂θ
+

1

r2
∂2

∂θ2
) + 2a

∂2

∂t∂θ
+ 2a2r2

∂2

∂t2
.

Since dc(x, t) depends only on r = ‖x‖ =
√

x2
1 + x2

2, we have

−∆Hdc(x, t) = (
1

2

∂2

∂r2
+ 2a2r2

∂2

∂t2
)dc(r, t).

Introduce a new variable u = |t|/ar2, then

dc(r, t) := fc(r, u) =
φ

sinφ
r where u satisfies u = µ(φ) =

φ− sinφ cosφ

sin2 φ
.

Hence

−∆Hdc(r, t) = (
1

2

∂2

∂r2
+

2

r2
∂2

∂u2
)fc(r, u) =

2

r

∂2

∂u2
(
φ

sinφ
),

where u is given by u = µ(φ). Let g(φ) = φ
sin φ . Then

dg

du
=
dg

dφ
· dφ
du

and
d2g

du2
=
d2g

dφ2
· (dφ
du

)2 +
dg

dφ
· d

2φ

du2
.

We next compute dg
dφ , d2g

dφ2 , dφ
du and d2φ

du2 .

dg

dφ
=

sinφ− φ cosφ

sin2 φ
and

d2g

dφ2
=
φ(1 + cos2 φ) − 2 sinφ cosφ

sin3 φ
.

Next u = µ(φ) implies

1 = µ′(φ)
dφ

du
,

dφ

du
=

1

µ′(φ)
and

d2φ

du2
= −µ

′′(φ)

(µ′3)
.

We now compute µ′(φ) and µ′′(φ) from µ(φ) = φ csc2 φ− cotφ.

µ′2φ− 2φ csc2 φ cotφ+ csc2 φ = 2 csc2 φ(1 − φ cotφ).

and

µ′′2φ cotφ(1 − φ cotφ) + 2 csc2 φ(φ csc2 φ− cotφ)

= 2 csc2 φ[φ(3 cot2 φ+ 1) − 3 cotφ].

We finally compute −∆hfc(r, u) = 2
r

d2

du2 g(φ).

−∆Hfc(r, u) =
2

r

[

d2g

dφ2
· (dφ
du

)2 +
dg

dφ
· d

2φ

du2

]

=
2

r

[

d2g

dφ2
· 1

(µ′2)
− dg

dφ

µ′′(φ)

(µ′3)

]

=
2

r(µ′2)

[

d2g

dφ2
− dg

dφ
· µ

′′(φ)

µ′(φ)

]

.
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We shall compute the term in [. . . ] in term of φ first.

d2g

dφ2
− dg

dφ
· µ

′′(φ)

µ′(φ)

=
φ(1 + cos2 φ) − 2 sinφ cosφ

sin3 φ
− sinφ− φ cosφ

sin2 φ
· 2 csc2 φ[φ(3 cot2 φ+ 1) − 3 cotφ]

2 csc2 φ(1 − φ cotφ)

=
φ(1 + cos2 φ) − 2 sinφ cosφ

sin3 φ
− φ(3 cot2 φ+ 1) − 3 cotφ

sinφ

=
φ(1 + cos2 φ) − 2 sinφ cosφ− φ(3 cos2 φ+ sin2 φ) + 3 cosφ sinφ

sin3 φ

=
sinφ cosφ− φ cos2 φ

sin3 φ
.

Hence we have

−∆Hfc(r, u) =
2

r(µ′2

[

d2g

dφ2
− dg

dφ
· µ

′′(φ)

µ′(φ)

]

=
sinφ cosφ− φ cos2 φ

sin3 φ
· 1

2r csc4 φ(1 − φ cotφ)2

=
(1 − φ cotφ) sinφ cosφ

2r cscφ(1 − φ cotφ)2

=
sin2 φ cosφ

2r(1 − φ cotφ)
.

Since dc = φ
sin φr,

(5.7) −∆Hdc =
1

2dc
· φ sin2 φ cosφ

sinφ− φ cosφ
.

We next study the function F (φ) = φ sin2 φ cos φ
2(sin φ−φ cos φ) where φ is given by

ar2µ(φ) = t with µ(φ) =
φ− sinφ cosφ

sin2 φ
.

The function F (φ) is smooth on the interval [0, π], decreasing from [0, φm] and in-
creasing from [φm, π]. φm is the unique critical point of F (φ) inside the interval (0, π).
F (0) = 3, F (π/2) = F (π) = 0.

As r → 0 with t > 0 fixed, φ→ π− and the equation ar2µ(φ) = t implies

ar2

t

φ− sinφ cosφ

sin2 φ
= 1.

This shows that

φ→ π and sinφ ∼ (
aπ

t
)1/2r as r → 0.

This implies (5.7) makes sense when r = 0. This corresponds to φ = π.
All these imply

∆bdc = −∆Hdc ≤ 3

dc
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and then the Sub-Laplacian comparison (∗) follows.

We now turn to the study of the (2n+1)-dimensional Heisenberg group Hn. The
manifold is R2n × R and the group law is given by

(x, t) ◦ (y, s) = (x + y, t+ s+ 2

n
∑

j=1

aj [x2jy2j−1 − x2j−1y2j ])

for a1, a2, · · · , an are positive constants and numbered so that

0 < a1 ≤ a2 ≤ · · · ≤ an.

The vector fields

X2j−1 =
∂

∂x2j−1
+ 2ajx2j

∂

∂t

X2j =
∂

∂x2j
− 2ajx2j−1

∂

∂t

T =
∂

∂t

are left-invariant and generate the Lie algebra. The associated Heisenberg sub-
Laplacian is

∆H = −1

2

2n
∑

j=1

X2
j .

The symbol of ∆H is

H(x, ξ, θ) =
1

2

n
∑

j=1

[(ξ2j−1 + 2ajx2jθ)
2 + (ξ2j − 2ajx2j−1θ)

2 =
1

2
(ζ2

1 + ζ2
2 ).

We can find the bicharacteristic curve connecting the point (x, t) to the origin by
solving the associated Hamilton’s equations which take essentially the same form as
(5.1). We will just list the formulae that we need and refer to [BGG] for details. The
value of the Hamiltonian H on the bicharacteristic curve is the constant:

H0 =

n
∑

j=1

2a2
jθ

2

sin2(2ajτθ)
r2j

with r2j = x2
2j−1 + x2

2j . The analogue of (5.5) is follows:

t =

n
∑

j=1

ajµ(2ajτθ)r
2
j .

The action integral S(x, t, τ ; θ) takes a similar form:

S(x, t, τ ; θ) =

n
∑

j=1

4τa2
jθ

2

sin2(2ajτθ)
r2j = tθ +

n
∑

j=1

ajθ cot(2ajτθ)r
2
j .
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When we study the classical action and Carnot-Caratheodory distance, we set
τ = 1. In the case of x 6= 0, there are finitely many geodesics from the origin to (x, t).
The geodesics are indexed by the solutions of

(5.8) |t| =

n
∑

j=1

ajµ(2ajθ)r
2
j

and their lengths increase with θ. The Carnot-Caratheodory distance from the origin
to (x, t) is

d2(x, t) = 2S(x, |t|, 1; θc)

where θc is the unique solution of (5.8) in the interval [0, π/2an).
In the isotropic case a1 = a2 = · · · = an, the results of the previous computations

for n = 1 carry over with no change.

6. Subgradient estimate on higher dimensional pseudohermitian man-

ifolds. Let (M,J, θ) be a closed pseudohermitian (2n + 1)-manifold for n ≥ 2. In
this section, we derive the CR version of parabolic Li-Yau gradient estimate for the
positive solution u(x, t) of (1.6) on M × [0,∞) for n ≥ 2.

First, we derive the following inequalities which we need in the proof of Proposi-
tion 1.1.

Lemma 6.1. Let (M,J, θ) be a closed pseudohermitian (2n+ 1)-manifold. Let f
be a smooth real-valued function on M. Then

|(∇H)2f |2 ≥ 2

n
∑

α,β=1

|fαβ|2 + 2

n
∑

α,β=1
α6=β

|fαβ|2 +
1

2

n
∑

α=1

|fαα + fαα|2.

Proof. Since

|(∇H)2f |2 = 2
∑n

α,β=1(fαβfαβ + fαβfαβ)

= 2
∑n

α,β=1(|fαβ |2 + |fαβ |2)
= 2(

∑n
α,β=1 |fαβ |2 +

∑n
α,β=1
α6=β

|fαβ|2 +
∑n

α=1 |fαα|2)

and
∑n

α=1 |fαα|2 = 1
4

∑n
α=1

(

|fαα + fαα|2 + f2
0

)

= 1
4

∑n
α=1 |fαα + fαα|2 + n

4 f
2
0 .

It follows that

|(∇H)2f |2 = 2(
∑n

α,β=1 |fαβ|2 +
∑n

α,β=1
α6=β

|fαβ |2) + 1
2

∑n
α=1 |fαα + fαα|2 + n

2 f
2
0

≥ 2(
∑n

α,β=1 |fαβ|2 +
∑n

α,β=1
α6=β

|fαβ |2) + 1
2

∑n
α=1 |fαα + fαα|2.

Lemma 6.2. Let (M,J, θ) be a closed pseudohermitian (2n + 1)-manifold for
n ≥ 2. Let f be a smooth real-valued function on M. Then

〈

∇bf,∇b|∇bf |2
〉

≤ (n+ 2)
n
∑

α,β=1

|fαβ |2 + (n+ 2)
n
∑

α,β=1
α6=β

|fαβ |2

+
(

∆bf + |∇bf |2
)

|∇bf |2 +
(n+ 2)(n− 1)

4(n+ 1)

n
∑

α=1

|fαα + fαα|2.
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Proof. We first derive

(6.1)

〈

∇bf,∇b|∇bf |2
〉

= 4
∑n

α,β=1 Re(fαβfαfβ + fαβfαfβ)

= 4Re(
∑n

α,β=1 fαβfαfβ +
∑n

α,β=1
α6=β

fαβfαfβ) + 2
∑n

α=1(fαα + fαα)|fα|2

≤ (n+ 2)(
∑n

α,β=1 |fαβ|2 +
∑n

α,β=1
α6=β

|fαβ |2) + 4
n+2

∑n
α,β=1 |fα|2|fβ|2

+ 4
n+2

∑n
α,β=1
α6=β

|fα|2|fβ|2 + 2
∑n

α=1(fαα + fαα)|fα|2

= (n+ 2)(
∑n

α,β=1 |fαβ|2 +
∑n

α,β=1
α6=β

|fαβ |2) + 1
n+2 |∇bf |4

+ 4
n+2

∑n
α,β=1
α6=β

|fα|2|fβ|2 + 2
∑n

α=1(fαα + fαα)|fα|2.

Here we used the identity
∑n

α,β=1 |fα|2|fβ |2 = (
∑n

α=1 |fα|2)2 = 1
4 |∇bf |4 .

Now we compute the last term in the above inequality.

∑n
α=1(fαα + fαα)|fα|2

= [
∑n

α=1(fαα + fαα)](
∑n

β=1 |fβ |2)
−
∑n

α=1(fαα + fαα)(
∑n

β=1
β 6=α

|fβ |2)

≤ 1
2∆bf |∇bf |2 +

∑n
α=1 |fαα + fαα|(

∑n
β=1
β 6=α

|fβ |2)

≤ 1
2∆bf |∇bf |2 + (n−1)(n+2)

8(n+1)

∑n
α=1 |fαα + fαα|2

+ 2(n+1)
(n−1)(n+2)

∑n
α=1(

∑n
β=1
β 6=α

|fβ |2)2.

Substituting the above inequality into (6.1), one obtains

〈

∇bf,∇b|∇bf |2
〉

≤ (n+ 2)(
∑n

α,β=1 |fαβ|2 +
∑n

α,β=1
α6=β

|fαβ |2) + ∆bf |∇bf |2

+ (n−1)(n+2)
4(n+1)

∑n
α=1 |fαα + fαα|2 + 1

n+2 |∇bf |4

+ 4(n+1)
(n+2)(n−1)

∑n
α=1(

∑n
β=1
β 6=α

|fβ|2)2 + 4
n+2

∑n
α,β=1
α6=β

|fα|2|fβ|2

≤ (n+ 2)(
∑n

α,β=1 |fαβ|2 +
∑n

α,β=1
α6=β

|fαβ |2) + ∆bf |∇bf |2

+ (n+2)(n−1)
4(n+1)

∑n
α=1 |fαα + fαα|2 + 1

n+2 |∇bf |4

+ 4(n+1)
(n+2)(n−1)

(

∑n
α=1(

∑n
β=1
β 6=α

|fβ|2)2 +
∑n

α,β=1
α6=β

|fα|2|fβ |2
)

= (n+ 2)(
∑n

α,β=1 |fαβ|2 +
∑n

α,β=1
α6=β

|fαβ |2) + ∆bf |∇bf |2

+ (n+2)(n−1)
4(n+1)

∑n
α=1 |fαα + fαα|2 + |∇bf |4 .

Here we have used the identity

∑n
α=1

(

∑n
β=1
β 6=α

|fβ|2
)2

+
∑n

α,β=1
α6=β

|fα|2|fβ|2 = (n− 1)
(
∑n

α=1 |fα|2
)2

= n−1
4 |∇bf |4 .

This completes the proof of the Lemma.

Now we can derive the following Proposition 1.1 which is exact form of Lemma
3.3 for n ≥ 2.
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Proof of Proposition 1.1. First differentiating (1.7) w.r.t. the t-variable, we have

Gt =
1

t
G+ t[|∇bϕ|2 + (1 +

2

n
)ϕt]t

=
1

t
G+ t[2(1 +

1

n
) |∇bϕ|2 + (1 +

2

n
)∆bϕ]t(6.2)

=
1

t
G+ t[4(1 +

1

n
)〈∇bϕ,∇bϕt〉 + (1 +

2

n
)∆bϕt].

By using the CR version of Bochner formula (2.1) and Lemma 3.2, one obtains

∆bG = t

(

∆b |∇bϕ|2 + (1 +
2

n
)∆bϕt

)

= t[2|(∇H)2ϕ|2 + 2(1 +
2

n
) 〈∇bϕ,∇b∆bϕ〉

+2[2Ric− (n+ 2)Tor]((∇bϕ)C, (∇bϕ)C)

− 8

n
〈Pϕ+ Pϕ, dbϕ〉L∗

θ
+ (1 +

2

n
)∆bϕt]

≥ t[2|(∇H)2ϕ|2 + 2(1 +
2

n
) 〈∇bϕ,∇b∆bϕ〉 − l0 |∇bϕ|2(6.3)

− 8

n
〈Pϕ+ Pϕ, dbϕ〉L∗

θ
+ (1 +

2

n
)∆bϕt]

= t[2|(∇H)2ϕ|2 + 2(1 +
2

n
) 〈∇bϕ,∇b∆bϕ〉 − l0 |∇bϕ|2

− 8

n
u−2

〈

Pu+ P̄ u, dbu
〉

L∗

θ

+
4

n
ϕt|∇bϕ|2

+
4

n

〈

∇bϕ,∇b|∇bϕ|2
〉

+ (1 +
2

n
)∆bϕt].

Here we have used the inequalities

[2Ric− (n+ 2)Tor]((∇bϕ)C , (∇bϕ)C) ≥ −l0 |(∇bϕ)C |2 = − l0
2
|∇bϕ|2

and

ϕt =
ut

u
=

∆bu

u
.

Applying the formula

(6.4) ∆bϕ = ϕt − |∇bϕ|2 =
n

(n+ 2)t
G− 2(n+ 1)

n+ 2
|∇bϕ|2

and combining (6.2), (6.3), we conclude
(

∆b −
∂

∂t

)

G

≥ −1

t
G+ t[2|(∇H)2ϕ|2 + 2(1 +

2

n
) 〈∇bϕ,∇b∆bϕ〉 +

4

n

〈

∇bϕ,∇b|∇bϕ|2
〉

−4(1 +
1

n
)〈∇bϕ,∇bϕt〉 − l0 |∇bϕ|2 +

4

n
ϕt|∇bϕ|2 −

8

n
u−2

〈

Pu+ P̄ u, dbu
〉

L∗

θ

]

= −1

t
G− 2n

(n+ 2)
〈∇bϕ,∇bG〉 + t[2|(∇H)2ϕ|2 − 4

n+ 2

〈

∇bϕ,∇b|∇bϕ|2
〉

−l0 |∇bϕ|2 +
4

n
ϕt|∇bϕ|2 −

8

n
u−2

〈

Pu+ P̄ u, dbu
〉

L∗

θ

].
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Now, by Lemma 6.1, Lemma 6.2, Cauchy-Schwarz inequality and applying the formula
(6.4), we final have

(

∆b −
∂

∂t

)

G

≥ − 2n

(n+ 2)
〈∇bϕ,∇bG〉 + t[

2

n+ 1

n
∑

α=1

|ϕαα + ϕαα|2 +
8

n(n+ 2)
ϕt|∇bϕ|2

−l0 |∇bϕ|2 −
8

n
u−2

〈

Pu+ P̄ u, dbu
〉

L∗

θ

] − 1

t
G

≥ − 2n

(n+ 2)
〈∇bϕ,∇bG〉 + t[

2

n(n+ 1)
(∆bϕ)2 +

8

n(n+ 2)
ϕt|∇bϕ|2

−l0 |∇bϕ|2 −
8

n
u−2

〈

Pu+ P̄ u, dbu
〉

L∗

θ

] − 1

t
G

= − 2n

(n+ 2)
〈∇bϕ,∇bG〉 + t[

2n

(n+ 1)(n+ 2)2t2
G2 +

8

n(n+ 2)2
|∇bϕ|4

−l0 |∇bϕ|2 −
8

n
u−2

〈

Pu+ P̄ u, dbu
〉

L∗

θ

] − 1

t
G.

This completes the proof of Proposition 1.1.

Following the same proof as in Theorem 3.4. We have the following result.

Theorem 6.3. Let (M,J, θ) be a closed pseudohermitian (2n + 1)-manifold of
zero torsion and nonnegative pseudohermitian Ricci tensors for n ≥ 2. If u(x, t) is
the positive solution of (1.6) on M × [0,∞) such that

Pβu = 0

at t = 0. Then u satisfies the estimate

|∇bu|2
u2

+
n+ 2

n

ut

u
≤ (n+ 1)(n+ 2)2

2n

1

t

on M × [0,∞).

Following the same proof as in Theorem 4.2. We have the following result.

Theorem 6.4. If u(x, t) be a positive smooth solution of (1.6)
(

∆b −
∂

∂t

)

u(x, t) = 0

on Hn × [0, T ) with

Pβu = 0

at t = 0, then u satisfies the subgradient estimate

|∇bu|2
u2

+
n+ 2

n

ut

u
≤ [

(n+ 1)(n+ 2)2

2n
+ ǫ]

1

t

on Hn × [0, T ) for any ǫ > 0.

Then by combining Theorem 6.4 and Proposition 4.1, Theorem 1.4 follows easily
for all n.
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