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1. Introduction. We study the dynamics of the geodesic flow for a class of
non-complete Riemannian metrics on a negatively curved surface M. These finite
area surfaces are composed of finitely many “singular” surfaces of revolutions of the
form y = z",r > 1 for 0 < x < 1 (thin pieces), together with connecting surfaces of
bounded negative curvature (thick pieces). The curvature at every point is negative
and bounded away from zero, but is unbounded in the “cusps.” The geodesic flow is
non-complete because geodesics corresponding to singular unit tangent vectors point-
ing into the origin hit the cusps in finite time and then cease to be defined. Such
singular unit tangent vectors are dense in the unit tangent bundle. Our main result
is ergodicity of the geodesic flow (Theorem 5.1). It immediately follows that these
metrics have dense geodesics in the unit tangent bundle SM. We also prove that the
closed geodesics are dense in the unit tangent bundle (Theorem 6.1)

The motivation for considering these metrics arises from studying the geodesic
flow for the Weil-Petersson (WP) metric on two dimensional moduli spaces of Riemann
surfaces., e.g., the moduli space for the once punctured torus. In several fundamen-
tal ways the geodesic flow we consider provides a good model for the WP geodesic
flow. For example, Wolpert showed that the WP metric is also non-complete, has
finite area, has negative curvature bounded away from zero, and is unbounded in the
7cusps.” Also, various authors have shown that the cusps can be approximated by
singular surface of revolutions. At present, there is only a single technical obstruc-
tion (additional estimates on the derivatives of the GF in the cusp) that prevent us
from applying this general method to prove ergodicity of the WP geodesic flow. See
Section 7.

The geometric properties of both types of flows imply that the geodesic flow is
a uniformly hyperbolic dynamical system with singularities. The non-completeness
causes pathologies in the stable and unstable manifolds, as for many billiard flows. For
example, stable and unstable manifolds at a point, if they exist, may intersect a cusp
point, and thus have only finite length. One needs extensions of “Pesin theory” to
systems with singularities to study these geodesic flows. Another challenging aspect is
that these surfaces may be simply connected, making the use of any of the traditional
arguments involving boundaries of the covering spaces inapplicable. Studying the
dynamics requires the development of new approches.

Our strategy to prove ergodicity of the geodesic flow is to first establish non-
uniform hyperbolicity, i.e., the Lyapunov exponents are non-zero at almost every
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point. We then prove that there are at most countably many ergodic components.
The next step is to establish local ergodicity, i.e., to show that each ergodic component
is an open set (modulo sets of measure zero). We use the axiomatic treatment of
smooth ergodic theory with singularities presented in [8, 6, 2]. We then prove that
the geodesic flow is epsilon-topologically transitive, i.e., for each ¢ > 0 there is an
e—dense orbit in the unit tangent bundle. Ergodicity immediately follows.

2. The Geometry of a Singular Surface of Revolution. In this section we
collect several key facts about the geometry of surfaces of revolution [4].

Let R denote the singular surface of revolution of the form y = f(z) = «",r > 1 for
0 < 2 < 1. We introduce coordinates (u, v) on R where u is the distance along the axis
of revolution from the cusp and 0 < v < 27 is the angle of rotation along a parallel. In
particular, points on the surface of revolution can be written as (u” cosv, u” sinw, u).
The parallel circles correspond to u = wug and the meridian curves correspond to
vV = 19.

The induced Riemannian metric on R can be written in as

g= 1+ f'(v)?)du® + f(u)?dv® = (1 + r?u*"~?)du® + u*"dv?.
It follows that the area form on R has the form

dA(u) =2 f(u)\/1+ f'(u)?du, (1)

and hence R has finite area, since

1 1
Area(R) = 27r/ fw)v/1+ f(u)?du = 27r/ w1+ r2u?r2du < co.
0 0

The Gaussian curvature can be expressed as

e
K= 0 e ~ A e 2

Clearly, K(u) — —oo as u — 0. The total curvature of R is bounded, since,

1 1 f”(u) - r
_/0 K(u)dA(u) < —27r/0 Wc{x = 27T7\/1—|—7r2 < 00. (3)

The equations of geodesics in (u,v) coordinates have a simple form:

flu*' =c (4)
(L+ () + ¢/ f(u)* =1, (5)

where c¢ is a constant, or first integral of the geodesic flow.
If ¢ denotes the time parametization of the geodesic t — (u(t),v(t)), then inte-
grating (4) and (5) yield

v L+ f'(u)
= /u(O) Fw) fu)? — ¢ a ©)
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and

U(tl) — ’U(to) = " Wdt (7)

Dividing (4) by (5) and integrating yields

_ c i+ [f(w?
v= [ e\ T ®)

It follows from (4) and (5) that if #(u1) denotes the angle that the geodesic makes
with the parallel circle at u = uq, then the quantity

uq sin @(uq) (9)

is a constant. This is the famous Clairaut integral.

Yo

F1G. 1. A geodesic segment in the cusp

3. Local ergodicity.

3.1. Hyperbolicity. Let M denote a finite area surface isometric to the union
of finitely many “singular” surfaces of revolutions of the form y = x",» > 1 for
0 <z <1, together with connecting surfaces of bounded negative curvature. We call
a geodesic on M complete if it does not hit a cusp (which corresponds to the point
x = 0 on the surfaces of revolution), and singular if reaches a cusp in finite time.
We call a unit tangent vector complete or singular if the corresponding geodesic is
complete or singular, respectively.

Let SM denote the unit tangent bundle, which is undefined at the finite set of
cusp points. Let ¢ : SM — SM denote the geodesic flow, which is undefined on
the singular unit tangent vectors. Let X C SM be the set of complete unit tangent
vectors. This set is a flow invariant and dense Baire set with full (normalized) Liouville
measure uy. Since we are considering ergodicity, the geodesic flow only needs to be
defined on a set of full Liouville measure, and thus the measure zero set where the
geodesic flow is not defined plays no measure theoretic role.

We say that a flow is Anosov (as an incomplete flow) if it is uniformly hyperbolic
on the set of complete tangent vectors, i.e., there is a splitting of the unit tangent
bundle Sx M = E° @ E* ® E" and constants C, A > 0 such that ||D¢|E%|| < Ce™*,
||[Do_i|E*|| < Ce™ (for t > 0) and E° is tangent to the flow direction.
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THEOREM 3.1. The geodesic flow ¢ : SM — SM is Anosov (as an incomplete
flow).

Proof. The geodesic flow preserves Louville measure, since the set of singular
tangent vectors has zero measure. This is easily seen since the tangent vectors point-
ing towards the cusp describe two dimensional subspaces in the three dimensional
manifolds.

We modify the usual Jacobi field argument for complete surfaces and construct
two uniform cone families that yield an Anosov splitting for this incomplete flow.
The negative curvature ensures that the standard cone family C* = {J - J'} > 0 is
uniformly contracting, since if the curvature K < —b% < 0, then along a complete
geodesic

d

%(J(t)J’(t)) =J@)J"(t) + J'(t)* = —k(t)J () + J'(t)* > b2 J(t)* + J'(t)* > 0,

unless J = 0. It follows that

%(J(t)J’(t)) > b2J(t)% + T (1) > 2b(J (1) J'(t)).

Since J(0)J'(0) > 0 for any nontrivial J € C*, it follows that J(t)J'(t) grows exponen-
tially, and hence J(t)% + J'(t)? grows exponentially, since J2(t) + J'(t)? > 2J(t)J'(t).
The unstable direction at v corresponds to the intersection N¢>qD¢p:C*(Pp_1v) of the
images D¢:C¥(¢p_4v) of the cones C*(¢_v) above ¢_v. The same holds for the stable
cone C*={J-J'} <0.0

The following corollary stating that the geodesic flow is non-uniformly hyperbolic
is immediate.

COROLLARY 3.2. The geodesic flow has non-zero Lyapunov exponents almost
everywhere.

3.2. Countably many ergodic components. In light of the need to restrict
the dynamics to the finite area, non-compact set X, we cannot directly apply the
theory of Anosov systems on compact manifolds, and thus need to apply ideas from the
theory of hyperbolic systems with singularities. There is a well developed theory for
hyperbolic dynamics for with singularities, described in [6] and extended in [8] which
provides an axiomatic approach to establishing countably many ergodic components
and local ergodicity. Local ergodicity means that each ergodic component is contained
in an open set (modulo a set of measure zero). Together, they would imply the
existence of countably many open ergodic components.

We begin by verifying conditions 1.1-1.3 on pages 2-3 in [6] required to construct
local stable and unstable manifolds almost everywhere, establish absolute continuity,
establish the existence of at most countably many ergodic components, and establish
a Pesin entropy formula.

ProroSITION 3.3. Let ¢ : SM — SM denote the geodesic flow on the unit

tangent bundle of M. The following properties hold.
1. (Small area in cusp hypothesis) Let U, be the e-neighborhood of one of the
cusps in M. There exists a positive constant Cy such that Area(U,) < Cremtt,
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2. (Oseledec-Pesin integrability condition) The integral

/ log ||de (v)|dpz (v) < 0.
SM

3. (Controlled growth of the differential of the geodesic flow in the cusps condi-
tion) If an orbit segment ¢[0,1](v) is at least distance € from a cusp, then

D6rs o)l = 0 (=) a0 s ()= 0 (- +9).

REMARK 3.4. It immediately follows from 1. that M and thus X have finite area.
Proof.

1. Let B(e) denote an e-neighbourhood of the cusp in the surface of revolution.
A direct integration yields that

Area(B(e)) = 277/ "1+ rzr—tde = % €T+ 0(e).
O
2. Tt follows from Lemma 5.1 of [1] that

[ togldon )ldus o) < g (san — [ K@),
SM M

Thus we need to verify that the integral on the right hand side is finite.
Let € > 0 and define M, = {p € M: K(p) > —1/¢}. We can write

/ K (p)dA(p / K(p)dA(p /M\MEK(p)dA(p).

It follows from the compactness of M, that the second integral on the right
hand side is finite. An easy calculation using (1) and (2) gives that

- / K(p)dA(p) = O( V),
M

and thus the first integral on the right hand side is finite. O

3. Clearly, for segments of the geodesic arcs that are outside of the cusp, the
first and second derivatives are bounded by compactness. Let us assume that
a geodesic enters the cusp on a reference meridian (corresponding to u = uy,
say) with a corresponding angular coordinate u = uy.
We want to consider a subsequent point (u,v) = (u(t,ug), v(t,vp)) along the

geodesic in the cusp. It is easy to see from the definitions that a— =0 and

v __
dvg
USOIIlg (6 ) we can characterize u = u(t, ug) implicitly by F(u,uo) = 0, where

v 1+t
F(U,UO))_t/q;OU Wdu
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where ¢ = ul . , with upi, > € denoting smallest value of w in the cusp. We

min’

can apply the implicit function theorem to this equation to write that

ou é% B (@)7‘ (1122~ 2) (w2 — 2)
oug or \u (1+ r2u?r=2)(udr — ?) )’
This expression is clearly bounded.
Using (5), we can write

1
¢

=(1 = —dt

v =v(1,vp) /Ou(t,uo)Q’“

and thus

ov ! c ou
I el _ —(2r+1)
Oug /0 2ru(t, ug)?r+1 dug dt = Ofe )

One can similarly treat the second derivatives. One easily obtains that

0%v 0%v 0%u 0%u

87118 - OvgOug - 87118 - OvgOug -

and it is easy to check that

v 0%u
aivg _ O(E (2r+2)) and aiu% — O(e (2r+1)).
The foliations by local stable and unstable manifolds are absolutely continuous if there
exists sets X, of measure at least (1 — €) upon which the stable manifolds W* have
a length bounded below by a uniform positive constant, and for nearby transverse
sections to this lamination the holonomy map between them is absolutely continuous
with respect to the induced measure on the sections. Absolute continuity is required
to invoke the results from Part IT of [6]. This notion of absolute continuity is similar
to the usual notion of absolute continuity for complete Anosov flows, except for some
complications arising from local stable and unstable manifolds only existing at almost
every point and not having uniform length.

Combining Corollary 2.2, Proposition 2.3, and results in [6], we obtain the fol-
lowing result.

PRrROPOSITION 3.5. Let ¢ : SM — SM denote the geodesic flow on the unit
tangent bundle of a surface M composed of finitely many surfaces of revolutions of
the formy = z",r > 1 for 0 < x < 1 together with connecting surfaces of bounded
negative curvature.

1. There exist local stable and unstable manifolds at almost every point.
2. The local stable and unstable manifolds are absolute continuous.

3. The geodesic flow has countably many ergodic components.

4. The Liouville entropy of the geodesic flow satisfies

hy = /S X)) >0,

where xT(v) denotes the positive Lyapunov exponent at v € X.
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It is useful to have more control on the lengths of stable and unstable manifolds
are almost all point, and this is given by the following lemma.

LEMMA 3.6. There exists a measurable function € : M — R™T so that almost every
point x has a stable manifold W*(x) of length e(x) > 0.

Proof. The construction of local stable manifolds is based on a series of approxi-
mations [8], [6]. Since many geometers are likely to be unaware of the strategy of the
proof, we provide a short sketch.

Let W (z) be a small submanifold through « € X in the general direction of the
stable bundle, and define W3 (z) = ¢, W (¢_nx). For complete hyperbolic flows, the
sequence {W3(x)} converges C™ to the required stable manifold through x. However,
in the present case, this construction formally breaks down whenever the forward orbit
of any point y € W2(¢_,x) meets a cusp point. However, since the stable manifolds
converge exponentially quickly we can modify the standard argument to give pieces
of local stable manifold at almost every point in X.

Let B(e) denote an e-neighbourhood of the cusp. By property (1) in Proposition
3.3, the area Area(B(c)) = O(¢"*1). If we let €, = 1/n, then since the flow preserves
the Liouville measure u, we have that u(¢_¢B(e,)) = p(B(e,)) = O(1/n™1), for
every t € R. In particular, we have that

D w(Blen)) =Y pld—s, Blen)) < oo,

for the sequence of times t,, — oo which are nearest approaches made by the orbit to
the cusp, each time it enters the region based on the surface of revolution.

By the Borel-Cantelli Lemma we see that for a.e. (u) x, ¢y, x € B(ey,) for at most
finitely many ¢,. It is clear from the geometry that there exists D > 0 such that
t, > Dn, for all n > 1. Since the lengths of the unstable manifolds contract at an
exponential rate we see that for such x we can indeed construct an unstable manifold
(since the exponential convergence of the orbits keeps nearby points away from the
cusp too). O

3.3. Local ergodicity. The next step is to establish local ergodicity, i.e., to
show that each ergodic component is an open set (modulo sets of measure zero).
The proof of local ergodicity follows the lines of the traditional Hopf argument, with
the help of a particularly simple form of the Chernov-Sinai Ansatz to deal with the
singularity set. We employ the axiomatic framework stated in Section 7 of [8] and [2].

The basic idea in the Hopf argument is that any two points that lie on the same
stable manifold must necessarily share the same forward Birkhoff averages for any
continuous function. Similarly, any two points that lie on the same unstable mani-
fold must necessarily share the same backward Birkhoff averages. Thus, the ergodic
averages will agree at almost all points which can be connected by paths consisting
of pieces of stable and unstable manifolds. Since the local foliations are absolutely
continuous, one would like to deduce that the points thus connected by such paths
(called Hopf chains) share the same ergodic averages. In particular, this would show
that the ergodic components are open sets (modulo sets of zero measure).

In the present context, an additional complication arises from those geodesics
starting or ending at a cusp. Let S_ C SM denote the set of geodesics which start
at a cusp (and have finite length 1, say) and let S; C SM denote the set of geodesics
ending at a cusp (and have finite length 1, say). The sets S = U?_ ¢, S_ and
SN = Uj_1¢nS+ are finite unions of two dimensional sheets in SM. The sets S =
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UPZ 0@nS— and S° = U2 (¢_, S denote the set of all geodesics which start or finish
(respectively) in a cusp. Each of these have zero Liouville measure, and the negative
curvature ensures that both are dense in SM. These observations cover hypothesis
A and B in Section 7 of [8]. The uniformly contracting and expanding cone families
constructed in the proof of Theorem 3.1 insure that hypotheses C (Monotonicity) and
E (Noncontraction) are satisfied. Because of the hyperbolicity, ¢, S_ becomes more
closely aligned with the unstable manifolds (in the sense that they are contained in
cones that typically converge) and similarly ¢,S_ becomes more closely aligned with
the stable manifolds. This is hypothesis D, Proper Alignment of the Singularity Set.
Hypothesis E is the analog of the Chernov-Sinai Ansatz. The double singularity
set S = §%° N ST consists of geodesic arcs which start and end at a cusp, and has
zero induced measure on S_ and Sy. Since the geodesic flow is uniformly hyperbolic,
for every unit tangent vector v € S\ S (vectors which never hits a cusp in positive
time), the norm of the differential of the geodesic flow at v grows exponentially, and
thus becomes infinite, i.e., ||[D¢'v|| — oo as t — oco. This is the Chernov-Sinai Ansatz.
The following proposition follows from the Main Theorem on page 39 of [8].

ProrosiTioN 3.7. Let ¢ : SM — SM denote the geodesic flow on the unit
tangent bundle of a surface M composed of finitely many surfaces of revolutions of
the formy = z",r > 1 for 0 < x < 1 together with connecting surfaces of bounded
negative curvature. Then the geodesic flow is locally ergodic.

REMARK 3.8. The underlying idea in the Chernov-Sinai Ansatz is that provided
N > 0 is sufficiently large, the set of local unstable manifolds that intersect SY has
an arbitrarily large proportion of the measure of X. Similarly, provided N > 0 is
sufficiently large, the set of local stable manifolds that intersect Siv has an arbitrarily
large proportion of the measure of X. One can then consider small parallelopideds
constructed from local stable manifolds, unstable manifolds and flow segments disjoint
from SYUSY (cf. Remark 3.6 and Theorem 9.7 in [8]). Within this region, a standard
argument (originally due to Sinai) shows that there are sufficiently many long local
stable and unstable manifolds to apply a variant of the Hopf argument (cf. pp. 14-17
and §11 in [8]).

4. e-Topological transitivity. In this section we prove that the geodesic flow
is e-topologically transitive. It will follow from ergodicity of the geodesic flow that
the geodesic flow is topologically transitive.

PROPOSITION 4.1. For each € > 0 one can find an e-dense orbit segment in SM.

Proof. We begin with the following simple lemma. For each point x € M which
is not a cusp point, we let B, C S, C SM be the set of unit tangent vectors v € SM
for which the geodesics originating at x eventually hit a point cusp.

LEMMA 4.2. B, C S, M is dense.

Proof. This is a consequence of the negative curvature. Consider an arc U C
S, and assume for a contradiction that U N B, = @. The image ¢;U under the
geodesic flow grows in length exponentially and sweeps out an area ¢jg U, say, which
eventually covers all of M. However, this must include the cusp points, giving a
contradication. O

It is a consequence of the Clairaut Integral (9) that on a singular surface of
revolution, the only geodesics which reach the cusp point are meridian curves. Any
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other geodesic will have a nearest approach ¢, say, to the cusp. From (8) we observe
that twice the integral from 1 to ¢ gives the total angle that the geodesic arc makes
around the cusp between successive transitions across the meridian corresponding to
u = 1. It is easy to see that this diverges as ¢ approaches 0, i.e, the number of times
the geodesic winds around the cusp tends to infinity as ¢ tends to zero.

Given € > 0, we now construct an e-dense orbit segment by a (finite) iterative
procedure.

Fic. 2. Singular geodesics

Step 1. We consider the dense set B = U,ecxB; in the unit tangent bundle SM.
By considering pairs of vectors in B, with the same base points, but with vectors
v1, vy € B, pointing in approximately opposite directions, we can associate a geodesic
curve passing arbitrarily to vy, hitting a cusp point both in the furture and past. (We
can consider the two piece geodesic segment associated to v; and ve, and contract
this to a genuine geodesic. If we encounter a cusp point during this process we can
simply replace the endpoint by this one). Moreover, we can assume that these new
unit tangent vectors {v,}\_; C SM are a €¢/2-dense set.

F1G. 3. Perturbing the vector vy

Step 2. We can consider first the vector vy, and assume for simplicity that the
geodesic for the vector vy_1 € B ends in the same cusp as vy starts. The associated
geodesic segments for vy and vy_; cross a fixed meridian for their common cusp
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perpendicularly (one entering the other leaving). We want to change the vector vy _;
continuously through the geodesics which start from the same cusp (i.e., a geodesic
spray). More precisely, as v tends to vx_1, the angle a(v) that the associated geodesic
makes with the meridian (which is less than 7 ) tends to zero. Of course, because of
the geometry of surfaces of the revolution the geodesic associated to v now no longer
ends at the cusp point, but emerges from the cusp, crossing the meridian circle at the
same angle. Let us denote by u(v) € [0,27) the position on the meridian at which
the geodesic associated to v reemerges.

LEMMA 4.3 (Sub-lemma 1). As «(v) tends to zero, then the natural lift of u(v)
tends to infinity. In particular, given any 0 < uy < 2m we have a sequence of vectors
{v](\?ll} tending to vn_1, such that the associated geodesics re-emerge from the cusp

at the point u(vj(\?ll) = up.

Proof. We observe that if the meridian circle is given by w = 1, say, then

/ V14 (pvP~1)dv

VP v2p —c?

gives the total angle that the geodesic arc makes around the cusp between successive
transitions across the meridean circle corresponding to v = 1. It is easy to see that
this integral diverges as ¢ approaches 0, i.e, the number of times the geodesic winds
around the cusp tends to infinity as ¢ tends to zero. This in turn follows if a(v) — 0,
as assumed. O

We want to choose vy_; = v%lll, for n sufficiently large. Indeed, since the
geodesic associated to v}y _, emerges at precisely the point where the geodesic from vy
meets the meridian, we deduce that the two geodesics are arbitrarily close providing
their respective angles, u(vly_,) and /2 are close. In particular, by the sub-lemma,
we can choose n sufficiently large that there is a vector v)y on the geodesic through
vy _, which is €/2-close to vy .

Fic. 4. Choosing N sufficiently large

By uniform continuity of the geodesic flow (in a suitably small neighbourhood of
the geodesic arc associated to vy _;) we see that if we choose dy_1 < § sufficiently
small, then for any vector with v € B(vy_1,0ny_1) the associated geodesic passes

within €/2 of vy and thus, by the triangle inequality, within € of vy.

Step 3. We can next consider the vector vy _o, and again assume for simplicity that
the geodesic for the vector vy _2 € B ends in the same cusp as vy_1 (and vly_; starts).
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The associated geodesic segments for vy_o and viy_; cross a fixed meridian for their
common cusp perpendicularly (the first entering the second leaving). As before we can
change vy _s continuously through the geodesics which start from the same cusp (i.e.,
a geodesic spray). As v tends to vy_s, the angle a(v) that the associated geodesic
makes with the meridian (which is less than 7) again tends to zero. We have the
following version of Sublemma 1.

LEMMA 4.4 (Sub-lemma 2). Given any arc U C [0,27) we have a sequence of

intervals {I](\QQ} in [0,27) tending to the entry point on the meridian of vy_1, such
that the associated geodesics re-emerge from the cusp in the arc U.

Proof. As observed in the proof of the previous sublemma, the number of times the
geodesic winds around the cusp tends to infinity as ¢ tends to zero thus by continuity
we can choose suitable intervals I,,. O

We want to let U correspond to those geodesics which cross the meridian per-
pendicularly and then pass through B(vly_;,dn—1). We next want to choose v/ _,
lying on a geodesic which starts on the same cusp point as vy _s and meets the merid-
ian at IJ(\QQ, for n sufficiently large. The geodesic associated to v)y_, then emerges
from the cusp and meets the neighbourhood B(vj_;,dn—1). By uniform continu-
ity of the geodesic flow in a neighbourhood of the geodesic through vj_, we can
choose 0 < dy_2 < § sufficiently small that for any v € B(v}y_,,d_,) the associated
forward geodesic passes through B(vi_;,dn—1) (and thus by the triangle inequality
within a distance € of vy _1) and then, by construction, later it passes within € of vy .

Step 4. We proceed inductively. Assume that we have constructed vectors
Uy, Vjyqs > Uy and a sequence 0 < g, Op 41, , 08 < 5.

We can next consider the vector vi_1, and again assume for simplicity that the
geodesic for the vector vy_1 € B ends in the same cusp as v (and v}c) starts. The
associated geodesic segments for v,_1 and vj, cross a fixed meridian for their common
cusp perpendicularly (the first entering the second leaving). As before we can change
vk—1 continuously through the geodesics which start from the same cusp (the geodesic
spray). As v tends to vy_o, the angle a(v) that the associated geodesic makes with
the meridian again tends to zero.

We want to apply Sublemma 2 again. We want to choose v},_; lying on a geo-
desic which starts on the same cusp point as viy_; and meets the meridian in an
arc I, ,&)17 for n sufficiently large. The geodesic associated to vj,_; emerges from the
cusp and meets the neighbourhood B(v},dnx—1). By uniform continuity of the geo-
desic flow in a neighbourhood of the geodesic through v}, we can choose dx_1 > 0
sufficiently small that for any any v € B(v)_,,0k—1) the associated forward geo-
desic passes through B(vj,0x). Then by construction, the geodesic passes through
B(vj1,0k41), -+, B(vy_;,0n—_1) and within € of vy.

This completes the proof. We need only observe that the hypothesis that v,, enters
the cusp which v,11 leaves can be achieved by suitably organizing (and repeating if
necessary) the choice of vectors. O

5. Ergodicity. Combining the results of the last two sections gives the following
result.

THEOREM 5.1. The geodesic flow is ergodic.

Proof. We need to show there is a single ergodic component by showing that for
every € > 0 there is an e-dense orbit (segment). Thus if we were to assume for a



416 M. POLLICOTT AND H. WEISS

contradiction there were two distinct ergodic components then we could choose open
sets U and V in each and an orbit segment connecting U to V. In particular, for some
t € R we have that ¢;U NV # (), and since this intersection has non-zero Liouville
measure and the ergodic components are invariant, we are done. O

COROLLARY 5.2. The geodesic flow is topologically transitive.

6. More topological properties. We claim the following result holds for closed
geodesics on the surface M.

THEOREM 6.1. The union of closed geodesics are dense on M (and their tangent
vectors are dense in SM ).

Proof. Given v € S1M and € > 0 sufficiently small we can use the Poincaré
recurrence to find 7' > 0 such that d(¢7v,v) < e. Let m: SM — M be the canonical
projection from the unit tangent bundle onto the surface M. We begin by joining
the projections 7(v), w(¢prv) € M of v, ¢rv onto M by a short geodesic segment.
Moreover, we can join the projections m(¢v), m(dr—¢)v € M of the tangent vectors
o1v, p7—v by a continuously changing geodesic arc 'yt(l), for 0 <t < T/2. In particu-
lar, the geodesic arc 4V = 77(}/)2 is based at the point z(!) = ~(T/2). If the geodesic
arc v has length T™) then we can write v(1)(0) = vM(TM) = £,

We shall use a method which is a version of the standard Birkhoff curve shortening

method. We next consider a sequence of continuously varying geodesics 775(2) joining

A D (#) and yM(TM —¢), for 0 < ¢t < T /2. In particular, v = 7;2()1)/2 is a closed

geodesic based at the point z(?) = 7(1)(T(1)/2). Let us denote the length of this curve
by ().

FiG. 5. Piecewise Geodesic Smoothing

Continuing inductively gives a sequence (7,)52 ; of geodesics arcs in the same free
homotopy curve. Moreover, the curves converge to a single curve 7.,. Furthermore,
the angle between the tangents /. (0) and +/, (7)), at either end of the geodesic arcs,
converge to zero. Thus the limiting curve ., is a closed geodesic.

The only point that that it remains to check in this article is that none of the
curves passes through a cusp point. However, within the cusp region (corresponding
to the surface of revolution) the only way for a geodesic to approach closer to a cusp
point is for the curve to wind an increasing number of times around the cusp, as we
see from the Clairaut results. However, this contradicts that the curves (given by
composing the curves v*) and %(k*l), between v*~1(¢) and y*F=D(T*=1 — 1)) lie
in the same free homotopy class. O

However, in contrast to the situation for complete surfaces we have the following:
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THEOREM 6.2. There exist (infinitely many distinct) values L > 0 such that we
can sequences of lengths of closed geodesics whose lengths accumulate to L.

Proof. Given any closed geodesic on M we can increase the number of times the
geodesic spirals around a given cusp. A simple computation shows that the limit of
the (distinct) lengths of these geodesics converges. O

Let 7(T) denote the number of closed geodesics of least period less than T'.

COROLLARY 6.3. Then there exists L > 0 such that w(L) = 0.

REMARK 6.4. We could attempt to define the closed geodesic entropy as the
upper bound on the rate of growth of closed geodesics

hper = lim sup 1 log ©(T).
T—o0 T
However, we immediately see this is infinite by the previous result.

We could also attempt define the volume entropy as upper bound on the growth
rate of the volume of a ball B(xg, R) on the universal cover for M — {cusps},. Equiva-
lently, we let Vol(B(zg, R)) be the volume counted with multiplicity for the over laps.
We then define

1

hyor = limsup = log 7(T).
T— o0 T

As an application of the above ideas, we again observe that the volume entropy is

infinite.

7. Application to Weil-Petersson geodesic flows. Wolpert showed that the
WP metric is also non-complete, has finite area, has negative curvature bounded
away from zero, and is unbounded in the “cusps [11].” Thus most of the preceding
analysis also applies to the geodesic flow for the Weil-Petersson (WP) metric on two
dimensional moduli spaces of Riemann surfaces. These include the moduli spaces
for the once punctured torus M;; and sphere with four punctures My4. We now
argue that with the exception of the estimates in Proposition 3.3 (c), all of the stated
results carry over. Thus, the only ingredient missing from the proof of ergodicity of
the geodesic flow in these cases is the verification of the estimates on the derivatives
of the time one map in the cusp.

Since the WP metric has negative curvature bounded away from zero, the proof
of Theorem 3.1 shows that the WP geodesic flows are Anosov (as incomplete flows)
and thus have non-zero Lyapunov exponents almost everywhere.

The authors of [3, 12, 13] have shown that in a C° sense, the WP metric in a
cusps coincides with the induced metric on a singular surfaces of revolution of the
form y = ", up to an error which approaches zero as the cusp point is approached.
The analog of Proposition 3.3 (1) follows immediately.

To establish the analog of Proposition 3.3 (2) for the moduli space for the once-
punctured torus, we estimate the total curvature in the cusp using the following
special coordinates. A once-punctured torus can be uniformized by a Fuchsian group
' generated by hyperbolic elements A, B € PSL(2,R) with ABA~!B~! parabolic
[7]. With standard normalizations, the Teichmiiller space for the once punctured
torus can be identified with the locus 22 + y? + 22 = 3xyz satifying z,y,z > 2,
where © = tr(A) and y = tr(B), and z = tr(AB). Letting a = z/yz,b = y/zz and
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z = z/zy, the Teichmiiller space is the simplex a + b+ ¢ = 1 with a,b,¢ > 0. We
can write © = x(a, b, c), etc. The Moduli space corresponds to choosing a,b,c < 1/2
The area element on this simplex takes the form dadb/ab(1l — a — b). To integrate the
curvature we first note that a corresponds to a closed geodesic of length [ such that
r=e/? e 2 =24 12/44 0(1%).

We apply Huang’s estimate [5] on the curvature |K(a,b)| to bound it by C/I as
I — 0. In particular, in the cusp we can bound the integral of the curvature by an
expression of the form

1/2 1/2 dadb
K(a,b)—2P _ _503...
L e Kenam e

In the general two-dimensional case (which includes the moduli space for the four
times punctured sphere), we can use results in [10] and obtain that the area of the
cusp corresponding to surfaces with shortest geodesic length [ is a polynomial in /2.
Thus we can bound the integral of the curvature in the cusp by f I7d(1?) < oo.

If we were able to establish the analog of Proposition 3.3 (3), then we could apply
the above-mentioned results from [8] and conclude that the WP geodesic flows have
countably many ergodic components.

The next step would be to prove local ergodicty of the WP geodesic flow. Since the
WP geodesic flows is Anosov (as an incomplete flow), all the hypothesis in Section 3.3
are satisfied, with identical proofs. Finally, in place of local topological transitivity,
the authors, along with Scott Wolpert, have shown that the WP geodesic flow is
transitive [9]. This would finish the proof of ergodicity of WP geodesic flows.

8. Acknowledgements. The authors would like to thank Scott Wolpert for
many helpful discussions related to the WP metric.
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