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THE IWASAWA INVARIANTS OF THE PLUS/MINUS
SELMER GROUPS∗

BYOUNG DU KIM†

Abstract. We study the Iwasawa µ- and λ-invariants of the non-primitive plus/minus Selmer
groups of elliptic curves for supersingular primes. We prove that they are constant for a family of
elliptic curves with the same residual representation if the µ-invariant of any of them is 0. As an
application we find a family of elliptic curves whose plus/minus Selmer groups have arbitrarily large
λ-invariants.
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1. Introduction. Fix a prime p and let Q∞ be the cyclotomic Zp-extension of
Q. Greenberg and Vatsal found a way to produce elliptic curves with good ordinary re-
duction at p such that their Selmer groups over Q∞ have arbitrarily large λ-invariants.
On the other hand, when an elliptic curve E has good supersingular reduction at p,
Selp(E/Q∞) does not seem to have any property analogous to the ordinary reduction
case. Instead, we should use the plus/minus Selmer group Sel±p (E/Q∞) defined by
Kobayashi. (To some extent the origin of this group dates back to Perrin-Riou and
Rubin. See [8], [13], and [10].) The works of Kobayashi, Pollack, Iovita-Pollack, and
the author ([8],[11], [4], [5], [6], and [7]) showed that the plus/minus Selmer group
theory of elliptic curves for supersingular primes is analogous to the Selmer group
theory of elliptic curves for ordinary primes.

In this paper we study the Iwasawa invariants of the plus/minus Selmer groups.
To apply the plus/minus Selmer group theory, we ssume ap = 1 + p − |Ẽ(Fp)| is 0.
Assuming E has good reduction at p, ap = 0 implies E has supersingular reduction at
p, and conversely, if E has good supersingular reduction at p, ap = 0 if p > 3 or E has
complex multiplication. Let Γ = Gal(Q∞/Q) and Λ = Zp[[Γ]]. Identify Λ = Zp[[T ]]
by identifying γ = T + 1 for a topological generator γ of Γ. The Pontryagin dual
X±

E (Q∞) of Sel±p (E/Q∞) is a Λ-torsion module ([8] theorem 1.3 for a non-CM elliptic
curve, [12] for a CM elliptic curve), and has a pseudo-isomorphism

X+
E (Q∞) ∼ (⊕Λ/(fi(T ))ai)⊕ (⊕Λ/(pµj )) ,

X−
E (Q∞) ∼

(

⊕Λ/(gk(T ))bk
)

⊕
(

⊕Λ/(pµ′
l)
)

,

where fi(T ) and gk(T ) are irreducible distinguished polynomials of Λ.
The Iwasawa invariants are defined by

λ+ =
∑

aideg(fi(T )), λ− =
∑

bkdeg(gk(T )),

µ+ =
∑

µj , µ− =
∑

µ′
l.
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Let E and E′ be elliptic curves with E[p] ∼= E′[p] as GQ-modules. We show that we
can relate the µ and λ-invariants of X±

E (Q∞) with the µ and λ-invariants of X±
E′(Q∞).

In particular, we show that if the µ-invariant of X±
E (Q∞) is 0, we can express the

λ-invariant of X±
E′(Q∞) in terms of the λ-invariant of X±

E (Q∞) and the Zp-coranks
of some local cohomology groups. As an application, we find elliptic curves whose
plus/minus Selmer groups have arbitrarily large λ-invariants. The readers should also
refer to the work of Greenberg and Vatsal for the Selmer group of an elliptic curve
for the good ordinary reduction case (see [3]). Greenberg also explained his idea in
other papers such as [2].

We explain our results more explicitly. Let Σ be any finite set of places including
p, bad reduction primes, and infinite places. Following [8] we define

Sel±p (E/Q∞) := ker



H1(QΣ/Q∞, E[p∞])→
∏

w|l,l∈Σ

H1(Q∞,w, E[p∞])

H1
F±(Q∞,w, E[p∞])





where

H1
F±(Q∞,p, E[p∞]) = E±(Q∞,p)⊗Qp/Zp

and for w ∤ p

H1
F±(Q∞,w, E[p∞]) = E(Q∞,w)⊗Qp/Zp.

Now let Σ0 be any subset of Σ that does not include p and ∞. We define the
primitive plus/minus Selmer group by

SelΣ0,±
p (E/Q∞) = ker



H1(QΣ/Q∞, E[p∞])→
∏

w|l,l∈Σ−Σ0

H1(Q∞,w, E[p∞])

H1
F±(Q∞,w, E[p∞])



 .

Suppose E[p] ∼= E′[p] as GQ-modules, all the bad reduction primes of E and E′

belong to Σ0, and the µ-invariant of X±
E (Q∞) is 0. We show that SelΣ0,±

p (E/Q∞)

and SelΣ0,±
p (E′/Q∞) have the same Zp-coranks. Then, we will show that for a certain

choice of E′ and Σ0, we can make the Zp-corank of SelΣ0,±
p (E′/Q∞) arbitrarily large

but the Zp-corank of SelΣ0,±
p (E′/Q∞)/ Sel±p (E′/Q∞) comparatively small such that

Sel±p (E′/Q∞) has an arbitrarily large Zp-corank.
It is our pleasure to thank Karl Rubin for many helpful discussions and Ralph

Greenberg for bringing this problem to our attention.

2. Congruences and non-primitive Selmer groups. Throughout this paper
we let M∨ denote the Pontryagin dual Hom(M, Qp/Zp).

Let E be an elliptic curve over Q and fix an odd prime p. We assume E has good
supersingular reduction at p and ap = 1 + p− |Ẽ(Fp)| is 0.

Let Q∞ be the cyclotomic Zp-extension of Q and Qn be its subfield such that
Gal(Qn/Q) ∼= Z/pnZ. Let Qn,p denote the local field of Qn at the unique prime
above p. Let Γ = Gal(Q∞/Q) and Λ = Zp[[Γ]]. Following [8] we define the following.

Definition 2.1 (Plus/Minus norm groups). Let Q−1,p be Qp. We define

E+(Qn,p) = {x ∈ E(Qn,p)|TrQn,p/Qm+1,p
(x) ∈ E(Qm,p)

for every 0 ≤ m < n, m even },
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E−(Qn,p) = {x ∈ E(Qn,p)|TrQn,p/Qm+1,p
(x) ∈ E(Qm,p)

for every − 1 ≤ m < n, m odd }.

Let Σ be a finite set of places including ∞, p, and bad reduction primes and QΣ

be the maximal extension of Q unramified outside Σ. For l ∈ Σ with l 6= p, we define
a conventional local condition

H±
l (Q∞, E[p∞]) :=

∏

η|l

H1(Q∞,η, E[p∞])

E(Q∞,η)⊗Qp/Zp
.

Note that we have E(Q∞,η) ⊗ Qp/Zp = 0 because η is not above p. We will also let
Hl(Q∞, E[p∞]) denote H±

l (Q∞, E[p∞]) to emphasize H+
l = H−

l when l 6= p.
For p we let

H±
p (Q∞, E[p∞]) :=

H1(Q∞,p, E[p∞])

E±(Q∞,p)⊗Qp/Zp
.

(Despite the notation, H±
p (Q∞, E[p∞]) depends on more than just E[p∞].) Also, for

every prime l, we let

Hl(Q, E[p∞]) :=
H1(Ql, E[p∞])

E(Ql)⊗Qp/Zp
.

Definition 2.2 (Selmer group).

Selp(E/Q) := ker

(

H1(QΣ/Q, E[p∞])→
∏

l∈Σ

Hl(Q, E[p∞])

)

.

Definition 2.3 (Plus/Minus Selmer group, [8] definition 1.1).

Sel±p (E/Q∞) := ker

(

H1(QΣ/Q∞, E[p∞])→
∏

l∈Σ

H±
l (Q∞, E[p∞])

)

.

We let S±
E[p∞](Q∞) denote Sel±p (E/Q∞) as well.

In [7] we proved the following.

Proposition 2.4. The map

H1(QΣ/Q∞, E[p∞])→
∏

l∈
PH±

l (Q∞, E[p∞])

is surjective.

Proof. This is [7] proposition 16 and the discussion following it. The proof
involves the analogue of the Tate local duality for the local conditions derived from
the plus/minus norm groups. Since this is crucial to this paper and [7] is not published
yet, we will briefly sketch the proof for the readers.
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Fix an isomorphism κ : Γ→ 1+pZp when we consider 1+pZp as a multiplicative
group. Let T denote the Tate module Tp(E) and A denote E[p∞]. Let Ts and As

denote T ⊗ (κs) and A⊗ (κs) respectively for any s ∈ Zp.
Define

Hs,±
n,p = (E±(Q∞,p)⊗Qp/Zp ⊗ κs)Gal(Q∞/Qn),

H1
F±(Qn,p, As) = Hs,±

n,p ⊂ H1(Qn,p, As),

H1
F±(Qn,p, Ts) = lim←−

k

Hs,±
n,p [pk] ⊂ H1(Qn,p, Ts).

By [7] proposition 14, H1
F±(Qn,p, As) is the exact annihilator of H1

F±(Qn,p, T−s)
with respect to the Tate local pairing

H1(Qn,p, As)×H1(Qn,p, T−s)→ Qp/Zp.

The proof uses the technique similar to [5] proposition 3.15.
For a prime w of Qn with w ∤ p, we simply let H1

F±(Qn,w, As) = 0 and
H1

F±(Qn,w, T−s) be its exact annihilator with respect to the Tate local pairing.
We let

Pn =
∏

w|l,l∈Σ

H1(Qn,w, As), L±
n =

∏

w|l,l∈Σ

H1
F±(Qn,w, As),

P ∗
n =

∏

w|l,l∈Σ

H1(Qn,w, T−s), U∗,±
n =

∏

w|l,l∈Σ

H1
F±(Qn,w, T−s).

We define the following:

γn : H1(QΣ/Qn, As)→ Pn,

γ∗
n : H1(QΣ/Qn, T−s)→ P ∗

n ,

Gn = im(γn),

G∗
n = im(γ∗

n),

S±
As

(Qn) = ker(H1(QΣ/Qn, As)→ Pn/L±
n ),

S±
T−s

(Qn) = ker(H1(QΣ/Qn, T−s)→ P ∗
n/U∗,±

n ).

Assume that S±
A−s

(Qn) is finite for every n. Since Sel±p (E/Q∞) is Λ-cotorsion,
there are infinitely many such numbers s. By the duality theorems of Poitou and
Tate, Gn and G∗

n are orthogonal complements with respect to the pairing

Pn × P ∗
n → Qp/Zp
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given by the Tate local pairing for each prime.
Since L±

n and U∗,±
n are the exact annihilator of each other with respect to the

pairing above, Pn/GnL±
n is isomorphic to the Pontryagin dual of G∗

n ∩ U∗,±
n =

γ∗
n(S±

T−s
(Qn)).

Since S±
A−s

(Qn) is finite, S±
T−s

(Qn) is finite, thus S±
T−s

(Qn) is contained in

H1(QΣ/Qn, T−s)torsion. We can check the last group is isomorphic to A
GQn

−s /(A
GQn

−s )div

by considering the long exact sequence induced from 0→ T−s → T−s⊗Qp → A−s →
0. Since A

GQn,p

−s = 0 ([8] proposition 8.7–also it can be proven using more general
properties of formal groups), Pn/GnL±

n is trivial.
By taking the direct limit over n, we can see

H1(QΣ/Q∞, As)→ P∞/L±
∞

is surjective. Since As
∼= A as GQ∞

-modules, we have H1(QΣ/Q∞, As) ∼=
H1(QΣ/Q∞, A) and P∞/L±

∞
∼=
∏

l∈ΣH±
l (Q∞, A), hence our claim follows.

Now, let Σ0 be any subset of Σ not including p and ∞. We define the primitive
plus/minus Selmer group by

SΣ0,±
E[p∞](Q∞) = ker

(

H1(QΣ/Q∞, E[p∞])→
∏

l∈Σ−Σ0

H±
l (Q∞, E[p∞])

)

.

From proposition 2.4 we obtain the following.

Corollary 2.5.

SΣ0,±
E[p∞](Q∞)/S±

E[p∞](Q∞) ∼=
∏

l∈Σ0

Hl(Q∞, E[p∞]).

Here we refer to Greenberg’s computation of the Zp-corank of Hl(Q∞, E[p∞]).
Proposition 2.6 ([3] proposition 2.4). Let Tp be the p-adic Tate module of

E and Vp be Tp ⊗ Qp. Let Il ⊂ GQl
denote the inertia group of l. Let Pl(X) =

det((1−FroblX)|(Vp)Il
) ∈ Zp[X ] where (Vp)Il

is the maximal quotient of Vp on which
Il acts trivially.

Then the µ-invariant of Hl(Q∞, E[p∞])∨ is 0 and its λ-invariant (i.e., Zp-corank)
is sldl where sl is the maximal power of p satisfying (lp−1 − 1)/p ≡ 0 (mod sl) and
dl is the multiplicity of X = l̃−1 as a root of P̃l(X) ∈ Z/pZ[X ].

Let l(6= p) be a good reduction prime such that Frobl acts trivially on the residual
representation E[p]. Then l−1 ≡ 1 (mod p) is a double root of P̃ (X) = X2− 2X + 1,
and the Zp-corank of Hl(Q∞, E[p∞]) is 2sl.

Now, we will define a “plus/minus primitive Selmer” group on E[p]. For l 6= p we
let

H±
l (Q∞, E[p]) =

∏

η|l

H1(Q∞,η, E[p])/H1
un(Q∞,η, E[p]).

We also let Hl denote H±
l when l 6= p to emphasize H+

l = H−
l . For l = p we let

H±
p (Q∞, E[p]) = H1(Q∞,p, E[p])/

(

E±(Q∞,p)/pE±(Q∞,p)
)

.
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Definition 2.7.

SΣ0,±
E[p] (Q∞) = ker(H1(QΣ/Q∞, E[p])→

∏

l∈Σ−Σ0

H±
l (Q∞, E[p])).

Let E′/Q be an elliptic curve with E[p] ∼= E′[p] as GQ-modules. Assume Σ

contains all the bad reduction primes of E and E′. We will show SΣ0,±
E[p] (Q∞) ∼=

SΣ0,±
E′[p] (Q∞).

An isomorphism ρ : E[p] → E′[p] naturally induces H1(QΣ/Q∞, E[p])
∼→

H1(QΣ/Q∞, E′[p]) and Hl(Q∞, E[p])
∼→ Hl(Q∞, E′[p]) for l 6= p. Thus we need to

show the isomorphism ρ : H1(Q∞,p, E[p])→ H1(Q∞,p, E
′[p]) induces an isomorphism

E±(Q∞,p)/pE±(Q∞,p)
∼→ E′±(Q∞,p)/pE′±(Q∞,p).

Let Ê and Ê′ be the formal groups over Z associated to E and E′. As mentioned
in [8] theorem 8.4, Ê and Ê′ have the same Honda type X2 + p, thus there is an
isomorphism of formal groups λ : Ê → Ê′ over Zp. Since ρ induces an isomorphism

ρ : Ê[p] → Ê′[p], there is an isomorphism λ−1 ◦ ρ : Ê[p] → Ê[p]. We will show this
map is given by multiplication by a scalar of F×

p .

Proposition 2.8. The only GQp
-equivariant maps in Aut(E[p]) are the ones

given by multiplication by scalars of F×
p .

Proof. Since Ê is a Lubin-Tate group of height 2 over Op where Op is the ring of
integers of the unramified quadratic extension Kp of Qp ([8] proposition 8.6), we can
identify E[p] with Op/pOp such that the Artin map [α, Kp] for any α ∈ O×

p acts on
E[p] as multiplication by α−1. Thus the image of [O×

p , Kp] in Aut(E[p]) is a non-split
Cartan group of GL2(Fp) when we identify Aut(E[p]) ∼= GL2(Fp) ([9] Chapter XVIII
section 12, p. 712, lemma 12.2). We let B denote the image of [O×

p , Kp] in Aut(E[p]).
Let τ ∈ GQp

be a lifting of the non-trivial element of Gal(Kp/Qp). Since
τ [α, Kp]τ

−1 = [ατ , Kp] for α ∈ O×
p , the image of τ in Aut(E[p]) is not commutative

with B. Since a non-split Cartan group has index 2 in its normalizer ([9] Chap.XVIII
sec.12, p. 713, proposition 12.1), the image of GQp

in Aut(E[p]) is the normalizer of
B. We let C denote the image of GQp

in Aut(E[p]).
It is easy to see that an element of GL2(Fp) commutes with C if and only if it is

given by multiplication by a scalar of F×
p . Thus our claim follows.

Thus it follows that ρ is equal to λ ◦ µ for some scalar multiplication µ (i.e.,
µ(x) = α · x for some α ∈ F×

p ). Hence ρ : H1(Q∞,p, E[p])→ H1(Q∞,p, E
′[p]) induces

an isomorphism

E±(Q∞,p)/pE±(Q∞,p)
µ→ E±(Q∞,p)/pE±(Q∞,p)

λ→ E′±(Q∞,p)/pE′±(Q∞,p).

Thus we have the following.

Proposition 2.9.

SΣ0,±
E[p] (Q∞) ∼= SΣ0,±

E′[p] (Q∞).

From now on, assume Σ0 includes all the bad reduction primes of E and E′.

Proposition 2.10. We have

SΣ0,±
E[p] (Q∞) ∼= SΣ0,±

E[p∞](Q∞)[p]
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Proof. We consider the following diagram.

0→ SΣ0,±
E[p] (Q∞)→ H1(QΣ/Q∞, E[p])→ ∏

Σ−Σ0
H±

l (Q∞, E[p])

↓ ↓ ↓
0→ SΣ0,±

E[p∞](Q∞)[p]→ H1(QΣ/Q∞, E[p∞])[p]→ ∏

Σ−Σ0
H±

l (Q∞, E[p∞]).

The short exact sequence 0→ E[p]→ E[p∞]→ E[p∞]→ 0 induces

E[p∞]Gal(QΣ/Q∞)/pE[p∞]Gal(QΣ/Q∞)

→ H1(QΣ/Q∞, E[p])→ H1(QΣ/Q∞, E[p∞])[p]→ 0.

Since E[p∞]GQ∞,p = 0 ([8] proposition 8.7), H1(QΣ/Q∞, E[p]) →
H1(QΣ/Q∞, E[p∞])[p] is an isomorphism.

Similarly it follows that H1(Q∞,p, E[p]) → H1(Q∞,p, E[p∞])[p] is an iso-
morphism. Since E±(Q∞,p) is torsion-free, we have (E±(Q∞,p) ⊗ Qp/Zp)[p] =
E±(Q∞,p)/pE±(Q∞,p). Note that E±(Q∞,p) ⊗ Qp/Zp → H1(Q∞,p, E[p∞]) is in-
jective ([8] lemma 8.17). Combining them it follows that

H±
p (Q∞,p, E[p])→H±

p (Q∞,p, E[p∞])[p]

is an isomorphism.
For l ∈ Σ − Σ0 with l 6= p, since l is a good reduction prime, H±

l (Q∞, E[p]) →
H±

l (Q∞, E[p∞]) is injective. (See [3] proposition 2.8.) By the Snake Lemma our claim
follows.

Proposition 2.11. SΣ0,±
E[p∞](Q∞) has no proper Λ-submodule of finite index.

Proof. Without loss of generality we assume Σ = Σ0∪{p,∞}. By proposition 2.4
we have

H1(QΣ/Q∞, E[p∞])/SΣ0,±
E[p∞](Q∞) ∼= H±

p (Q∞, E[p∞]).

Since H1(Q∞,p, E[p∞])∨ ∼= Λ2 and (E±(Q∞,p)⊗Qp/Zp)
∨ ∼= Λ ([8] propositions 8.23

and 24), H±
p (Q∞, E[p∞])∨ is projective, thus free because Λ is a local ring. Its Λ-rank

is obviously 1, thus H±
p (Q∞, E[p∞])∨ ∼= Λ.

From [7] proposition 20 (which easily follows from proposition 2.4) and propo-
sition 23 (which is just a restatement of [2] proposition 4.9) it follows that
H1(QΣ/Q∞, E[p∞]) has no proper Λ-submodule of finite index. Thus our claim fol-
lows from the following lemma of Greenberg.

Lemma 2.12 ([1], p. 123, also [3] lemma 2.6). Let Y be a finitely generated
Λ-module and Z a free Λ-submodule. If Y contains no nonzero finite Λ-submodule,
then the same is true for Y/Z.

Corollary 2.13. The µ-invariant of Sel±p (E/Q∞)∨ is 0 if and only if that

of Sel±p (E′/Q∞)∨ is 0. Assuming either, the λ-invariants of SΣ0,±
E[p∞](Q∞)∨ and

SΣ0,±
E′[p∞](Q∞)∨ are equal.

Proof. We make the following observation: Let M be a finitely generated Λ
module which is a free Zp-module. Then the λ-invariant of M is equal to the Zp-rank
of M , which is also equal to the length of M/pM .

The first claim follows from propositions 2.9 and 2.10. The second claim follows
from propositions 2.9, 2.10, and 2.11 combined with our observation.
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3. Arbitrarily large λ-invariants. Finally we will discuss how to find an el-
liptic curve E′/Q with a large λ-invariant for its plus/minus Selmer group.

Lemma 3.1. Assume E and E′ are elliptic curves defined over Q with E[p] ∼=
E′[p]. Let l be a prime not equal to p.

1. If E and E′ both have good reduction at l, corankZp
Hl(Q∞, E[p∞]) =

corankZp
Hl(Q∞, E′[p∞]).

2. If E has good reduction at l and E′ has bad reduction at l,
corankZp

Hl(Q∞, E[p∞]) ≥ corankZp
Hl(Q∞, E′[p∞]).

3. If E has good reduction at l and Frobl acts trivially on E[p] and E′ has bad
reduction at l, corankZp

Hl(Q∞, E[p∞]) − corankZp
Hl(Q∞, E′[p∞]) ≥ sl for

sl mentioned in proposition 2.6.

Proof. Case 1) Proposition 2.6 implies that corankZp
Hl(Q∞, E[p∞]) de-

pends only on the action of Frobl on E[p]. Thus corankZp
Hl(Q∞, E[p∞]) =

corankZp
Hl(Q∞, E′[p∞]).

Case 2) We note that Vp(E
′)Il
∼= Hom(Vp(E

′)Il , Qp(1)) by Weil pairing. Let
T̄1 = Hom(Tp(E

′)/pTp(E
′), µp) ∼= E′[p] and T̄2 = Hom(Tp(E

′)Il/pTp(E
′)Il , µp). Then

there is a short exact sequence 0→ T̄3 → T̄1 → T̄2 → 0 for some Fp-module T̄3. Then

det((1 − FroblX)|T̄1
) = det((1 − FroblX)|T̄2

) · det((1 − FroblX)|T̄3
).

(We note that although E′ has bad reduction at l, the Frobl-action on T̄1 makes
sense because E′[p] ∼= E[p].) Thus we can see the multiplicity of X = l̃−1 as a
root of det((1 − FroblX)|Vp(E)) ∈ Fp[X ] (when we consider it as a polynomial of

Fp[X ]) is greater than or equal to the multiplicity of X = l̃−1 as a root of det((1 −
FroblX)|Vp(E′)Il

) ∈ Fp[X ]. Combined with corollary 2.5 it implies

corankZp
Hl(Q∞, E[p∞]) ≥ corankZp

Hl(Q∞, E′[p∞]).

Case 3) As discussed after proposition 2.6, corankZp
Hl(Q∞, E[p∞]) = 2sl. Since

the dimension of Vp(E
′)Il

is less than or equal to 1, corankZp
Hl(Q∞, E′[p∞]) ≤ sl.

We will fix an elliptic curve E/Q such that the µ-invariant of Sel±p (E/Q∞)∨

is 0 with a given family of elliptic curves Et/Q parametrized by t ∈ Q such that
E[p] ∼= Et[p]. Note that from corollary 2.5 we have

corankZp
SΣ0,±

Et[p∞](Q∞) = corankZp
S±

Et[p∞](Q∞) +
∑

l∈Σ0

corankZp
Hl(Q∞, Et[p

∞]).

Choose t such that Et has bad reduction at many primes whose Frobenius maps
act trivially on E[p]. Then by corollary 2.13 and lemma 3.1 the λ-invariant of
Sel±p (Et/Q∞) will be large.

Let E : Y 2 = X3 − X and fix p = 3. The method should work quite generally,
but this elliptic curve and p = 3 are particularly easy to deal with.

Proposition 3.2. Sel±p (E/Q∞) = 0.

Proof. First, Selp(E/Q) = 0 by [15] section 12.3, which uses the main conjecture
of Iwasawa theory for imaginary quadratic fields proven in [14]. (In fact, Rubin proved
Selq(E/Q) = 0 for every prime q, and also proved the full version of the Birch and
Swinnerton-Dyer conjecture for this E.)
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We will show ι± : Selp(E/Q) → Sel±p (E/Q∞)Γ has trivial kernel and cokernel
similar to [7] corollary 26.

We consider the following diagram.

0→ Selp(E/Q) → H1(QΣ/Q, E[p∞]) →∏

l∈ΣHl(Q, E[p∞])
↓ ↓ ↓

∏

g±l
0→ Sel±p (E/Q∞)Γ → H1(QΣ/Q∞, E[p∞])Γ →

∏

l∈ΣH±
l (Q∞, E[p∞]).

Since E[p∞]Gal(QΣ/Q∞) = 0 as mentioned before, by Hochschild-Serre spectral se-
quence the middle vertical map is an isomorphism. Thus the kernel of ι± is trivial,
and the cokernel of ι± is also trivial if the kernel of

∏

l∈Σ g±l is trivial. It is proven in
the proof of [5] proposition 4.28 that g±p is injective. If l 6= p, by [2] lemma 3.3 and
the discussion following that we have

| ker(g±l )| = c
(p)
l

where c
(p)
l is the biggest p-power divisor of the Tamagawa number cl. The Tamagawa

number cl is 1 for all primes except l = 2, for which the Tamagawa number is 4.
Hence, ι± is an isomorphism.

By Nakayama lemma, Sel±p (E/Q∞) = 0.
In [16] Rubin and Silverberg discuss a general method to generate a family of

elliptic curves Et/Q parametrized by rational numbers t such that Et[p] ∼= E[p] as
GQ-modules. For E : Y 2 = X3−DX for a nonzero integer D, they explicitly described
this family in [16] theorem 4.4:

Y 2 = X3 + D(27D2t4 − 18Dt2 − 1)X + 4D2t(27D2t4 + 1).

In particular, if D is prime to 3 and t ∈ Q is integral at 3, then Et has good reduction
at 3. The curve E has CM by Q(

√
−1) thus p = 3 is a good supersingular prime and

ap = 1+p−|Ẽ(Fp)| = 0. If 3|t, Et = E modulo p = 3, thus ap(Et) = 1+p−|Ẽt(Fp)| =
0 as well.

Let D = 1. The discriminant of Et is

∆(Et) = −26(27t4 + 18t2 − 1)3.

Let f(t) = 27t4 + 18t2 − 1. We can directly verify f(t) is prime to f ′(t). Thus
f(t) is prime to f ′(t) modulo l for all but finitely many primes l. Let A be the set of
primes l (l 6= 2, 3) such that f(t) and f ′(t) are prime to each other modulo l.

Let k be any positive integer. Let L be a field of Q adjoined by the coordinates
of E[p] and the roots of f(t). By Chebotarev theorem there are primes l1, . . . , lk ∈ A
that split completely over L/Q. Then Frobli acts trivially on E[p] for each li and
there is an integer t0 such that f(t0) ≡ 0 (mod li), and f ′(t0) 6≡ 0 (mod li) for each
li. Thus we can write

f(t0 + X) = · · ·+ a1X + a0

with a0 ≡ 0 (mod l1 · · · · · lk) and a1 6≡ 0 (mod li) for each li.
If vli(a0) = 1, let bi = l2i . If vli(a0) > 1, let bi = li. Let t = t0 + α

∏

bi where
α = 1, 2, or 3 such that t ≡ 0 (mod 3). Then we have vli(f(t)) = 1 for each i, thus
vli(∆(Et)) = 3. Thus the minimal model of Et has bad reduction at each li.
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By lemma 3.1 the λ-invariant of Sel±p (Et/Q∞)∨ is greater than or equal to k. By
taking an arbitrarily large k we can find Et such that the λ-invariant of its plus/minus
Selmer group is also arbitrarily large.

Remark 3.3. We might note the following as well: Let E1 and E2 be elliptic
curves over Q with supersingular reduction at the prime p with ap(Ei) = 0 for i = 1, 2.
Assume E1[p] ∼= E2[p]. Let λ±

i be the λ-invariant of Sel±p (Ei/Q∞)∨ for i = 1, 2. Then

λ+
1 − λ−

1 = λ+
2 − λ−

2 . In particular, λ+(Et) − λ−(Et) for Et above is constant for
varying t.
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