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GOOD KÄHLER METRICS WITH PRESCRIBED SINGULARITIES∗

DAMIN WU†

Abstract. In this paper, we study the singular Monge–Ampère equations on a quasi–projective
manifold with a Poincaré metric. As a consequence, we construct Poincaré Kähler–Einstein metrics
which degenerate or grow upward at most like a pole along a given effective divisor.
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1. Introduction. Let M be a compact Kähler manifold of complex dimension
n, and D =

∑p
i=1 Di be a normal crossing divisor, which means that locally D is

given by the equation

z1 · · · zk = 0, 1 ≤ k ≤ n,

where (z1, . . . , zn) is a local coordinate system on M . Note that here the irreducible
components Di need not be smooth. Locally the complement of D is then given by
the polydisks

(∆∗)k × ∆n−k, 0 ≤ k ≤ n,

where ∆ is the unit disk in C and ∆∗ = ∆ \ {0}. From now on we denote by

M = M \ D.

Let si be the defining section of Di, and |·| be a Hermitian metric on the associated
line bundle [Di] such that

|si|2 < 1

on M , for each i = 1, . . . , p. Let ω̄ be a Kähler metric on M , and let

ω = Cω̄ − 2

p
∑

i=1

ddc log(− log |si|2),

where C is a large constant so that ω is positive definite on M . Here the operator dc

is given by

dc =

√
−1

4π
(∂̄ − ∂),

and hence,

ddc =

√
−1

2π
∂∂̄.
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It is easy to check that ω defines a complete Kähler metric on M of bounded sectional
curvature and finite volume. Note that the second term in ω is dominant near D in
the normal direction. Therefore, ω has Poincaré growth in the normal direction near
D, and hence, ω is asymptotic to the product of the classic Poincaré metric and the
Euclidean metric

√
−1

2π

k
∑

i=1

dzi ∧ dz̄i

|zi|2(log |zi|2)2 +

√
−1

2π

n
∑

j=k+1

dzj ∧ dz̄j

on the polydisk (∆∗)k ×∆n−k. In particular, ω induces a good metric, in the sense of
Mumford [8], on the logarithmic tangent bundle of M along D. Similar to [7], we call
a metric on M the Poincaré metric associated with D, or simply the Poincaré metric,
if the metric is uniformly equivalent to ω and has bounded sectional curvature.

Let E be a closed subset of M defined by

E = {x ∈ M ; τ(x) = 0},

which is disjoint from the boundary divisor D. Here τ is a smooth nonnegative
function on M satisfying that

ddc log(τ + ǫ) ≥ −Cω̄ for all 1 > ǫ > 0, (1.1)

where C is a positive constant independent of ǫ, and that log τ ∈ L1(M), i.e.,

∫

M

| log τ | ω̄n < +∞. (1.2)

We remark that the L1–space on a compact manifold is independent of the metric.
Let us fix a Poincaré metric ω on M . Let R(M) be the Cheng–Yau’s Hölder ring (see
Section 2 for a definition). Here is our first theorem:

Theorem 1. Let E and τ be given as above. For any F ∈ R(M) and any positive
real number a, there exists a solution u ∈ C∞(M \ E) of the equations

(ω + ddcu)n = eu+F τaωn, (1.3)

ω + ddcu > 0, on M \ E.

Furthermore, u is a bounded C1–function on M and satisfies that

C−1τaω ≤ ω + ddcu < Cω on M, (1.4)

where C is a positive constant. In addition, any bounded solution of (1.3) and (1.4),
which is smooth outside E, must be equal to u plus a constant.

Rather than (1.1), the proof of Theorem 1 need only the weaker inequality

∆ω log(τ + ε) > −C on M,

where ∆ω denotes the negative Laplacian associated with ω. In practice, however, it
is sometimes convenient to use following assumption stronger than (1.1):

ddc log τ > −Cω̄ on M \ E, (1.5)
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and

ddcτ ≥ 0, and dτ = 0, on E. (1.6)

In particular, this setting works for an analytic subvariety which is the intersection of
finitely many (possibly singular) hypersurfaces in M and which is disjoint from D. In
fact, let E1, . . . , Ek be the analytic hypersurfaces and sE1

, . . . , sEk
be their defining

sections (of the induced line bundles), respectively. Then the intersection is given by
the zero set of

τ =

k
∑

i=1

|sEi
|2,

where | · | are the metrics on the induced line bundles. It is easy to check that this τ
satisfies (1.5), (1.6), and (1.2).

Next, let us consider the equation with poles on E. In this case, E could intersect
with D, and τ need not be integrable. But we need to impose certain restriction on
the order of the poles. By (1.1) there always exists a positive number b, say 1/2C,
such that

ω + bddc log(τ + ε) > λω, (1.7)

where λ is a positive constant independent of ε. Let b+ be the supremum of all
such positive numbers b. In particular, b+ = +∞ when log τ is plurisubharmonic.
In the following theorem we require the order b < b+, and b ≤ 1. We remark that,
the second assumption b ≤ 1 can be dropped, in the case that E is an analytic
hypersurface contained in the support of D.

Theorem 2. Let τ be a nonnegative smooth function on M and satisfy (1.1),
and E is the zero set of τ in M . For any F ∈ R(M) and any positive real number
b < b+ and b ≤ 1, there exists a function u ∈ C∞(M \ E) satisfying

(ω + ddcu)n = eu+F τ−bωn (1.8)

and

C−1τΛω ≤ ω + ddcu < Cτ−Λω

on M \ E, where C and Λ are positive constants. In addition, the solution u has the
properties that

sup
M\E

u < +∞, and inf
M\E

(u − b log τ) > −∞.

We should point out that in the case of compact Kähler manifold, i.e., M =
M , the singular Monge–Ampère equations have been studied comprehensively in the
literature, especially in the second part of Yau’s celebrated paper [17, p.364–411].
After solving the Calabi’s conjecture in the first part of [17], Yau extended his powerful
machinery to settle down a very general case of complex Monge–Ampère equation.
For instance, the following equation was treated in that paper:

(ω̄ + ddcu)n = (

p
∑

i=1

|si|2hi)(

q
∑

j=1

|tj |2kj )−1eF (x,u)ω̄n (1.9)
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where the sj and tj are, respectively, sections of the holomorphic line bundles L1 and
L2 which satisfy certain mild integrability assumption, and F is a smooth function
on M × R such that ∂F/∂u ≥ 0.

On a complete noncompact manifold, the study of Monge–Ampère equation was
initiated by Yau in [18] to understand the Kähler–Einstein metrics, right after his
work on the compact case. Following [18], Cheng–Yau [3] solved a large class of
nondegerate Monge–Ampère equation on a general complete manifold with positive
injectivity radius. They also settle the nondegenerate equation in the case of quasi-
projective manifold (see [4] and the references therein). When the right hand side
of the equation contains degenerate terms vanishing at D only, the equation was
treated by [11] and [19], and by [15] very recently. Note that both [4] and [11] also
addressed the orbifold singularities. When the background metric is not Poincaré,
certain nondegenerate Monge–Ampère equations were solved by [12] and [13], and
also by [1] which assumed the Sobolev inequality.

In contrast to (1.9), at this moment we can only address the simplest singular case
on a quasi–projective manifold. Namely, F (x, u) in (1.9) specializes to u+F (x). Also,
the zeros and poles have to be treated separately. The major difficulty lies in the fact
that most known global or integration methods do not work for the Poincaré metric.
In the case of u+F (x), the analysis are local in nature, and cetain maximum principle,
such as Yau’s upper bound lemma, enables us to obtained the desired estimates.

As for Theorem 1, the point is to refine the upper bound obtained by Yau’s upper
bound lemma. To derive a uniform upper bound on a compact manifold, one can either
use the Moser–Yau’s iteration (see, for example, [17]), which depends heavily on the
Sobolev inequality, or employ a global positive Green’s function (see, for example,
[17, p.351]). Yet they all break down for the Poincaré metric, due to its finiteness
of volume. (See, for example, [6, p.19] and [9, p.378] for the reasons). Motivated by
[12] and [9], we overcome this difficulty by using a local positive Dirichlet Green’s
function. Such an argument need the integrability of log τ . The uniqueness is proved
by using the upper bound, together with Lemma 2, a singular version of the classic
Gaffney’s theorem.

Under (1.7), the analysis of Theorem 2 is completely local. The equation has
meromorphic right hand side. To handle the second order estimate we also need
to assume b ≤ 1, unless E ⊂ D is a analytic hypersurface. In addition, similar to
Theorem 1, we could furthermore derive a uniform lower bound for the solution, by
assuming certain integrability of τ . We omit it here, however, since the integrability
condition also depends on the bounds of the bisectional curvature of ω. It is unclear
whether such a result is useful at this point.

Finally, we consider the Poincaré metric on M which is also Kähler–Einstein.
Combining our previous results in [15], we apply Theorem 1 and Theorem 2 to con-
struct certain Kähler–Einstein metrics with singularities. Note that here each irre-
ducible component Di of the normal crossing divisor D is assumed to be nonsingular.

Theorem 3. Let D =
∑p

i=1 Di be a simple normal crossing divisor in M .
Suppose that there exist real numbers αi ≤ 1 such that

KM +

p
∑

i=1

αi[Di] > 0 on M. (1.10)
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Assume in addition that

KM + [D]
∣

∣

Di
> 0, i = 1, . . . , p. (1.11)

Then, for each effective divisor EZ ⊂ M , EZ ∩D = ∅, there exists a smooth Kähler–
Einstein metric ω′

KE on M \ E satisfying that

C−1|sZ |2µω ≤ ω′
KE < Cω,

C−1|sZ |2µωn ≤ (ω′
KE)n ≤ C|sZ |2µωn,

on M , where ω is a Poincaré metric on M , sZ is the defining section of EZ , and C
and µ are positive constants. Here one may take ω to be the unique smooth Poincaré
Kähler–Einstein metric on M , if one so desires.

We remark that a special useful case of (1.10) and (1.11) is

KM + [D] > 0 on M.

In some applications, EZ can be viewed as the exceptional divisor obtained from
resolving the singularities outside D. The singular Poincaré Kähler–Einsein metric
ω′

KE obtained in Theorem 3 is said to be degenerate at E. Similarly, we can construct
a singular Poincaré Kähler–Einstein metrics which may possess a pole.

Theorem 4. With the same assumption (1.10) and (1.11) as in Theorem 3. Then
for any effective divisor EP in M , there exists a smooth Kähler–Einstein metric ω′′

KE

on M \ EP satisfying that

C−1|sP |2Λω < ω′′
KE < C|sP |−2Λω,

C−1ωn < (ω′′
KE)n ≤ C|sP |−2µωn,

where ω is a Poincaré metric on M , sP is the defining section of EP , and C, µ, Λ are
positive constants. If necessary, one may take ω to be unique nonsingular Poincaré
Kähler–Einstein metric on M .

In Section 2 we recall the notions of Cheng–Yau’s Hölder spaces, and the bounded
geometry associated with a Poincaré metric. In Section 3 we collect some tools in-
cluding their proofs adapted to the geometry. In Section 4 we derive the a priori C0–
estimates of the perturbed Monge–Ampère equation in Theorem 1. The C2–estimates
and uniqueness are obtained in Section 5. In Section 6 we prove Theorem 2. In Sec-
tion 7 we show Theorem 3 and Theorem 4 by constructing the singular Poincaré
Kähler–Einstein metrics.

2. Bounded geometry of quasi–coordinate systems. Let M be a compact
Kähler manifold, and D =

∑p
i=1 a normal crossing divisor in M . We denote by M

the complement of D in M . A Poincaré metric ω associated with D is given by

ω = Cω̄ − 2

p
∑

i=1

ddc log(− log |si|2),

where C > 0 is sufficiently large so that ω > 0 on M . Here each si is the defining
section of Di and | · | is a metric on [Di]. It is clearly that all the Poincaré metrics
associated with D are equivalent on M . Let us fix a Poincaré metric ω.
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A local coordinate system in M is given by a ploydisk of the form

(∆∗)k × ∆n−k, 0 ≤ k ≤ n,

where ∆ and ∆∗ are, respectively, the unit disk and the punctured unit disk in the
complex plane. The classic Poincaré metric

ω∆∗ =

√
−1

2π

dz ∧ dz̄

|z|2(log |z|2)2

has injectivity radius zero on the punctured disk, so does the Poincaré metric ω on
M . Thus when solving some differential equations involving ω, it is more convenient
to use the local quasi–coordinate system introduced by Cheng–Yau (see, for exam-
ple, [14, 800-802] or Section 2 in [15]). The idea is to construct certain nice local
holomorphic maps, called quasi–coordinate systems, so that the pullback metric has
bounded geometry in the usual sense, i.e., all the derivatives of the pullback metric
are bounded.

In the case of (∆∗, ω∆∗), one can construct the quasi–coordinate systems as fol-
lows. Let ∆3/4 be the disk centered at the origin with radius 3/4. For each 0 < η < 1,
we define

φη(v) = exp

(

(1 + η)(v + 1)

(1 − η)(v − 1)

)

, for all v ∈ ∆3/4. (2.1)

It is easy to check that φη(∆3/4) covers ∆∗ when η runs through (0, 1). More impor-
tantly, the pullback of the classic Poincaré metric

φ∗
η(ω∆∗) =

√
−1

2π

dv ∧ dv̄

1 − |v|2

is independent of η, and has bounded geometry on ∆3/4 in the usual sense. Hence,
{(∆3/4, φη)}, 0 < η < 1, are the desired quasi–coordinate systems for ∆∗.

For a general quasi–projective manifold M , we can similarly construct the quasi–
coordinate systems. Specifically, for a polydisk with k copies of ∆∗, let

Vη = (∆3/4)
k × ∆n−k, for all η = (η1, . . . , ηk) ∈ (0, 1)k.

We define, for each η ∈ (0, 1)k,

Φη(v) = (φη1(v1), . . . , φηk(vk), vk+1, . . . , vn), for all v ∈ Vη,

where each φηi , 1 ≤ i ≤ k, is given by (2.1). Then Φη(Vη) covers the polydisk as
η runs through (0, 1)k. The pullback metric Φ∗

η(ω) has usual bounded geometry on
each Vη. Since M is covered by all the polydisks, we obtain quasi–coordinate systems
for M by collecting all the systems {(Vη, Φη)} constructed for the polydisks. We say
(M, ω) has bounded geometry in the sense of quasi–coordinate systems.

For the local analysis on M , let us introduce the Cheng–Yau’s Hölder spaces
which are well adapted to the quasi–coordinate systems on M . For a nonnegative
integer k, and 0 < α < 1, one can define the norm ‖ · ‖k,α on C∞(M) by

‖f‖k,α = sup
Vη

{‖Φ∗
η(f)‖Ck,α(Vη)}.
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Then we define the Cheng–Yau’s Hölder space Ck,α(M) to be the completion of

{f ∈ C∞(M); ‖f‖k,α < +∞}

with respect to ‖·‖k,α. It is easy to check that Ck,α(M) is a Banach space. In a sense,
Cheng–Yau’s spaces with respect to a Poincaré metric is similar to the usual Hölder
spaces with respect to the standard Euclidean metric. The Cheng–Yau’s Hölder ring
is defined to be

R(M) =
⋂

k≥0,0<α<1

Ck,α(M).

It follows that all the smooth function on M belong to R(M). Besides,

1

− log |si|2
∈ R(M),

for each i = 1, . . . , p. These functions play an important role in the analysis on M
(see [14] and [15]). In this note, however, one only need to bear in mind that R(M)
consists of all the smooth function whose all derivatives are bounded with respect to
ω.

For the global analysis on M , we define Lq(M, ω) and W l,q(M, ω), for 1 ≤ q ≤ +∞
and an integer l ≥ 0, in the usual sense. Namely, Lq(M, ω) consists of all Lq–integrable
functions on M with respect to ω. W l,q(M, ω) is the usual Sobolev space with respect
to ω: For each f ∈ C∞(M), we define

‖f‖W l,q =

l
∑

j=0

‖∇jf‖Lq(M,ω)

then W l,q(M, ω) is the completion of

{f ∈ C∞(M); ‖f‖W l,q < +∞}

with respect to ‖ · ‖W l,q .
In this note, we use Ck(M), k ≥ 0, to denote the usual Ck–function on M , while

Ck,α(M), k ≥ 0 and 0 < α < 1, always denotes the Cheng–Yau’s Hölder spaces. By
definitions we have, for each k ≥ 0,

Ck,α(M) ⊂ W k,q(M, ω), for all 0 < α < 1 and all 1 ≤ q ≤ +∞.

And it follows from the usual local Sobolev embedding theorem that

W l,q(M, ω) ⊂ Cm(M), for all 0 ≤ m < l − 2n

q
.

In particular, we will use that a function in W 2,∞(M, ω) belongs to C1(M).

3. Some useful tools. Maximum principles play an very important role in
analysis and geometry. For a complete manifold, we have Yau’s generalized maximum
principle, and Yau’s upper bound lemma. The latter does not even assume the a priori
boundedness of the function under consideration. This makes it extremely useful for
deriving estimates on complete noncompact manifolds. The following lemma is a



138 D. WU

special case of Yau’s upper bound lemma (See, for example, Theorem 8 in [2, p. 353]
for a general case).

Lemma 1. Suppose that a function u ∈ C2(M) satisfies

∆ωu ≥ f(u),

where f is a continuous function on R such that

lim inf
t→+∞

f(t)

tµ
> 0, for some constant µ > 1.

Then we have

sup
M

u < +∞, and f

(

sup
M

u

)

≤ 0.

Let us remark that this lemma still holds when ω is replaced by any Hermitian
metric equivalent to ω. We refer to the Section 3 in [15] for a self-contained short
proof. For some applications in this paper, the function f(t) would be the usual
exponential function.

The integration method will be used to show the uniqueness of the degenerate
equation. The following lemma enables us to integrate by parts. It can essentially
be viewed as a special case of Gaffney’s theorem ([5, p.141]), which works for an
orientable complete Riemannian manifold. The difference here is that the differential
forms are allowed to have certain mild singularities. In addition, the proof uses a
global distance function associated with D. This is similar to the proof of Yau’s
upper bound lemma in [15]. The global distance function is smooth everywhere, and
independent of the Levi–Civita connection. Hence, the proof is simpler and works
also for the Hermitian metrics equivalent to ω.

Lemma 2. Let h ∈ W 2,2(M, ω), and let Φ be a d–closed real (n − 1, n − 1)–form
on M , which is smooth outside the zero set of a smooth function on M , and satisfies
that

0 ≤ Φ < Cωn−1 on M,

for some constant C > 0. Then we have
∫

M

d (hdch ∧ Φ) = 0.

As a very special case, let Φ = ωn−1, and notice that any function in Cheng–Yau’s
Hölder spaces with k ≥ 2 belongs to W 2,2(M, ω). Then this lemma implies that

−
∫

M

vddcv ∧ ωn−1 =

∫

M

dv ∧ dcv ∧ ωn−1,

for all v ∈ C2,α(M), 0 < α < 1.

Proof of Lemma 2. let χ(t) be a smooth function which is 0 for t ≤ 0, between 0
and 1 for 0 < t < 1, and 1 for t ≥ 1. For each m ≥ 1, we define

χm(t) = χ(t − m).
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Let us denote by

ρ =

p
∑

i=1

log(− log |si|2) =

p
∑

i=1

log σi,

where σi = − log |si|2. This is the distance function associated with the boundary
divisor D, and

ρ(x) → +∞,

as x approaches D. Then

d(hdch ∧ Φ) = d
[

χm(ρ)hdch ∧ Φ
]

+ d
{

[1 − χm(ρ)]hdch ∧ Φ
}

.

Notice that 1 − χm(ρ) has compact support in M , and hence the integration of the
second term on the right is zero, by the usual Stokes’ theorem (together with approx-
imation of smooth forms, if necessary). Therefore,

∫

M

d(hdch ∧ Φ) =

∫

M

χ′
m(ρ)hdρ ∧ dch ∧ Φ +

∫

M

χm(ρ)d(hdch ∧ Φ).

Note that

hdρ ∧ dch =

p
∑

i=1

σ−1
i dσi ∧ hdch,

and by the Cauchy–Schwarz inequality,

−h2 dσi ∧ dcσi

σ2
i

− dh ∧ dch ≤ dσi

σi
∧ hdch + hdh ∧ dcσi

σi
≤ h2 dσi ∧ dcσi

σ2
i

+ dh ∧ dch.

Hence,

∣

∣

∣

∣

χ′
m(ρ)hdρ ∧ dch ∧ Φ

ωn

∣

∣

∣

∣

≤ K

2

(

h2

p
∑

i=1

|σ−1
i ∇ωσi|2 + C|∇ωh|2

)

,

where K is the upper bound of χ′(t). Then it follows from Lebesgue dominated
convergence theorem that

lim
m→∞

∫

M

χ′
m(ρ)hdρ ∧ dch ∧ Φ = 0.

Similarly, we also have

lim
m→∞

∫

M

χm(ρ)d(hdch ∧ Φ) = 0,

because of
∣

∣

∣

∣

χm(ρ)d(hdch ∧ Φ)

ωn

∣

∣

∣

∣

≤
∣

∣h∆ωh
∣

∣+ C|∇ωh|2,

and by Hölder’s inequality h∆ωh ∈ L1(M, ω). Thus, we conclude that
∫

M

d(hdch ∧ Φ) = 0.
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4. Degenerate Monge–Ampère equation and zero order estimates. We
will use the approximation method to solve the degenerate equation. Let us consider,
for ε > 0,

(ω + ddcuε)
n = euε+F (τ + ε)aωn. (4.1)

Observe that for each ε > 0,

log(τ + ε) ∈ C∞(M) ⊂ R(M).

Therefore, by a well–known result of Cheng–Yau (this can also be viewed as a special
case of Lemma 8 in [15] where all ai = 0.) that there exists a solution uε ∈ R(M) for
(4.1) and the metric defined by

ωε = ω + ddcuε

is equivalent to ω, for each ε > 0.
We want to show that there exists a subsequence of {uε} which converges to a

solution u ∈ R(M) of the original degenerate equation. For this purpose, one need
to derive a priori uniform Hölder estimates for second order derivatives of uε, or
uniform C3–estimates for uε. For a Monge–Ampère equation like (4.1), the third and
higher order estimates can always be localized, as long as one have a priori uniform
C2–estimates for uε. The latter depends on the uniform C0–estimates of uε.

In the following, we will always use C to denote a positive constant independent
of ε, although it may mean different constants in different inequalities. Notice that
for an equation like (4.1), one can always derive a uniform lower bound for uε and a
uniform upper bound for uε + a log(τ + ε). In fact, we have by (4.1)

e−uε =
(ωε − ddcuε)

n

ωn
ε

eF (τ + ε)a

≤ C
(ωε − ddcuε)

n

ωn
ε

≤ C

[

1 +
1

n
∆′(−uε)

]n

,

where ∆′ stands for the negative Laplacian associated with ωε. It then follows from
Yau’s upper bound lemma that

sup
M

(−uε) ≤ C. (4.2)

On the other hand, let

vε = uε + a log(τ + ε).

Then by (4.1) we have

evε = e−F

[

ω − addc log(τ + ε) + ddcvε

]n

ωn

≤ C

[

1 − a

n
∆ log(τ + ε) +

1

n
∆vε

]n

. (4.3)
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Here and from now on, we denote by ∆ the negative Laplacian associated with ω,
unless otherwise indicated. By the assumption (1.1),

∆ log(τ + ε) ≥ −C on M. (4.4)

Substituting this into (4.3) and applying Yau’s upper bound lemma to vε yield that

sup
M

[

uε + a log(τ + ε)
]

= sup
M

vε ≤ C. (4.5)

Next, we will improve (4.5) to get a uniform upper bound for uε, for which we
need the integrability of − log τ with respect to ω. By the assumption D ∩ E = ∅,
there exists a sufficiently small constant r > 0 such that for each point p ∈ E, the
closure of the geodesic ball centered at p with radius r, denoted by Br(p), is contained
in M . Clearly E is compact since it is closed in M . Then there exist finitely many
points in E, say p1, . . . , pl, such that

E ⊂
l
⋃

i=1

Br(pi) ≡ Er.

If uε achieves or tends to its supremum outside Er, then in view of (4.5) we have

sup
M

uε ≤ C + a sup
M\Er

(− log τ),

where the right hand side is independent of ε. Thus we only need to consider uε inside
Er. Without loss of generality, let us assume that

uε(p1) = sup
M

uε.

Let G(p, q) be the positive Dirichlet Green’s function on Br(p1) (see, for example,
[10, p.81]). Namely, G is a nonnegative smooth function defined on the complement
of the diagonal in Br(p1) × Br(p1), and satisfies that

G(p, q) = G(q, p),

∆qG(p, q) = −δp(q), (4.6)

G(p, q) = 0, for all q ∈ ∂Br(p1) and p 6= q,

where δp is the Dirac δ–function. Furthermore, for small r, we have

|G(p, q)| ≤ C(2)| log d(p, q)|, if n = 1, (4.7)

|G(p, q)| ≤ C(n)d(p, q)2−2n, if n ≥ 2, (4.8)

and

|∇qG(p, q)| ≤ C(n)d(p, q)1−2n. (4.9)

Here d(p, q) denotes the geodesic distance between p and q, and C(n) are positive
constants depending only on n. For simplicity, we denote d(q) = d(p1, q).

Let χ(t) be a smooth function which is 1 for t ≤ 1/2, between 0 and 1 for
1/2 < t < 3/4, and 0 for t > 3/4. We denote by

χr(q) = χ(d(q)/r), for all q ∈ Br(p1),
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where d(q) stands for d(p1, q). Then χr is a cut–off function on Br(p1) such that
χr ≡ 1 on Br/2(p1) and χr ≡ 0 outside B3r/4(p1). We claim that both |∇χr| and
∆χr are bounded independent of ε. Indeed, we have by the construction

|∇χr|2 = |χ′∇d|2/r2 = |χ′|2/r2,

∆χr = χ′′|∇d|2/r2 + χ′∆d/r = χ′′/r2 + χ′∆d/r.

It follows immediately that |∇χr| is uniformly bounded with respect to ε. Since the
Poincaré metric ω has bounded curvature, by the well–known Hessian comparison
theorem (see, for example, [10, p.5]), we have

|∆d − 2n− 1

d
| ≤ Cω. (4.10)

Here the constant Cω depends only on n and the sectional curvature bounds. On the
other hand, χ′(d(·)/r) has compact support in B3r/4(p1) \Br/2(p1). Therefore, χ′∆d
is bounded independently of ε. Hence, ∆χr is also uniformly bounded with respect
to ε.

Now we are ready to derive the uniform upper bound for uε. Since ωε is equivalent
to ω, in particular we have

n + ∆uε > 0

on M . Multiplying both sides by χrG(p1, ·) and integrating over Br(p1) yield that

−
∫

Br(p1)

χr(q)G(p1, q)∆uε(q)ω
n(q) < n

∫

Br(p1)

χr(q)G(p1, q)ω
n(q).

Integrating by parts, it then follows from (4.6) that

uε(p1) < n

∫

Br(p1)

χr(q)G(p1, q)ω
n +

∫

Br(p1)

G(p1, q)∆χr(q)uε(q)ω
n

+

∫

Br(p1)

|∇χr(q)||∇qG(p1, q)||uε(q)|ωn(q).

The key observation is that both |∇χr| and ∆χr have compact support in B3r/4(p1)\
Br/2(p1), on which G(p1, q) and |∇qG(p1, q)| are both bounded independent of ε, in
view of (4.7), (4.8), and (4.9). We have already shown that |∇χr| and ∆χr are both
uniformly bounded with respect to ε. Hence, we obtain that

uε < C + C

∫

M

|uε|ωn.

Now it follows from (4.3) and our assumption (1.2) that

uε < C + aC

∫

M

| log τ |ωn < C1, (4.11)

where C1 is positive constant independent of ε. This completes the uniform C0–
estimates of uε.
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5. Second order estimates and uniqueness. The uniform C2–estimate of vε

will follows from the standard process, as long as we have the C0–estimates, the lower
bound of the bisectional curvatures of ω, and (4.4), i.e.,

∆ log(τ + ε) > −C on M.

In fact, for any constant A > 0, we always have

∆′
(

e−Auε(n + ∆uε)
)

≥ e−Auε(n + ∆uε)
(

− A∆′uε

)

+ e−Auε

[

∆′(∆uε) −
|∇′(∆uε)|2
n + ∆uε

]

.
(5.1)

By (4.1), we can estimate as follows the second term on the right of (5.1) using a
normal coordinate chart at a point in M .

∆′(∆uε) −
|∇′(∆uε)|2
n + ∆uε

≥ ∆F − n2 inf
i6=j

Rīijj̄ + ∆ log(τ + ε) − n

+ (n + ∆uε) + (inf
i6=j

Rīijj̄)(n + ∆uε)
n
∑

j=1

1

1 + (uε)jj̄

≥ −C + (n + ∆uε) + inf
i6=j

Rīijj̄ · (n + ∆uε)

n
∑

j=1

1

1 + (uε)jj̄

. (5.2)

Here (4.4) is used in the last inequality. Observe that the first term on the right of
(5.1) can be written as

−A∆′uε = −nA + A

n
∑

j=1

1

1 + (uε)jj̄

.

Plugging this and (5) into (5.1) yields that

∆′
(

e−Auε(n + ∆uε)
)

≥ −C − (nA − 1)e−Auε(n + ∆uε)

+ (A + inf
i6=j

Rīijj̄)e
−Auε

n
∑

j=1

n + ∆uε

1 + (uε)jj̄

,

where we use the uniform lower bound of vε. Notice that

n
∑

j=1

1

1 + (uε)jj̄

≥ exp

(

−F + uε + log(τ + ε)

n − 1

)

· (n + ∆uε)
1

n−1

≥ C(n + ∆uε)
1

n−1 ,

in view of (4.5). Now let A be sufficiently large so that

A + inf
i6=j

Rīijj̄ > 1.

Then it follows that

∆′
(

e−Auε(n + ∆uε)
)

≥ −C − nAe−Auε(n + ∆uε)

+ C2

(

e−Auε(n + ∆uε)
)

n
n−1 ,
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where C2 is a constant independent of ε. Applying Yau’s upper bound lemma yields
that

e−Auε(n + ∆uε) ≤ C.

By C0–estimates of uε we obtain the desired estimate

n + ∆uε ≤ C.

Hence, we have the metric equivalence

C−1(τ + ε)aω < ωε < Cω,

which holds uniformly for all ε > 0. By this equivalence, one can localize the third
and higher order estimates on the relative compact subsets of M \ E. It then follows
from the Ascoli–Arzelà theorem that there exists a subsequence of {uε} converging
to a solution u ∈ C∞(M \ E) of (1.3) with

C−1τaω < ω + ddcu < Cω on M,

as ε → 0+. This also implies that u ∈ W 2,∞(M, ω); in particular, u is a C1–function
over M . In addition, by (4.2) and (4.11) we have

sup
M

|u| < +∞.

Let us finish Theorem 1 by proving the uniqueness part.

Lemma 3. The bounded solution of (1.3), which is smooth outside E and satisfies
(1.4), is unique up to a constant.

Proof. Let u1 and u2 be two such solutions, and denote by h = u2 − u1. Then
ddch is bounded with respect to ω, and hence, h ∈ W 2,2(M, ω). By the local Sobolev
embedding we have that h ∈ C1(M). We would like to show that

dh = 0 on M. (5.3)

Let ωi = ω + ddcui, i = 1, 2. Then we have by (1.3)

(ω1 + ddch)n = ehωn
1 .

Subtracting ωn
1 from both sides and multiplying by h yield that

hddch ∧ (ωn−1
1 + ωn−2

1 ∧ ω2 + · · · + ωn−1
2 ) = h(eh − 1)ωn

1 .

It follows from Lemma 2 that
∫

M

d
[

hdch ∧ (ωn−1
1 + · · · + ωn−1

2 )
]

= 0.

Therefore, integrating by parts yields

−
∫

M

h(eh − 1)ωn
1 =

∫

M

dh ∧ dch ∧ (ωn−1
1 + · · · + ωn−1

2 )

≥
∫

M

dh ∧ dch ∧ ωn−1
1 .
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Here the term on the left hand side is nonpositive, in view of the fact that

x(ex − 1) ≥ 0, for all x ∈ R.

Then we have

dh = 0 on M \ E,

since ω1 > 0 on M \ E. Furthermore, E has measure zero since log τ is integrable on
M . This together with h ∈ C1(M) imply (5.3). Hence, we prove that h is a constant
on M .

6. Singular Monge–Ampère equation. In this section we consider the
Monge–Ampère equation with meromorphic right hand side, (1.8). Let us consider
its nonsingular perturbation:

(ω + ddcuε)
n = euε+F (τ + ε)−bωn. (6.1)

For each ε > 0, there exists a uε ∈ R(M) such that

ωε = ω + ddcuε

is equivalent to ω.
In the following, we use the generic C to denote a positive constant independent

of ε. We denote by ∆ and ∆′, respectively, the negative Laplacians associated with
ω and ωε.

Similar to the degenerate equation, we have

euε = e−F (τ + ε)b ωn
ε

ωn
≤ C(1 +

1

n
∆uε)

n.

Thus by Yau’s upper bound lemma

sup uε ≤ C. (6.2)

Let

vε = uε − b log(τ + ε).

By the assumption (1.7), i.e.,

ω + bddc log(τ + ε) ≥ λω, λ > 0,

we have

ωε = ω + ddcuε > λω + ddcvε.

Then by (6.1)

e−vε = eF ωn

ωn
ε

≤ esupF λ−n (ωε − ddcvε)
n

ωn
ε

≤ esup F λ−n

(

1 − 1

n
∆′vε

)n

.



146 D. WU

It follows from Yau’s upper bound lemma that

inf vε > −C. (6.3)

Let us now proceed to derive the second order estimate. For any A > 0, we have

∆′[e−Avε(τ + ǫ)(n + ∆uε)] ≥ e−Avε(τ + ε)

(

∆′(∆uε) −
|∇′(∆uε)|2
n + ∆uε

)

+ e−Avε(τ + ε)(n + ∆uε) [−A∆′vε + ∆′ log(τ + ε)] .

(6.4)

By (6.1), we estimate in a normal coordinate system of a point:

(τ + ε)

(

∆′(∆uε) −
|∇′(∆uε)|2
n + ∆uε

)

≥ (τ + ε)(∆F − n − n2 inf
i6=l

Rīill̄)

− b(τ + ε)∆ log(τ + ε) + (τ + ε)(n + ∆uε)

+ (τ + ε)(n + ∆uε) inf
i6=l

Rīill̄

∑

i

1

1 + (uε)īi

.

Observe that

(τ + ǫ)∆ log(τ + ε) = ∆τ − |∇τ |2
τ + ε

≤ ∆τ ≤ C.

Thus, we have

(τ + ε)

(

∆′(∆uε) −
|∇′(∆uε)|2
n + ∆uε

)

≥ −C + (τ + ε)(n + ∆uε)

+ (τ + ε)(n + ∆uε) inf
i6=l

Rīill̄

∑

i

1

1 + (uε)īi

.
(6.5)

On the other hand, by the assumption (1.7) we have

−ddcvε = −ω − ddcuε +
[

ω + bddc log(τ + ε)
]

≥ −ωε + λω.

Thus,

−∆′vε ≥ λ
∑

i

1

1 + (uε)īi

− n.

Similarly, by (1.7) or (1.1)

∆′ log(τ + ε) ≥ −C
∑

i

1

1 + (uε)īi

.

Hence,

(τ + ε)(n + ∆uε) [−A∆′vε + ∆′ log(τ + ε)] ≥ −n(τ + ε)(n + ∆uε)

+ (τ + ε)(n + ∆uε)(Aλ − C)
∑

i

1

1 + (uε)īi

(6.6)
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Now let A be sufficiently large such that

Aλ − C + inf
i6=l

Rīill̄ > 1.

Then plugging (6.5) and (6.6) into (6.4) yields that

∆′[e−Avε(τ + ǫ)(n + ∆uε)] ≥ −C − (An − 1)e−Avε(τ + ε)(n + ∆uε)

+ e−Avε(τ + ε)(n + ∆uε)
∑

i

1

1 + (uε)īi

.

Notice that

∑

i

1

1 + (uε)īi

≥ exp

(

−uε + F − b log(τ + ε)

n − 1

)

(n + ∆uε)
1

n−1

≥ C(τ + ε)
b

n−1 (n + ∆uε)
1

n−1 .

Therefore, we obtain

∆′[e−Avε(τ + ǫ)(n + ∆uε)] ≥ −C − (An − 1)e−Avε(τ + ε)(n + ∆uε)

+ C3(τ + ε)
b−1

n−1

[

e−Avε(τ + ε)(n + ∆uε)
]

n
n−1 ,

(6.7)

where C3 is a positive constant independent of ε. Because of the assumption b ≤ 1,
the term (τ + ε)b−1 has uniform lower bound on M . Therefore, we can apply Yau’s
upper bound lemma to get that

e−Avε(τ + ε)(n + ∆uε) ≤ C.

Consequently,

(τ + ε)1+Ab(n + ∆uε) ≤ CeAuε ≤ C.

This implies that n+∆uε is uniformly bounded over relative compact subsets in M \E.
Then, one can get the uniform third order estimates on the subsets. Therefore, there
exists a subsequence of {uε} converging to a solution u ∈ C∞(M \ E) of

(ω + ddcu)n = eu+F τ−bωn

C−1τΛω < ω + ddcu < Cτ−Λω, C > 0, Λ > 0,

on M \ E, as ε tends to zero. In addition, by (6.2) and (6.3), we obtain

sup
M\E

u < +∞, and inf
M\E

(u − b log τ) > −∞.

Let us remark that, in the case that E is an analytic hypersurface contained in the
support of D, i.e., τ =

∏p
i=1 |si|2αi for each αi ≥ 0. Then we can drop the assumption

that b ≤ 1 in Theorem 2. In fact, in this case one should replace the factor (τ + ε)
by τ in (6.4), and apply the usual maximum principle (see, for example, Section 4 in
[15]).
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7. Applications to Kähler–Einstein metrics. In this section, we consider
the Poincaré metric which is also Einstein. In this paper, we call such a metric
a Poincaré Kähler–Einstein metric. Notice that a Poincaré Kähler–Einstein metric
must be of negative scalar curvature, because of its finiteness of volume (by [16, p.667]
a complete noncompact Ricci–flat Kähler manifold always has infinite volume.).

Recently in [15], we have investigated certain necessary and sufficient conditions
for the existence of a Poincaré Kähler–Einstein metric on M . Specifically, we assume
that there exist real numbers αi ≤ 1, i = 1, . . . , p, such that

KM +

p
∑

i=1

αi[Di] > 0 on M . (7.1)

This assumption is conjectured to be the necessary condition for the existence of a
(possibly incomplete) Kähler–Einstein metric on M with negative curvature. Let us
also assume that each irreducible component Di is smooth; i.e., D =

∑

i Di is a simple
normal crossing divisor. Furthermore, if

(KM + [D])
∣

∣

Di
> 0

for each Di, then M admits a unique Poincaré Kähler–Einstein metric.
Now suppose that M possesses a Poincaré Kähler–Einstein metric ωKE . Let EZ

be an effective divisor in M . First, we would like to construct a Kähler–Einstein metric
ω′

KE on M \ EZ , which has Poincaré growth near D and degenerates at EZ in the
following sense. We call such a metric a Poincaré Kähler–Einstein metric degenerate
at EZ , or simply degenerate Poincaré Kähler–Einstein metric.

For this purpose, let us assume that EZ is disjoint from D. This is possible, even
for D to be a normal crossing divisor. For instance, let EZ be the exceptional divisor
obtained from blowing up a subvariety in the complement of D in M . For an example
which is not a blowing up, let M be an algebraic surface which has fibration over a
curve; then let D and EZ be different fibers, whose multiplicities could be greater
than one.

Let hZ be a metric on [EZ ] and sZ be the defining section of EZ . Since ωKE is
a Poincaré metric, we can choose a sufficiently small real number µ > 0 so that

ωKE + µddc log hZ > 0 on M.

Let us fix such a µ. Then

ωµ = ωKE + µddc log hZ

is a Poincaré metric on M .
Let

F = log

(

ωn
KE

ωn
µ

)

.

Then F ∈ R(M). Thus, we arrive at the following Monge–Ampère equation

(ωµ + ddcu)n = ωn
µeu+F |sZ |2µ. (7.2)

Clearly, here τ = |sZ |2 satisfies the conditions (1.5), (1.6), and (1.2). It then follows
from Theorem 1 that there exists a solution u of (7.2) so that

ω′
KE = ωµ + ddcu
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is the desired Poincaré metric which is Einstein on M \E and degenerates exactly at
E:

C−1|sZ |2µωKE < ω′
KE < CωKE on M,

where C > 0 is a constant. Furthermore, by (7.2) we obtained that

C−1|sZ |2µ(ωKE)n ≤ (ω′
KE)n ≤ C|sZ |2µ(ωKE)n on M,

for some constant C > 0. This proves Theorem 3.
Let us consider the case that D ∩ E 6= ∅. It would be interesting to see whether

one can construct a Poincaré metric, which is Einstein and degenerates at E outside
a tubular neighborhood of D. One possible way is to apply the Theorem 1. At this
moment, it is unclear how to construct an appropriate function τ which satisfies (1.1).

Finally, let us construct a Poincaré Kähler–Einstein metric which possesses a pole
near an effective divisor EP in M . Suppose that M admits a Poincaré Kähler–Einstein
metric. Let hP be a metric on [EP ] and sP be the defining section of EP . Similar
to the degenerate case, let us choose a sufficiently small positive real number ν such
that

ωKE − νddc log hP > 0.

Let us fix such a ν, and then

ων = ωKE − νddc log hP

defines a Poincaré metric on M . We denote by

F = log

(

ωn
KE

ωn
ν

)

.

Then F ∈ R(M). Let us consider the following singular Monge–Ampère equation

(ων + ddcu)n = eu+F |sP |−2νωn
ν on M \ EP . (7.3)

By Theorem 2 there exists a function u ∈ C∞(M \EP ) satisfying (7.3) with supM u <
+∞. Thus, by construction,

ω′′
KE = ων + ddcu

defines a smooth Kähler–Einstein metric on M \E, and (ω′′
KE)n(x) grows upward at

most like |sP |−2νωn
KE when x approaches E. More precisely, we have on M \ E that

C−1|sP |2ΛωKE < ω′′
KE < C|sP |−2ΛωKE ,

C−1(ωKE)n < (ω′′
KE)n ≤ C|sP |−2µ(ωKE)n,

where C, µ, Λ are all positive constants. This completes the proof of Theorem 4.
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