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PROJECTIVE EQUIVALENCE OF PLANE CURVE SINGULARITIES
DEFINED BY THE HOMOGENIZATION OF WEIGHTED
HOMOGENEOUS POLYNOMIALS IN C[Y, Z] AND ITS
DIFFERENCE FROM THEIR ANALYTIC EQUIVALENCE*
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Abstract. The aim in this paper is to solve the following two problems completely:

The First Problem. Given any two weighted homogeneous polynomials f(y, z) and g(y, 2) in
Cly, 2] with isolated singularity at the origin in C? and with deg(f) = deg(g), which are not homo-
geneous, we find the necessary and sufficient condition for C'i and C% to be projectively equivalent
in the complex projective plane P?(C) in an elementary way where F(z,vy,2) and G(z,y, 2) are the
homogenization of f(y, z) and g(y, z) in C|z,y, 2], respectively, and C; and C2 are the zero sets of
F(z,y, z) and G(z,y,z) in P2(C), respectively.

The Second Problem. Under the the same assumption as in the first problem, we find an exact
difference between the analytic equivalence of plane curve singularities defined by f(y, z) and g(y, 2),
and the projective equivalence of C; and C2 where Cq7 and Cs are the zero sets of F(z,y,2) and
G(z,y, z) in P2(C), respectively.

Key words. isolated singularities, topological and analytic equivalence of plane curve singu-
larities defined by weighted homogeneous polynomials in Cly, 2], the projective equivalence of plane
curve singularities in P2(C) defined by the homogenization in C[z,y, z] of weighted homogeneous
polynomials in Cly, z].
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1. Introduction. Let ,,O or C{x1,z2...,z,} be the ring of convergent power
series at the origin in C", and C[zy,...,z,] be the ring of polynomials in n vari-
ables with coefficients in C where C denotes the field of the complex numbers. Let
f(x1,. . 2n) = Zagy a7t -+ - 27" be a polynomial in Clzy,...,2,]. The degree of
f(z1,...,2,), denoted by deg f, is defined to be the largest integer oy + - - - + v, such
that aq,...a,, # 0.

Throughout this paper, we assume the followings:

(i) By definition, let f = f(y, z) and g = ¢(y, z) be weighted homogeneous poly-
nomials in Cly, z], having rational number weights (wy,ws) and (v1,v2), respectively
where every monomial z®y” of f satisfies the equality w%—l—ﬂ% = 1 and every monomial
270 of g satisfies the equality =+ % =1.

(ii) Let f(y,2) and g(y, z) be polynomials in C[y, z] with isolated singularity at
the origin in C?, which are not homogeneous, and let deg f = p and degg = g. The
homogeneous polynomial F(z,y, z) € Clz,y, z] defining the homogenization of f(y, z)
and the homogeneous polynomial G(x,y, z) € C[z,y, z] defining the homogenization
of g(y, z) can be written as follows:

(%) F(z,y,z) = 2" f(y/x,z/x) and
G(z,y,z) = 2%(y/x, z/x).
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Under the same assumption as above, our aim in this paper is to solve the following
two problems completely:

The First Problem: Given any two weighted homogeneous polynomials f(y, 2)
and g(y, z) in C[y, z] with isolated singularity at the origin in C? and with deg(f) =
deg(g), which are not homogeneous, compute the necessary and sufficient condition
for C; and Cy to be projectively equivalent in the complex projective plane P?(C) in
an elementary way where F(z,y,z) and G(z,y, z) are the homogenization of f(y, z)
and ¢(y, z) in Clz, y, 2], respectively, and Cy and Cs are the zero sets of F(z,y, z) and
G(z,y, z) in P%(C), respectively.

The Second Problem: Under the the same assumption as in the first problem,
compute the difference between the analytic equivalence of plane curve singularities
defined by f(y,z) and g¢(y,z), and the projective equivalence of C7 and Cy where
C; and Cy are the zero sets of F(z,y,z) and G(x,y,2) in P?(C), respectively. As
a corollary, assuming that f(y,z) = 0 and ¢(y,z) = 0 have the same topological
type of singularity at the origin in C? and that deg(f) = deg(g), then prove that the
projectively equivalence of Cy and Cs implies the analytic equivalence of f(y,z) =0
and g(y,z) = 0 at the origin in C2, but the converse may not be true.

(1) To find a complete solution of the first problem in Theorem 6.1, it suffices to
use Theorem 2.7 and The Fundamental Theorem, which says that any given projective
curve has a unique decomposition into irreducible curves in P?(C), only.

(2) To find a solution of the second problem in Theorem 6.2, it suffices to find the
difference between a solution for the first problem and the consequence for Theorem
2.9.

In preparation for the representation of the solutions of two problems, for sim-
plicity of notations, let f and g be holomorphic functions near the origin in C? with
isolated singularity at the origin. If f and g have the same topological type of singu-
larity at the origin in the sense of Definition 2.1, we denote this relation by f ~ g.
Otherwise, we write f o0 g. Also, if f and g have the same analytic type of singularity
at the origin in the sense of Definition 2.1, then we write f ~ g. Otherwise, we write
f % g. Observe that f = y(z + y*) for any positive integer k > 2 is weighted homo-
geneous, which is not homogeneous, but f =~ 22 4 32. It was proved by Lemma 2.6
that f is not homogeneous with f ¢ 22 + 2 if and only if f « h for any homogeneous
polynomial h € Cly, z] where f € Cly, z] is a weighted homogeneous polynomial with
isolated singularity at the origin in C2.

Moreover, let F = F(z,y,z) and G = G(z,y, z) be homogeneous polynomials in
Clz,y, 2] where F and G are square-free. Then, F = 0 and G = 0 may be viewed
as defining equations for two projective curves C; and Cy in P?(C), respectively. If
F =0 and G = 0 are projectively equivalent in P?(C) in the sense of Definition 3.2,
then we write sometimes F (2,9, 2) ~proj G(2,9,2) in P?(C) for brevity of notation.
Otherwise, we write F(z,y, 2) %pro; G(2,9, 2) in P?(C).

In order to find a solution in the above two problems, first of all, we are going to
study the following three questions:

Assume that f(y, z) is a weighted homogeneous polynomial in C[y, z], which is not
homogeneous, with an isolated singular point at the origin in C? and that F(z,y, 2)
is the homogeneous polynomial in C|z,y, 2] defining the homogenization of f(y,z).
Then,
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Question 1. What kind of topological type of isolated singularity does f(y, z)
have?

Question 2. What is the difference between deg(f) and deg(g), whenever f ~ g
for any such weighted homogeneous polynomials f and g?

Question 3. How many distinct lines and tangent lines does the projective curve
C have in P?(C) when C has a unique decomposition into irreducible curves in P2(C)?
Note that C' is the projective curve defined by F(x,y, z) = 0.

Note by Theorem 2.7([K2]) that Question 1 was already solved. Now, in order to
solve the remaining two questions as above, it is very interesting and important for
us to have the following theorem (Theorem 1.1), denoted by Theorem 3.6 of §3 later,
which will be shown by an application of Theorem 2.7 and The Fundamental Theo-
rem(Any given projective curve has a unique decomposition into irreducible curves in

P2(C)).

THEOREM 1.1 (THE TOPOLOGICAL TYPES OF PLANE CURVE SINGULARITIES
DEFINED BY THE HOMOGENIZATION OF WEIGHTED HOMOGENEOUS POLYNOMIALS IN
Cly, ]).

Assumption Let 1 < n < k. Assume that f(y,z) is a weighted homogeneous
polynomial in Cly, z], which is not homogeneous, with isolated singularity at the ori-
gin in C2. Let F(z,y,z) be the homogeneous polynomial in Clxz,y,z] defining the
homogenization of the above f(y,z).

Conclusion Using a nonsingular linear change of coordinates T : C> — C? with
T(0) = 0, we may assume without loss of generality that F(x,y, z) with F(l,y,z) =
fy,2) can be written as follows:

(1.1.1) [y, 2) =y 2% fi(y,z)  with
d
fl(y7z) = H(an + Siykl)u
i=1
(1.1.2) F(z,y,z) =y 22 Fy(z,y,2) with
d

Fi(z,y,2) = [ [ 2" + s,
=1

where

(a) 1 <n <k, d=ged(n,k) withn =dny and k = dky,

(b) e1,e2 are either 1 or 0, respectively,

(c) ife; =ea =0, thenn > 2,

(d) the s; are nonzero distinct complex numbers for 1 < i < d.

Let C be the plane curve defined by F(z,y,z) = 0 in P?(C). Then e1, 2 and k
are invariant under projective equivalence of plane curve singularities in P?(C) from
the following four cases: Let N be the set of positive integers, and Q be the set of
rational numbers.

Case(l) Lete; = g9 = 0 withn > 2. Then, f ~ 2"+y"* with weights (n, k) € N x N
and deg(f) = k. So, the projective curve C has no line when C' has a decomposition
into irreducible curves, and two distinct tangent lines in P?(C).
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Case(Il) Let e; = 0 and e2 = 1 with n > 1. Then, f ~ z(z" + y*) with weights
(n+1,k+ %) e Nx Q and deg(f) = k+1 < k+ £. So, the projective curve C has
one distinct line when C has a decomposition into irreducible curves, and two distinct
tangent lines in P?(C).

Case(Ill) Let &1 = 1 and g2 = 0 with n > 1. Then, f ~ y(z" + y*) with weights
(n+ 2, k+1) € (Q—N) xN and deg(f) = k+ 1. So, the projective curve C has one
distinct line when C has a decomposition into irreducible curves, and three distinct
tangent lines in P?(C).

Case(IV) Lete1 = 1 and g3 = 1 with n > 1. Then, f ~ yz(z" + y*) with weights
mM+1+2 k+1+%) € (@Q-N)xQ and deg(f) = k+2 < k-+1+%. So, the
projective curve C has two distinct lines when C has a decomposition into irreducible
curves, and three distinct tangent lines in P%(C).

Moreover, f(y,z) of (1.1.1) and F(x,y,z) of (1.1.2) can be rewritten in the fol-
lowing form:

(1.1.3) fly,z) =y 2% f1(y,2) with
d—1
fily, z) = 2" +y* + Z Ay zld=m gpg
i=1
F(x,y,z) =y 22 Fi(x,y,z) with
d—1

F (x,y, Z) — xkfnzn + yk + ZAixkfiklf(dfi)nlyiklZ(dfi)nl,
=1

where the A; are complex numbers for 1 <i <d— 1.

REMARK 1.1.1. As a consequence of Theorem 1.1, let Cy and C3 be two projec-
tive curves defined by F' = 0 and G = 0, respectively, each of which satisfies the same
kind of properties and notations as we have seen in Theorem 1.1. Then, Ci ~proj Co in
P2(C) if and only if C; and C3 belongs to the same one and only one of the four cases in
Theorem 1.1, so that there is a nonsingular linear change of coordinates T : C3 — C3
with 7(0) = 0 and F o T = G. In order to find a complete solution of two problems
in the beginning, it is enough to compute F o T = G directly, using Theorem 1.1.

Now, we are going to consider the following computations:

(i) We study Case(I) of Theorem 1.1 in terms of Theorem 4.1 and Theorem 4.2
in §4, and study Case(II) of Theorem 1.1 in terms of Theorem 4.4 and Theorem 4.5
in §4.

(ii) We study Case(III) of Theorem 1.1 in terms of Theorem 5.1 and Theorem 5.2
in §5, and study Case(IV) of Theorem 1.1 in terms of Theorem 5.4 and Theorem 5.5
in §5.

From (i) and (ii), summing up the results of Theorem 4.1, Theorem 4.4, The-
orem 5.1 and Theorem 5.4, we will get a solution of the first problem in terms of
Theorem 6.1(The projective equivalence of plane curve singularities defined by the
homogenization of weighted homogeneous polynomials in Cly, z]) in §6.

From (i) and (ii), summing up the results of Theorem 4.2, Theorem 4.5, Theo-
rem 5.2 and Theorem 5.5, we will get a solution of the second problem in terms of
Theorem 6.2(The difference between analytic equivalence for weighted homogeneous
polynomials in Cly, z] and projective equivalence for their homogenization in Clz, y, 2])
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in §6.

2. Known preliminaries.

DEFINITION 2.1. Let V ={z € C"™!: f(z) =0}and W = {z € C"*' : g(2) = 0}
be germs of complex analytic hypersurfaces with isolated singularity at the origin.

(i) f and g are said to have the same topological type of singularity at the ori-
gin(equivalently, to be topologically equivalent at the origin) if there is a germ at the
origin of homeomorphisms ¢ : (Uy,0) — (Us,0) such that ¢(V) = W and ¢(0) = 0
where U; and U, are open subsets in C*T!. In this case, denote this relation by f ~ g.
Otherwise, we write f ¢ g.

(ii) f and g are said to have the same analytic type of singularity at the ori-
gin(equivalently, to be analytically equivalent at the origin) if there is a germ at the
origin of biholomorphisms ¢ : (Uy,0) — (Uz,0) such that ¢(V) = W and ¥(0) = 0
where U; and U, are open subsets of C**!, that is, f o ¢ = ug where u is a unit in
2110, the ring of germs of holomorphic functions at the origin in C**!. Then we
write f = g. If not, we write f % g.

THEOREM 2.2 ([BR], [Bu], [Z1]). Let f(y,z) be irreducible in 2O with an iso-
lated singularity at the origin in C2. Then the curve defined by f at the origin can be
described topologically by y =t and z =t** 4 --- + 1% where n <oy < --- < oy and
n>(n,ar1) > > (n,a1,...,ap) = 1. If for a given f there is another homeomor-
phic parametrization defined by y = t™ and z = tP +- - -+tPa wherem < B < --- < f3,
and m > (m,B31) > -+ > (m,B1, - By) =1, thenn =m, p = q and oy = B; for
1 < i < p. Conversely, the curve defined by the parameter with the same kind of
inequality as above must be irreducible at the origin.

THEOREM 2.3 ([L], [Z2]). Let f(y, z) be in 2O with isolated singularity at the
origin in C2. Then the topological type of the plane curve singularity defined by f is
determined by the topological type of every irreducible component of f at O and all the
pairs of intersection multiplicity of these two components.

THEOREM 2.4 ([K1]). Let f = 2" +y" + Zle ay" "'zt and g = 2" 4+ y" +
by 927 be homogeneous polynomials with isolated singularity at the origin in
L by Iz be h I Is with, isolated l h

C? wheren >2k+3,n>214+3 andn > 5. Then f ~ g if and only if there is a
complex number p with p™ = 1 such that b; = a;p’ fori=1,2,...,k =1. Moreover, if
=z"+ay’z + an =2z + Z+ ave an isolated singularity at the origin,

Y tay’z+yt and g =2t +byPz +yt b solated singularity at the origi

then f ~ g if and only if a* = b*.

THEOREM 2.5 [YO AND Su]. The topology of a quasihomogeneous singularity in
C? determines the weights of the polynomial defining the singularity.

LEMMA 2.6 ([K2]). Let f € 20 and f be weighted homogeneous with an isolated
singular point at the origin. Then f is not homogeneous with f ¢ 2% +y? if and only
if f 7 h for any homogeneous polynomial h € 5O.

THEOREM 2.7 ([K2]). Let 2 < n < k. Assume that f(y,z) is a weighted homo-
geneous polynomial with an isolated singular point at the origin in C? which is not
homogeneous. If f o 22 + 4%, then f is topologically equivalent to the one and only
one of the followings: Let d = ged(n, k).

(1) f ~ 2"+ y* with weights (n, k).
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(I) f ~ z(2™ 4+ y*) with weights (n + 1,k + %)
(i) d < n.
(II) f ~ y(=" + y*) with weights (n + %,k +1).
(i) d <n,
(ii) d = n.
(IV) f ~yz(z" + y*) with weights (n+1+ 2, k+ 14 %),
(i) d < n.

In general, suppose that either f satisfies the above assumption with f 7 2%+ 2,

or f is homogeneous. Then the weights of f determine the topological type of f and
conversely.

LEMMA 2.8 [K2]. Let f be a weighted homogeneous polynomial with isolated
singularity at the origin in C? where f is not a homogeneous polynomial. If f 7% 2%+y2,
then f can be written analytically without loss of generality as follows:

fly,2) =y 27 f1ly, 2)  with
d—1
fl (y7 Z) =" 4 yk + Z Aiy’iklz(dfi)nl
i=1
where 2 < n < k and d = ged(n, k) with n = n1d and k = k1d, each ¢; is either 1 or 0
fori=1,2, and all A; are complex numbers for 1 <i < d—1, satisfying the following
property (2.8.1):

(2.8.1) if ged(n,k) =n, i.e, ny =1, then Ay is zero.

THEOREM 2.9 [K2]. Let f and g be weighted homogeneous polynomials, which
are not homogeneous, with isolated singularity at the origin in C? such that f & 2> +y>
and g 4 2% +y%. Then we may assume without loss of generality that analytically,

f=y22f1  with

d—1
fl =" 4 yk + ZAiyiklz(d_i)nl
i=1
g=y"22g1  with
e—1
g =2"+yl + Z Bjyjllz(e_j)m1
j=1
where
(a) 2<n <k, d=gcd(n, k) withn=dny and k = dky,
(b) 2<m <, e=ged(m,l) withm =emy and l = ely,
(c) e1,€2,81,02 are either 1 or 0, respectively, and
(d) A; and B; are complex numbers for 1 <i<d—1and1<j<e—1.
Also, we need to assume without loss of generality that

if ged(n, k) =n, d.e, ng =1, then Ay =0 and
if ged(m,l)=m, e, my=1, then By =0.



PROJECTIVE EQUIVALENCE 471

As a conclusion, we get the following:

(i) f~ g if and only if e; = 6; for i =1,2 and f1 =~ ¢1.

(i1) f1 =~ g1 if and only if n =m and k =1 and there is a complex number p with
p? =1 such that A;p' = By fori=1,....d — 1.

REMARK 2.9.1. If 2 < n < k and ged(n, k) = n, then we proved by Theorem 2.9
that z(z" + y*¥) & 2"t + y* % and yz(z" + y*) % y(z"T! 4+ yF+%). But note that
2(2" + yk) ~ 2T 4y and yz(2" 4 yF) ~ y(2" T + yF ), because ged(n, k) = n
is a positive integer.

3. How to find the topological types of plane curve singularities defined
by the homogenization of weighted homogeneous polynomials in Cly, z]. Let
Clx1, ..., 2] be the ring of polynomials in n variables with coefficients in C where C
is the field of the complex numbers.

DEFINITION 3.1. Let N be the set of positive integers, and N? be its two-dimensional
copy. Let f = f(y,z) € Cly, z] be a weighted homogeneous polynomial with weights
(w1, ws), that is, any monomial z2y? of f satisfies the equality ot w% =1

(i) It is said that the weights (w1, w2) of f belong to N2, denoted by (wy,ws) € N2,
if the weights (w1, w2) of f are positive integers.

(ii) Also, it is said that the weights (wy,ws) of f do not belong to N2, denoted
by (w1, ws) ¢ N2, if the weights (w1, ws) of f are not positive integers. For example,
if wy is not a positive integer and ws is a rational number for the weights (wy,ws) of
f, then we write (w1, ws2) € (Q —N) x Q, if necessary.

DEFINITION 3.2. Let F' = F(z,y,2) and G = G(z,y, z) be homogeneous polyno-
mials in Clz,y, z] where F and G are square-free. Then F' and G may be viewed as
defining equations for two projective curves C; and Cy in P?(C), respectively. Then,
we say that C; and Cs, i.e., F(x,y,2z) = 0 and G(z,y,z) = 0 either have the same
projective type of the singularity or are projectively equivalent in P?(C) if there is
a nonsingular linear change of coordinates T': C3 — C3 with T'(0) = 0 such that
FoT = G. In this case, we write F(2,y,2) ~proj G(z,9y,2) in P?(C) for brevity of
notation. Otherwise, we write F(z,v,2) #proj G(,y, ) in P?(C).

REMARK 3.2.1. (1) A projective curve or plane curve is the zero set of a nonzero
constant homogeneous polynomial in the complex projective plane P?(C).

(2) A projective curve of degree 1, 2, 3, 4, 5, 6 is called a line, quadric, cubic,
quartic, quintic, sextic, respectively.

(3) A projective curve is irreducible if it is not the union of two distinct plane
curves.

(4) Let C be the plane curve and let F' be a homogeneous polynomial with zero
set C. Then C' is irreducible just in case F' is a power of an irreducible polynomial.

(5) The Fundamental Theorem Let C' be any plane curve, the zero set of the
homogeneous polynomial F' such that F' = F} M. .k where the F; are irreducible
homogeneous polynomials for 1 < i < r. Then,

(5a) C has a unique decomposition into irreducible curves, C = Cy U ---U C,.

(5b) With suitable numbering, the irreducible curve C; is the zero set of F;. The
polynomial F; are determined, up to a constant factor, by C;(and so by C).

Finding a complete solution of two problems in the beginning, it is enough to
consider two cases, respectively.
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Case(A): The weights (w1, ws) of a weighted homogeneous polynomial f(y,z) €
Cly, 2] belong to N? in the sense of Definition 3.1.

Case(B): The weights (w1, w2) of a weighted homogeneous polynomial f(y,z) €
Cly, 2] do not belong to N? in the sense of Definition 3.1.

First of all, we will study Case(A) in Lemma 3.4 of this section and after then, we
will study Case(B) in Lemma 3.5 of this section, too. In preparation for the study of
Case(A) and Case(B) in this section, first of all, consider two examples with weights
(w1, ws) such that either (w1, ws) € N? or (wy,ws) ¢ N2.

EXAMPLE 3.2.2. Let f; = fi(y,2) = 2% + ty*z + y* for any complex number ¢
with 2 # 4. Then, f; = 0 has an isolated singularity at the origin in C2? for each t.
For any complex number ¢ with 2 # 4, let F(x,y, z) be the homogenization of f,(y, z)
defined by Fy(z,y, z) = 2222 + tay?z + y* in Clz, y, 2].

Instead of a nonsingular linear change of coordinates from C? to itself,

using a nonsingular holomorphic map ¢ from an open subset U C C? to C?,

it is easily proved that f; ~ 22 4+ y* for any complex number ¢ with ¢2 # 4.

But, it will proved by Theorem 4.1 that Fy(x,y,2) ~proj Fs(z,y,2) in P?(C) if and
only if % = S;’—;. Observe that Fi(z,y,z) and Fs(x,y,z) are locally analytically
equivalent at any singular point in C* — {0} for any s, with s? # 4 and t? # 4. Thus,
an analytic equivalence at any singular point does not give a projective equivalence,
but the projective equivalence implies an analytic equivalence for this case.

EXAMPLE 3.2.3. Let f(y,2) = y°2(2% — y*) and g(y,2) = y°(2® + y°) where ¢
is either 1 or 0. By Theorem 2.7 and Theorem 2.9, f ~ g with the same weights,
but f # g and deg(f) = 5+ ¢ < deg(g) = 6 +e. If ¢ = 0, then the weights of f
are positive integers, but if € = 1, then the weights of f are not positive integers.
By a nonsingular nonlinear change of coordinates T : (y,2) — (y,z + y?), which
is not linear, we get that f(y,2) = y°2(2 — ¥?)(z + ¥?) ~ v°2(z + v?)(z + 2¢?) =
ye2(22 + 3y%2z + 2y*) = h(y, 2). Then, h(y,z) ~ y*z(22 + 213/2 vz +y*) = {(y, 2) with
deg(f) = 5+¢. Let F(x,y,2) = 2°f(y/z,2/x), G(z,y,2) = 2%T¢g(y/x, z/x), and
H(x,y,2) = 25T¢h(y/z, 2/x) and L(x,y,2) = 25T¢4(y/x, z/x) be the homogenization
of f(y,2), 9(y,2), h(y,z) and £(y,z) in C[z,y, 2], respectively. Then, any two of
F(z,y,z) = 0, G(z,y,z) = 0 and L(z,y,z) = 0 are not projectively equivalent in
P%(C), but H(x,y, z) ~proj L(z,y, z) in P?(C), which will be proved by Theorem 5.4.
Note that F(1,y,z) ~ L(1,y, z) at the origin in C? and also F(z,y,1) ~ L(z,y,1)
at the origin in C2, but F(z,y,2) #proj L(z,y,2) in P?(C). So, locally analytic
equivalence at any singular point does not give the projective equivalence.

LEMMA 3.3. Assumption Let 1 < n < k. Let f be a weighted homogeneous
polynomial in Cly, z], which is not homogeneous, with isolated singularity at the origin
in C?. Let F(z,y,z) € Clz,y, 2] be the homogenization of the above f(y, z).

Conclusion
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(I) Then, f(y,z) can be written without loss of generality as follows:

(331) f(ya Z) = yalzszfl (y, Z) with
d—1
Fily,2) = Aoz" + Agy® + D Agyykr (4= 0m
=1

d
= [ (s02™ + siy™),
i=1

) 1 <n<k,d=gced(n, k) withn =dny and k = dk;,
) €1,e2 are either 1 or 0, respectively, and
(c) the A; are complex numbers for 0 < i < d and AgAq # 0,
) the s; are nonzero distinct complex numbers for 0 < i < d,
(e) if e1 = €2 =0, then we may assume additionally that 2 < n < k,
satisfying the following property:

(3.3.2) if ged(n, k) =n, ide, ny=1, then either Ay =0 or Ay #0.

(IT) With the same notation and property as in (I), the homogenization F(x,y, z)
of the above f(y,z) can be written as follows:

(3.3.3) F(z,y,2z) =y 22 Fy(x,y,2) with

d—1
Fy(x,y,2) = Agz" 2" + Agy® + Z Az Frmm)ld=i) ks o (d=i)m
i=1

d
i=1
where Fy(x,y, z) is the homogeneous polynomial in Clx,y, z] defining the homogeniza-
tion of the above f1(y, z) in Cly, 2], that is, satisfying

(3.3.4) F(z,y,2) =y 2%2 Fy(x,y,2)  with deg(f) =k + €1 + &2,
Fl(‘T?yaz) = .’L'kfl(y/.’L',Z/,’E)

(IIT) In order to find the difference between an analytic equivalence of weighted
homogeneous polynomials with isolated singularity in [I] and the projective equivalence
of projective curves defined by their homogenization in [1I] at the same time, we need
to assume without loss of generality that

instead of a nonsingular holomorphic map from an open subset U C C? to C?,

just using a nonsingular linear change of coordinates from C3 to itself,

F(z,y,z) with f(y,z) = F(1,y, z) satisfies the following property:
(3.3.5) Ao = Aqg = s0 =1, and also
(3.3.6) if ged(n,k)=n, ie., mny=1, then either Ay =0 or A; #0.
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REMARK 3.3.1. (a) Note that a condition in (3.3.5) is invariant under projective
equivalence of curves, but projective equivalence of curves depends on the condition in
(3.3.2) or (3.3.6), which is going to prove by Theorem 6.1 of this paper.

(b) Assume that a projective curve F' = 0 has a line, when F' =0 has a decompo-
sition into irreducible curves in P?(C). Then an equation for the line is always given
by either y** =0 or z°2 = 0, if exists because 0 < nq < k1 in (3.3.3).

Proof of Lemma 3.3. [I] By assumption, we may put f as follows:
(3.3.7) fy,z) = y12%%L(y, z) with

n—1
(y,z) = Boz" + Bpy* + Z ByyPizn
i=1
where 1 < n < k, each g; is either 1 or 0 for ¢ = 1,2, and the B; are complex
numbers for 0 < ¢ < n with BB, #0and 1 < 1 < -+ < Bp-1 < k. Observe that
f(y, z) is weighted homogeneous if and only if /(y, z) is weighted homogeneous. Let
d = ged(n, k) with n = nyd and k = kid. Then £(y, z) can be rewritten in the form
d—1 ‘ .
(3.3.8) Uy, z) = Boz" + Bpy* + Y Biy™*12470m,
i=1
Then, we put Ag = By, Ag = B, and A; = B; for 1 <1i < d—1. Thus, it is clear that

(3.3.9) fly,z) =422 f1(y, 2z) with

d—1
fi (yv Z) = A" + Adyk + Z Aiyiklz(d*i)m

i=1
d

= [T(s02™ + s,
i=1

where the A; are complex numbers for 0 < i < d and AgAy # 0, and the s; are
nonzero distinct complex numbers for 0 < i < d. Moreover, if ¢ = €5 = 0, then we
must assume additionally that 2 < n < k because f = 0 has an isolated singular point
at the origin in C2. Then, the proof of (I) is done.

(IT) Let F(z,y,z) be the homogeneous polynomial in C[z,y, z] defining the ho-
mogenization of the above f(y, z) in C[y, z]. Then, F(x,y, z) can be written as follows:

(3.3.10) F(z,y,z) =y 2% Fi(x,y,2z) with
d—1
Fi(z,y,2) = Agz" 2" + Agy® + Z Az Fr—r(d=i) ik o (d=i)ny
i=1

d
= H(soxkﬁ”lzm + sy™),
i=1
where Fi(x,y, z) is the homogeneous polynomial in C[z, y, z] defining the homogeniza-
tion of the above fi(y, z) in Cly, z]. Then, the proof of (II) is done.

(IIT) Consider F(x,ay,bz) for some nonzero numbers a, b such that F(1, ay,bz) =
f(ay,bz). That is, just using a nonsingular linear change of coordinates from C3 to
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itself, at the same time we may write without loss of generality that
(3311) AO = Ad = S0 = 1.

It is clear that a condition in (3.3.5) is invariant under projective equivalence of
curves, but another condition in (3.3.2) or (3.3.6) is not invariant under projective
equivalence of curves, which need to prove later by Theorem 6.1. Then, the proof of
(III) is done. Thus, the proof of lemma is done.

LEMMA 3.4 (THE TOPOLOGICAL TYPE OF PLANE CURVE SINGULARITY DEFINED
BY THE HOMOGENIZATION OF THE WEIGHTED HOMOGENEOUS POLYNOMIAL € Cly, ]
WITH POSITIVE INTEGER WEIGHTS).

Assumption Let 2 < n < k. Let f(y,z) be a weighted homogeneous polynomial
with isolated singularity at the origin in C? and with positive integer weights (n, k),
which is not homogeneous. Let F(x,y,z) € Clx,y,z] be the homogenization of the
above f(y,z).

Since the weights of f(y, z) are positive integers, then by Theorem 2.7 and Lemma
3.3, we may put f(y,z) and F(z,y,z) as follows:

n—1
(34.1) F(y.2) = Boz" + Bugt + 3 By 2,
i=1

Flr,y,z) = 2" fy/z,z/x)  with p= deg(f),

where 2 < n < k, and all B; are complex numbers for 0 < i < n, and By # 0 because
f is a weighted homogeneous polynomial with isolated singularity at the origin in C2
and2<nandl <p; <---<fBh_1 <k.

Conclusion Using a nonsingular linear change of coordinate T : C3 — C> with
T(0) = 0, instead of a nonsingular holomorphic map from an open subset U C C2
to C2, then f(y, z) with deg f and F(z,y,2) are simultaneously equivalent to one and
only one of the following: Note first that either By, # 0 or B, = 0.

(I) Let By, # 0. Then, we may put By = B, =1 by Lemma 3.3. Let d = ged(n, k),
and then either d < n ord =n.

(I-1) Then, f(y,z) and F(z,y,z) of (3.4.1) can be rewritten in the form

d—1
(3.4.2) fly,z) =2" +4* + Z Ay 2@ ith deg f = k
i=1
d
= 1_[(,2"1 + siykl) with 1 < nq < kq,
i=1
d—1
F(I, v, Z) — kanzn + yk + ZAix(kl7n1)(d7i)yiklz(d7i)n1
i=1

where
(a) 2<n <k, d=gcd(n, k) withn=dny and k = dk1, and
(b) the A; are complex numbers for 1 <i<d-—1,
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(c) the s; are nonzero distinct complex numbers for 1 < i < d.

(I-2) The projective curve F(x,y,z) = 0 has no line when F(x,y,z) = 0 has a
decomposition into irreducible curves, and two distinct tangent lines in P?(C).

(IT) Let B, = 0. Then, B,,—1 # 0, and we may put By = B,—1 = 1 by Lemma
3.3. Let d = ged(n, k), and then d = n.
(II-1) Then, f(y,z) and F(x,y,z) of (3.4.1) can be rewritten in the form

(343) f(y,2) = 2fi(y,2) with deg f =k — ky +1 < k,
n—2
Fily,z) = 2"y D L N gyt (1)
=1
n—1
= [[G+s™), with 1 < ky,

F(r,y,2) = zF1(x,y,2) with

|
-

n—2
Fl (-I,y, Z) — xk—kl_(n_l)zn_l + yk—kl + Z Ail’k_kl_ikl_(n_l_i)’yikl Z’n,—l—i
i=1

n—1
= (712 4 5F),

@
Il
A

where
(a) 2 <n <k, n=ged(n, k) with k =nky and gcd(n — 1,k1(n —1))=n—1,
(b) the A; are complex numbers for 1 <i<n—2,
(c) the s; are nonzero distinct complex numbers for 1 <i <n — 1.
(II-2) The projective curve F(x,y, z) = 0 has one distinct line when F(z,y,z) =0
has decomposition into irreducible curves, and two distinct tangent lines in P?(C).

REMARK 3.4.1. (i) If kK = n + 1, then f and F have one singular point at
(y,z) = (070)'
(ii) Hereafter, for simplicity of notations in solving the problems, f(y,z) and

F(z,y,z) of (II) in Lemma 3.4 may be rewritten in the following form: (n —1) — m
and (k — k1) — €. Then, m=n—1=ged(n — 1,k — k1) = ged(m, £).

(3.4.4) fly,z) = zf1(y, ) with deg f=¢+1 <k,
m—1
filysz) = 2" +y 4 Y Ayt
j=1
:H(Z-i-siyél), with 1 < 44,
j=1

F(:I;ay?Z) =zl (=T7y, Z) with
m—1 _ - ‘ -
Fi(z,y,z) =2 m2m 4+ ' + Z Ajpt=it—(m=3)y it ;m=j
j=1
m
= (iEelilZ—l—Sjyh),
j=1
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where

(a) 1 <m < {and e = ged(m, ) =m with m =mqe and £ = {ye,
(b) the A; are complex numbers for 1 < j <m —1,

(c) the s; are nonzero distinct complex numbers for 1 < j < m.
Proof of Lemma 3.4. The proof is clear.

LEMMA 3.5 (THE TOPOLOGICAL TYPE OF PLANE CURVE SINGULARITY DEFINED
BY THE HOMOGENIZATION OF THE WEIGHTED HOMOGENEOUS POLYNOMIAL € (C[y7 Z]
WITH NO POSITIVE INTEGER WEIGHTS).

Assumption Let 1 < n < k. Let f(y,z) be a weighted homogeneous polynomial
with isolated singularity at the origin in C? and with no positive integer weights, which
f is not homogeneous. Let F(x,y,z) € Clz,y, z] be the homogenization of the above
fy,2).

Since the weights of f(y, z) are not positive integers, then by Theorem 2.7, Lemma
3.3 and Lemma 3.4, then we may put F(x,y,z) with F(1,y,2) = f(y, 2) as follows:

(351) f(y, Z) — yElZanl(y, Z) thh
d—1
fily,2) = 2" +yF ) Aigtzom

i=1

d
=[[G" +s™),
i=1
(3.5.2) F(x,y,z) =y 272 Fi(x,y,z) with
d—1
Fl (x7y, Z) _ kanzn + yk + ZAix(kl7n1)(d7i)yiklz(d7i)n1
i=1

d
= [T e + s,
i=1

where
(a) 1 <n<k,d=ged(n,k) withn =dny and k = dky,
(b) €1,e2 are either 1 or 0, respectively, and
(c) the A; are complex numbers for 1 <i<d-—1,
(d) the s; are nonzero distinct complex numbers for 1 < i < d,
(e) if e1 =0, then we may assume additionally that e3 =1 and ged(n, k) < n,

(f) if e =0, then we may assume additionally that 1 = 1,
satisfying the following property:

(3.5.3) if ged(n, k) =n, ie,ny =1, then either 44 =0 or A; #0.

Conclusion Then, f(y, z) with deg f and F(z,y, z) are simultaneously equivalent
to one and only one one of the following: Let C be the projective curve defined by
F(z,y,z) =0 in P%(C).

(I) Let ey = e2 = 1. Note that n > 1. Then, f(y,z) and F(z,y,z) have the
same representation as in (3.5.1) and (3.5.2), respectively and the projective curve C
has two distinct lines when C has a decomposition into irreducible curves, and three
distinct tangent lines in P?(C).
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(IT) Let ey =0, e2 = 1 and ged(n, k) < n. Note that n > 1. Then, f(y,z) and
F(z,y, z) have the same representation as in (3.5.1) and (3.5.2), respectively and the
projective curve C has one distinct line when C has a decomposition into irreducible
curves, and two distinct tangent line in P%(C).

(IIT) Let &1 =1 and 2 = 0. Note that n > 1. Then, f(y,z) and F(x,y,z) have
the same representation as in (3.5.1) and (3.5.2), respectively and the projective curve
C has one distinct line when C has a decomposition into irreducible curves, and three
distinct tangent lines in P?(C).

REMARK 3.5.1. Note the following observations:

(a) If e = e = 0 then f has the positive integer weights.

(b) If &7 = 0 and €2 = 1 then ged(n, k) < n, because otherwise f has the positive
integer weights by Theorem 2.7 and Lemma 3.4.

Proof of Lemma 3.5. The proof is clear.

Let C be an arbitrary projective curve in P?(C) defined by F(z,y,2) = 0 where
F(z,y,z) = 0 is a homogeneous polynomial in C[z,y, z]. Then, it is a well-known fact
that whenever a projective curve C has a unique decomposition into irreducible curves
in P?(C) then the number of distinct lines of C' and also the number of distinct tangent
lines for C' are projectively invariant under a nonsingular linear change of coordinates
T : C3 — C? with T(0) = 0, respectively. In preparation for the complete solution of
two problems in the beginning, first of all, we need to prove the following theorem by
Lemma 3.4 and Lemma 3.5.

THEOREM 3.6 (THE TOPOLOGICAL TYPES OF PLANE CURVE SINGULARITIES
DEFINED BY THE HOMOGENIZATION OF WEIGHTED HOMOGENEOUS POLYNOMIALS IN
Cly, 2]).

Assumption Let 1 < n < k. Assume that f(y,z) is a weighted homogeneous
polynomial in Cly, z], which is not homogeneous, with isolated singularity at the origin
in C?. Let F(z,y,z) € Clz,y, z] be the homogenization of the above f(y, z). Note that
Q is the set of rational numbers.

Conclusion
Fact(1): Whether or not f + 2% +y?, f is topologically written in a unique way:

(3.6.1) f eyt 2522 + gk with deg(f) =k + &1 + €2 and

k
with weights (n + €2 + %sl,k +e1+ —e2) €Q xQ,
n

where
(a) 1 <n <k, d=ged(n,k) withn =dny and k = dky,
(b) €1,e2 are either 1 or 0, respectively,
(c) ife; =ea =0, thenn > 2.

Fact(2): Using a nonsingular linear change of coordinate T : C* — C3 with
T(0) = 0, we may assume without loss of generality that F(x,y,z) with F(1,y,z) =
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f(y, z) can be written as follows:

(3.6.2) fly,2) =y 2% f1(y,2) with
d
fily, 2) = H(Zm +siy™),
=1
(3.6.3) F(z,y,2) =y 22 Fi(x,y,2) with
d

Fl(:c,y,z) — H(xklffnzﬂn 4 Siykl)a
=1

where the s; are nonzero distinct complexr numbers for 1 <i <d and 0 < njy < k.
Fact(3): For brevity of notation, let C' be the projective curve defined by F(x,y, z)

0 in P2(C). Then e1, g2 and k are invariant under projective equivalence of plane
curves in P%(C), using the following four cases:

Case(l) Letey = g9 = 0 withn > 2. Then, f ~ 2"+y"* with weights (n, k) € N x N
and deg(f) = k. So, the projective curve C' has no line when C' has a decomposition
into irreducible curves, and two distinct tangent lines in P?(C).

Case(Il) Let e; = 0 and e2 = 1 with n > 1. Then, f ~ z(2" + y*) with weights
n+1,k+ %) ENXQanddeg(f) =k+1<k+ % So, the projective curve C has
one distinct line when C has a decomposition into irreducible curves, and two distinct
tangent lines in P?(C).

Case(Ill) Let &1 = 1 and o = 0 with n > 1. Then, f ~ y(z™ + y*) with weights
(n+ %, k+1) € (Q—N) xN and deg(f) =k + 1. So, the projective curve C has one
distinct line when C' has a decomposition into irreducible curves, and three distinct
tangent lines in P?(C).

Case(IV) Lete; = 1 and g3 = 1 with n > 1. Then, f ~ yz(z" + y*) with weights
M+1+2 k+1+%) € (Q-N)xQ and deg(f) =k+2<k+1+ % So, the
projective curve C has two distinct lines when C' has a decomposition into irreducible
curves, and three distinct tangent lines in P?(C).

Moreover, f(y,z) of (3.6.2) and F(x,y,z) of (3.6.3) can be rewritten in the fol-
lowing form:

(3.6.4) fly,z) =y 2% f1(y,2) with
d—1
Wy, 2) = 2"+ 9% + Ayt d=me gng
fi(y, 2) Y y
i=1
F(z,y,z) =y 22 Fi(x,y,z) with
d—1

F (x,y, Z) — kanzn + yk + ZAixkfiklf(dfi)nlyiklZ(dfi)nl,
i=1
where the A; are complex numbers for 1 <i<d—1.

Proof of Theorem 38.6. The proof just follows from Theorem 2.7, Lemma 3.3,
Lemma 3.4 and Lemma 3.5.

REMARK 3.6.1. Suppose that the same assumptions and conclusions with nota-
tions as in Theorem 3.6 hold.
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(1) If the projective curve C belongs to Case(I), then the C has no line and the
weights of f(y, z) belong to N x N.

(2) If the projective curve C belongs to Case(II), then the C has one line and the
weights of f(y, z) belong to N x Q.

(3) If the projective curve C' belongs to Case(III), then the C' has one line and
the weights of f(y, z) belong to (Q — N) x N.

(4) If the projective curve C belongs to Case(IV), then the C has two distinct lines
and the weights of f(y,z) belong to (Q — N) x Q.

4. The projective equivalence of plane curves defined by the homoge-
nization of weighted homogeneous polynomials with weights € N x Q and its
applications. Throughout this section, we study Case(I) of Theorem 3.6 in terms
of Theorem 4.1 and Theorem 4.2, and study Case(II) of Theorem 3.6 in terms of
Theorem 4.4 and Theorem 4.5, respectively.

THEOREM 4.1 (THE PROJECTIVE EQUIVALENCE FOR CASE(I) OF THEOREM 3.6).

Assumption Let f(y,z) and g(y,z) be weighted homogeneous polynomials with
positive integer weights in Cly, z], which are not homogeneous, with isolated singularity
at the origin in C%, assuming that f(y,z) and g(y, z) belong to Case(I) of Theorem
3.6.

Let f ~ 2"+ y* with weights (n,k) € N x N and deg(f) =k, and let g ~ 2™ +¢/*
with weights (m,€) € N x N and deg(g) = ¢. By Theorem 3.6, we may assume without
loss of generality that f(y,z) and g(y,z) can be represented as follows:

d—1
(4.1.1) fly,z) = 2" +4* + Z Ay zld=m g
i=1
e—1
9(y,2) = 2" +y' + > Byl m,
j=1
where
(a) 2 <n <k andd=ged(n, k) withn =nid and k = kid,
(b) 2 <m < £ and e = ged(m, £) with m =mye and { = lye,
(c) all the A; and B; are complex numbers for 1 <i<d—1andl<j<e—1,
respectively.
Now, homogenize f and g as follows:

(4.1.2) F(z,y,2) =2"f(y/x,z/x) with deg(f) =k,
G(x,y,2) =2'g(y/z, z/z) with deg(g) = ¢.

Conclusion
Then F(x,y,z) ~proj G(z,y,2) in P%(C)
<= there is a complex number p with p® = 1 such that A;p' = B; for i =
1,...,d—1 where either {m=n and k=~L}or{m+n=k and k=1}.

In particular, if d = 1, then F(z,y,2) ~proj G(x,y, 2) in P?(C)
<« cither {m=n and k=L}or{m+n=k and k=1/1}.

Proof of Theorem 4.1. In preparation for the proof of the theorem, by (4.1.1) and
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(4.1.2), F = F(z,y,2) and G = G(z,y, z) can be written by the following:
(413) F = kanzn + yk + Z A/Llixkflkl7(d71)n1ylklz(dfz)nl7
i=1
e—1
G = gt gy 4 3 Bats et e,
j=1
where the A; and B; are complex numbers for 1 <i<d—-1land1<j<e—1.
First, to prove the necessity of the condition, suppose that F ~,.,; G in P?(C).
Then, k = deg(f) = deg(g) = ¢, and there is a nonsingular linear change of coordinates
T : C? — C3 with T'(0) = 0, satisfying the following conditions:
(4.1.4) FoT(x,y,2) = G(z,y,z) with
T(z,y,2) = (a12 + agy + a3z, bix + by + b3z, c1 + oy + c32),

where the a;, b;, and ¢; are complex numbers for 1 < i < 3.

Since the number of singular points for the projective curve is invariant by a non-
singular linear change of coordinates T : C* — C? with T'(0) = 0, for the proof of the
necessity of the condition, it suffices to consider the following two cases, respectively:

Case(i): If k =n+ 1 and £ = m + 1, then it is clear that ' = 0 and G = 0 have
one and only one singular point in P?(C), which is denoted by (x,y,2) = (1,0,0),
and conversely. Then, we may assume that 7(1,0,0) = A(1,0,0) for some nonzero
complex number A.

Case(ii): If k > n+ 2 and ¢ > m + 2, then it is clear that F = 0 and G =
0 have two singular points in P?(C), which are denoted by (z,y,2) = (1,0,0) and
(z,y,2) = (0,0,1), and conversely. For the proof of this case, it is enough to consider
the following two subcases, respectively:

Case(ii-a): T(1,0,0) = A(1,0,0) and 7(0,0,1)
complex numbers A and u.

Case(ii-b): T'(1,0,0) = XA(0,0,1) and 7(0,0,1) = p(1,0,0) for some nonzero
complex numbers A and p.

1(0,0,1) for some nonzero

For the proof of the necessity of the condition in these cases, first of all, observe
the followings by (4.1.3) and (4.1.4):

(4.1.5) FoT(z,y,z)

= (a1 + agy + a32) " (crx + coy + c32)" 4 (b + boy + b3z)F
d—1
+> AiH(,y, 2)
i=1
e—1
=atmmem oyt 4 Z BiK;(x,y,2)
j=1

=G(z,y,2),

where Hi(z,y,2) = (a12 + agy + a32)*~#1=@=0m1 (12 + boy + b3z)™ (cr2 + coy +
c32) 470 and K (x,y, 2) = ol 70— (emimiyity y(e=g)ma
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Case(i): Let k = n+1 and £ = m + 1. Note that d = ged(n, k) = 1 and
e = ged(m,€) = 1. Since F ~p0; G in P%(C), then k: = deg(f) = deg(g) = ¢, and
so n = m. Therefore, it is clear that f(y, z) = 2"+ y* and g(y,2) = 2™ + ¢’ are the
same, and also F(z,y, 2) = 2¥7"2" + y* and G(z,y,2) = 2°"™2™ + y* are the same.
So, there is nothing to prove for the necessity of the condition in this case.

Case(ii): Let k >n+2and £ > m + 2.

Case(ii-a): Suppose that T7'(1,0,0) = A(1,0,0) and 7(0,0,1) = p(0,0,1) for
some nonzero complex numbers A and u. Now, we claim the following:

(4.1.6) T(x,y,2) = (a1, b2y, c32).

In preparation for the proof of the claim in (4.1.6), first of all, we will prove the
following sublemma by using the equation in (4.1.5).

Sublemma 4.1.1. Let T be a nonsingular linear change of coordinates T : C* — C3
with T'(0) = 0 satisfying the equation T'(z,y, 2) = (a1x+a2y+asz, bix+boy+bsz, crz+
coy + c32z) where the a;, b;, and ¢; are complex numbers for 1 < ¢ < 3. Suppose that
T(1,0,0) = A(1,0,0) and T(0,0,1) = (0,0, 1) for some nonzero complex numbers A
and p.

As a conclusion, by = ¢y = a3 = b3 = 0, and so the Jacobian determinant of T is
a1b263 }é 0.

Proof of Sublemma 4.1.1. By (4.1,4), T(1,0,0) = (a1,b1,c1) = A1(1,0,0) and
T(0,0,1) = (a3, bs, c3) = (0,0, 1) for some nonzero complex numbers A and p. Then,
b1 = c¢1 = a3 = bz = 0, and so the Jacobian determinant of T is a1bac3 # 0 because T’
is nonsingular. Thus, the proof of Sublemma 4.1.1 is done.

For the proof of the claim in (4.1.6), it remains to show by Sublemma 4.1.1 that
as = ¢ = 0. Now, applying Sublemma 4.1.1 to (4.1.5), then we have the following;:

(4.1.7) FoT(x,y,z) =(a12 + azy)* ™ (coy + c32)™ + (bay)F
d—1
+ > AiH,(x,y, 2)
i=1
e—1
=27 '+ BiK(2,y,2)
Jj=1
— G($7 y, 2)7
where  Hi(x,y, ) = (a1 + agy) """ =70 (byy)#1 (coy + ¢32)(T79™  and
Kj(w,y,2) = a3 lemmuydh (emim

In order to prove the claim in (4.1.6), first of all, we need to use the following two
facts (4.1.8) and (4.1.9), which can be easily proved from (4.1.7): Note that 0 < k1 —n4
and 0 < ¢1 —mq by (4.1.1).

(4.1.8)

()O<I€—’Lk1 (d—z)nl (kl—nl)(d—z)<k—nfor1§z§d—1
(11)0<Zk1<kf0r1<z<d—1

(i) 0<(d—i)ny <nforl <i<d-—1.

(iv)0<l—jli—(e—j)mi =1 —mi)(e—j)<l—mforl<j<e-—1
(v)0<jly<lforl<j<e—1.
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(vi)0<(e—j)m <mforl <j<e-—1L1.

(4.1.9) Whenever any monomial 2%y”27 belongs to K;(z,y, 2)
forall j=1,...,e—1, then «, 8 and ~ are all positive integers
by (iv), (v) and (vi) of (4.1.8).

Now, to prove that as = co = 0, it is enough to consider an existence of the
coefficients of monomials 2*~"y™ and y*~"2" in F o T = G, respectively.

Then, it is easy to prove the following:

(a) By (4.1.7) and (4.1.9), two monomials ¥~ "y™ and y*~"2" do not belong to
G(z,y,2).

(b) By (4.1.7) and (i) of (4.1.8), the monomial z*~"y™ has the coefficient a®~"¢c}
in F oT because 2 "y" & H;(x,y, z) for any i = 1,...,d — 1, if exists.

(¢) By (4.1.7) and (iii) of (4.1.8), the monomial y*~"2™ has the coefficient af "%
in F oT because y*~"2" ¢ H;(z,y,z) for any i = 1,...,d — 1, if exists.

Because F' o T = G and the Jacobian determinant of T is aibacs # 0, then it
is trivial by (a), (b) and (c) that a¥"c§ = ab™"c} = 0, and therefore ¢; = ay = 0.
Thus, we proved that T'(x,y, z) = (a1, bay, c32) in (4.1.6).

Using (4.1.6) and (4.1.7), we have the following:

d—1
(4.1.10) Fo T(:v,y,z) - (a1$)k_"(03z)" + (be)k i ZAiHi(CC,y,Z)
i=1
e—1
= 2"y 4 BiK(,y, 2)
j=1
= G(z,y,2),
where H;(z,y,z) = (alx)k—ikl—(d—i)nl (bw)z‘kl (ng)(d—i)m’
Kj(z,y,2) = gl—iti—(e=j)m1 yjélz(e_j)”nl.

From (4.1.10) with (4.1.8) and (4.1.9), comparing the coefficients of monomials
zF=mzn gk and ab—t—(d=dnigik y(d=in1 iy B o T'(z,y, 2), with the coefficients of
monomials 2/~™z™, yt and zf—i0—(e=Dmiyit le=im iy G(z,y, z), respectively on
both sides where 1 <i <d—1and 1 < j <e—1, then we get the following equations:
Note that k = ¢, d = ged(n, k) and e = ged(m, £).

(4.1.11) b = 2™ and gk = ot
imply that k = ¢ and n =m, and
a]f_"cg =1, blg =1 and

Aialffiklf(dfi)mbéklcédfi)m =B; for 1<i<d-1=e—1.

Using (4.1.11) with a%~"c% = 1, then Aialffiklf(dfi)mbéklcgdfi)m = B; can be
rewritten as Aial_l(kl_"l)béklcgml = B;.

Let p = a; (klfnl)bglcgnl. By (4.1.11), p? = 1 and then A;p* = B; for each
i =1,---,d — 1. Thus, the proof for the necessity of the condition in Case(ii-a) is
done.
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Case(ii-b): Suppose that T(1,0,0) = X(0,0,1) and 7(0,0,1) = u(1,0,0) for

some nonzero complex numbers A and . Now, we claim the following:
(4.1.12) T(x,y,2) = (a3, by, c12).

In preparation for the proof of the claim in (4.1.12), first of all, we will prove the
following sublemma by using the equation in (4.1.5).

Sublemma 4.1.2: Let T be a nonsingular linear change of coordinates T : C* — C3
with T'(0) = 0 satisfying the equation T'(z,y, 2) = (a1x+a2y+asz, biz+boy+bsz, crz+
coy + c3z) where the a;, b;, and ¢; are complex numbers for 1 < ¢ < 3. Suppose that
T(1,0,0) = A(0,0,1) and T(0,0,1) = u(1,0,0) for some nonzero complex numbers A
and p.

As a conclusion, a; = by = b3 = ¢3 = 0, and so the Jacobian determinant of T is
—agbgcl 7§ 0.

Proof of Sublemma 4.1.2. By (4.1,4), T(1,0,0) = (a1,b1,¢1) = X(0,0,1) and
T(0,0,1) = (a3, bs, c3) = u(1,0,0) for some nonzero complex numbers A and p. Then,
a1 = by = b3 = c3 = 0, and so the Jacobian determinant of T is —asbac; # 0 because
T is nonsingular. Thus, the proof of Sublemma 4.1.2 is done.

For the proof of the claim in (4.1.12), it remains to show by Sublemma 4.1.2 that
as = ¢ = 0. Now, applying Sublemma 4.1.2 to (4.1.5), then we have the following;:

(4.1.13) FoT(z,y,2) = (a2y + asz)* " (c1z + coy)™ + (boy)®
d—1
+ ZAsz(x7y7Z)
i=1
e—1
=zt mem 4yt 4 Z B;K;(z,y,2)
j=1

=G(z,y,2),

where  H;(z,y, 2) = (agy + azz)" =" =70 (byy) ™ (e1 2 + cpy) 4™,
K; (x, Y, z) — Ié—jfl—(e—j)mlyjelz(e_j)ml'

Now, to prove that as = co = 0, it is enough to compute an existence of the
coefficients of monomials y*~"z"™ and z¥~"y" in F o T = G of (4.1.13), respectively.
For such computations, we use the same notations and methods, that is, two facts
(4.1.8) and (4.1.9) as we have done in the proof of Case(ii-a).

Then, it is easy to prove the following:

(a) By (4.1.13) and (4.1.9), two monomials y*~"2" and 2¥~"y" do not belong to
G(z,y, 2).

(b) By (4.1.13) and (iii) of (4.1.8), the monomial y*~"z™ has the coefficient a "¢}
in F oT because y*~"a™ & H;(x,y,z) for any i = 1,...,d — 1, if exists.

(c) By (4.1.13) and (i) of (4.1.8), the monomial z*~"y™ has the coefficient a% "¢}
in F oT because z¥~"y" ¢ H;(z,y,z) for any i = 1,...,d — 1, if exists.

Because F'oT = G and the Jacobian determinant of T is —agbac; # 0, then it
is trivial by (a),(b) and (c) that a5~ "¢} = a™ "¢} = 0, and therefore as = co = 0.
Thus, we proved that T'(z,y, z) = (asx, by, c12) in (4.1.12).
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Using (4.1.12) and (4.1.13), then we have the following:

d—1
(4.1.14) FoT(x,y,2) = (az2)" "(c12)" + (bay)* + Z A Hi(z,y,2)
i=1

e—1
= ztmem oyt 4 Z Bjxefjelf(e*j)mlyﬂlz(e*j)ml
j=1
= G(z,y,2),
where H;(x,y,2) = (a3z)k_ik1_(d_i)"1 (boy) (clx)(d_i)"l.

From (4.1.14) with (4.1.8) and (4.1.9), comparing the coefficients of monomials
Zhmngn gk and ZRotki—(d=dmgikg(d=im iy [ o T(x,y, 2), with the coefficients of
monomials z/~™2", ¢ and !~ —(e=Dmiyitiy(e=i)mi iy G(x,y, 2), respectively on
both sides where 1 <i<d—1and 1 <j <e—1, then we get the following equations:
Note that k = ¢, d = ged(n, k) and e = ged(m, £).

(4.1.15) 2P = 2 m2™ and yF = ¢ imply that k=¢=n+m and
ab="el =1, by =1 and

Aiagfiklf(dfi)mbéklcgdﬂ-)m =B, for 1<i<d-1l=e—1,

noting by (4.1.15) that Zh=iki—=(d=i)n1 ik g(d=i)n1 g gl—ib—(e=i)muyily zle—i)mi gpe
the same monomial for each i1 =1,2,...,d—1=¢ — 1.

Using (4.1.15) with af~"¢? = 1, then A;ab~ *~@=0mpiks (d=0m — B can be
rewritten as Aia;(kﬁ"l)béklcfml = B,.

Let p = a;(kl_"l)bglcfnl. By (4.1.15), p® = 1 and then A;p’ = B; for each
i=1,---,d— 1. Thus, the proof for the necessity of the condition in Case(ii-b) is
done, and so we proved the necessity for Case(ii).

Therefore, we finished the proof for the necessity of the condition.

Next, to prove the sufficiency of the condition, since the number of singular points
for the projective curve is invariant by a nonsingular linear change of coordinates
T : C3? — C3 with T(0) = 0, by the same method as we have used in the proof for the
necessity of the condition, it is enough to consider the following two cases, respectively:

Case(i): Let k =n+1and £ = m+ 1. Since k = £ by assumption, then n = m.
Note that d = ged(n, k) =1 and e = ged(m, £) = 1. So, there is nothing to prove for
Case(i), because f(y,z) = g(y, z) and then F(z,y, z) = G(x,y, z). Thus, the proof for
the sufficiency of the condition in Case(i) is done.

Case(ii): Let ¥ > n+ 2 and £ > m + 2. Suppose that there is a complex
number p with p? = 1 such that A;p' = B; for i = 1,...,d — 1 where either {m =
n and k={L}or {m+n=%k and k =/}, and d = ged(n,k) and e = ged(m, ¥).
If either {m =n and k =L} or {m+n =%k and k = (}, note that d = e.
If {m =n and k = (}, define T : C* — C3® by T(z,y,2) = (z,by,2) for some
number b such that b*/¢ = p. If {m +n =k and k = ¢}, define T : C> — C? by
T(z,y,2) = (z,by,x) for some number b such that b*/¢ = p. Then it is clear that
FoT =G whether {m=n and k=/{}or{m+n=%k and k= /(}. Thus, the
proof for the sufficiency of the condition in Case(ii) is done.



486 C. KANG

So, we finished the proof for the sufficiency of the condition in Case(i) and Case(ii).
Therefore, the proof for the projective equivalence is completely done.

THEOREM 4.2 (THE DIFFERENCE BETWEEN ANALYTIC EQUIVALENCE FOR WEIGHTED
HOMOGENEOUS POLYNOMIALS IN Cly, z] AND PROJECTIVE EQUIVALENCE FOR THEIR
HOMOGENIZATION IN C[z,y, z] FOR CASE(I) OF THEOREM 3.6).

Assumption  Let f(y,z) and g(y,z) be weighted homogeneous polynomials in
Cly, 2], and let F(z,y, z) and G(x,y, z) be the homogenization of f(y,z) and g(y, z) in
Clx, y, 2], respectively, satisfying the same assumptions and notations as in Theorem
4.1.

Let f ~ 2" 4+ y* with weights (n,k) € N x N and deg(f) =k, and let g ~ 2™ +¢/*
with weights (m,£) € N x N and deg(g) = ¢.

Conclusion — The difference between projective equivalence and analytic equiva-
lence can be represented by three cases (1), (1I) and (I111), below:

(I) Let ged(n, k) < n.

(I-a) Let m =n and k = £. Then,
F(z,y,2) ~proj G(z,y,2) in ]P)Q((C)

= f =g at origin in C2.

(Ib) Let m+n=%k and k=~{. Then,
F(2,4,2) ~prog G(a,y, ) in P2(C)
<= f~h at origin in C2.

(IT) Let ged(n, k) = n. Suppose that Ay = By =0 in (4.1.1).
(II-a) Let m =n and k = £. Then,

F(,T, Y, Z) ~proj G(l‘,y, Z) in ]PQ((C)
< f =g at origin in C2.

(Il-b) Let m+n=Fk and k=1{. Then,
F(@,y,2) ~proj G(2,y,2) in P*(C)
<= f =~ h at origin in C2.

(IIT) Let ged(n, k) = n. Suppose that either Ay # 0 or By # 0 in (4.1.1).
(IlI-a) Let m =n and k = £. Then,

F(z,y,2) ~proj G(z,y,z) in ]P)2((C)
= f =g at origin in C?.

(IIl-b) Let m+n=Fk and k=~L. Then,
F(‘Tu Y, Z) ~proj G(fl:,y, Z) m ]PQ((C)
= f = h at origin in C2.

But the converse for (1I1) does not hold, which will be proved by the next corol-
lary, Corollary 4.3.

REMARK 4.2.1. Under the same assumptions and conclusions as in Theorem
4.1, observe by Theorem 4.1 that if F(z,y,z) ~proj G(z,y,2) in P?(C) then either
{n=m and k={}or{m+n=k and k= /{}, and also by Theorem 3.6 that
(i) and (ii) are true.

(i) m=nand k =¢ <= f ~ g at the origin in C? with deg(f) = deg(g) where
fly,z) = F(1,y,2) and g(y, z) = G(1,y, 2).
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(ii)m+n=k and k=/{ < f~ hat the origin in C? with deg(f) = deg(h)
where f(y,2) = F(l,y,2) and h(z,y) = G(z,y,1).

Proof of Theorem 4.2. For the proof of the theorem, it is enough to consider the
following two cases, respectively:

Case(A) n=m and k = £.

Case(B) n+m =k and k = ¢.

Case(A) Let n = m and k = ¢. Suppose that F' ~,,.,; G in P?(C). To prove
that f ~ g at origin in C?, using the same notations and methods as we have seen
in the proof of Case(i) and Case(ii) for the necessity of the condition of Theorem 4.1,
then G(z,y,2) = FoT(z,y, z) implies that ¢g(y, z) = f(by, z), and so there is nothing
to prove. Conversely, assuming that f ~ g at origin in C? except for the case (III),
to prove that F(x,y,2) ~pro; G(,y,2) in P?(C) just follows from Theorem 2.9 and
Theorem 4.1.

Case(B) Let n+m = k and k = £. Suppose that F ~,,; G in P?(C). To prove
that f =~ h at origin in C2, using the same notations and methods as we have seen in
the proof of Case (i) and Case(ii) for the necessity of the condition of Theorem 4.1,
then G(z,y,2) = FoT(x,y, z) implies that h(y, z) = f(by, z), and so there is nothing
to prove. Conversely, assuming that f ~ h at origin in C? except for the case (III),
to prove that F(z,y, 2) ~proj G(z,y,2) in P?(C) just follows from Theorem 2.9 and
Theorem 4.1.

Moreover, it will be shown by Corollary 4.3 that the converse for the case (III) is
not true. Therefore, the proof of theorem can be completely finished.

COROLLARY 4.3. Let Fy(z,y,2) = 2222 + taoy?z + y* for any complex number
t with t* # 4. By Theorem 4.1, Fy(,y,2) ~proj Fs(z,y,2) in P*(C) if and only

if % = SQS;. But, observe by Theorem 2.9 that Fi(l,y,z) ~ Fs(1,y,2) at the
origin in C? and also Fy(1,y, z) ~ Fs(x,y,1) at the origin in C? for any s,t such that
% = % or t,f—74 # =3 Thus, an analytic equivalence at any singular point does
not give a projective equivalence.

THEOREM 4.4 (THE PROJECTIVE EQUIVALENCE FOR CASE(II) OF THEOREM 3.6).

Assumption Let f(y,z) and g(y,z) be weighted homogeneous polynomials in
Cly, z] with weights in N x Q, which are not homogeneous, with isolated singularity at
the origin in C%, assuming that f(y,z) and g(y, z) belong to Case(I1) of Theorem 3.6.

Let f ~ z(z" + y*) with weights (n,k + £) € N x Q and deg(f) =k + 1, and let
g~ z(2™ +y*) with weights (m, ¢+ L) € Nx Q and deg(g) = £+ 1.

By Theorem 3.6, we may assume without loss of generality that f(y, z) and g(y, 2)
can be represented as follows:

(4.4.1) Fy,2) = 2fi(y, 2)  with

d—1 _ .

fily,2) = 2"yt 4 3 Ay,
=1

9(y,2) = zq1(y, z) with

e—1

gily,2) = 2" +y' + 3 Byyllzlemm,
j=1
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where

(a) 1 <n <k and d=ged(n, k) with n =n1d and k = kid,

(b) 1 <m < ¢ and e = ged(m, £) with m = mye and £ = {ye,

(c) all the A; and B; are complex numbers for 1 <i<d—1andl<j<e—1,
respectively.

Now, homogenize f and g as follows:
(4.4.2) F(z,y,z) =2Pf(y/x,z/x) withp=Fk+1,
G(z,y,z) = 29g(y/x,z/x) with ¢ =1{+ 1.

Conclusion
Then F(z,y,2) ~proj G(,y, 2) in P?(C)

<= there is a complex number p with p® =1 such that A;p' = B;

fori=1,...,d—1=e—1 wheren=m and k = £.

In particular, if d = 1, then F(z,y,2) ~proj G(x,y, 2) in P?(C)

<~ {n=m and k=1{(}.

Proof of Theorem /.4. In preparation for the proof of the theorem, by (4.4.1) and
(4.4.2), F = F(x,y,2) and G = G(z,y, z) can be written by the following:
(4.4.3) F=:F with

d—1
Fl _ xk—nzn + yk + Z 14%.1,19—1’161—(d—i)nlyiklZ(d—i)nl7
i=1

G = ZGl with
e—1
Gl _ xlfmzm + yl + ZBjxlfjll7(efj)m1yjflz(efj)m1,
j=1

where the A; and Bj are complex numbers for 1 <i<d—-1and1<j<e—1.
First, to prove the necessity of the condition, suppose that F ~,.,; G in P?(C).
Then, k 4+ 1 = deg(f) = deg(g) = £ + 1, and there is a nonsingular linear change of
coordinates T : C3 — C3 with T'(0) = 0, satisfying the following conditions:
(444) FoT(x,y,z)=G(x,y,z) with
T(x,y,2) = (@12 + agy + azz,bix + bay + b3z, 12 + cay + c32),

where the a;, b;, and ¢; are complex numbers for 1 < i < 3.

Since the number of singular points for the projective curve is invariant by a non-
singular linear change of coordinates T : C* — C? with T'(0) = 0, for the proof of the
necessity of the condition, it suffices to consider the following two cases, respectively:

Case(i): If k =n+ 1 and £ = m + 1, then it is clear that F = 0 and G = 0 have
one and only one singular point in P?(C), which is denoted by (x,y,2) = (1,0,0),
and conversely. Then, we may assume that 7(1,0,0) = A(1,0,0) for some nonzero
complex number A.

Case(ii): If k > n+ 2 and ¢ > m + 2, then it is clear that F = 0 and G =
0 have two singular points in P?(C), which are denoted by (z,y,2) = (1,0,0) and
(x,y,2) = (0,0,1), and conversely. For the proof of this case, it is enough to consider
the following two subcases, respectively:
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Case(ii-a): T(1,0,0) = X(1,0,0) and T7(0,0,1) = w(0,0,1) for some nonzero
complex numbers A and p.

Case(ii-b): T'(1,0,0) = XA(0,0,1) and 7(0,0,1) = p(1,0,0) for some nonzero
complex numbers A and p.

For the proof of the necessity of the condition in these cases, by (4.4.3) and (4.4.4),
observe the followings:

(4.4.5) FoT(x,y,z)
= (1@ + c2y + e32){(a12 + a2y + a3z)k_"(01x + oy + c32)"
d—1
+ (b1 + bay + b32)" + Z AiH;(z,y,2)}
i=1
e—1
= 2{xt MM 4yt 4 Z B;K;(z,y,2)}
j=1

=G(z,y,2),

where Hi(z,y,2) = (a1x + asy + azz)* =DM (biar + boy + b32)™ (c12 + 2y +
c32) 470 and K (2, y, 2) = o 70— (emimiyity yle=g)ma

Case(i): Let k = n+1 and £ = m + 1. Note that d = ged(n, k) = 1 and
e = ged(m, £) = 1. Since F ~p.oj G in P?(C), then k + 1 = deg(f) = deg(g) = £ + 1,
and so k = ¢ and n = m. Therefore, it is clear that f(y,z) = z(2" + y*) = g(y, 2)
and F(x,y,2) = z(z¥""2z" + y*) = G(z,y,2). So, there is nothing to prove for the
necessity of the condition in this case.

Case(ii): Let k >n+2and £ > m + 2.

Case(ii-a): Suppose that 7°(1,0,0) = A(1,0,0) and 7°(0,0,1) = p(0,0,1) for

some nonzero complex numbers A and p. Now, we claim the following:
(4.4.6) T(x,y,2) = (a1, bay, c32).

From Sublemma 4.1.1 in the proof of Theorem 4.1 and the assumption of Case(ii-
a), it is clear that by = ¢; = a3 = bs = 0 and the Jacobian determinant of T is
a1b203 75 0.

For the proof of the claim in (4.4.6), it remains to show by (4.4.5) that az = ¢3 = 0.
Using (4.4.4) and (4.4.5) with by = ¢; = ag = b3 = 0, then we have the following:

(4.4.7) FoT(z,y,z) = (coy + c32){(a1x + agy)k_" (coy + c32)™
d-1

+ (bay)* + Z AiHi(z,y,2)}

e—1

=2zt M 4yt 4 Z B;K(z,y,2)}

j=1
=G(z,y,2),
where  H;(z,y,2) = (a12 + azy)** =070 (byy)®1 (cyy + c32) 47,

Kj(z,y,z) = at=30 = (emimuyils y(e=jym
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In order to prove the claim in (4.4.6), by the same notations and methods as we
have seen in Case (ii-a) of the proof of Theorem 4.1, then we can use the following
two facts (4.4.8) and (4.4.9) from (4.4.7):

(4.4.8)

H)0<k—iki—(d—i)n1=(k1—n)(d—i)<k—-nforl<i<d-1.
(11)0<z/€1 <kfor1<i<d-1

(i) 0<(d—i)ny <nforl <i<d-—1.

(iv)0<tl—jli—(e—jmi =1 —mi)le—j)<Ll—mfor1 <j<e-—1.
(V)0<jly<lforl1<j<e—1.

(vi)0<(e—j)m <mforl<j<e-—1.

(4.4.9) Whenever any monomial 2%y”27 belongs to K;(z,y, 2)
forall j=1,...,e—1, then «, 8 and ~ are all positive integers
by (iv), (v) and (vi) of (4.4.8).

Now, to prove that as = c; = 0, it is enough to consider an existence of the
coefficients of monomials y2*~"y™ and zy*~"2z" in F o T = G, respectively.

Then, it is easy to prove the following:

(a) By (4.4.7) and (4.4.9), these two monomials yz*~"y™ and zy*~"z" do not
belong to G(z,y, 2).

(b) By (4.4.7) and (i) of (4.4.8), the monomial yz*~"y" has the coefficient coat "¢}
in F oT because 2~ "y" ¢ H;(x,y,z) for any i = 1,...,d — 1, if exists.

(¢) By (4.4.7) and (iii) of (4.4.8), the monomial zy*~"2" has the coefficient

03(1’5 "¢ in F o T because y*"2" & H;(x,y,2) for any i = 1,...,d — 1, if exists.

Because F'o T = G and the Jacobian determinant of T" is ajbacs # 0, then it is
trivial by (a), (b) and (c) that coa?™"c§ = c3ak" ¢4 = 0, and therefore ¢y = ap = 0.
Thus, we proved that T'(z,y, z) = (a1, b2y, c3z) in (4.4.6).

Using (4.4.6) and (4.4.7), then we have the following:
d—1

(44.10) FoT(z,y,2) = csz{(a12)" "(c32)" + (bay)* + > _ AiHi(z,y,2)}

i=1

e—1
j=1
= G(z,y,2),
where  Hi(,y,2) = (a12)" =" =70 (byy) ™ (eg2) 470,
Kj(x7y7z) = l’g_jgl_(e_-])mlyjﬁz(e—]) 1

From (4.4. 10) with (4 4.8) and (4.4.9), comparing the coefficients of monomials
2% 2" and 2y and zgF k1= (d=Dnagik (d=Dn1 iy PoT (z,y, 2), with the coefficients
of monomials zz!~"2™ and zy’ and zzt—71—(e=0)miyits (e=i)ma
in G(z,y, z), respectively on both sides where 1 <7 <d—1and 1 <j <e—1, then
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we get the following equations: Note that d = ged(n, k) and e = ged(m, £).
(4.4.11) 222" = 2™ 2™ and zyF = 2yt
imply that n=m and k =/, and
czak ey =1, csbh =1 and

C3Aialf_ik1_(d_i)nlbéklcgd_i)m =B, for 1<i<d-1=e—1.
Using (4.4.11) with 03(1]1“_."0{,} = 1, then @,Amfﬁikl7(d7i)nlb§klcéd7i)”l = B, can
be rewritten as Aial_z(kl_nl)bzflcg_ml = B;.
Let p = af(klfnl)bglcgm. By (4.4.11), p = 1 and then A;p' = B, for each
i =1,---,d— 1. Thus, the proof for the necessity of the condition in Case (ii-a) is
done.

Case(ii-b): Suppose that T(1,0,0) = X(0,0,1) and 7(0,0,1) = u(1,0,0) for
some nonzero complex numbers A and p.

We claim that there is no such case.

Assume the contrary. From Sublemma 4.1.2 in the proof of Theorem 4.1 and the
assumption of Case(ii-b), it is clear that a; = by = bg = ¢3 = 0, and also the Jacobian
determinant of T" is —agbacy # 0.

Using (4.4.3) and (4.4.5) with a; = b; = b3 = ¢3 = 0, then we have the following:

(4.4.12) FoT(x,y,z) = (c1x + coy)F1 o T(x,y,2) with

FyoT(x,y,2) = (agy + asz)* " (crz + coy)™ + (bay)*

d—1

+Y  AiHi(z,y,2),
i=1

G(z,y,2) = zG1(x,y,2z) with

e—1

Gi(w,y,2) =" 2"+ 4"+ BKj(x,y,2),
j=1
where H;(z,y,z) = (a2y + a3z)k—ik1—(d—i)n1 (b2y)ik1 (cra + 02y)(d_i)"1,

Ki(z,y,2) = .’L'Z_jgl_(e_j)mlyjélz(e—j)ml'

For an easy proof, by the defining equations of F' = F(x,y, z) and G = G(z,y, 2)
in (4.4.3), F and G can be rewritten in the following form:

(4.4.13) F(z,y,z) = zF1(z,y,2) with
d
Fi(z,y,2) = [ [ mem + 5™,
i=1

G(z,y,2) = zG1(z,y,z) with

Gl(x7y’2) _ H(xh—mlzml 4 tiyh%

Jj=1

where
(a) all the s; are nonzero distinct complex numbers for 1 < i < d,
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(b) all the t; are nonzero distinct complex numbers for 1 < j <e,
(C) O0<ki—ni<kiand0</?l—mg <.

From (4.4.12) and (4.4.13), if F o T = G, then ciz 4+ ¢y = az for a nonzero
constant «, because 0 < k1 —n1 < k; and 0 < 1 —my < ¢ imply that two plane
curves F' = 0 and G = 0 have one and only one line at the same time, when F' = 0
and G = 0 have a unique decomposition into irreducible curves in P?(C), respectively.
This would be impossible.

Thus, the claim for this case is proved, and then the proof for the necessity of the
condition in Case(ii-b) is done. So we proved the necessity for Case(ii).

Therefore, we finished the proof for the necessity of the condition.

Next, to prove the sufficiency of the condition, since the number of singular points
for the projective curve is invariant by a nonsingular linear change of coordinates
T : C* — C3 with T(0) = 0, then by the same method as we have seen in the proof
for the necessity of the condition, it is enough to consider the following two cases,
respectively:

Case(i): Let k =n+ 1 and £ = m + 1. Since k = ¢ by assumption, then n = m.
Note that d = ged(n, k) =1 and e = ged(m, £) = 1. So, there is nothing to prove for
Case(i), because f(y,z) = g(y, z) and then F(z,y, z) = G(,y, z). Thus, the proof for
the sufficiency of the condition in Case(i) is done.

Case(ii): Let £k > n+2 and £ > m+ 2. Suppose that there is a complex number
p with p? = 1 such that A;p' = B; for i = 1,2,...,d — 1 where m = n and k = ¢, and
d = ged(n, k). Define T : C3 — C3 by T(x,vy,2) = (z,by, 2) for some number b such
that b*/¢ = p, and then it is clear that FoT = G.

So, the proof of sufficiency is done in any case.

Therefore, the proof for the projective equivalence is completely finished.

THEOREM 4.5 (THE DIFFERENCE BETWEEN ANALYTIC EQUIVALENCE FOR
WEIGHTED HOMOGENEOUS POLYNOMIALS IN Cly, z] AND PROJECTIVE EQUIVALENCE
FOR THEIR HOMOGENIZATION IN Clz,y, 2] FOR CASE(II) OF THEOREM 3.6).

Assumption  Let f(y,z) and g(y,z) be weighted homogeneous polynomials in
Cly, 2], and let F(z,y, z) and G(x,y, 2) be the homogenization of f(y,z) and g(y, z) in
Clx, y, 2], respectively, satisfying the same assumptions and notations as in Theorem
4.4.

Let f ~ z(2" + y*) with weights (n,k + £) € Nx Q and deg(f) =k + 1, and let
g~ z(2™ 4+ y*) with weights (m, 0+ L) € Nx Q and deg(g) = + 1.

Conclusion  The difference between projective equivalence and analytic equiva-
lence can be represented by three cases (1), (II) and (III), below:

(I) Let ged(n, k) < n. Then,
F(@,,2) ~praj Gl,,2) in P2(C)

= f =g at origin in C2.

(I) Let ged(n, k) = n. Suppose that Ay = By =0 in (4.4.1). Then,
F(‘Tu Y, Z) ~proj G(x,y, Z) m ]PQ((C)

= f =g at origin in C2.

(IIT) Let ged(n, k) = n. Suppose that either Ay # 0 or By # 0 in (4.4.1). Then,
F(‘Tu Y, Z) ~proj G(fl:,y, Z) m ]PQ((C)
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= f =g at origin in C?.

But the converse for (II1) does not hold, which will be proved by the next corol-
lary, Corollary 4.6.

REMARK 4.5.1. Under the same assumptions and conclusions as in Theorem 4.4,
observe by Theorem 4.4 that if F(z,y,2) ~proj G(z,y,2) in P?(C) then n = m and
k = ¢, and also by Theorem 3.6 that the followings () are true.

() m=mnand k = <= f ~ g at the origin in C? with deg(f) = deg(g)
where f(y,z) = F(1,y,2) and g(y,2) = G(1,y, 2).

Proof of Theorem 4.5. The proof of the theorem can be done by the same way as
we have seen in the proof of Theorem 4.2.

COROLLARY 4.6. For example, let f(y,z) = 2(2%2 + vy*) and g(y,2) = z(2? +
?%y% +yb). Put F(x,y,2) = 2°f(y/x,z/x) and G(x,y,z) = 2°g(y/x,z/x). Then,
F(z,y,2) #proj G, y, 2) in P2(C), but F(1,y,2) ~ G(1,y,2) at the origin in C* and
also F(z,y,1) ~ G(x,y,1) at the origin in C2, too. Thus, locally analytic equivalence
at any singular point does not give a projective equivalence.

Proof of Corollary 4.6. Let f(y,z) = z(2? + y*). Then, f(y,z) ~ 2(2*> —y*) =
2(z—y?)(24+9?) ~ 2(2+y?) (2+2y?) = 2(2%+3y?2+2y*). Define h(y, z) = 2(2%+3y?2+
2y*). Then, h(y, 2) = z(2®+572=y*2+y*) = g(y, 2). So, f(y,z) = g(y, z), but it is clear
by by Theorem 4.4 that F(z,y, z) = 2° f(y/x, z/x) and G(z,y, z) = 2°g(y/x, z/x) are
not projectively equivalent in P?(C). Note that F(z,y,1) ~ G(z,y, 1) at the origin in
C2. Thus, the proof is done.

5. The projective equivalence of plane curves defined by the homoge-
nization of weighted homogeneous polynomials whose weights € (Q — N) x Q
and its applications. Throughout this section, we study Case(III) of Theorem 3.6
in terms of Theorem 5.1 and Theorem 5.2, and study Case(IV) of Theorem 3.6 in
terms of Theorem 5.4 and Theorem 5.5, respectively.

THEOREM 5.1(THE PROJECTIVE EQUIVALENCE FOR CASE(III) OF THEOREM
3.6).
Assumption Let f(y, z) and g(y, z) be weighted homogeneous polynomials with no
positive integer weights in Cly, z], which are not homogeneous, with isolated singularity
at the origin in C%, assuming that f(y,z) and g(y,z) belong to Case(IIl) of Theorem
3.6.

Let f ~ y(2"+y*) with weights (n+ %,k+1) € (Q = N) x N and deg(f) = k+1,
and let g ~ y(z™ +y") with weights (m+ 2, £+1) € (Q — N) x N and deg(g) = (+1.
By Theorem 3.6, we may assume without loss of generality that f(y,z) and g(y, z) can
be represented as follows:

(5.1.1) fly,2) =yfi(y,z) with
d—1 _ .
fily,2) = 2"yt 4 3 A,
=1
9(y,2) = yg1(y,z) with
e—1
gily,2) = 2" +y' + 3 Byyllzlemm,
j=1
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where

(a) 1 <n <k and d=ged(n, k) with n =n1d and k = kid,

(b) 1 <m < ¢ and e = ged(m, £) with m = mye and £ = {ye,

(c) all the A; and B; are complex numbers for 1 <i<d—1andl<j<e—1,
respectively.

Now, homogenize f and g as follows:

(5.1.2) F(z,y,z) =2 f(y/x,z/x) withp=k+1,
G(z,y,z) = 2lg(y/x,z/x) with ¢ =1{+ 1.

Conclusion
Then, F(x,y,2) ~proj G(,y, 2) in P*(C)
<= there is a complex number p with p® = 1 such that A;p' = B; for i =
1,...,d — 1 where either {m=n and k=/{L} or{m+n=k and k=1/1}.

In particular, if d =1, then F(z,y,2) ~prwoj G(x,y, ) in P?(C)
<« cither {m=n and k=L}or{m+n=k and k=1/1}.

Proof of Theorem 5.1. In preparation for the proof of the theorem, by (5.1.1) and
(5.1.2), F = F(x,y,2) and G = G(z,y, z) can be written by the following:

(5.1.3) F=yF, with
d—1
F = pk=n,n + yk + ZIéll_xlcfikl7(d7i)n1yiklZ(dfi)m7
=1
G= yGl with

e—1
Gr = 2 g 4 3 Bt It (eim i eim,
j=1

where the A; and B; are complex numbers for 1 <i<d—-1land1<j<e-—1.

First, to prove the necessity of the condition, suppose that F' ~,.,; G in P?(C).
Then, k 4+ 1 = deg(f) = deg(g) = £+ 1, and there is a nonsingular linear change of
coordinates T : C? — C3 with T'(0) = 0, satisfying the following conditions:

(5.1.4) FoT(x,y,z)=G(x,y,z) with
T(x,y,2) = (a1 + agy + a3z, b1w + bay + b3z, 12 + cay + c32),

where the a;, b;, and ¢; are complex numbers for 1 <4 < 3.

Since both F' = 0 and G = 0 have exactly two singular points in P?(C), which are
denoted by (x,y,2) = (1,0,0) and (x,y, z) = (0,0, 1), for the proof of the necessity of
the condition, it suffices to consider the following two subcases, respectively:

Case(i-a) T(1,0,0) = A(1,0,0) and T(0,0,1) = (0,0, 1) for some nonzero com-
plex numbers A and p.

Case(i-b) T'(1,0,0) = X(0,0,1) and T7'(0,0,1) = u(1,0,0) for some nonzero com-
plex numbers A and p.

For the proof of the necessity of the condition in these cases, by (5.1.3) and (5.1.4),
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observe the followings:
(5.1.5)
FoT(z,y,z2)

= (b + bay + b32){(a17 + azy + a32) " (c12 + coy + c32)"™ + (byx + boy + b32)F
d—1

+ D A(arw + agy + ag2)" T F I bz 4 oy + bg2) M (1w + coy + e32) O™
i=1
e—1
:y{xl m m+y +ZB =il - (e—j)ma JEl (e Jml}
j=1
= G(x,y,2).

Case(i-a): Suppose that T'(1,0,0) = A(1,0,0) and 7(0,0,1) = u(0,0, 1) for some
nonzero complex numbers A and p. Now, we claim that

(5.1.6) T(x,y,2) = (a1, b2y, c32).

By Sublemma 4.1.1 in the proof of Theorem 4.1 and by the assumption of Case(i-
a), it is clear that by = ¢; = a3 = bs = 0 and the Jacobian determinant of T is
aleC3 75 0.

For the proof of the claim in (5.1.6), it remains to show by (5.1.5) that ag = ¢ = 0.

Using (5.1.4) and (5.1.5) with by = ¢; = az = b3 = 0, then we have the following:

(517) Fo T(Ia Y, Z) = (be){(CLlI + CLQy)kin(CQy + ng)n + (be)k
d—1
+> AiH,(x,y,2)}
i=1
e—1
=y{a" "y 4 Y BK(@,y,2)}
j=1
=G(2,y,2),
where  Hi(z,y,2) = (ara + agy)* =" =070 (byy)™1 (coy + ¢32) =™,
Kj(x, v, z) — Ié—jfl—(e—j)mlyjélz(e_j)ml

For the proof of the claim in (5.1.6), using the same notations and methods as
we have seen in Case (ii-a) for the proof of Theorem 4.1, then observe the following
two facts (5.1.8) and (5.1.9) from (5.1.7):

(5.1.8)

()O<I€—’Lk1 (d—z)nl (kl—nl)(d—z)<k—nf0r1§z§d—1
(11)0<z/€1 <kfor1<i<d-—1

(i) 0<(d—i)ng <nforl<i<d-—1.

(iv)0<l—jli—(e—j)ym =1 —mi)(e—j)<l—mforl<j<e-—1
(V)0<jly<lforl1<j<e-—1.
(vij0<(e—g)mi<miforl<j<e-—1.

(5.1.9) Whenever any monomial 2%y” 2" belongs to K;(z,y, 2)

for all j =1,. — 1, then «, 8 and ~ are all positive integers
by (iv), (v) and ( ) of (5.1.8).
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Now, to prove that as = co = 0, it is enough to consider an existence of the
coefficients of monomials y2*~"y" and yy*~"2" in F o T = G, respectively.

Then, it is easy to prove the following:

(a) By (5.1.7) and (5.1.9), two monomials yz*~"y" and yy*~"2" do not belong
to G(z,y, 2).

(b) By (5.1.7) and (i) of (5.1.8), the monomial yz*~"y" has the coefficient boa¥~" ¢
in F oT because z¥~"y" & H;(x,y, z) for any i = 1,.. d 1, if exists.

(¢) By (5.1.7) and (iii) of (5.1.8), the monomial yy’C "z™ has the coefficient
bgak "cin F o T because y*"2" ¢ H;(x,y,2) for any i = 1,...,d — 1, if exists.

Because F'oT = G and the Jacobian determinant of T' is ajbacs # 0, then it is

trivial by (a), (b) and (c) that bpa¥ "¢l = boab ¢4 = 0, and therfore ¢y = ag = 0.
Thus, we proved that T'(x,y, z) = (a1, bay, c32) in (5.1.6).

Using (5.1.6) and (5.1.7), we have the following;:

d—1
(5.1.10)  FoT(a,y,2) = (bay){(@12)* " (cs2)" + (bo)* + > AHi(w,y, 2)}
i=1
e—1
=y{atmem 4yt +ZBK (z,y,2)}
Jj=1
= G('r?y’ Z)’
where H;(x,y,2) = (alx)k*ikr(d*i)m(bzy)ikl(cgz)(dfi)nlj

Kj(x,y,2) = a0 = (emimuyits y(e=jym

From (5.1.10) with (5.1.8) and (5.1.9), comparing the coefficients of monomials
yz*"2" and yy* and ygF—tki—(d=dnagik(d=n1 iy B o T(x,y, z), with the coeffi-
cients of monomials yz‘~™2™ and yy¢ and yat—76 —(e=imiyils z(e=j)mi jp G(z,y,2),
respectively on both sides where 1 < ¢ < d—-1and 1 < j < e — 1, then we get the
following equations: Note that k = ¢, d = ged(n, k) and e = ged(m, £).

(5.1.11) yaF " = ya' = ™2™ and yy* = gyt
imply that n =m and k =/, and
boa el =1, bobh =1 and

bzAialf_ikl_(d_i)nlbéklcgd_i)"l =B, for 1<i<d—-1=e—-1.

Using (5.1.11) with b2a "¢y =1, then bQAialffikl7(d7i)nlb§k1céd7i)m = B, can
be rewritten as A;a; ik nl)blk1 5" = B,

Let p = ay ™ ™pkie;™ . By (5.1.11), p? = 1, and then A;p = B; for cach
i=1,---,d—1. Thus, the proof for the necess1ty of the condition in Case(i-a) is
done.

Case(i-b): Suppose that T'(1,0,0) = (0,0, 1) and 7(0,0,1) = u(1,0,0) for some
nonzero complex numbers A and p. Now, we claim that

(5.1.12) T(x,y,2) = (a3, by, c12).
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By Sublemma 4.1.2 in the proof of Theorem 4.1 and by the assumption of Case(i-
b), it is clear that a; = by = b3 = ¢35 = 0, and also the Jacobian determinant of T is
—agbgcl 7§ O, if exists.

For the proof of the claim in (5.1.12), it remains to show by (5.1.4) that as =
Coy = 0.

Using (5.1.4) and (5.1.5) with a; = b; = b3 = ¢3 = 0, then we have the following:

(5.1.13) FoT(x,y,2) = (bay){(azy + as2)* " (c1z + cay)" + (bay)"
d—1
=1
e—1
=y{z"""" +y' + > BiK (x,y,2)}
j=1
= G(z,y,2),
where H;(z,y,2) = (a2y + azz)F =1 =@=0m1 (o0 )ik1 (01 2 4 o) (d=m

Ki(x,y,2) = xf*jflf(efj)fmyﬂlz(efﬂ')ml

Now, to prove that as = co = 0, it is enough to compute an existence of the
coefficients of monomials yy*~"z" and yz*~"y" in FoT = G of (5.1.13), respectively.
For such computations, use two facts (5.1.8) and (5.1.9) by the same notations and
methods as we have seen in the proof of Case (i-a) of this theorem.

Then, it is easy to prove the following:

(a) By (5.1.13) and (5.1.9), two monomials yy*~"z" and yz*~"y" do not belong
to G(z,y, 2).

(b) By (5.1.13) and (iii) of (5.1.8), the monomial yy*~"z" has the coefficient
k- "ctin F oT because y*"z" ¢ H;(z,y,z) for any i = 1,...,d — 1, if exists.

(c) By (5.1.13) and (i) of (5.1.8), the monomial yz*~"y™ has the coefficient
bgagfncg in FoT, because z*~"y" & H;(z,y, z) for any i = 1,...,d — 1, if exists.

Because F'oT = G and the Jacoblan determinant of T is —agbacy # 0, then it
is trivial by (a), (b) and (c) that byab ™c} = baal "c§ = 0, and therefore implies
ag = ¢ = 0. Thus, we proved that T(x,y, z) = (azz, b2y, c12) in (5.1.12).

Using (5.1.12) and (5.1.13), we have the following:

bQCL

(5.1.14) FoT(z,y,2) = bay{(azz)* " (c1z)™ + (boy)* ZA H(z,y,z

e—1
=y{ztmem 4yt —i—ZBK (z,y,2)}

j=1
= G(x7 y5 Z);
where  H(z,y,2) = (agz)* %17 070M (byy) ™1 (cyz) =0
Kj(x,y,2) = a0 = (emimuyilts y(e=jym

From (5.1.14) with (5.1.8) and (5.1.9), comparing the coefficients of monomials

yzF ™ and yyF and yzFot - d=dmgikigd=in iy B o T(z,y, z), with the coeffi-
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cients of monomials yz‘~™2™ and yy¢ and yatf—76 —(e=imiyili z(e=j)mi jp G(z,y,2),
respectively on both sides where 1 < i <d—1and 1 < j < e —1, then we get the
following equations: Note that k = ¢, d = ged(n, k) and e = ged(m, £).

(5.1.15) Yz = yatT ™2™ and yy* = gyt
imply that k=¢=n+m, and
boal™"ch =1, bobs =1 and

bzAialg_ikl_(d_i)"lbéklcgd_i)"l =B; for 1<i<d-1=e-—1,

noting by (5.1.15) that yzF—tki—(d=tnigikig(d=iny ang ggpl—iti—(e—i)ymy ity ;(e—i)m
are the same monomials. _ _ _

Using (5.1.15) with bpak™"¢? = 1, then bgAiagﬂkl7(d71)n1b§klc§dﬂ)m = B, can
be rewritten as Aia;(kl_m)b;klcl_ml = B;.

Let p = ag(klfm)bglcf"l. By (5.1.15) p? = 1, and then A;p' = B, for each
i=1,---,d—1

Thus, the proof for the necessity of the condition in Case(i-b) is done.

Therefore, we finished the proof for the necessity of the condition.

Next, to prove the sufficiency of the condition, suppose that there is a complex
number p with p? = 1 such that A;p' = B; for i = 1,...,d — 1 where either {m =
n and k={L}or{m+n=%k and k =/}, and d = ged(n,k) and e = ged(m, ¥).
If either {m =n and k ={} or {m+n =k and k = (}, note that d = e.
If {m =n and k = (}, define T : C>* — C?® by T(z,y,2) = (z,by,2) for some
number b such that b*/¢ = p. If {m +n =k and k = ¢}, define T : C> — C? by
T(z,y,2) = (z,by,x) for some number b such that b*/¢ = p. Then it is clear that
FoT = G whether {m =n and k={(}or {m+n=%k and k = {¢}. So, the
proof of the sufficiency is done.

Therefore, the proof for the projective equivalence is completely finished.

THEOREM 5.2 (THE DIFFERENCE BETWEEN ANALYTIC EQUIVALENCE FOR WEIGHTED
HOMOGENEOUS POLYNOMIALS IN (C[y, Z] AND PROJECTIVE EQUIVALENCE FOR THEIR
HOMOGENIZATION IN C[z,y, z] FOR CASE(III) OF THEOREM 3.6).

Assumption  Let f(y,z) and g(y,z) be weighted homogeneous polynomials in
Cly, 2], and let F(z,y, z) and G(x,y, z) be the homogenization of f(y,z) and g(y, z) in
Clx, y, 2], respectively, satisfying the same assumptions and notations as in Theorem
5.1.

Let f ~ y(2"+y*) with weights (n+ %,k+1) € (Q — N) x N and deg(f) = k+1,
and let g ~ y(z™ +y") with weights (m+ 2, £+1) € (Q — N) x N and deg(g) = (+1.

Conclusion  The difference between projective equivalence and analytic equiva-
lence can be represented by three cases (1), (1I) and (111), below:

(I) Let ged(n, k) < n.

(I-a) Let m =n and k = £. Then,
F(z,y,2) ~proj G(z,y,2) in ]P)Q((C)

< f =g at origin in C2.

(I-b) Let m +n =k and k = £. Then,
F(‘Tu Y, Z) ~proj G(fl:,y, Z) m ]PQ((C)
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<= f =~ h at origin in C2.

(IT) Let ged(n, k) = n. Suppose that Ay = By =0 in (5.1.1).
(II-a) Let m =n and k = £. Then,

F(,T, Y, Z) ~proj G(l‘,y, Z) in ]PQ((C)
= f =g at origin in C2.

(II-b) Let m+n =k and k = {. Then,
F(‘Tu Y, Z) ~proj G(fl:,y, Z) m ]PQ((C)
<= f = h at origin in C2.

(IIT) Let ged(n, k) = n. Suppose that either Ay # 0 or By # 0 in (5.1.1).
(IlT-a) Let m =n and k = £. Then,

F(;Ev Y, Z) ~proj G(l‘,y, Z) in ]P)Q((C)
= f =~ g at origin in C2.

(IIl-b) Let m+n =k and k = £. Then,
F((E, Y, Z) ~proj G(fl:,y, Z) m ]P)Z((C)
= f =~ h at origin in C>.

But the converse for (1I1) does not hold, which will be proved by the next corol-
lary, Corollary 5.3.

REMARK 5.2.1. Under the same assumptions and conclusions as in Theorem
5.1, observe by Theorem 5.1 that if F(x,y,2) ~proj G(z,9,2) in P?(C) then either
{n=m and k={4}or {m+n=k and k= {}, and also by Theorem 3.6 that
the followings (i) and (ii) are true.

(i) m=mnand k = <= f ~ g at the origin in C? with deg(f) = deg(g) where
fy,z) = F(L,y,2) and g(y, 2) = G(1,y, 2).

(ii) {m+n =4k and k=/{(} < f ~ h at the origin in C? with deg(f) =
deg(h) where f(y,z) = F(1,y,2) and h(z,y) = G(z,y,1).

Proof of Theorem 5.2. The proof of the theorem can be done by the same way as
we have seen in the proof of Theorem 4.2.

COROLLARY 5.3. Let Fy(x,y,2) = y(x?2% + tzy?z + y*) for any complex number
t with t* # 4. By Theorem 5.1, Fy(z,y,2) ~proj Fs(x,y,2) in P*(C) if and only if
% = %. But, observe by Theorem 2.9 that Fy(1,y,2) = Fs(1,y,2) at (y,z) =
(0,0) in C? and also Fy(1,y,2) ~ Fs(z,y,1) at the origin in C? for any s,t such that
% = % or % #+ %. Thus, an analytic equivalence at any singular point does
not give a projective equivalence.

THEOREM 5.4 (THE PROJECTIVE EQUIVALENCE FOR CASE(IV) OF THEOREM
3.6).
: Assumption Let f(y, z) and g(y, z) be weighted homogeneous polynomials in Cly, z],
which are not homogeneous, with isolated singularity at the origin in C2, assuming that
f(y, z) and g(y, z) belong to Case(IV) of Theorem 3.6.

Let f ~ yz(z" + y*) with weights (n + 1+ 2 k+1+ £) € (Q—N) xQ and
deg(f) = k+2, and let g ~ yz(z™ + y*) with weights (m+ 1+ 2,0+ 1+ L) €
(Q—N) x Q and deg(g) = £+ 2.
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By Theorem 3.6, we may assume without loss of generality that f(y, z) and g(y, 2)
can be represented as follows:

(5.4.1) [y, 2) =yzfily,z) with
d—1 _ _
fily,z) = 2" + yk + ZAiyzlﬂZ(dfz)nl,
i=1
9y, 2) = yzg1(y, 2)  with
e—1
gily.2) ==z"+y ) Byl
j=1
where
a) 1 <n <k and d = ged(n, k) with n =nid and k = k1d,
1 k and d d(n, k) with d and k = k1d
(b) 1 <m < £ and e = ged(m, £) with m =mye and { = lye,
(c) all the A; and B; are complex numbers for 1 <i<d—1andl <j<e-1,
respectively.
Now, homogenize f and g as follows:

(5.4.2) F(z,y,z) =2 f(y/x,z/x) withp=Fk+2,
G(z,y,z) = 29g(y/x,z/x) with ¢ =+ 2.

Conclusion
F(z,y,2) ~proj G(z,y, 2) in P?(C)
<= there is a complex number p with p® = 1 such that A;p' = B; for i =
1,...,d—1=e—1 wheren=m and k = £.
In particular, if d =1, then F(z,y,2) ~proj G(z,y, 2) in P?(C)
<~ n=mand k =1/

Proof of Theorem 5.4. In preparation for the proof of the theorem, by (5.4.1) and
(5.4.2), F = F(x,y,2) and G = G(z,y, z) can be written by the following:

(5.4.3) F =yzF, with

d—1
F = pk=n,n + yk + Z Iéll_mkfikl7(d7i)n1yiklZ(dfi)nl7
=1
G =yzG; with
e—1
G = a4yt + S Byt i e,
j=1

where the A; and B; are complex numbers for 1 <i<d—-land1<j<e-—1.

First, to prove the necessity of the condition, suppose that F ~,.,; G in P?(C).
Then, k 4+ 2 = deg(f) = deg(g) = £+ 2, and there is a nonsingular linear change of
coordinates T : C3 — C? with T'(0) = 0, satisfying the following conditions:

(5.4.4) FoT(z,y,z)=G(z,y,z) with
T(z,y,2) = (a7 + a2y + a3z,b17 + bay + baz, c17 + c2y + 32),

where the a;, b;, and ¢; are complex numbers for 1 <4 < 3.
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Since both F = 0 and G = 0 have exactly two singular points in P?(C), which are
denoted by (x,y,2) = (1,0,0) and (z,y, z) = (0,0, 1), for the proof of the necessity of
the condition, it suffices to consider the following two subcases, respectively:

Case(i-a) T(1,0,0) = A(1,0,0) and 7(0,0,1) = (0,0,1) for some nonzero complex
numbers A and p.

Case(i-b) T'(1,0,0) = X(0,0,1) and T(0,0,1) = 1(1,0,0) for some nonzero complex
numbers A and .

For the proof of the necessity of the condition in these cases, by (5.4.3) and (5.4.4),
observe the followings:

(5.4.5)
FoT(x,y,z)

= (byz + bay + b3z)(c12 + coy + c32)
x {(ar1z + azy + az2)* " (c1z + coy + c32)" + (b + boy + byz)*

d—1
+ Z Ai(arz + agy + azz)F T F @M (b o 4oy + b32) 1 (cr + ey 4 e32) T
i=1
e—1
_ yz{xe’mzm + yE + Z Bjxffjfl7(efj)m1yjflz(efj)m1}
j=1
= G(x,y,2).

Case(i-a): Suppose that T'(1,0,0) = A(1,0,0) and 7°(0,0,1) = u(0,0, 1) for some
nonzero complex numbers A and p. Now, we claim that

(5.4.6) T(x,y,2) = (a1, b2y, c32).

By Sublemma 4.1.1 in the proof of Theorem 4.1 and by the assumption of Case(i-
a), it is clear that by = ¢ = ag = b3 = 0 and the Jacobian determinant of T is
a1b203 }é 0.

For the proof of the claim in (5.4.6), it remains to show by (5.4.5) that ag = ¢ = 0.

Using (5.4.4) and (5.4.5) with by = ¢; = a3 = b3 = 0, then we have the following:

(5.4.7) FoT(z,y,z) = (bay)(cax + c32){ (a1 + a2y)* " (coy + c32)™ + (bay)"
d—1
+ Z AiHi(xa Y, Z)}
i=1
e—1
= yz{a" "™ £yt + Z B;K;(z,y,2)}
=1
= G(2,y,2),
where  H;(z,y,2) = (a12 + asy)*F1 =@M (hy0)ik1 )y 4 q2)(d=0m

Kj(z,y,2) = xffﬂl*(efj)mlyjflz(efj)ml'

For the proof of the claim in (5.4.6), using the same notations and methods as

we have seen in Case (ii-a) for the proof of Theorem 4.1, then observe the following
two facts (5.4.8) and (5.4.9) from (5.4.7):
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(5.4.8)
()0<k—ik1—(d—i)nyr=(k1 —n1)(d—i)<k—nfor1 <i<d-1.
(1)O<zk1<kf0r1<z<d—1

(i) 0<(d—i)ny <nforl1 <i<d-—1.

(iv)0<l—jli—(e—g)ym =1 —mi)(e—j)<l—mforl<j<e—1

(v)0<jli<flforl<j<e-—1.

(vij0< (e—g)mi<miforl<j<e-—1.

(5.4.9) Whenever any monomial 2%y%2” belongs to K,(z,y, 2)
forall 7 =1,...,e—1, then «, 8 and v are all positive integers
by (iv), (v) and (vi) of (5.4.8).

Now, to prove that as = co = 0, it is enough to consider an existence of the
coefficients of monomials (yz)z*~"y" and (yz)y*~"z" in F o T = G, respectively.

Then, it is easy to prove the following:

(a) By (5.4.7) and (5.4.9), two monomials (yz)x*~"y" and (yz)y* "z" do not
belong to G(z,y, 2).

(b) By (5.4.7) and (i) of (5.4.8), the monomial (yz)z*~"y™ has the coefficient

(bacs)at "¢} in F o T because 25"y & Hy(x,y, z) for any i = 1,...,d — 1, if exists.
(c) By (5.4.7) and (iii) of (5.4.8), the monomial (yz)y*~"z" has the coefficient
(bgc;g)a’;*”cgL in F oT because y*~"2" ¢ H;(x,y,z) for any i = 1,...,d — 1, if exists.

Because F' o T' = G and the Jacobian determinant of T is aibacs # 0, then it
is trivial by (a), (b) and (c) that (bac3)a® "ch = (bacz)ah "c? = 0, and therefore
co = ag = 0. Thus, we proved that T'(z,y, z) = (a1, bay, c3z) in (5.4.6).

Using (5.4.6) and (5.4.7), we have the following:

d—1
(5410) FoT(r,y,2) = (ay)ess){(an) (52" + (bay)* + 3 AiHi(,y,2)}
i=1
e—1
= yz{a""2" +y" + > BiK(n,y,2)}
Jj=1
= G(x7y, Z),
where H;(z,y,z) = (a1I)k*ikl*(d*i)m(bzy)ikl(CBZ)(dfi)m7
Kj(x,y,z) = xe*jel’(e*j)mlyﬂlz(efj)ml'
From (5.4.10) with (5.4.8) and (5.4.9), compare the coefficients of monomials

(yz)z* "2, (yz)y*, and (yz)ak— 1 —(d=dmyiki(d=Om iy o T(z,y,z), with the
coefficients of monomials (yz)z!=™2™, (yz)y’ and (yz)az!—70—(e=)migyiti zle=im ip
G(z,y, z), respectively on both sides Where 1<i<d—-1land1<j<e—1. Then, we
get the following equations: Note that k42 = ¢+ 2, d = ged(n, k) and e = ged(m, £).

(5.4.11) yzaF 2" = yzat ™2™ and yzyt = yayt
imply that n=m and k=¢, and
(bgCg) fe— "cg = 1, (bQCg)béC =1 and
(b203)Aia1 1= (dfi)mbéklcéd%)m =B, for 1<i<d-1=e—1.



PROJECTIVE EQUIVALENCE 503

Using (5.4.11) with (bac3)a "¢y = 1, then (bgC3)Aialf7ikl7(d7i)"1bék1cgdfi)"l =
B; can be rewritten as Aial_i(kl_m)béklcgml = B;.

Let p = a;(kﬁ"l)bglcgm. By (5.4.11), p? = 1, and then A;p’ = B; for each
i=1,--+-,d —1. Thus, the proof for the necessity of the condition in Case (i-a) is
done.

Case(i-b): Suppose that T'(1,0,0) = (0,0, 1) and 7(0,0,1) = u(1,0,0) for some
nonzero complex numbers A and .

We claim that there is no such case.

Assume the contrary. By Sublemma 4.1.2 in the proof of Theorem 4.1 and by the
assumption of Case(i-b), it is clear that a; = by = bs = ¢3 = 0, and also the Jacobian
determinant of 7' is —agbacy # 0.

Using (5.4.4) and (5.4.5) with a; = b; = b3 = ¢3 = 0, then we have the following:

(5.4.12) FoT(z,y,2) = (bay)(c1z + coy)F1 o T(x,y,2) with
FroT(z,y,2) = (az2y + azz)* " (c1z + cay)™ + (b2y)"

d—1
+ Z AiHi(‘T?ya 2)7
=1

G(x,y,z) = y2G1($7y72) with
e—1
Gi(z,y,2) =2 "2+ + Y BiK,(w,y,2),
j=1
where H;(z,y,z) = (a2y + a3z)k—ik1—(d—i)n1 (be)ikl (crz + CQy)(d_i)"l,

Kj(x,y, z) — xf—j&—(e—j)mlyjélz(e_j)ml.

To find an easy proof, from the defining equations of F' = F(z,y,2) and G =
G(z,y,2) in (5.4.3), F and G can be rewritten as follows:

(5.4.13) F(z,y,2) =yzFi(x,y,2z) with
Fi(z,y,2) = ﬁ(mkl_"lzm + siy*1),

G(z,y,z) = ;:zlGl(x,y,z) with
Gi(z,y,2) = ﬁ(zel*mlzml + tiy"),

j=1

where
(1) all the s; are nonzero distinct complex numbers for 1 < i < d,
(2) all the t; are nonzero distinct complex numbers for 1 < j <e,
(3) 0<ki—ni<kiand0</{y —mq <¥.

From (5.4.12) and (5.4.13), assuming that two plane curves F(z,y,z) = 0 and
G(r,y,2z) = 0 have a unique decomposition of irreducible curves in P?(C), then 0 <
k1 —n1 < k1 and 0 < £ —mq < ¢; imply that Fi(z,y,2) = 0 and G1(z,y, 2) = 0 have
no lines at all in P2(C), and so two plane curves F(z,y,z) = 0 and G(z,y, z) = 0 have
exactly two lines in P2(C). Since F oT = G, then boy(c12 + cay) = ayz for a nonzero
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constant «, which would be impossible. Thus, the claim for this case is proved. Thus,
the proof for the necessity of the condition in Case(i-b) is done.
So, we finished the proof for the necessity of the condition.

Next, to prove the sufficiency of the condition , suppose that there is a complex

number p with p¢ = 1 such that A;p* = B; for i = 1,2,...,d — 1 where m = n and
k = ¢, and d = ged(n, k). Define T : C3 — C3 by T(x,y,2) = (z,by, 2) for some
number b such that b*/¢ = p. Then, it is clear that F oT = G, and so the proof of the
sufficiency is done.

Thus, the proof for the projective equivalence is completely finished.

THEOREM 5.5 (THE DIFFERENCE BETWEEN ANALYTIC EQUIVALENCE FOR
WEIGHTED HOMOGENEOUS POLYNOMIALS IN Cly, 2] AND PROJECTIVE EQUIVALENCE
FOR THEIR, HOMOGENIZATION IN Clz,y, 2] FOR CASE(IV) OF THEOREM 3.6).

Assumption  Let f(y,z) and g(y,z) be weighted homogeneous polynomials in
Cly, 2], and let F(z,y, z) and G(x,y, z) be the homogenization of f(y,z) and g(y, z) in
Clx, y, 2], respectively, satisfying the same assumptions and notations as in Theorem
5.4.

Let f ~ yz(z" + y*) with weights (n +1+ 2 k+1+ £) € (Q—N) xQ and
deg(f) = k+2, and let g ~ yz(z™ + y*) with weights (m+ 1+ 2,0+ 1+ L) €
(Q—N) x Q and deg(g) =+ 2.

Conclusion  The difference between projective equivalence and analytic equiva-
lence can be represented by three cases (1), (1I) and (111), below:

(I) Let gcd(n, k) <n. Then,
F(@,9, ) ~pros Gz, 3, 2) in B2(C)
< f =g at origin in C2.

(I) Let ged(n, k) = n. Suppose that Ay = By = 0 in (5.4.1). Then,
F(I, Y, Z) ~proj G(I, Y, Z) in ]P)Q((C)
<= f = g at origin in C2.

(IIT) Let ged(n, k) = n. Suppose that either A; # 0 or By # 0 in (5.4.1). Then,
F(I, Y, Z) ~proj G(I, Y, Z) in ]P)Q((C)
—> f =~ g at origin in C2.

But the converse for (III) does not hold, which will be proved by the next
corollary, Corollary 5.6.

REMARK 5.5.1. Under the same assumptions and conclusions as in Theorem 5.4,
observe by Theorem 5.4 that if F(z,y,2) ~proj G(z,y,2) in P?(C) then n = m and
k =/, and also by Theorem 3.6 that n = m and k£ = ¢ if and only if f ~ ¢ at origin
in C? with deg(f) = deg(g).

Proof of Theorem 5.5. The proof of the theorem can be done by the same way as
we have seen in the proof of Theorem 4.2.

COROLLARY 5.6. For exzample, let f(y,z) = yz(2%2 +y*) and g(y,2) = yz(2% +
simy’z +yt). Put Fa,y,z) = 2°f(y/x,2/z) and G(z,y,2) = 2%(y/x, z/x). Then,
F(z,y,2) #proj G, y, 2) in P2(C), but F(1,y,2) ~ G(1,y,2) at the origin in C* and
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also F(z,y,1) ~ G(x,y,1) at the origin in C?, too. Thus, an analytic equivalence at
any singular point does not give a projective equivalence.

Proof of Corollary 5.6. Let f(y,z) = yz(2? +y*). Then, f(y,2) ~ yz(z? —
vh) = y2(z — 12)(z + v?) = yz(z + vH)(z + 2y?) = yz(2% + 3y%2 + 2y*). Define
Wy, z) = yz(2® + 3y*z + 2y*). Then, h(y, 2) = yz(2*> + 722=y*2 + y*) = g(y,2). So,
fly,2) = g(y,2), but F(z,y,2) = 25f(y/x,z/x) and G(z,y,2) = 25g(y/x, z/x) are
not projectively equivalent in P?(C) by Theorem 5.4. Thus, the proof is done.

6. The summary for the projective equivalence of plane curve singular-
ities defined by the homogenization of weighted homogeneous polynomials
in C[y, z] and its applications to their analytic equivalence. Summing up the
results of Theorem 4.1, Theorem 4.4, Theorem 5.1 and Theorem 5.4, we can find the
solution of the first problem in terms of the following theorem, without any need of
proof.

THEOREM 6.1 (THE PROJECTIVE EQUIVALENCE OF PLANE CURVE SINGULARI-
TIES DEFINED BY THE HOMOGENIZATION OF WEIGHTED HOMOGENEOUS POLYNOMI-
ALS IN Cly, 2]).

Assumption Let f(y, z) and g(y, z) be weighted homogeneous polynomials in Cly, 2],
which are not homogeneous, with isolated singularity at the origin in C2.

By Theorem 3.6, whether or not f # 2% +y? and g # 22+ y?, f and g can be
topologically written in a unique way:

(1) f ~ y=2%2(2" + y*) with weights (n+ 2 + Ler, k+e1 + £25) € Q x Q and
with deg(f) =k + €1 + €2,

(2) g ~ y®12% (2™ + y*) with weights (m + 0 + 261, + 01 + £65) € Q x Q and
with deg(g) = £+ 01 + d2,

where

(a) 1 <n <k, d=ged(n,k) withn =n1d and k = kid,

(b) €1,e2 are either 1 or 0, respectively,

(¢) 1 <m < { and e = ged(m, ) with m = mye and £ = lqe,

(d) &1 and 62 are either 1 or 0, respectively,

(e) ifer1 =e2 =0, thenn > 2,

(f) if 61 = 62 =0, then m > 2.

By Theorem 3.6 again, we may assume without loss of generality that

(6.1.1) f(y7 Z) — y51252fl (y’ Z) with
d—1
Fily2) = 2"+ yF + 30 Ayt td-im,
=1
9y, 2) =y"2%g1(y, 2) with
e—1
Gily.z) = 2" 4yt + 3 Byt
j=1

where
(a) all the A; are complex numbers for 1 <i<d—1,
(b) all the B; are complex numbers for 1 <j <e—1,



506 C. KANG

satisfying the following property:
(6.1.2) if ged(n,k)=mn, ie, ng =1, then either Ay =0 or A; #0,
if ged(m,l) =m, i.e., mq =1, then either By =0 or By # 0.

Conclusion — Now, homogenize f and g as follows:
(6.1.3) F(z,y,z) =P f(y/x,z/x) withp=Fk+e1 + e,
Gla,y,2) = ag(y/w,2/x) with q = €+ 8 + by,

Then, F(x,y,z) ~proj G(z,y,2) in P?(C)

<~ k =1V ¢ = 9 fori = 1,2, and there is a complex number p with
p? = 1 such that A;p' = B; fori = 1,...,d — 1 where either {n =m and k =}
or{n+m=k and k = (}.

Now, using Theorem 6.1 and Theorem 2.9, and also summing up the results of
Theorem 4.2, Theorem 4.5, Theorem 5.2 and Theorem 5.5, then we can get the solution
of the second problem in terms of the following theorem, without any need of proof.

THEOREM 6.2 (THE DIFFERENCE BETWEEN ANALYTIC EQUIVALENCE FOR
WEIGHTED HOMOGENEOUS POLYNOMIALS IN C[y, 2] AND PROJECTIVE EQUIVALENCE
FOR THEIR HOMOGENIZATION IN Clz,y, 2]).

Assumption  Let f(y,z) and g(y,z) be weighted homogeneous polynomials in
Cly, 2], and let F(z,y, z) and G(x,y, z) be the homogenization of f(y,z) and g(y, z) in
Clx, y, 2], respectively, satisfying the same assumptions and notations as in Theorem
6.1.

For brevity of notation, observe by Theorem 6.1 that if F(x,y, z) ~proj G(Z,y, 2)
in P2(C), then either {n=m and k =10} or {n+m ==k and k = (}, and &; = &; for
i =1,2, and that the followings (i) and (ii) are true.

(i)n=m,k=1{ande; =0; fori =1,2 if and only if f ~ g at origin in C* with
deg(f) = deg(g) where f(y,2) = F(1,y,2) and g(y,2) = G(1,y, 7).

(i) n+m==k, k=4{and e =61 and g2 = d2 = 0 if and only if f ~ h at origin
in C% with deg(f) = deg(h) where f(y,2) = F(1,y,2) and h(z,y) = G(z,y,1).

Conclusion

(I) Let ged(n, k) < n with d = ged(n, k).

(I-a) Assume that n =m and k = {. Then,
F(z,y,2) ~proj G(z,y,z2) in ]P)Q((C)

<= f =g at origin in C2.

(I-b) Assume that n+m =k and k = {. Then,
F(@,y,2) ~proj G(2,y,2) in P*(C)
<= f = h at origin in C2.

(IT) Let ged(n, k) = n. Suppose that Ay = By =0 in (6.1.1).
(II-a) Assume thatn =m and k = {. Then,

F(;Ev Y, Z) ~proj G(l‘,y, Z) in ]PQ((C)
< f =g at origin in C2.

(II-b) Assume that n+m =k and k = {. Then,
F((E, Y, Z) ~proj G(J:, Yy, Z) m ]PQ((C)



PROJECTIVE EQUIVALENCE 507

<= f =~ h at origin in C2.

(IIT) Let ged(n, k) = n. Suppose that either Ay # 0 or By # 0 in (6.1.1).
(IlT-a) Assume that n =m and k = £. Then,

F(z,y,2) ~proj G(z,y,z) in ]P)Q((C)
= f =~ g at origin in C2.

(ITI-b) Assume that n+m =k and k = {. Then,
F(z,y,2) ~proj G(z,y,z) in ]P)Q((C)
= f =~ h at origin in C>.
But, the converse for (II1) does not hold, which will be proved by the next corollary,
Corollary 6.3.

In other words, summing up the results of (I), (II) and (III), we have the follow-
mgs:

If F(2,9,2) ~proj G(x,y,2) in P*(C) and f ~ g at origin in C?, then f ~ g at
origin in C?, and not conversely, and also if F(z,y,2) ~proj G(,y,2) in P?(C) and
f ~ h at origin in C?, then f =~ h at origin in C?, and not conversely.

REMARK 6.2.1. On the assumption that f ~ g with deg(f) = deg(g) instead
of assuming that n = m and k = ¢, we may get the same statements (I-a), (II-a)
and (III-a) as before, if necessary. Similarly, on the assumption that f ~ h with
deg(f) = deg(h) instead of assuming that n +m = ¢ and k = ¢, we may get the same
statements (I-b), (II-b) and (III-b) as before, if necessary.

COROLLARY 6.3. Let f(y,2) = y*12°2 (22 +y*) and g(y, 2) = y*1 252 (2% + 213/2 y2z+
yY). Put F(x,y,z) = x*t&tef(y/z, 2/z) and G(x,y,2) = x*teiteg(y/z, 2/z).
Then, F(z,y,2) #proj G(z,y,2) in P2(C), but F(l,y,2) ~ G(1,y,2) at the origin
in C? and also F(x,y,1) ~ G(z,y,1) at the origin in C?. Thus, an analytic equiva-
lence at any singular point does not give a projective equivalence.

Proof of Corollary 6.3. The proof just follows from Corollary 4.3, Corollary 4.6,

Corollary 5.3 and Corollary 5.6.
As a generalization of Theorem 6.1, we have the following.

COROLLARY 6.4 (THE PROJECTIVE EQUIVALENCE OF PLANE CURVE SINGULAR-
ITIES DEFINED BY THE HOMOGENIZATION OF WEIGHTED HOMOGENEOUS POLYNOMI-
ALS IN Cly, 2]).

Assumption Let f(y, z) and g(y, z) be weighted homogeneous polynomials in Cly, 2],
which are not homogeneous, with isolated singularity at the origin in C2.

By Theorem 3.6, we may assume without loss of generality that f and g can be
written as follows:

(1) f ~ y=2%2(2" + y*) with weights (n+ e + Ler, k+e1 + £25) € Q x Q and
with deg(f) =k + €1 + €2,

(2) g ~ y®12% (2™ + y*) with weights (m + 0 + 21,0+ 01 + £65) € Q x Q and
with deg(g) = £+ 01 + d2,

where

(a) 1 <n <k, d=ged(n, k) withn =n1d and k = kid,

(b) e1,e2 are either 1 or 0, respectively,

(¢) 1 <m < { and e = ged(m,£) with m = mye and £ = lqe,

(d) &1 and b2 are either 1 or 0, respectively,
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(e) ife; =ea =0, thenn > 2,
(f) if 61 = d2 =0, then m > 2.
By Theorem 3.6, we may assume without loss of generality that

(6.4.1) fly,2) =y 2% f1(y, 2) with
d—1
fily,z) = Ao2" + Aay® + Z Agyr @m0,
i=1
9(y,2) =y 2% g1y, z)  with
e—1
91(y, 2) = Boz™ + Beyl + ZBjyth(efj)m%
j=1
where
(a) the A; are complex numbers for 0 <i < d with AgAq # 0,
(b) the B; are complex numbers for 0 < j < e with BoBe # 0,
satisfying the following property:
(6.4.2) if ged(n,k)=mn, ie., ny =1, then either Ay =0 or A; #0,
if ged(m,?) =m, i.e., my =1, then either By =0 or By #0.

Now, homogenize f and g as follows:
(6.4.3) F(z,y,z) =P f(y/x,z/x) withp=Fk+e1 + e,
Gla,y,2) = ag(y/w, 2/x) with q =+ 8 + by,

Conclusion
Then, F(x,y,z) =0 and G(x,y,z) = 0 are projectively equivalent in P%(C)

A
< k=1{ ¢ =06 fori=1,2 and there is a complex number p with A—dpd =
0

B A, B; _ .
24 guch that =Lpi = = for i = 1,...,d — 1 where either {n=m and k =1{} or
By Ap By
{n+m==%k and k = (}.

Proof of Corollary 6.4. We may start to assume by (6.4.1) that F = F(z,y, 2)
and G = G(z,y, z) are written by the following:

d—1
(644) F_yalzag(AOxk n "+Ady +ZAJ; —ik1—(d—i)n1 zkl ( i)nl),
i=1
e—1
G = 1222 (Boz" "™ 2™ + By’ + Z Bj$£7j£17<e*j)m1yjelz(efj)ml).
j=1
From (6.4.4), define Fy = Fi(x,y,2) and G1 = G1(x,y, z) by the following:

(6.4.5) Fy =y 252 {ghnn ky Z Ao —thi—(d=dn1 ik (d=Om}

Gy :yélzég{xlfmzm ZBJ Z jl1—(e— j)mlyjll (e— J)ml}'
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Note that F(z,y,2) ~proj G(z,y,2) in P2(C) <= Fi(2,y,2) ~proj G1(z,y,2)
in P%(C).

Let v = (ﬁ—z)%y and w = (g—g)%y. Then, y** = (ﬂ)%vikl and 374 =

(Be)#yit.
* From (6.4.5), define Fy = Fy(x,v,2) and G3 = Ga(x, w, z) by the following:

(6.4.6) Fy=v"122{zF 2" 4ok 4 Z %(—)%ixkfikl7(d7i)”1viklz(d*i)"1},

Gy =w Zéz{xé mym 4 w' + Z = BO Jxé—jh—(e—j)nﬂwj@lz(e—j)ﬂu}'

Note that Fi(z,y,2) ~proj G1(2,y,2) in P2(C) <= Fy(x,y,2) ~proj Ga(x,y,2) in
P2(C).

By Theorem 6.1, we have the following consequences:

FQ(xv Y, Z) ~proj GQ(Ia Y, Z) in P2(C)

< k =1/ ¢ =06 for i = 1,2, and there is a complex number 7 with 7¢ = 1
such that P78 = Q; fori=1,...,d—1=e—1 where either {n =m and k = ¢} or
Ad d

i

A; = B; Bg.-
{n+m =k and k = ¢}, noting that P, = A—O(A—O) 7 and Q; = B—O(B—O)T
Ad 1 By, 1 d g_ﬁ ; -
Now, define p by (A—) ip = (B—)dT. Then p® = 3=, and also Pi7" = @; implies
A B 0 0 Ao
that A_ = gz fori=1,...,d—1, and conversely. Thus, the proof can be finished.
0 0
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