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PROJECTIVE EQUIVALENCE OF PLANE CURVE SINGULARITIES

DEFINED BY THE HOMOGENIZATION OF WEIGHTED

HOMOGENEOUS POLYNOMIALS IN C[Y, Z] AND ITS

DIFFERENCE FROM THEIR ANALYTIC EQUIVALENCE
∗
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Abstract. The aim in this paper is to solve the following two problems completely:
The First Problem. Given any two weighted homogeneous polynomials f(y, z) and g(y, z) in

C[y, z] with isolated singularity at the origin in C2 and with deg(f) = deg(g), which are not homo-
geneous, we find the necessary and sufficient condition for C1 and C2 to be projectively equivalent
in the complex projective plane P2(C) in an elementary way where F (x, y, z) and G(x, y, z) are the
homogenization of f(y, z) and g(y, z) in C[x, y, z], respectively, and C1 and C2 are the zero sets of
F (x, y, z) and G(x, y, z) in P2(C), respectively.

The Second Problem. Under the the same assumption as in the first problem, we find an exact
difference between the analytic equivalence of plane curve singularities defined by f(y, z) and g(y, z),
and the projective equivalence of C1 and C2 where C1 and C2 are the zero sets of F (x, y, z) and
G(x, y, z) in P2(C), respectively.

Key words. isolated singularities, topological and analytic equivalence of plane curve singu-
larities defined by weighted homogeneous polynomials in C[y, z], the projective equivalence of plane
curve singularities in P2(C) defined by the homogenization in C[x, y, z] of weighted homogeneous
polynomials in C[y, z].
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1. Introduction. Let nO or C{x1, x2 . . . , xn} be the ring of convergent power
series at the origin in Cn, and C[x1, . . . , xn] be the ring of polynomials in n vari-
ables with coefficients in C where C denotes the field of the complex numbers. Let
f(x1, . . . , xn) = Σaα1···αn

xα1

1 · · ·xα1

1 be a polynomial in C[x1, . . . , xn]. The degree of
f(x1, . . . , xn), denoted by deg f , is defined to be the largest integer α1 + · · ·+αn such
that aα1···αn

6= 0.
Throughout this paper, we assume the followings:
(i) By definition, let f = f(y, z) and g = g(y, z) be weighted homogeneous poly-

nomials in C[y, z], having rational number weights (w1, w2) and (v1, v2), respectively

where every monomial zαyβ of f satisfies the equality α
w1

+ β
w2

= 1 and every monomial

zγyδ of g satisfies the equality γ
v1

+ δ
v2

= 1.

(ii) Let f(y, z) and g(y, z) be polynomials in C[y, z] with isolated singularity at
the origin in C2, which are not homogeneous, and let deg f = p and deg g = q. The
homogeneous polynomial F (x, y, z) ∈ C[x, y, z] defining the homogenization of f(y, z)
and the homogeneous polynomial G(x, y, z) ∈ C[x, y, z] defining the homogenization
of g(y, z) can be written as follows:

F (x, y, z) = xpf(y/x, z/x) and(∗)

G(x, y, z) = xqg(y/x, z/x).
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Under the same assumption as above, our aim in this paper is to solve the following
two problems completely:

The First Problem: Given any two weighted homogeneous polynomials f(y, z)
and g(y, z) in C[y, z] with isolated singularity at the origin in C2 and with deg(f) =
deg(g), which are not homogeneous, compute the necessary and sufficient condition
for C1 and C2 to be projectively equivalent in the complex projective plane P2(C) in
an elementary way where F (x, y, z) and G(x, y, z) are the homogenization of f(y, z)
and g(y, z) in C[x, y, z], respectively, and C1 and C2 are the zero sets of F (x, y, z) and
G(x, y, z) in P2(C), respectively.

The Second Problem: Under the the same assumption as in the first problem,
compute the difference between the analytic equivalence of plane curve singularities
defined by f(y, z) and g(y, z), and the projective equivalence of C1 and C2 where
C1 and C2 are the zero sets of F (x, y, z) and G(x, y, z) in P2(C), respectively. As
a corollary, assuming that f(y, z) = 0 and g(y, z) = 0 have the same topological
type of singularity at the origin in C2 and that deg(f) = deg(g), then prove that the
projectively equivalence of C1 and C2 implies the analytic equivalence of f(y, z) = 0
and g(y, z) = 0 at the origin in C2, but the converse may not be true.

(1) To find a complete solution of the first problem in Theorem 6.1, it suffices to
use Theorem 2.7 and The Fundamental Theorem, which says that any given projective
curve has a unique decomposition into irreducible curves in P2(C), only.

(2) To find a solution of the second problem in Theorem 6.2, it suffices to find the
difference between a solution for the first problem and the consequence for Theorem
2.9.

In preparation for the representation of the solutions of two problems, for sim-
plicity of notations, let f and g be holomorphic functions near the origin in C2 with
isolated singularity at the origin. If f and g have the same topological type of singu-
larity at the origin in the sense of Definition 2.1, we denote this relation by f ∼ g.
Otherwise, we write f 6∼ g. Also, if f and g have the same analytic type of singularity
at the origin in the sense of Definition 2.1, then we write f ≈ g. Otherwise, we write
f 6≈ g. Observe that f = y(z + yk) for any positive integer k ≥ 2 is weighted homo-
geneous, which is not homogeneous, but f ≈ z2 + y2. It was proved by Lemma 2.6
that f is not homogeneous with f 6∼ z2 + y2 if and only if f 6∼ h for any homogeneous
polynomial h ∈ C[y, z] where f ∈ C[y, z] is a weighted homogeneous polynomial with
isolated singularity at the origin in C2.

Moreover, let F = F (x, y, z) and G = G(x, y, z) be homogeneous polynomials in
C[x, y, z] where F and G are square-free. Then, F = 0 and G = 0 may be viewed
as defining equations for two projective curves C1 and C2 in P2(C), respectively. If
F = 0 and G = 0 are projectively equivalent in P2(C) in the sense of Definition 3.2,
then we write sometimes F (x, y, z) ∼proj G(x, y, z) in P2(C) for brevity of notation.
Otherwise, we write F (x, y, z) 6∼proj G(x, y, z) in P2(C).

In order to find a solution in the above two problems, first of all, we are going to
study the following three questions:

Assume that f(y, z) is a weighted homogeneous polynomial in C[y, z], which is not
homogeneous, with an isolated singular point at the origin in C2 and that F (x, y, z)
is the homogeneous polynomial in C[x, y, z] defining the homogenization of f(y, z).
Then,
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Question 1. What kind of topological type of isolated singularity does f(y, z)
have?

Question 2. What is the difference between deg(f) and deg(g), whenever f ∼ g
for any such weighted homogeneous polynomials f and g?

Question 3. How many distinct lines and tangent lines does the projective curve
C have in P2(C) when C has a unique decomposition into irreducible curves in P2(C)?
Note that C is the projective curve defined by F (x, y, z) = 0.

Note by Theorem 2.7([K2]) that Question 1 was already solved. Now, in order to
solve the remaining two questions as above, it is very interesting and important for
us to have the following theorem (Theorem 1.1), denoted by Theorem 3.6 of §3 later,
which will be shown by an application of Theorem 2.7 and The Fundamental Theo-
rem(Any given projective curve has a unique decomposition into irreducible curves in
P2(C)).

Theorem 1.1 (The topological types of plane curve singularities

defined by the homogenization of weighted homogeneous polynomials in

C[y, z]).
Assumption Let 1 ≤ n < k. Assume that f(y, z) is a weighted homogeneous

polynomial in C[y, z], which is not homogeneous, with isolated singularity at the ori-

gin in C2. Let F (x, y, z) be the homogeneous polynomial in C[x, y, z] defining the

homogenization of the above f(y, z).

Conclusion Using a nonsingular linear change of coordinates T : C3 → C3 with

T (0) = 0, we may assume without loss of generality that F (x, y, z) with F (1, y, z) =
f(y, z) can be written as follows:

f(y, z) = yε1zε2f1(y, z) with(1.1.1)

f1(y, z) =

d∏

i=1

(zn1 + siy
k1),

F (x, y, z) = yε1zε2F1(x, y, z) with(1.1.2)

F1(x, y, z) =

d∏

i=1

(xk1−n1zn1 + siy
k1),

where

(a) 1 ≤ n < k, d = gcd(n, k) with n = dn1 and k = dk1,

(b) ε1, ε2 are either 1 or 0, respectively,

(c) if ε1 = ε2 = 0, then n ≥ 2,
(d) the si are nonzero distinct complex numbers for 1 ≤ i ≤ d.

Let C be the plane curve defined by F (x, y, z) = 0 in P2(C). Then ε1, ε2 and k
are invariant under projective equivalence of plane curve singularities in P2(C) from

the following four cases: Let N be the set of positive integers, and Q be the set of

rational numbers.

Case(I) Let ε1 = ε2 = 0 with n ≥ 2. Then, f ∼ zn+yk with weights (n, k) ∈ N × N

and deg(f) = k. So, the projective curve C has no line when C has a decomposition

into irreducible curves, and two distinct tangent lines in P2(C).
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Case(II) Let ε1 = 0 and ε2 = 1 with n ≥ 1. Then, f ∼ z(zn + yk) with weights

(n + 1, k + k
n
) ∈ N × Q and deg(f) = k + 1 < k + k

n
. So, the projective curve C has

one distinct line when C has a decomposition into irreducible curves, and two distinct

tangent lines in P2(C).
Case(III) Let ε1 = 1 and ε2 = 0 with n ≥ 1. Then, f ∼ y(zn + yk) with weights

(n+ n
k
, k + 1) ∈ (Q − N) × N and deg(f) = k + 1. So, the projective curve C has one

distinct line when C has a decomposition into irreducible curves, and three distinct

tangent lines in P2(C).
Case(IV) Let ε1 = 1 and ε2 = 1 with n ≥ 1. Then, f ∼ yz(zn + yk) with weights

(n + 1 + n
k
, k + 1 + k

n
) ∈ (Q − N) × Q and deg(f) = k + 2 < k + 1 + k

n
. So, the

projective curve C has two distinct lines when C has a decomposition into irreducible

curves, and three distinct tangent lines in P2(C).

Moreover, f(y, z) of (1.1.1) and F (x, y, z) of (1.1.2) can be rewritten in the fol-

lowing form:

f(y, z) = yε1zε2f1(y, z) with(1.1.3)

f1(y, z) = zn + yk +

d−1∑

i=1

Aiy
ik1z(d−i)n1 and

F (x, y, z) = yε1zε2F1(x, y, z) with

F1(x, y, z) = xk−nzn + yk +

d−1∑

i=1

Aix
k−ik1−(d−i)n1yik1z(d−i)n1 ,

where the Ai are complex numbers for 1 ≤ i ≤ d− 1.

Remark 1.1.1. As a consequence of Theorem 1.1, let C1 and C2 be two projec-
tive curves defined by F = 0 and G = 0, respectively, each of which satisfies the same
kind of properties and notations as we have seen in Theorem 1.1. Then, C1 ∼proj C2 in
P2(C) if and only if C1 and C2 belongs to the same one and only one of the four cases in
Theorem 1.1, so that there is a nonsingular linear change of coordinates T : C3 → C3

with T (0) = 0 and F ◦ T = G. In order to find a complete solution of two problems
in the beginning, it is enough to compute F ◦ T = G directly, using Theorem 1.1.

Now, we are going to consider the following computations:
(i) We study Case(I) of Theorem 1.1 in terms of Theorem 4.1 and Theorem 4.2

in §4, and study Case(II) of Theorem 1.1 in terms of Theorem 4.4 and Theorem 4.5
in §4.

(ii) We study Case(III) of Theorem 1.1 in terms of Theorem 5.1 and Theorem 5.2
in §5, and study Case(IV) of Theorem 1.1 in terms of Theorem 5.4 and Theorem 5.5
in §5.

From (i) and (ii), summing up the results of Theorem 4.1, Theorem 4.4, The-
orem 5.1 and Theorem 5.4, we will get a solution of the first problem in terms of
Theorem 6.1(The projective equivalence of plane curve singularities defined by the
homogenization of weighted homogeneous polynomials in C[y, z]) in §6.

From (i) and (ii), summing up the results of Theorem 4.2, Theorem 4.5, Theo-
rem 5.2 and Theorem 5.5, we will get a solution of the second problem in terms of
Theorem 6.2(The difference between analytic equivalence for weighted homogeneous
polynomials in C[y, z] and projective equivalence for their homogenization in C[x, y, z])
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in §6.

2. Known preliminaries.

Definition 2.1. Let V = {z ∈ Cn+1 : f(z) = 0} andW = {z ∈ Cn+1 : g(z) = 0}
be germs of complex analytic hypersurfaces with isolated singularity at the origin.

(i) f and g are said to have the same topological type of singularity at the ori-
gin(equivalently, to be topologically equivalent at the origin) if there is a germ at the
origin of homeomorphisms φ : (U1, 0) → (U2, 0) such that φ(V ) = W and φ(0) = 0
where U1 and U2 are open subsets in Cn+1. In this case, denote this relation by f ∼ g.
Otherwise, we write f 6∼ g.

(ii) f and g are said to have the same analytic type of singularity at the ori-
gin(equivalently, to be analytically equivalent at the origin) if there is a germ at the
origin of biholomorphisms ψ : (U1, 0) → (U2, 0) such that ψ(V ) = W and ψ(0) = 0
where U1 and U2 are open subsets of Cn+1, that is, f ◦ ψ = ug where u is a unit in

n+1O, the ring of germs of holomorphic functions at the origin in Cn+1. Then we
write f ≈ g. If not, we write f 6≈ g.

Theorem 2.2 ([Br], [Bu], [Z1]). Let f(y, z) be irreducible in 2O with an iso-

lated singularity at the origin in C2. Then the curve defined by f at the origin can be

described topologically by y = tn and z = tα1 + · · ·+ tαp where n < α1 < · · · < αp and

n > (n, α1) > · · · > (n, α1, . . . , αp) = 1. If for a given f there is another homeomor-

phic parametrization defined by y = tm and z = tβ1 +· · ·+tβq where m < β1 < · · · < βq

and m > (m,β1) > · · · > (m,β1, · · ·βq) = 1, then n = m, p = q and αi = βi for

1 ≤ i ≤ p. Conversely, the curve defined by the parameter with the same kind of

inequality as above must be irreducible at the origin.

Theorem 2.3 ([L], [Z2]). Let f(y, z) be in 2O with isolated singularity at the

origin in C2. Then the topological type of the plane curve singularity defined by f is

determined by the topological type of every irreducible component of f at O and all the

pairs of intersection multiplicity of these two components.

Theorem 2.4 ([K1]). Let f = zn + yn +
∑k

i=1 aiy
n−izi and g = zn + yn +

∑l

j=1 bjy
n−jzj be homogeneous polynomials with isolated singularity at the origin in

C2 where n ≥ 2k + 3, n ≥ 2l + 3 and n ≥ 5. Then f ≈ g if and only if there is a

complex number ρ with ρn = 1 such that bi = aiρ
i for i = 1, 2, . . . , k = l. Moreover, if

f = z4 + ay3z + y4 and g = z4 + by3z + y4 have an isolated singularity at the origin,

then f ≈ g if and only if a4 = b4.

Theorem 2.5 [Yo and Su]. The topology of a quasihomogeneous singularity in

C2 determines the weights of the polynomial defining the singularity.

Lemma 2.6 ([K2]). Let f ∈ 2O and f be weighted homogeneous with an isolated

singular point at the origin. Then f is not homogeneous with f 6∼ z2 + y2 if and only

if f 6∼ h for any homogeneous polynomial h ∈ 2O.

Theorem 2.7 ([K2]). Let 2 ≤ n < k. Assume that f(y, z) is a weighted homo-

geneous polynomial with an isolated singular point at the origin in C2 which is not

homogeneous. If f 6∼ z2 + y2, then f is topologically equivalent to the one and only

one of the followings: Let d = gcd(n, k).
(I) f ∼ zn + yk with weights (n, k).
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(i) d < n,
(ii) d = n.

(II) f ∼ z(zn + yk) with weights (n+ 1, k + k
n
).

(i) d < n.
(III) f ∼ y(zn + yk) with weights (n+ n

k
, k + 1).

(i) d < n,
(ii) d = n.

(IV) f ∼ yz(zn + yk) with weights (n+ 1 + n
k
, k + 1 + k

n
).

(i) d < n.

In general, suppose that either f satisfies the above assumption with f 6∼ z2 + y2,

or f is homogeneous. Then the weights of f determine the topological type of f and

conversely.

Lemma 2.8 [K2]. Let f be a weighted homogeneous polynomial with isolated

singularity at the origin in C2 where f is not a homogeneous polynomial. If f 6∼ z2+y2,

then f can be written analytically without loss of generality as follows:

f(y, z) = yε1zε2f1(y, z) with

f1(y, z) = zn + yk +

d−1∑

i=1

Aiy
ik1z(d−i)n1

where 2 ≤ n < k and d = gcd(n, k) with n = n1d and k = k1d, each εi is either 1 or 0
for i = 1, 2, and all Ai are complex numbers for 1 ≤ i ≤ d− 1, satisfying the following

property (2.8.1):

(2.8.1) if gcd(n, k) = n, i.e., n1 = 1, then A1 is zero.

Theorem 2.9 [K2]. Let f and g be weighted homogeneous polynomials, which

are not homogeneous, with isolated singularity at the origin in C2 such that f 6∼ z2+y2

and g 6∼ z2 + y2. Then we may assume without loss of generality that analytically,

f = yε1zε2f1 with

f1 = zn + yk +

d−1∑

i=1

Aiy
ik1z(d−i)n1

g = yδ1zδ2g1 with

g1 = zm + yl +

e−1∑

j=1

Bjy
jl1z(e−j)m1

where

(a) 2 ≤ n < k, d = gcd(n, k) with n = dn1 and k = dk1,

(b) 2 ≤ m < l, e = gcd(m, l) with m = em1 and l = el1,
(c) ε1, ε2, δ1, δ2 are either 1 or 0, respectively, and

(d) Ai and Bj are complex numbers for 1 ≤ i ≤ d− 1 and 1 ≤ j ≤ e− 1.
Also, we need to assume without loss of generality that

if gcd(n, k) = n, i.e., n1 = 1, then A1 = 0 and

if gcd(m, l) = m, i.e., m1 = 1, then B1 = 0.
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As a conclusion, we get the following:

(i) f ≈ g if and only if εi = δi for i = 1, 2 and f1 ≈ g1.
(ii) f1 ≈ g1 if and only if n = m and k = l and there is a complex number ρ with

ρd = 1 such that Aiρ
i = Bi for i = 1, ..., d− 1.

Remark 2.9.1. If 2 ≤ n < k and gcd(n, k) = n, then we proved by Theorem 2.9

that z(zn + yk) 6≈ zn+1 + yk+ k

n and yz(zn + yk) 6≈ y(zn+1 + yk+ k

n ). But note that

z(zn + yk) ∼ zn+1 + yk+ k

n and yz(zn + yk) ∼ y(zn+1 + yk+ k

n ), because gcd(n, k) = n
is a positive integer.

3. How to find the topological types of plane curve singularities defined

by the homogenization of weighted homogeneous polynomials in C[y, z]. Let
C[x1, . . . , xn] be the ring of polynomials in n variables with coefficients in C where C

is the field of the complex numbers.

Definition 3.1. Let N be the set of positive integers, and N2 be its two-dimensional
copy. Let f = f(y, z) ∈ C[y, z] be a weighted homogeneous polynomial with weights

(w1, w2), that is, any monomial zαyβ of f satisfies the equality α
w1

+ β
w2

= 1.

(i) It is said that the weights (w1, w2) of f belong to N2, denoted by (w1, w2) ∈ N2,
if the weights (w1, w2) of f are positive integers.

(ii) Also, it is said that the weights (w1, w2) of f do not belong to N2, denoted
by (w1, w2) 6∈ N2, if the weights (w1, w2) of f are not positive integers. For example,
if w1 is not a positive integer and w2 is a rational number for the weights (w1, w2) of
f , then we write (w1, w2) ∈ (Q − N) × Q, if necessary.

Definition 3.2. Let F = F (x, y, z) and G = G(x, y, z) be homogeneous polyno-
mials in C[x, y, z] where F and G are square-free. Then F and G may be viewed as
defining equations for two projective curves C1 and C2 in P2(C), respectively. Then,
we say that C1 and C2, i.e., F (x, y, z) = 0 and G(x, y, z) = 0 either have the same
projective type of the singularity or are projectively equivalent in P2(C) if there is
a nonsingular linear change of coordinates T : C3 → C3 with T (0) = 0 such that
F ◦ T = G. In this case, we write F (x, y, z) ∼proj G(x, y, z) in P2(C) for brevity of
notation. Otherwise, we write F (x, y, z) 6∼proj G(x, y, z) in P2(C).

Remark 3.2.1. (1) A projective curve or plane curve is the zero set of a nonzero
constant homogeneous polynomial in the complex projective plane P2(C).

(2) A projective curve of degree 1, 2, 3, 4, 5, 6 is called a line, quadric, cubic,
quartic, quintic, sextic, respectively.

(3) A projective curve is irreducible if it is not the union of two distinct plane
curves.

(4) Let C be the plane curve and let F be a homogeneous polynomial with zero
set C. Then C is irreducible just in case F is a power of an irreducible polynomial.

(5) The Fundamental Theorem Let C be any plane curve, the zero set of the

homogeneous polynomial F such that F = F1
k1 · · ·Fr

kr where the Fi are irreducible
homogeneous polynomials for 1 ≤ i ≤ r. Then,

(5a) C has a unique decomposition into irreducible curves, C = C1 ∪ · · · ∪ Cr.
(5b) With suitable numbering, the irreducible curve Ci is the zero set of Fi. The

polynomial Fi are determined, up to a constant factor, by Ci(and so by C).

Finding a complete solution of two problems in the beginning, it is enough to
consider two cases, respectively.
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Case(A): The weights (w1, w2) of a weighted homogeneous polynomial f(y, z) ∈
C[y, z] belong to N2 in the sense of Definition 3.1.

Case(B): The weights (w1, w2) of a weighted homogeneous polynomial f(y, z) ∈
C[y, z] do not belong to N2 in the sense of Definition 3.1.

First of all, we will study Case(A) in Lemma 3.4 of this section and after then, we
will study Case(B) in Lemma 3.5 of this section, too. In preparation for the study of
Case(A) and Case(B) in this section, first of all, consider two examples with weights
(w1, w2) such that either (w1, w2) ∈ N2 or (w1, w2) 6∈ N2.

Example 3.2.2. Let ft = ft(y, z) = z2 + ty2z + y4 for any complex number t
with t2 6= 4. Then, ft = 0 has an isolated singularity at the origin in C2 for each t.
For any complex number t with t2 6= 4, let Ft(x, y, z) be the homogenization of ft(y, z)
defined by Ft(x, y, z) = x2z2 + txy2z + y4 in C[x, y, z].

Instead of a nonsingular linear change of coordinates from C2 to itself,

using a nonsingular holomorphic map φ from an open subset U ⊆ C2 to C2,

it is easily proved that ft ≈ z2 + y4 for any complex number t with t2 6= 4.
But, it will proved by Theorem 4.1 that Ft(x, y, z) ∼proj Fs(x, y, z) in P2(C) if and

only if t2

t2−4 = s2

s2−4 . Observe that Ft(x, y, z) and Fs(x, y, z) are locally analytically

equivalent at any singular point in C3 −{0} for any s, t with s2 6= 4 and t2 6= 4. Thus,
an analytic equivalence at any singular point does not give a projective equivalence,
but the projective equivalence implies an analytic equivalence for this case.

Example 3.2.3. Let f(y, z) = yεz(z2 − y4) and g(y, z) = yε(z3 + y6) where ε
is either 1 or 0. By Theorem 2.7 and Theorem 2.9, f ∼ g with the same weights,
but f 6≈ g and deg(f) = 5 + ε < deg(g) = 6 + ε. If ε = 0, then the weights of f
are positive integers, but if ε = 1, then the weights of f are not positive integers.
By a nonsingular nonlinear change of coordinates T : (y, z) → (y, z + y2), which
is not linear, we get that f(y, z) = yεz(z − y2)(z + y2) ≈ yεz(z + y2)(z + 2y2) =
yεz(z2 + 3y2z + 2y4) = h(y, z). Then, h(y, z) ≈ yεz(z2 + 3

21/2
y2z + y4) = ℓ(y, z) with

deg(ℓ) = 5 + ε. Let F (x, y, z) = x5+εf(y/x, z/x), G(x, y, z) = x6+εg(y/x, z/x), and
H(x, y, z) = x5+εh(y/x, z/x) and L(x, y, z) = x5+εℓ(y/x, z/x) be the homogenization
of f(y, z), g(y, z), h(y, z) and ℓ(y, z) in C[x, y, z], respectively. Then, any two of
F (x, y, z) = 0, G(x, y, z) = 0 and L(x, y, z) = 0 are not projectively equivalent in
P2(C), but H(x, y, z) ∼proj L(x, y, z) in P2(C), which will be proved by Theorem 5.4.
Note that F (1, y, z) ≈ L(1, y, z) at the origin in C2 and also F (x, y, 1) ≈ L(x, y, 1)
at the origin in C2, but F (x, y, z) 6∼proj L(x, y, z) in P2(C). So, locally analytic
equivalence at any singular point does not give the projective equivalence.

Lemma 3.3. Assumption Let 1 ≤ n < k. Let f be a weighted homogeneous

polynomial in C[y, z], which is not homogeneous, with isolated singularity at the origin

in C2. Let F (x, y, z) ∈ C[x, y, z] be the homogenization of the above f(y, z).

Conclusion
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(I) Then, f(y, z) can be written without loss of generality as follows:

f(y, z) = yε1zε2f1(y, z) with(3.3.1)

f1(y, z) = A0z
n +Ady

k +

d−1∑

i=1

Aiy
ik1z(d−i)n1

=
d∏

i=1

(s0z
n1 + siy

k1),

where

(a) 1 ≤ n < k, d = gcd(n, k) with n = dn1 and k = dk1,

(b) ε1, ε2 are either 1 or 0, respectively, and

(c) the Ai are complex numbers for 0 ≤ i ≤ d and A0Ad 6= 0,
(d) the si are nonzero distinct complex numbers for 0 ≤ i ≤ d,
(e) if ε1 = ε2 = 0, then we may assume additionally that 2 ≤ n < k,

satisfying the following property:

(3.3.2) if gcd(n, k) = n, i.e., n1 = 1, then either A1 = 0 or A1 6= 0.

(II) With the same notation and property as in (I), the homogenization F (x, y, z)
of the above f(y, z) can be written as follows:

(3.3.3) F (x, y, z) = yε1zε2F1(x, y, z) with

F1(x, y, z) = A0x
k−nzn +Ady

k +

d−1∑

i=1

Aix
(k1−n1)(d−i)yik1z(d−i)n1

=

d∏

i=1

(s0x
k1−n1zn1 + siy

k1),

where F1(x, y, z) is the homogeneous polynomial in C[x, y, z] defining the homogeniza-

tion of the above f1(y, z) in C[y, z], that is, satisfying

(3.3.4) F (x, y, z) = yε1zε2F1(x, y, z) with deg(f) = k + ε1 + ε2,

F1(x, y, z) = xkf1(y/x, z/x).

(III) In order to find the difference between an analytic equivalence of weighted

homogeneous polynomials with isolated singularity in [I] and the projective equivalence

of projective curves defined by their homogenization in [II] at the same time, we need

to assume without loss of generality that

instead of a nonsingular holomorphic map from an open subset U ⊆ C2 to C2,

just using a nonsingular linear change of coordinates from C3 to itself,

F (x, y, z) with f(y, z) = F (1, y, z) satisfies the following property:

(3.3.5) A0 = Ad = s0 = 1, and also

(3.3.6) if gcd(n, k) = n, i.e., n1 = 1, then either A1 = 0 or A1 6= 0.
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Remark 3.3.1. (a) Note that a condition in (3.3.5) is invariant under projective

equivalence of curves, but projective equivalence of curves depends on the condition in

(3.3.2) or (3.3.6), which is going to prove by Theorem 6.1 of this paper.

(b) Assume that a projective curve F = 0 has a line, when F = 0 has a decompo-

sition into irreducible curves in P2(C). Then an equation for the line is always given

by either yε1 = 0 or zε2 = 0, if exists because 0 < n1 < k1 in (3.3.3).

Proof of Lemma 3.3. [I] By assumption, we may put f as follows:

f(y, z) = yε1zε2ℓ(y, z) with(3.3.7)

ℓ(y, z) = B0z
n +Bny

k +

n−1∑

i=1

Biy
βizn−i,

where 1 ≤ n < k, each εi is either 1 or 0 for i = 1, 2, and the Bi are complex
numbers for 0 ≤ i ≤ n with B0Bn 6= 0 and 1 < β1 < · · · < βn−1 < k. Observe that
f(y, z) is weighted homogeneous if and only if ℓ(y, z) is weighted homogeneous. Let
d = gcd(n, k) with n = n1d and k = k1d. Then ℓ(y, z) can be rewritten in the form

(3.3.8) ℓ(y, z) = B0z
n +Bny

k +

d−1∑

i=1

Biy
ik1z(d−i)n1 .

Then, we put A0 = B0, Ad = Bn and Ai = Bi for 1 ≤ i ≤ d− 1. Thus, it is clear that

f(y, z) = yε1zε2f1(y, z) with(3.3.9)

f1(y, z) = A0z
n +Ady

k +

d−1∑

i=1

Aiy
ik1z(d−i)n1

=

d∏

i=1

(s0z
n1 + siy

k1),

where the Ai are complex numbers for 0 ≤ i ≤ d and A0Ad 6= 0, and the si are
nonzero distinct complex numbers for 0 ≤ i ≤ d. Moreover, if ε1 = ε2 = 0, then we
must assume additionally that 2 ≤ n < k because f = 0 has an isolated singular point
at the origin in C2. Then, the proof of (I) is done.

(II) Let F (x, y, z) be the homogeneous polynomial in C[x, y, z] defining the ho-
mogenization of the above f(y, z) in C[y, z]. Then, F (x, y, z) can be written as follows:

(3.3.10) F (x, y, z) = yε1zε2F1(x, y, z) with

F1(x, y, z) = A0x
k−nzn +Ady

k +

d−1∑

i=1

Aix
(k1−n1)(d−i)yik1z(d−i)n1

=

d∏

i=1

(s0x
k1−n1zn1 + siy

k1),

where F1(x, y, z) is the homogeneous polynomial in C[x, y, z] defining the homogeniza-
tion of the above f1(y, z) in C[y, z]. Then, the proof of (II) is done.

(III) Consider F (x, ay, bz) for some nonzero numbers a, b such that F (1, ay, bz) =
f(ay, bz). That is, just using a nonsingular linear change of coordinates from C3 to
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itself, at the same time we may write without loss of generality that

A0 = Ad = s0 = 1 .(3.3.11)

It is clear that a condition in (3.3.5) is invariant under projective equivalence of
curves, but another condition in (3.3.2) or (3.3.6) is not invariant under projective
equivalence of curves, which need to prove later by Theorem 6.1. Then, the proof of
(III) is done. Thus, the proof of lemma is done.

Lemma 3.4 (The topological type of plane curve singularity defined

by the homogenization of the weighted homogeneous polynomial ∈ C[y, z]
with positive integer weights).

Assumption Let 2 ≤ n ≤ k. Let f(y, z) be a weighted homogeneous polynomial

with isolated singularity at the origin in C2 and with positive integer weights (n, k),
which is not homogeneous. Let F (x, y, z) ∈ C[x, y, z] be the homogenization of the

above f(y, z).
Since the weights of f(y, z) are positive integers, then by Theorem 2.7 and Lemma

3.3, we may put f(y, z) and F (x, y, z) as follows:

f(y, z) = B0z
n +Bny

k +

n−1∑

i=1

Biy
βizn−i,(3.4.1)

F (x, y, z) = xpf(y/x, z/x) with p = deg(f),

where 2 ≤ n < k, and all Bi are complex numbers for 0 ≤ i ≤ n, and B0 6= 0 because

f is a weighted homogeneous polynomial with isolated singularity at the origin in C2

and 2 ≤ n and 1 < β1 < · · · < βn−1 < k.

Conclusion Using a nonsingular linear change of coordinate T : C3 → C3 with

T (0) = 0, instead of a nonsingular holomorphic map from an open subset U ⊆ C2

to C2, then f(y, z) with deg f and F (x, y, z) are simultaneously equivalent to one and

only one of the following: Note first that either Bn 6= 0 or Bn = 0.
(I) Let Bn 6= 0. Then, we may put B0 = Bn = 1 by Lemma 3.3. Let d = gcd(n, k),

and then either d < n or d = n.

(I-1) Then, f(y, z) and F (x, y, z) of (3.4.1) can be rewritten in the form

f(y, z) = zn + yk +

d−1∑

i=1

Aiy
ik1z(d−i)n1 with deg f = k(3.4.2)

=

d∏

i=1

(zn1 + siy
k1) with 1 ≤ n1 < k1,

F (x, y, z) = xk−nzn + yk +

d−1∑

i=1

Aix
(k1−n1)(d−i)yik1z(d−i)n1

=

d∏

i=1

(xk1−n1zn1 + siy
k1),

where

(a) 2 ≤ n < k, d = gcd(n, k) with n = dn1 and k = dk1, and

(b) the Ai are complex numbers for 1 ≤ i ≤ d− 1,
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(c) the si are nonzero distinct complex numbers for 1 ≤ i ≤ d.

(I-2) The projective curve F (x, y, z) = 0 has no line when F (x, y, z) = 0 has a

decomposition into irreducible curves, and two distinct tangent lines in P2(C).

(II) Let Bn = 0. Then, Bn−1 6= 0, and we may put B0 = Bn−1 = 1 by Lemma

3.3. Let d = gcd(n, k), and then d = n.
(II-1) Then, f(y, z) and F (x, y, z) of (3.4.1) can be rewritten in the form

(3.4.3) f(y, z) = zf1(y, z) with deg f = k − k1 + 1 < k,

f1(y, z) = zn−1 + yk1(n−1) +

n−2∑

i=1

Aiy
ik1z(n−1−i)

=

n−1∏

i=1

(z + siy
k1), with 1 < k1,

F (x, y, z) = zF1(x, y, z) with

F1(x, y, z) = xk−k1−(n−1)zn−1 + yk−k1 +

n−2∑

i=1

Aix
k−k1−ik1−(n−1−i)yik1zn−1−i

=

n−1∏

i=1

(xk1−1z + siy
k1),

where

(a) 2 ≤ n < k, n = gcd(n, k) with k = nk1 and gcd(n− 1, k1(n− 1)) = n− 1,
(b) the Ai are complex numbers for 1 ≤ i ≤ n− 2,
(c) the si are nonzero distinct complex numbers for 1 ≤ i ≤ n− 1.
(II-2) The projective curve F (x, y, z) = 0 has one distinct line when F (x, y, z) = 0

has decomposition into irreducible curves, and two distinct tangent lines in P2(C).

Remark 3.4.1. (i) If k = n + 1, then f and F have one singular point at
(y, z) = (0, 0).

(ii) Hereafter, for simplicity of notations in solving the problems, f(y, z) and
F (x, y, z) of (II) in Lemma 3.4 may be rewritten in the following form: (n− 1) → m
and (k − k1) → ℓ. Then, m = n− 1 = gcd(n− 1, k − k1) = gcd(m, ℓ).

(3.4.4) f(y, z) = zf1(y, z) with deg f = ℓ+ 1 < k,

f1(y, z) = zm + yℓ +

m−1∑

j=1

Ajy
jℓ1z(m−j)

=
m∏

j=1

(z + siy
ℓ1), with 1 < ℓ1,

F (x, y, z) = zF1(x, y, z) with

F1(x, y, z) = xℓ−mzm + yℓ +

m−1∑

j=1

Ajx
ℓ−jℓ1−(m−j)yjℓ1zm−j

=
m∏

j=1

(xℓ1−1z + sjy
ℓ1),
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where
(a) 1 ≤ m < ℓ and e = gcd(m, ℓ) = m with m = m1e and ℓ = ℓ1e,
(b) the Aj are complex numbers for 1 ≤ j ≤ m− 1,
(c) the sj are nonzero distinct complex numbers for 1 ≤ j ≤ m.
Proof of Lemma 3.4. The proof is clear.

Lemma 3.5 (The topological type of plane curve singularity defined

by the homogenization of the weighted homogeneous polynomial ∈ C[y, z]
with no positive integer weights).

Assumption Let 1 ≤ n < k. Let f(y, z) be a weighted homogeneous polynomial

with isolated singularity at the origin in C2 and with no positive integer weights, which

f is not homogeneous. Let F (x, y, z) ∈ C[x, y, z] be the homogenization of the above

f(y, z).
Since the weights of f(y, z) are not positive integers, then by Theorem 2.7, Lemma

3.3 and Lemma 3.4, then we may put F (x, y, z) with F (1, y, z) = f(y, z) as follows:

f(y, z) = yε1zε2f1(y, z) with(3.5.1)

f1(y, z) = zn + yk +

d−1∑

i=1

Aiy
ik1z(d−i)n1

=

d∏

i=1

(zn1 + siy
k1),

(3.5.2) F (x, y, z) = yε1zε2F1(x, y, z) with

F1(x, y, z) = xk−nzn + yk +
d−1∑

i=1

Aix
(k1−n1)(d−i)yik1z(d−i)n1

=
d∏

i=1

(xk1−n1zn1 + siy
k1),

where

(a) 1 ≤ n < k, d = gcd(n, k) with n = dn1 and k = dk1,

(b) ε1, ε2 are either 1 or 0, respectively, and

(c) the Ai are complex numbers for 1 ≤ i ≤ d− 1,
(d) the si are nonzero distinct complex numbers for 1 ≤ i ≤ d,
(e) if ε1 = 0, then we may assume additionally that ε2 = 1 and gcd(n, k) < n,
(f) if ε2 = 0, then we may assume additionally that ε1 = 1,

satisfying the following property:

(3.5.3) if gcd(n, k) = n, i.e., n1 = 1, then either A1 = 0 or A1 6= 0.

Conclusion Then, f(y, z) with deg f and F (x, y, z) are simultaneously equivalent

to one and only one one of the following: Let C be the projective curve defined by

F (x, y, z) = 0 in P2(C).
(I) Let ε1 = ε2 = 1. Note that n ≥ 1. Then, f(y, z) and F (x, y, z) have the

same representation as in (3.5.1) and (3.5.2), respectively and the projective curve C
has two distinct lines when C has a decomposition into irreducible curves, and three

distinct tangent lines in P2(C).
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(II) Let ε1 = 0, ε2 = 1 and gcd(n, k) < n. Note that n ≥ 1. Then, f(y, z) and

F (x, y, z) have the same representation as in (3.5.1) and (3.5.2), respectively and the

projective curve C has one distinct line when C has a decomposition into irreducible

curves, and two distinct tangent line in P2(C).

(III) Let ε1 = 1 and ε2 = 0. Note that n ≥ 1. Then, f(y, z) and F (x, y, z) have

the same representation as in (3.5.1) and (3.5.2), respectively and the projective curve

C has one distinct line when C has a decomposition into irreducible curves, and three

distinct tangent lines in P2(C).

Remark 3.5.1. Note the following observations:
(a) If ε1 = ε2 = 0 then f has the positive integer weights.
(b) If ε1 = 0 and ε2 = 1 then gcd(n, k) < n, because otherwise f has the positive

integer weights by Theorem 2.7 and Lemma 3.4.

Proof of Lemma 3.5. The proof is clear.

Let C be an arbitrary projective curve in P2(C) defined by F (x, y, z) = 0 where
F (x, y, z) = 0 is a homogeneous polynomial in C[x, y, z]. Then, it is a well-known fact
that whenever a projective curve C has a unique decomposition into irreducible curves
in P2(C) then the number of distinct lines of C and also the number of distinct tangent
lines for C are projectively invariant under a nonsingular linear change of coordinates
T : C3 → C3 with T (0) = 0, respectively. In preparation for the complete solution of
two problems in the beginning, first of all, we need to prove the following theorem by
Lemma 3.4 and Lemma 3.5.

Theorem 3.6 (The topological types of plane curve singularities

defined by the homogenization of weighted homogeneous polynomials in

C[y, z]).
Assumption Let 1 ≤ n < k. Assume that f(y, z) is a weighted homogeneous

polynomial in C[y, z], which is not homogeneous, with isolated singularity at the origin

in C2. Let F (x, y, z) ∈ C[x, y, z] be the homogenization of the above f(y, z). Note that

Q is the set of rational numbers.

Conclusion
Fact(1): Whether or not f 6∼ z2 + y2, f is topologically written in a unique way:

f ∼ yε1zε2(zn + yk) with deg(f) = k + ε1 + ε2 and(3.6.1)

with weights (n+ ε2 +
n

k
ε1, k + ε1 +

k

n
ε2) ∈ Q × Q,

where

(a) 1 ≤ n < k, d = gcd(n, k) with n = dn1 and k = dk1,

(b) ε1, ε2 are either 1 or 0, respectively,

(c) if ε1 = ε2 = 0, then n ≥ 2.

Fact(2): Using a nonsingular linear change of coordinate T : C3 → C3 with

T (0) = 0, we may assume without loss of generality that F (x, y, z) with F (1, y, z) =
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f(y, z) can be written as follows:

f(y, z) = yε1zε2f1(y, z) with(3.6.2)

f1(y, z) =

d∏

i=1

(zn1 + siy
k1),

F (x, y, z) = yε1zε2F1(x, y, z) with(3.6.3)

F1(x, y, z) =

d∏

i=1

(xk1−n1zn1 + siy
k1),

where the si are nonzero distinct complex numbers for 1 ≤ i ≤ d and 0 < n1 < k1.

Fact(3): For brevity of notation, let C be the projective curve defined by F (x, y, z) =
0 in P2(C). Then ε1, ε2 and k are invariant under projective equivalence of plane

curves in P2(C), using the following four cases:

Case(I) Let ε1 = ε2 = 0 with n ≥ 2. Then, f ∼ zn+yk with weights (n, k) ∈ N × N

and deg(f) = k. So, the projective curve C has no line when C has a decomposition

into irreducible curves, and two distinct tangent lines in P2(C).
Case(II) Let ε1 = 0 and ε2 = 1 with n ≥ 1. Then, f ∼ z(zn + yk) with weights

(n + 1, k + k
n
) ∈ N × Q and deg(f) = k + 1 < k + k

n
. So, the projective curve C has

one distinct line when C has a decomposition into irreducible curves, and two distinct

tangent lines in P2(C).
Case(III) Let ε1 = 1 and ε2 = 0 with n ≥ 1. Then, f ∼ y(zn + yk) with weights

(n+ n
k
, k + 1) ∈ (Q − N) × N and deg(f) = k + 1. So, the projective curve C has one

distinct line when C has a decomposition into irreducible curves, and three distinct

tangent lines in P2(C).
Case(IV) Let ε1 = 1 and ε2 = 1 with n ≥ 1. Then, f ∼ yz(zn + yk) with weights

(n + 1 + n
k
, k + 1 + k

n
) ∈ (Q − N) × Q and deg(f) = k + 2 < k + 1 + k

n
. So, the

projective curve C has two distinct lines when C has a decomposition into irreducible

curves, and three distinct tangent lines in P2(C).

Moreover, f(y, z) of (3.6.2) and F (x, y, z) of (3.6.3) can be rewritten in the fol-

lowing form:

f(y, z) = yε1zε2f1(y, z) with(3.6.4)

f1(y, z) = zn + yk +

d−1∑

i=1

Aiy
ik1z(d−i)n1 and

F (x, y, z) = yε1zε2F1(x, y, z) with

F1(x, y, z) = xk−nzn + yk +
d−1∑

i=1

Aix
k−ik1−(d−i)n1yik1z(d−i)n1 ,

where the Ai are complex numbers for 1 ≤ i ≤ d− 1.

Proof of Theorem 3.6. The proof just follows from Theorem 2.7, Lemma 3.3,
Lemma 3.4 and Lemma 3.5.

Remark 3.6.1. Suppose that the same assumptions and conclusions with nota-
tions as in Theorem 3.6 hold.
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(1) If the projective curve C belongs to Case(I), then the C has no line and the
weights of f(y, z) belong to N × N.

(2) If the projective curve C belongs to Case(II), then the C has one line and the
weights of f(y, z) belong to N × Q.

(3) If the projective curve C belongs to Case(III), then the C has one line and
the weights of f(y, z) belong to (Q − N) × N.

(4) If the projective curve C belongs to Case(IV), then the C has two distinct lines
and the weights of f(y, z) belong to (Q − N) × Q.

4. The projective equivalence of plane curves defined by the homoge-

nization of weighted homogeneous polynomials with weights ∈ N × Q and its

applications. Throughout this section, we study Case(I) of Theorem 3.6 in terms
of Theorem 4.1 and Theorem 4.2, and study Case(II) of Theorem 3.6 in terms of
Theorem 4.4 and Theorem 4.5, respectively.

Theorem 4.1 (The projective equivalence for Case(I) of Theorem 3.6).

Assumption Let f(y, z) and g(y, z) be weighted homogeneous polynomials with

positive integer weights in C[y, z], which are not homogeneous, with isolated singularity

at the origin in C2, assuming that f(y, z) and g(y, z) belong to Case(I) of Theorem

3.6.
Let f ∼ zn + yk with weights (n, k) ∈ N × N and deg(f) = k, and let g ∼ zm + yℓ

with weights (m, ℓ) ∈ N × N and deg(g) = ℓ. By Theorem 3.6, we may assume without

loss of generality that f(y, z) and g(y, z) can be represented as follows:

f(y, z) = zn + yk +
d−1∑

i=1

Aiy
ik1z(d−i)n1 and(4.1.1)

g(y, z) = zm + yℓ +
e−1∑

j=1

Bjy
jℓ1z(e−j)m1 ,

where

(a) 2 ≤ n < k and d = gcd(n, k) with n = n1d and k = k1d,
(b) 2 ≤ m < ℓ and e = gcd(m, ℓ) with m = m1e and ℓ = ℓ1e,
(c) all the Ai and Bj are complex numbers for 1 ≤ i ≤ d− 1 and 1 ≤ j ≤ e− 1,

respectively.

Now, homogenize f and g as follows:

F (x, y, z) = xkf(y/x, z/x) with deg(f) = k,(4.1.2)

G(x, y, z) = xℓg(y/x, z/x) with deg(g) = ℓ.

Conclusion
Then F (x, y, z) ∼proj G(x, y, z) in P2(C)

⇐⇒ there is a complex number ρ with ρd = 1 such that Aiρ
i = Bi for i =

1, . . . , d− 1 where either {m = n and k = ℓ} or {m+ n = k and k = ℓ}.

In particular, if d = 1, then F (x, y, z) ∼proj G(x, y, z) in P2(C)
⇐⇒ either {m = n and k = ℓ} or {m+ n = k and k = ℓ}.

Proof of Theorem 4.1. In preparation for the proof of the theorem, by (4.1.1) and
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(4.1.2), F = F (x, y, z) and G = G(x, y, z) can be written by the following:

F = xk−nzn + yk +
d−1∑

i=1

Aix
k−ik1−(d−i)n1yik1z(d−i)n1 ,(4.1.3)

G = xℓ−mzm + yℓ +
e−1∑

j=1

Bjx
ℓ−jℓ1−(e−j)m1yjℓ1z(e−j)m1 ,

where the Ai and Bj are complex numbers for 1 ≤ i ≤ d− 1 and 1 ≤ j ≤ e− 1.

First, to prove the necessity of the condition, suppose that F ∼proj G in P2(C).

Then, k = deg(f) = deg(g) = ℓ, and there is a nonsingular linear change of coordinates
T : C3 → C3 with T (0) = 0, satisfying the following conditions:

(4.1.4) F ◦ T (x, y, z) = G(x, y, z) with

T (x, y, z) = (a1x+ a2y + a3z, b1x+ b2y + b3z, c1x+ c2y + c3z),

where the ai, bi, and ci are complex numbers for 1 ≤ i ≤ 3.

Since the number of singular points for the projective curve is invariant by a non-
singular linear change of coordinates T : C3 → C3 with T (0) = 0, for the proof of the
necessity of the condition, it suffices to consider the following two cases, respectively:

Case(i): If k = n+ 1 and ℓ = m+ 1, then it is clear that F = 0 and G = 0 have
one and only one singular point in P2(C), which is denoted by (x, y, z) = (1, 0, 0),
and conversely. Then, we may assume that T (1, 0, 0) = λ(1, 0, 0) for some nonzero
complex number λ.

Case(ii): If k ≥ n + 2 and ℓ ≥ m + 2, then it is clear that F = 0 and G =
0 have two singular points in P2(C), which are denoted by (x, y, z) = (1, 0, 0) and
(x, y, z) = (0, 0, 1), and conversely. For the proof of this case, it is enough to consider
the following two subcases, respectively:

Case(ii-a): T (1, 0, 0) = λ(1, 0, 0) and T (0, 0, 1) = µ(0, 0, 1) for some nonzero
complex numbers λ and µ.

Case(ii-b): T (1, 0, 0) = λ(0, 0, 1) and T (0, 0, 1) = µ(1, 0, 0) for some nonzero
complex numbers λ and µ.

For the proof of the necessity of the condition in these cases, first of all, observe
the followings by (4.1.3) and (4.1.4):

(4.1.5) F ◦ T (x, y, z)

= (a1x+ a2y + a3z)
k−n(c1x+ c2y + c3z)

n + (b1x+ b2y + b3z)
k

+
d−1∑

i=1

AiHi(x, y, z)

= xℓ−mzm + yℓ +
e−1∑

j=1

BjKj(x, y, z)

= G(x, y, z),

where Hi(x, y, z) = (a1x + a2y + a3z)
k−ik1−(d−i)n1(b1x + b2y + b3z)

ik1(c1x + c2y +
c3z)

(d−i)n1 and Kj(x, y, z) = xℓ−jℓ1−(e−j)m1yjℓ1z(e−j)m1 .
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Case(i): Let k = n + 1 and ℓ = m + 1. Note that d = gcd(n, k) = 1 and
e = gcd(m, ℓ) = 1. Since F ∼proj G in P2(C), then k = deg(f) = deg(g) = ℓ, and
so n = m. Therefore, it is clear that f(y, z) = zn + yk and g(y, z) = zm + yℓ are the
same, and also F (x, y, z) = xk−nzn + yk and G(x, y, z) = xℓ−mzm + yℓ are the same.
So, there is nothing to prove for the necessity of the condition in this case.

Case(ii): Let k ≥ n+ 2 and ℓ ≥ m+ 2.
Case(ii-a): Suppose that T (1, 0, 0) = λ(1, 0, 0) and T (0, 0, 1) = µ(0, 0, 1) for

some nonzero complex numbers λ and µ. Now, we claim the following:

(4.1.6) T (x, y, z) = (a1x, b2y, c3z).

In preparation for the proof of the claim in (4.1.6), first of all, we will prove the
following sublemma by using the equation in (4.1.5).

Sublemma 4.1.1. Let T be a nonsingular linear change of coordinates T : C3 → C3

with T (0) = 0 satisfying the equation T (x, y, z) = (a1x+a2y+a3z, b1x+b2y+b3z, c1x+
c2y + c3z) where the ai, bi, and ci are complex numbers for 1 ≤ i ≤ 3. Suppose that
T (1, 0, 0) = λ(1, 0, 0) and T (0, 0, 1) = µ(0, 0, 1) for some nonzero complex numbers λ
and µ.

As a conclusion, b1 = c1 = a3 = b3 = 0, and so the Jacobian determinant of T is
a1b2c3 6= 0.

Proof of Sublemma 4.1.1. By (4.1,4), T (1, 0, 0) = (a1, b1, c1) = λ1(1, 0, 0) and
T (0, 0, 1) = (a3, b3, c3) = µ(0, 0, 1) for some nonzero complex numbers λ and µ. Then,
b1 = c1 = a3 = b3 = 0, and so the Jacobian determinant of T is a1b2c3 6= 0 because T
is nonsingular. Thus, the proof of Sublemma 4.1.1 is done.

For the proof of the claim in (4.1.6), it remains to show by Sublemma 4.1.1 that
a2 = c2 = 0. Now, applying Sublemma 4.1.1 to (4.1.5), then we have the following:

(4.1.7) F ◦ T (x, y, z) =(a1x+ a2y)
k−n(c2y + c3z)

n + (b2y)
k

+

d−1∑

i=1

AiHi(x, y, z)

= xℓ−mzm + yℓ +

e−1∑

j=1

BjKj(x, y, z)

= G(x, y, z),

where Hi(x, y, z) = (a1x+ a2y)
k−ik1−(d−i)n1(b2y)

ik1(c2y + c3z)
(d−i)n1 and

Kj(x, y, z) = xℓ−jℓ1−(e−j)m1yjℓ1z(e−j)m1 .

In order to prove the claim in (4.1.6), first of all, we need to use the following two
facts (4.1.8) and (4.1.9), which can be easily proved from (4.1.7): Note that 0 < k1−n1

and 0 < ℓ1 −m1 by (4.1.1).
(4.1.8)

(i) 0 < k − ik1 − (d− i)n1 = (k1 − n1)(d− i) < k − n for 1 ≤ i ≤ d− 1.
(ii) 0 < ik1 < k for 1 ≤ i ≤ d− 1.
(iii) 0 < (d− i)n1 < n for 1 ≤ i ≤ d− 1.
(iv) 0 < ℓ− jℓ1 − (e− j)m1 = (ℓ1 −m1)(e− j) < ℓ−m for 1 ≤ j ≤ e− 1.
(v) 0 < jℓ1 < ℓ for 1 ≤ j ≤ e− 1.
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(vi) 0 < (e− j)m1 < m for 1 ≤ j ≤ e− 1.

(4.1.9) Whenever any monomial xαyβzγ belongs to Kj(x, y, z)

for all j = 1, . . . , e− 1, then α, β and γ are all positive integers

by (iv), (v) and (vi) of (4.1.8).

Now, to prove that a2 = c2 = 0, it is enough to consider an existence of the
coefficients of monomials xk−nyn and yk−nzn in F ◦ T = G, respectively.

Then, it is easy to prove the following:
(a) By (4.1.7) and (4.1.9), two monomials xk−nyn and yk−nzn do not belong to

G(x, y, z).

(b) By (4.1.7) and (i) of (4.1.8), the monomial xk−nyn has the coefficient ak−n
1 cn2

in F ◦ T because xk−nyn 6∈ Hi(x, y, z) for any i = 1, . . . , d− 1, if exists.

(c) By (4.1.7) and (iii) of (4.1.8), the monomial yk−nzn has the coefficient ak−n
2 cn3

in F ◦ T because yk−nzn 6∈ Hi(x, y, z) for any i = 1, . . . , d− 1, if exists.

Because F ◦ T = G and the Jacobian determinant of T is a1b2c3 6= 0, then it
is trivial by (a), (b) and (c) that ak−n

1 cn2 = ak−n
2 cn3 = 0, and therefore c2 = a2 = 0.

Thus, we proved that T (x, y, z) = (a1x, b2y, c3z) in (4.1.6).

Using (4.1.6) and (4.1.7), we have the following:

(4.1.10) F ◦ T (x, y, z) = (a1x)
k−n(c3z)

n + (b2y)
k +

d−1∑

i=1

AiHi(x, y, z)

= xℓ−mzm + yℓ +

e−1∑

j=1

BjKj(x, y, z)

= G(x, y, z),

where Hi(x, y, z) = (a1x)
k−ik1−(d−i)n1(b2y)

ik1 (c3z)
(d−i)n1 ,

Kj(x, y, z) = xℓ−jℓ1−(e−j)m1yjℓ1z(e−j)m1 .

From (4.1.10) with (4.1.8) and (4.1.9), comparing the coefficients of monomials
xk−nzn, yk and xk−ik1−(d−i)n1yik1z(d−i)n1 in F ◦ T (x, y, z), with the coefficients of
monomials xℓ−mzm, yℓ and xℓ−jℓ1−(e−j)m1yjℓ1z(e−j)m1 in G(x, y, z), respectively on
both sides where 1 ≤ i ≤ d−1 and 1 ≤ j ≤ e−1, then we get the following equations:
Note that k = ℓ, d = gcd(n, k) and e = gcd(m, ℓ).

(4.1.11) xk−nzn = xℓ−mzm and yk = yℓ

imply that k = ℓ and n = m, and

ak−n
1 cn3 = 1, bk2 = 1 and

Aia
k−ik1−(d−i)n1

1 bik1

2 c
(d−i)n1

3 = Bi for 1 ≤ i ≤ d− 1 = e− 1.

Using (4.1.11) with ak−n
1 cn3 = 1, then Aia

k−ik1−(d−i)n1

1 bik1

2 c
(d−i)n1

3 = Bi can be

rewritten as Aia
−i(k1−n1)
1 bik1

2 c−in1

3 = Bi.

Let ρ = a
−(k1−n1)
1 bk1

2 c
−n1

3 . By (4.1.11), ρd = 1 and then Aiρ
i = Bi for each

i = 1, · · · , d − 1. Thus, the proof for the necessity of the condition in Case(ii-a) is
done.
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Case(ii-b): Suppose that T (1, 0, 0) = λ(0, 0, 1) and T (0, 0, 1) = µ(1, 0, 0) for
some nonzero complex numbers λ and µ. Now, we claim the following:

(4.1.12) T (x, y, z) = (a3x, b2y, c1z).

In preparation for the proof of the claim in (4.1.12), first of all, we will prove the
following sublemma by using the equation in (4.1.5).

Sublemma 4.1.2: Let T be a nonsingular linear change of coordinates T : C3 → C3

with T (0) = 0 satisfying the equation T (x, y, z) = (a1x+a2y+a3z, b1x+b2y+b3z, c1x+
c2y + c3z) where the ai, bi, and ci are complex numbers for 1 ≤ i ≤ 3. Suppose that
T (1, 0, 0) = λ(0, 0, 1) and T (0, 0, 1) = µ(1, 0, 0) for some nonzero complex numbers λ
and µ.

As a conclusion, a1 = b1 = b3 = c3 = 0, and so the Jacobian determinant of T is
−a3b2c1 6= 0.

Proof of Sublemma 4.1.2. By (4.1,4), T (1, 0, 0) = (a1, b1, c1) = λ(0, 0, 1) and
T (0, 0, 1) = (a3, b3, c3) = µ(1, 0, 0) for some nonzero complex numbers λ and µ. Then,
a1 = b1 = b3 = c3 = 0, and so the Jacobian determinant of T is −a3b2c1 6= 0 because
T is nonsingular. Thus, the proof of Sublemma 4.1.2 is done.

For the proof of the claim in (4.1.12), it remains to show by Sublemma 4.1.2 that
a2 = c2 = 0. Now, applying Sublemma 4.1.2 to (4.1.5), then we have the following:

(4.1.13) F ◦ T (x, y, z) = (a2y + a3z)
k−n(c1x+ c2y)

n + (b2y)
k

+

d−1∑

i=1

AiHi(x, y, z)

= xℓ−mzm + yℓ +

e−1∑

j=1

BjKj(x, y, z)

= G(x, y, z),

where Hi(x, y, z) = (a2y + a3z)
k−ik1−(d−i)n1(b2y)

ik1(c1x+ c2y)
(d−i)n1 ,

Kj(x, y, z) = xℓ−jℓ1−(e−j)m1yjℓ1z(e−j)m1 .

Now, to prove that a2 = c2 = 0, it is enough to compute an existence of the
coefficients of monomials yk−nxn and zk−nyn in F ◦ T = G of (4.1.13), respectively.
For such computations, we use the same notations and methods, that is, two facts
(4.1.8) and (4.1.9) as we have done in the proof of Case(ii-a).

Then, it is easy to prove the following:
(a) By (4.1.13) and (4.1.9), two monomials yk−nxn and zk−nyn do not belong to

G(x, y, z).

(b) By (4.1.13) and (iii) of (4.1.8), the monomial yk−nxn has the coefficient ak−n
2 cn1

in F ◦ T because yk−nxn 6∈ Hi(x, y, z) for any i = 1, . . . , d− 1, if exists.

(c) By (4.1.13) and (i) of (4.1.8), the monomial zk−nyn has the coefficient ak−n
3 cn2

in F ◦ T because zk−nyn 6∈ Hi(x, y, z) for any i = 1, . . . , d− 1, if exists.

Because F ◦ T = G and the Jacobian determinant of T is −a3b2c1 6= 0, then it
is trivial by (a),(b) and (c) that ak−n

2 cn1 = ak−n
3 cn2 = 0, and therefore a2 = c2 = 0.

Thus, we proved that T (x, y, z) = (a3x, b2y, c1z) in (4.1.12).
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Using (4.1.12) and (4.1.13), then we have the following:

(4.1.14) F ◦ T (x, y, z) = (a3z)
k−n(c1x)

n + (b2y)
k +

d−1∑

i=1

AiHi(x, y, z)

= xℓ−mzm + yℓ +

e−1∑

j=1

Bjx
ℓ−jℓ1−(e−j)m1yjℓ1z(e−j)m1

= G(x, y, z),

where Hi(x, y, z) = (a3z)
k−ik1−(d−i)n1(b2y)

ik1(c1x)
(d−i)n1 .

From (4.1.14) with (4.1.8) and (4.1.9), comparing the coefficients of monomials
zk−nxn, yk and zk−ik1−(d−i)n1yik1x(d−i)n1 in F ◦ T (x, y, z), with the coefficients of
monomials xℓ−mzm, yℓ and xℓ−jℓ1−(e−j)m1yjℓ1z(e−j)m1 in G(x, y, z), respectively on
both sides where 1 ≤ i ≤ d−1 and 1 ≤ j ≤ e−1, then we get the following equations:
Note that k = ℓ, d = gcd(n, k) and e = gcd(m, ℓ).

(4.1.15) zk−nxn = xℓ−mzm and yk = yℓ imply that k = ℓ = n+m and

ak−n
3 cn1 = 1, bk2 = 1 and

Aia
k−ik1−(d−i)n1

3 bik1

2 c
(d−i)n1

1 = Bi for 1 ≤ i ≤ d− 1 = e− 1,

noting by (4.1.15) that zk−ik1−(d−i)n1yik1x(d−i)n1 and xℓ−iℓ1−(e−i)m1yiℓ1z(e−i)m1 are
the same monomial for each i = 1, 2, . . . , d− 1 = e− 1.

Using (4.1.15) with ak−n
3 cn1 = 1, then Aia

k−ik1−(d−i)n1

3 bik1

2 c
(d−i)n1

1 = Bi can be

rewritten as Aia
−i(k1−n1)
3 bik1

2 c−in1

1 = Bi.

Let ρ = a
−(k1−n1)
3 bk1

2 c
−n1

1 . By (4.1.15), ρd = 1 and then Aiρ
i = Bi for each

i = 1, · · · , d − 1. Thus, the proof for the necessity of the condition in Case(ii-b) is
done, and so we proved the necessity for Case(ii).

Therefore, we finished the proof for the necessity of the condition.

Next, to prove the sufficiency of the condition, since the number of singular points
for the projective curve is invariant by a nonsingular linear change of coordinates
T : C3 → C3 with T (0) = 0, by the same method as we have used in the proof for the
necessity of the condition, it is enough to consider the following two cases, respectively:

Case(i): Let k = n+ 1 and ℓ = m+ 1. Since k = ℓ by assumption, then n = m.
Note that d = gcd(n, k) = 1 and e = gcd(m, ℓ) = 1. So, there is nothing to prove for
Case(i), because f(y, z) = g(y, z) and then F (x, y, z) = G(x, y, z). Thus, the proof for
the sufficiency of the condition in Case(i) is done.

Case(ii): Let k ≥ n + 2 and ℓ ≥ m + 2. Suppose that there is a complex
number ρ with ρd = 1 such that Aiρ

i = Bi for i = 1, . . . , d − 1 where either {m =
n and k = ℓ} or {m+ n = k and k = ℓ}, and d = gcd(n, k) and e = gcd(m, ℓ).
If either {m = n and k = ℓ} or {m + n = k and k = ℓ}, note that d = e.
If {m = n and k = ℓ}, define T : C3 → C3 by T (x, y, z) = (x, by, z) for some
number b such that bk/d = ρ. If {m + n = k and k = ℓ}, define T : C3 → C3 by
T (x, y, z) = (z, by, x) for some number b such that bk/d = ρ. Then it is clear that
F ◦ T = G whether {m = n and k = ℓ} or {m + n = k and k = ℓ}. Thus, the
proof for the sufficiency of the condition in Case(ii) is done.
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So, we finished the proof for the sufficiency of the condition in Case(i) and Case(ii).
Therefore, the proof for the projective equivalence is completely done.

Theorem 4.2 (The difference between analytic equivalence for weighted

homogeneous polynomials in C[y, z] and projective equivalence for their

homogenization in C[x, y, z] for Case(I) of Theorem 3.6).

Assumption Let f(y, z) and g(y, z) be weighted homogeneous polynomials in

C[y, z], and let F (x, y, z) and G(x, y, z) be the homogenization of f(y, z) and g(y, z) in

C[x, y, z], respectively, satisfying the same assumptions and notations as in Theorem

4.1.
Let f ∼ zn + yk with weights (n, k) ∈ N × N and deg(f) = k, and let g ∼ zm + yℓ

with weights (m, ℓ) ∈ N × N and deg(g) = ℓ.

Conclusion The difference between projective equivalence and analytic equiva-

lence can be represented by three cases (I), (II) and (III), below:

(I) Let gcd(n, k) < n.
(I-a) Let m = n and k = ℓ. Then,

F (x, y, z) ∼proj G(x, y, z) in P2(C)
⇐⇒ f ≈ g at origin in C2.

(I-b) Let m+ n = k and k = ℓ. Then,

F (x, y, z) ∼proj G(x, y, z) in P2(C)
⇐⇒ f ≈ h at origin in C2.

(II) Let gcd(n, k) = n. Suppose that A1 = B1 = 0 in (4.1.1).
(II-a) Let m = n and k = ℓ. Then,

F (x, y, z) ∼proj G(x, y, z) in P2(C)
⇐⇒ f ≈ g at origin in C2.

(II-b) Let m+ n = k and k = ℓ . Then,

F (x, y, z) ∼proj G(x, y, z) in P2(C)
⇐⇒ f ≈ h at origin in C2.

(III) Let gcd(n, k) = n. Suppose that either A1 6= 0 or B1 6= 0 in (4.1.1).
(III-a) Let m = n and k = ℓ. Then,

F (x, y, z) ∼proj G(x, y, z) in P2(C)
=⇒ f ≈ g at origin in C2.

(III-b) Let m+ n = k and k = ℓ. Then,

F (x, y, z) ∼proj G(x, y, z) in P2(C)
=⇒ f ≈ h at origin in C2.

But the converse for (III) does not hold, which will be proved by the next corol-

lary, Corollary 4.3.

Remark 4.2.1. Under the same assumptions and conclusions as in Theorem
4.1, observe by Theorem 4.1 that if F (x, y, z) ∼proj G(x, y, z) in P2(C) then either
{n = m and k = ℓ} or {m + n = k and k = ℓ}, and also by Theorem 3.6 that
(i) and (ii) are true.

(i) m = n and k = ℓ ⇐⇒ f ∼ g at the origin in C2 with deg(f) = deg(g) where
f(y, z) = F (1, y, z) and g(y, z) = G(1, y, z).
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(ii) m+n = k and k = ℓ ⇐⇒ f ∼ h at the origin in C2 with deg(f) = deg(h)
where f(y, z) = F (1, y, z) and h(x, y) = G(x, y, 1).

Proof of Theorem 4.2. For the proof of the theorem, it is enough to consider the
following two cases, respectively:

Case(A) n = m and k = ℓ.
Case(B) n+m = k and k = ℓ.

Case(A) Let n = m and k = ℓ. Suppose that F ∼proj G in P2(C). To prove
that f ≈ g at origin in C2, using the same notations and methods as we have seen
in the proof of Case(i) and Case(ii) for the necessity of the condition of Theorem 4.1,
then G(x, y, z) = F ◦ T (x, y, z) implies that g(y, z) = f(by, z), and so there is nothing
to prove. Conversely, assuming that f ≈ g at origin in C2 except for the case (III),
to prove that F (x, y, z) ∼proj G(x, y, z) in P2(C) just follows from Theorem 2.9 and
Theorem 4.1.

Case(B) Let n+m = k and k = ℓ. Suppose that F ∼proj G in P2(C). To prove
that f ≈ h at origin in C2, using the same notations and methods as we have seen in
the proof of Case (i) and Case(ii) for the necessity of the condition of Theorem 4.1,
then G(x, y, z) = F ◦ T (x, y, z) implies that h(y, z) = f(by, z), and so there is nothing
to prove. Conversely, assuming that f ≈ h at origin in C2 except for the case (III),
to prove that F (x, y, z) ∼proj G(x, y, z) in P2(C) just follows from Theorem 2.9 and
Theorem 4.1.

Moreover, it will be shown by Corollary 4.3 that the converse for the case (III) is
not true. Therefore, the proof of theorem can be completely finished.

Corollary 4.3. Let Ft(x, y, z) = x2z2 + txy2z + y4 for any complex number

t with t2 6= 4. By Theorem 4.1, Ft(x, y, z) ∼proj Fs(x, y, z) in P2(C) if and only

if t2

t2−4 = s2

s2−4 . But, observe by Theorem 2.9 that Ft(1, y, z) ≈ Fs(1, y, z) at the

origin in C2 and also Ft(1, y, z) ≈ Fs(x, y, 1) at the origin in C2 for any s, t such that
t2

t2−4 = s2

s2−4 or t2

t2−4 6= s2

s2−4 . Thus, an analytic equivalence at any singular point does

not give a projective equivalence.

Theorem 4.4 (The projective equivalence for Case(II) of Theorem 3.6).

Assumption Let f(y, z) and g(y, z) be weighted homogeneous polynomials in

C[y, z] with weights in N × Q, which are not homogeneous, with isolated singularity at

the origin in C2, assuming that f(y, z) and g(y, z) belong to Case(II) of Theorem 3.6.
Let f ∼ z(zn + yk) with weights (n, k + k

n
) ∈ N × Q and deg(f) = k + 1, and let

g ∼ z(zm + yℓ) with weights (m, ℓ+ ℓ
m

) ∈ N × Q and deg(g) = ℓ+ 1.
By Theorem 3.6, we may assume without loss of generality that f(y, z) and g(y, z)

can be represented as follows:

f(y, z) = zf1(y, z) with(4.4.1)

f1(y, z) = zn + yk +

d−1∑

i=1

Aiy
ik1z(d−i)n1 ,

g(y, z) = zg1(y, z) with

g1(y, z) = zm + yℓ +
e−1∑

j=1

Bjy
jℓ1z(e−j)m1 ,
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where

(a) 1 ≤ n < k and d = gcd(n, k) with n = n1d and k = k1d,
(b) 1 ≤ m < ℓ and e = gcd(m, ℓ) with m = m1e and ℓ = ℓ1e,
(c) all the Ai and Bj are complex numbers for 1 ≤ i ≤ d− 1 and 1 ≤ j ≤ e− 1,

respectively.

Now, homogenize f and g as follows:

F (x, y, z) = xpf(y/x, z/x) with p = k + 1,(4.4.2)

G(x, y, z) = xqg(y/x, z/x) with q = ℓ+ 1.

Conclusion
Then F (x, y, z) ∼proj G(x, y, z) in P2(C)

⇐⇒ there is a complex number ρ with ρd = 1 such that Aiρ
i = Bi

for i = 1, . . . , d− 1 = e− 1 where n = m and k = ℓ.
In particular, if d = 1, then F (x, y, z) ∼proj G(x, y, z) in P2(C)
⇐⇒ {n = m and k = ℓ}.

Proof of Theorem 4.4. In preparation for the proof of the theorem, by (4.4.1) and
(4.4.2), F = F (x, y, z) and G = G(x, y, z) can be written by the following:

F = zF1 with(4.4.3)

F1 = xk−nzn + yk +

d−1∑

i=1

Aix
k−ik1−(d−i)n1yik1z(d−i)n1 ,

G = zG1 with

G1 = xℓ−mzm + yℓ +

e−1∑

j=1

Bjx
ℓ−jℓ1−(e−j)m1yjℓ1z(e−j)m1 ,

where the Ai and Bj are complex numbers for 1 ≤ i ≤ d− 1 and 1 ≤ j ≤ e− 1.
First, to prove the necessity of the condition, suppose that F ∼proj G in P2(C).

Then, k + 1 = deg(f) = deg(g) = ℓ + 1, and there is a nonsingular linear change of
coordinates T : C3 → C3 with T (0) = 0, satisfying the following conditions:

(4.4.4) F ◦ T (x, y, z) = G(x, y, z) with

T (x, y, z) = (a1x+ a2y + a3z, b1x+ b2y + b3z, c1x+ c2y + c3z),

where the ai, bi, and ci are complex numbers for 1 ≤ i ≤ 3.

Since the number of singular points for the projective curve is invariant by a non-
singular linear change of coordinates T : C3 → C3 with T (0) = 0, for the proof of the
necessity of the condition, it suffices to consider the following two cases, respectively:

Case(i): If k = n+ 1 and ℓ = m+ 1, then it is clear that F = 0 and G = 0 have
one and only one singular point in P2(C), which is denoted by (x, y, z) = (1, 0, 0),
and conversely. Then, we may assume that T (1, 0, 0) = λ(1, 0, 0) for some nonzero
complex number λ.

Case(ii): If k ≥ n + 2 and ℓ ≥ m + 2, then it is clear that F = 0 and G =
0 have two singular points in P2(C), which are denoted by (x, y, z) = (1, 0, 0) and
(x, y, z) = (0, 0, 1), and conversely. For the proof of this case, it is enough to consider
the following two subcases, respectively:
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Case(ii-a): T (1, 0, 0) = λ(1, 0, 0) and T (0, 0, 1) = µ(0, 0, 1) for some nonzero
complex numbers λ and µ.

Case(ii-b): T (1, 0, 0) = λ(0, 0, 1) and T (0, 0, 1) = µ(1, 0, 0) for some nonzero
complex numbers λ and µ.

For the proof of the necessity of the condition in these cases, by (4.4.3) and (4.4.4),
observe the followings:

(4.4.5) F ◦ T (x, y, z)

= (c1x+ c2y + c3z){(a1x+ a2y + a3z)
k−n(c1x+ c2y + c3z)

n

+ (b1x+ b2y + b3z)
k +

d−1∑

i=1

AiHi(x, y, z)}

= z{xℓ−mzm + yℓ +

e−1∑

j=1

BjKj(x, y, z)}

= G(x, y, z),

where Hi(x, y, z) = (a1x + a2y + a3z)
k−ik1−(d−i)n1(b1x + b2y + b3z)

ik1(c1x + c2y +
c3z)

(d−i)n1 and Kj(x, y, z) = xℓ−jℓ1−(e−j)m1yjℓ1z(e−j)m1 .

Case(i): Let k = n + 1 and ℓ = m + 1. Note that d = gcd(n, k) = 1 and
e = gcd(m, ℓ) = 1. Since F ∼proj G in P2(C), then k + 1 = deg(f) = deg(g) = ℓ + 1,
and so k = ℓ and n = m. Therefore, it is clear that f(y, z) = z(zn + yk) = g(y, z)
and F (x, y, z) = z(xk−nzn + yk) = G(x, y, z). So, there is nothing to prove for the
necessity of the condition in this case.

Case(ii): Let k ≥ n+ 2 and ℓ ≥ m+ 2.
Case(ii-a): Suppose that T (1, 0, 0) = λ(1, 0, 0) and T (0, 0, 1) = µ(0, 0, 1) for

some nonzero complex numbers λ and µ. Now, we claim the following:

(4.4.6) T (x, y, z) = (a1x, b2y, c3z).

From Sublemma 4.1.1 in the proof of Theorem 4.1 and the assumption of Case(ii-
a), it is clear that b1 = c1 = a3 = b3 = 0 and the Jacobian determinant of T is
a1b2c3 6= 0.

For the proof of the claim in (4.4.6), it remains to show by (4.4.5) that a2 = c2 = 0.
Using (4.4.4) and (4.4.5) with b1 = c1 = a3 = b3 = 0, then we have the following:

(4.4.7) F ◦ T (x, y, z) = (c2y + c3z){(a1x+ a2y)
k−n(c2y + c3z)

n

+ (b2y)
k +

d−1∑

i=1

AiHi(x, y, z)}

= z{xℓ−mzm + yℓ +

e−1∑

j=1

BjKj(x, y, z)}

= G(x, y, z),

where Hi(x, y, z) = (a1x+ a2y)
k−ik1−(d−i)n1(b2y)

ik1(c2y + c3z)
(d−i)n1 ,

Kj(x, y, z) = xℓ−jℓ1−(e−j)m1yjℓ1z(e−j)m1 .
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In order to prove the claim in (4.4.6), by the same notations and methods as we
have seen in Case (ii-a) of the proof of Theorem 4.1, then we can use the following
two facts (4.4.8) and (4.4.9) from (4.4.7):
(4.4.8)

(i) 0 < k − ik1 − (d− i)n1 = (k1 − n1)(d− i) < k − n for 1 ≤ i ≤ d− 1.
(ii) 0 < ik1 < k for 1 ≤ i ≤ d− 1.
(iii) 0 < (d− i)n1 < n for 1 ≤ i ≤ d− 1.
(iv) 0 < ℓ− jℓ1 − (e− j)m1 = (ℓ1 −m1)(e− j) < ℓ−m for 1 ≤ j ≤ e− 1.
(v) 0 < jℓ1 < ℓ for 1 ≤ j ≤ e− 1.
(vi) 0 < (e− j)m1 < m for 1 ≤ j ≤ e− 1.

(4.4.9) Whenever any monomial xαyβzγ belongs to Kj(x, y, z)

for all j = 1, . . . , e− 1, then α, β and γ are all positive integers

by (iv), (v) and (vi) of (4.4.8).

Now, to prove that a2 = c2 = 0, it is enough to consider an existence of the
coefficients of monomials yxk−nyn and zyk−nzn in F ◦ T = G, respectively.

Then, it is easy to prove the following:
(a) By (4.4.7) and (4.4.9), these two monomials yxk−nyn and zyk−nzn do not

belong to G(x, y, z).

(b) By (4.4.7) and (i) of (4.4.8), the monomial yxk−nyn has the coefficient c2a
k−n
1 cn2

in F ◦ T because xk−nyn 6∈ Hi(x, y, z) for any i = 1, . . . , d− 1, if exists.
(c) By (4.4.7) and (iii) of (4.4.8), the monomial zyk−nzn has the coefficient

c3a
k−n
2 cn3 in F ◦ T because yk−nzn 6∈ Hi(x, y, z) for any i = 1, . . . , d− 1, if exists.

Because F ◦ T = G and the Jacobian determinant of T is a1b2c3 6= 0, then it is
trivial by (a), (b) and (c) that c2a

k−n
1 cn2 = c3a

k−n
2 cn3 = 0, and therefore c2 = a2 = 0.

Thus, we proved that T (x, y, z) = (a1x, b2y, c3z) in (4.4.6).

Using (4.4.6) and (4.4.7), then we have the following:

(4.4.10) F ◦ T (x, y, z) = c3z{(a1x)
k−n(c3z)

n + (b2y)
k +

d−1∑

i=1

AiHi(x, y, z)}

= z{xℓ−mzm + yℓ +

e−1∑

j=1

BjKj(x, y, z)}

= G(x, y, z),

where Hi(x, y, z) = (a1x)
k−ik1−(d−i)n1(b2y)

ik1(c3z)
(d−i)n1 ,

Kj(x, y, z) = xℓ−jℓ1−(e−j)m1yjℓ1z(e−j)m1 .

From (4.4.10) with (4.4.8) and (4.4.9), comparing the coefficients of monomials
zxk−nzn and zyk and zxk−ik1−(d−i)n1yik1z(d−i)n1 in F ◦T (x, y, z), with the coefficients
of monomials zxℓ−mzm and zyℓ and zxℓ−jℓ1−(e−j)m1yjℓ1z(e−j)m1

in G(x, y, z), respectively on both sides where 1 ≤ i ≤ d − 1 and 1 ≤ j ≤ e− 1, then
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we get the following equations: Note that d = gcd(n, k) and e = gcd(m, ℓ).

(4.4.11) zxk−nzn = zxℓ−mzm and zyk = zyℓ

imply that n = m and k = ℓ , and

c3a
k−n
1 cn3 = 1, c3b

k
2 = 1 and

c3Aia
k−ik1−(d−i)n1

1 bik1

2 c
(d−i)n1

3 = Bi for 1 ≤ i ≤ d− 1 = e− 1.

Using (4.4.11) with c3a
k−n
1 cn3 = 1, then c3Aia

k−ik1−(d−i)n1

1 bik1

2 c
(d−i)n1

3 = Bi can

be rewritten as Aia
−i(k1−n1)
1 bik1

2 c−in1

3 = Bi.

Let ρ = a
−(k1−n1)
1 bk1

2 c
−n1

3 . By (4.4.11), ρd = 1 and then Aiρ
i = Bi for each

i = 1, · · · , d − 1. Thus, the proof for the necessity of the condition in Case (ii-a) is
done.

Case(ii-b): Suppose that T (1, 0, 0) = λ(0, 0, 1) and T (0, 0, 1) = µ(1, 0, 0) for
some nonzero complex numbers λ and µ.

We claim that there is no such case.
Assume the contrary. From Sublemma 4.1.2 in the proof of Theorem 4.1 and the

assumption of Case(ii-b), it is clear that a1 = b1 = b3 = c3 = 0, and also the Jacobian
determinant of T is −a3b2c1 6= 0.

Using (4.4.3) and (4.4.5) with a1 = b1 = b3 = c3 = 0, then we have the following:

(4.4.12) F ◦ T (x, y, z) = (c1x+ c2y)F1 ◦ T (x, y, z) with

F1 ◦ T (x, y, z) = (a2y + a3z)
k−n(c1x+ c2y)

n + (b2y)
k

+
d−1∑

i=1

AiHi(x, y, z),

G(x, y, z) = zG1(x, y, z) with

G1(x, y, z) = xℓ−mzm + yℓ +

e−1∑

j=1

BjKj(x, y, z),

where Hi(x, y, z) = (a2y + a3z)
k−ik1−(d−i)n1(b2y)

ik1(c1x+ c2y)
(d−i)n1 ,

Kj(x, y, z) = xℓ−jℓ1−(e−j)m1yjℓ1z(e−j)m1 .

For an easy proof, by the defining equations of F = F (x, y, z) and G = G(x, y, z)
in (4.4.3), F and G can be rewritten in the following form:

F (x, y, z) = zF1(x, y, z) with(4.4.13)

F1(x, y, z) =

d∏

i=1

(xk1−n1zn1 + siy
k1),

G(x, y, z) = zG1(x, y, z) with

G1(x, y, z) =
e∏

j=1

(xℓ1−m1zm1 + tiy
ℓ1),

where
(a) all the si are nonzero distinct complex numbers for 1 ≤ i ≤ d,
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(b) all the tj are nonzero distinct complex numbers for 1 ≤ j ≤ e,
(c) 0 < k1 − n1 < k1 and 0 < ℓ1 −m1 < ℓ1.

From (4.4.12) and (4.4.13), if F ◦ T = G, then c1x + c2y = αz for a nonzero
constant α, because 0 < k1 − n1 < k1 and 0 < ℓ1 −m1 < ℓ1 imply that two plane
curves F = 0 and G = 0 have one and only one line at the same time, when F = 0
and G = 0 have a unique decomposition into irreducible curves in P2(C), respectively.
This would be impossible.

Thus, the claim for this case is proved, and then the proof for the necessity of the
condition in Case(ii-b) is done. So we proved the necessity for Case(ii).

Therefore, we finished the proof for the necessity of the condition.

Next, to prove the sufficiency of the condition, since the number of singular points
for the projective curve is invariant by a nonsingular linear change of coordinates
T : C3 → C3 with T (0) = 0, then by the same method as we have seen in the proof
for the necessity of the condition, it is enough to consider the following two cases,
respectively:

Case(i): Let k = n+ 1 and ℓ = m+ 1. Since k = ℓ by assumption, then n = m.
Note that d = gcd(n, k) = 1 and e = gcd(m, ℓ) = 1. So, there is nothing to prove for
Case(i), because f(y, z) = g(y, z) and then F (x, y, z) = G(x, y, z). Thus, the proof for
the sufficiency of the condition in Case(i) is done.

Case(ii): Let k ≥ n+ 2 and ℓ ≥ m+ 2. Suppose that there is a complex number
ρ with ρd = 1 such that Aiρ

i = Bi for i = 1, 2, . . . , d− 1 where m = n and k = ℓ, and
d = gcd(n, k). Define T : C3 → C3 by T (x, y, z) = (x, by, z) for some number b such
that bk/d = ρ, and then it is clear that F ◦ T = G.

So, the proof of sufficiency is done in any case.
Therefore, the proof for the projective equivalence is completely finished.

Theorem 4.5 (The difference between analytic equivalence for

weighted homogeneous polynomials in C[y, z] and projective equivalence

for their homogenization in C[x, y, z] for Case(II) of Theorem 3.6).

Assumption Let f(y, z) and g(y, z) be weighted homogeneous polynomials in

C[y, z], and let F (x, y, z) and G(x, y, z) be the homogenization of f(y, z) and g(y, z) in

C[x, y, z], respectively, satisfying the same assumptions and notations as in Theorem

4.4.
Let f ∼ z(zn + yk) with weights (n, k + k

n
) ∈ N × Q and deg(f) = k + 1, and let

g ∼ z(zm + yℓ) with weights (m, ℓ+ ℓ
m

) ∈ N × Q and deg(g) = ℓ+ 1.

Conclusion The difference between projective equivalence and analytic equiva-

lence can be represented by three cases (I), (II) and (III), below:

(I) Let gcd(n, k) < n. Then,

F (x, y, z) ∼proj G(x, y, z) in P2(C)
⇐⇒ f ≈ g at origin in C2.

(II) Let gcd(n, k) = n. Suppose that A1 = B1 = 0 in (4.4.1). Then,

F (x, y, z) ∼proj G(x, y, z) in P2(C)
⇐⇒ f ≈ g at origin in C2.

(III) Let gcd(n, k) = n. Suppose that either A1 6= 0 or B1 6= 0 in (4.4.1). Then,

F (x, y, z) ∼proj G(x, y, z) in P2(C)
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=⇒ f ≈ g at origin in C2.

But the converse for (III) does not hold, which will be proved by the next corol-

lary, Corollary 4.6.

Remark 4.5.1. Under the same assumptions and conclusions as in Theorem 4.4,
observe by Theorem 4.4 that if F (x, y, z) ∼proj G(x, y, z) in P2(C) then n = m and
k = ℓ, and also by Theorem 3.6 that the followings (∗) are true.
(∗) m = n and k = ℓ ⇐⇒ f ∼ g at the origin in C2 with deg(f) = deg(g)
where f(y, z) = F (1, y, z) and g(y, z) = G(1, y, z).

Proof of Theorem 4.5. The proof of the theorem can be done by the same way as
we have seen in the proof of Theorem 4.2.

Corollary 4.6. For example, let f(y, z) = z(z2 + y4) and g(y, z) = z(z2 +
3

21/2 y
2z + y4). Put F (x, y, z) = x5f(y/x, z/x) and G(x, y, z) = x5g(y/x, z/x). Then,

F (x, y, z) 6∼proj G(x, y, z) in P2(C), but F (1, y, z) ≈ G(1, y, z) at the origin in C2 and

also F (x, y, 1) ≈ G(x, y, 1) at the origin in C2, too. Thus, locally analytic equivalence

at any singular point does not give a projective equivalence.

Proof of Corollary 4.6. Let f(y, z) = z(z2 + y4). Then, f(y, z) ≈ z(z2 − y4) =
z(z−y2)(z+y2) ≈ z(z+y2)(z+2y2) = z(z2+3y2z+2y4). Define h(y, z) = z(z2+3y2z+
2y4). Then, h(y, z) ≈ z(z2+ 3

21/2 y
2z+y4) = g(y, z). So, f(y, z) ≈ g(y, z), but it is clear

by by Theorem 4.4 that F (x, y, z) = x5f(y/x, z/x) and G(x, y, z) = x5g(y/x, z/x) are
not projectively equivalent in P2(C). Note that F (x, y, 1) ≈ G(x, y, 1) at the origin in
C2. Thus, the proof is done.

5. The projective equivalence of plane curves defined by the homoge-

nization of weighted homogeneous polynomials whose weights ∈ (Q − N) × Q

and its applications. Throughout this section, we study Case(III) of Theorem 3.6
in terms of Theorem 5.1 and Theorem 5.2, and study Case(IV) of Theorem 3.6 in
terms of Theorem 5.4 and Theorem 5.5, respectively.

Theorem 5.1(The projective equivalence for Case(III) of Theorem

3.6).

Assumption Let f(y, z) and g(y, z) be weighted homogeneous polynomials with no

positive integer weights in C[y, z], which are not homogeneous, with isolated singularity

at the origin in C2, assuming that f(y, z) and g(y, z) belong to Case(III) of Theorem

3.6.
Let f ∼ y(zn +yk) with weights (n+ n

k
, k+1) ∈ (Q − N) × N and deg(f) = k+1,

and let g ∼ y(zm + yℓ) with weights (m+ m
ℓ
, ℓ+1) ∈ (Q − N) × N and deg(g) = ℓ+1.

By Theorem 3.6, we may assume without loss of generality that f(y, z) and g(y, z) can

be represented as follows:

f(y, z) = yf1(y, z) with(5.1.1)

f1(y, z) = zn + yk +

d−1∑

i=1

Aiy
ik1z(d−i)n1 ,

g(y, z) = yg1(y, z) with

g1(y, z) = zm + yℓ +
e−1∑

j=1

Bjy
jℓ1z(e−j)m1 ,
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where

(a) 1 ≤ n < k and d = gcd(n, k) with n = n1d and k = k1d,
(b) 1 ≤ m < ℓ and e = gcd(m, ℓ) with m = m1e and ℓ = ℓ1e,
(c) all the Ai and Bj are complex numbers for 1 ≤ i ≤ d− 1 and 1 ≤ j ≤ e− 1,

respectively.

Now, homogenize f and g as follows:

F (x, y, z) = xpf(y/x, z/x) with p = k + 1,(5.1.2)

G(x, y, z) = xqg(y/x, z/x) with q = ℓ+ 1.

Conclusion
Then, F (x, y, z) ∼proj G(x, y, z) in P2(C)

⇐⇒ there is a complex number ρ with ρd = 1 such that Aiρ
i = Bi for i =

1, . . . , d− 1 where either {m = n and k = ℓ} or {m+ n = k and k = ℓ}.

In particular, if d = 1, then F (x, y, z) ∼proj G(x, y, z) in P2(C)
⇐⇒ either {m = n and k = ℓ} or {m+ n = k and k = ℓ}.

Proof of Theorem 5.1. In preparation for the proof of the theorem, by (5.1.1) and
(5.1.2), F = F (x, y, z) and G = G(x, y, z) can be written by the following:

F = yF1 with(5.1.3)

F1 = xk−nzn + yk +

d−1∑

i=1

Aix
k−ik1−(d−i)n1yik1z(d−i)n1 ,

G = yG1 with

G1 = xℓ−mzm + yℓ +
e−1∑

j=1

Bjx
ℓ−jℓ1−(e−j)m1yjℓ1z(e−j)m1 ,

where the Ai and Bj are complex numbers for 1 ≤ i ≤ d− 1 and 1 ≤ j ≤ e− 1.

First, to prove the necessity of the condition, suppose that F ∼proj G in P2(C).
Then, k + 1 = deg(f) = deg(g) = ℓ + 1, and there is a nonsingular linear change of
coordinates T : C3 → C3 with T (0) = 0, satisfying the following conditions:

(5.1.4) F ◦ T (x, y, z) = G(x, y, z) with

T (x, y, z) = (a1x+ a2y + a3z, b1x+ b2y + b3z, c1x+ c2y + c3z),

where the ai, bi, and ci are complex numbers for 1 ≤ i ≤ 3.

Since both F = 0 and G = 0 have exactly two singular points in P2(C), which are
denoted by (x, y, z) = (1, 0, 0) and (x, y, z) = (0, 0, 1), for the proof of the necessity of
the condition, it suffices to consider the following two subcases, respectively:

Case(i-a) T (1, 0, 0) = λ(1, 0, 0) and T (0, 0, 1) = µ(0, 0, 1) for some nonzero com-
plex numbers λ and µ.

Case(i-b) T (1, 0, 0) = λ(0, 0, 1) and T (0, 0, 1) = µ(1, 0, 0) for some nonzero com-
plex numbers λ and µ.

For the proof of the necessity of the condition in these cases, by (5.1.3) and (5.1.4),
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observe the followings:

F ◦ T (x, y, z)

(5.1.5)

= (b1x+ b2y + b3z){(a1x+ a2y + a3z)
k−n(c1x+ c2y + c3z)

n + (b1x+ b2y + b3z)
k

+

d−1∑

i=1

Ai(a1x+ a2y + a3z)
k−ik1−(d−i)n1(b1x+ b2y + b3z)

ik1(c1x+ c2y + c3z)
(d−i)n1}

= y{xℓ−mzm + yℓ +

e−1∑

j=1

Bjx
ℓ−jℓ1−(e−j)m1yjℓ1z(e−j)m1}

= G(x, y, z).

Case(i-a): Suppose that T (1, 0, 0) = λ(1, 0, 0) and T (0, 0, 1) = µ(0, 0, 1) for some
nonzero complex numbers λ and µ. Now, we claim that

(5.1.6) T (x, y, z) = (a1x, b2y, c3z).

By Sublemma 4.1.1 in the proof of Theorem 4.1 and by the assumption of Case(i-
a), it is clear that b1 = c1 = a3 = b3 = 0 and the Jacobian determinant of T is
a1b2c3 6= 0.

For the proof of the claim in (5.1.6), it remains to show by (5.1.5) that a2 = c2 = 0.
Using (5.1.4) and (5.1.5) with b1 = c1 = a3 = b3 = 0, then we have the following:

(5.1.7) F ◦ T (x, y, z) = (b2y){(a1x+ a2y)
k−n(c2y + c3z)

n + (b2y)
k

+

d−1∑

i=1

AiHi(x, y, z)}

= y{xℓ−mzm + yℓ +

e−1∑

j=1

BjKj(x, y, z)}

= G(x, y, z),

where Hi(x, y, z) = (a1x+ a2y)
k−ik1−(d−i)n1(b2y)

ik1 (c2y + c3z)
(d−i)n1,

Kj(x, y, z) = xℓ−jℓ1−(e−j)m1yjℓ1z(e−j)m1 .

For the proof of the claim in (5.1.6), using the same notations and methods as
we have seen in Case (ii-a) for the proof of Theorem 4.1, then observe the following
two facts (5.1.8) and (5.1.9) from (5.1.7):
(5.1.8)

(i) 0 < k − ik1 − (d− i)n1 = (k1 − n1)(d− i) < k − n for 1 ≤ i ≤ d− 1.
(ii) 0 < ik1 < k for 1 ≤ i ≤ d− 1.
(iii) 0 < (d− i)n1 < n for 1 ≤ i ≤ d− 1.
(iv) 0 < ℓ− jℓ1 − (e− j)m1 = (ℓ1 −m1)(e− j) < ℓ−m for 1 ≤ j ≤ e− 1.
(v) 0 < jℓ1 < ℓ for 1 ≤ j ≤ e− 1.
(vi) 0 < (e− j)m1 < m for 1 ≤ j ≤ e− 1.

(5.1.9) Whenever any monomial xαyβzγ belongs to Kj(x, y, z)

for all j = 1, . . . , e− 1, then α, β and γ are all positive integers

by (iv), (v) and (vi) of (5.1.8).
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Now, to prove that a2 = c2 = 0, it is enough to consider an existence of the
coefficients of monomials yxk−nyn and yyk−nzn in F ◦ T = G, respectively.

Then, it is easy to prove the following:
(a) By (5.1.7) and (5.1.9), two monomials yxk−nyn and yyk−nzn do not belong

to G(x, y, z).

(b) By (5.1.7) and (i) of (5.1.8), the monomial yxk−nyn has the coefficient b2a
k−n
1 cn2

in F ◦ T because xk−nyn 6∈ Hi(x, y, z) for any i = 1, . . . , d− 1, if exists.
(c) By (5.1.7) and (iii) of (5.1.8), the monomial yyk−nzn has the coefficient

b2a
k−n
2 cn3 in F ◦ T because yk−nzn 6∈ Hi(x, y, z) for any i = 1, . . . , d− 1, if exists.

Because F ◦ T = G and the Jacobian determinant of T is a1b2c3 6= 0, then it is
trivial by (a), (b) and (c) that b2a

k−n
1 cn2 = b2a

k−n
2 cn3 = 0, and therfore c2 = a2 = 0.

Thus, we proved that T (x, y, z) = (a1x, b2y, c3z) in (5.1.6).

Using (5.1.6) and (5.1.7), we have the following:

(5.1.10) F ◦ T (x, y, z) = (b2y){(a1x)
k−n(c3z)

n + (b2y)
k +

d−1∑

i=1

AiHi(x, y, z)}

= y{xℓ−mzm + yℓ +

e−1∑

j=1

BjKj(x, y, z)}

= G(x, y, z),

where Hi(x, y, z) = (a1x)
k−ik1−(d−i)n1(b2y)

ik1(c3z)
(d−i)n1 ,

Kj(x, y, z) = xℓ−jℓ1−(e−j)m1yjℓ1z(e−j)m1 .

From (5.1.10) with (5.1.8) and (5.1.9), comparing the coefficients of monomials
yxk−nzn and yyk and yxk−ik1−(d−i)n1yik1z(d−i)n1 in F ◦ T (x, y, z), with the coeffi-
cients of monomials yxℓ−mzm and yyℓ and yxℓ−jℓ1−(e−j)m1yjℓ1z(e−j)m1 in G(x, y, z),
respectively on both sides where 1 ≤ i ≤ d − 1 and 1 ≤ j ≤ e − 1, then we get the
following equations: Note that k = ℓ, d = gcd(n, k) and e = gcd(m, ℓ).

(5.1.11) yxk−nzn = yxℓ−mzm and yyk = yyℓ

imply that n = m and k = ℓ, and

b2a
k−n
1 cn3 = 1, b2b

k
2 = 1 and

b2Aia
k−ik1−(d−i)n1

1 bik1

2 c
(d−i)n1

3 = Bi for 1 ≤ i ≤ d− 1 = e− 1.

Using (5.1.11) with b2a
k−n
1 cn3 = 1, then b2Aia

k−ik1−(d−i)n1

1 bik1

2 c
(d−i)n1

3 = Bi can

be rewritten as Aia
−i(k1−n1)
1 bik1

2 c−in1

3 = Bi.

Let ρ = a
−(k1−n1)
1 bk1

2 c
−n1

3 . By (5.1.11), ρd = 1, and then Aiρ
i = Bi for each

i = 1, · · · , d − 1. Thus, the proof for the necessity of the condition in Case(i-a) is
done.

Case(i-b): Suppose that T (1, 0, 0) = λ(0, 0, 1) and T (0, 0, 1) = µ(1, 0, 0) for some
nonzero complex numbers λ and µ. Now, we claim that

(5.1.12) T (x, y, z) = (a3x, b2y, c1z).
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By Sublemma 4.1.2 in the proof of Theorem 4.1 and by the assumption of Case(i-
b), it is clear that a1 = b1 = b3 = c3 = 0, and also the Jacobian determinant of T is
−a3b2c1 6= 0, if exists.

For the proof of the claim in (5.1.12), it remains to show by (5.1.4) that a2 =
c2 = 0.

Using (5.1.4) and (5.1.5) with a1 = b1 = b3 = c3 = 0, then we have the following:

(5.1.13) F ◦ T (x, y, z) = (b2y){(a2y + a3z)
k−n(c1x+ c2y)

n + (b2y)
k

+

d−1∑

i=1

AiHi(x, y, z)}

= y{xℓ−mzm + yℓ +

e−1∑

j=1

BjKj(x, y, z)}

= G(x, y, z),

where Hi(x, y, z) = (a2y + a3z)
k−ik1−(d−i)n1(b2y)

ik1 (c1x+ c2y)
(d−i)n1 ,

Kj(x, y, z) = xℓ−jℓ1−(e−j)m1yjℓ1z(e−j)m1 .

Now, to prove that a2 = c2 = 0, it is enough to compute an existence of the
coefficients of monomials yyk−nxn and yzk−nyn in F ◦T = G of (5.1.13), respectively.
For such computations, use two facts (5.1.8) and (5.1.9) by the same notations and
methods as we have seen in the proof of Case (i-a) of this theorem.

Then, it is easy to prove the following:
(a) By (5.1.13) and (5.1.9), two monomials yyk−nxn and yzk−nyn do not belong

to G(x, y, z).
(b) By (5.1.13) and (iii) of (5.1.8), the monomial yyk−nxn has the coefficient

b2a
k−n
2 cn1 in F ◦ T because yk−nxn 6∈ Hi(x, y, z) for any i = 1, . . . , d− 1, if exists.
(c) By (5.1.13) and (i) of (5.1.8), the monomial yzk−nyn has the coefficient

b2a
k−n
3 cn2 in F ◦ T , because zk−nyn 6∈ Hi(x, y, z) for any i = 1, . . . , d− 1, if exists.
Because F ◦ T = G and the Jacobian determinant of T is −a3b2c1 6= 0, then it

is trivial by (a), (b) and (c) that b2a
k−n
2 cn1 = b2a

k−n
3 cn2 = 0, and therefore implies

a2 = c2 = 0. Thus, we proved that T (x, y, z) = (a3x, b2y, c1z) in (5.1.12).

Using (5.1.12) and (5.1.13), we have the following:

(5.1.14) F ◦ T (x, y, z) = b2y{(a3z)
k−n(c1x)

n + (b2y)
k +

d−1∑

i=1

AiH(x, y, z)}

= y{xℓ−mzm + yℓ +

e−1∑

j=1

BjKj(x, y, z)}

= G(x, y, z),

where H(x, y, z) = (a3z)
k−ik1−(d−i)n1(b2y)

ik1(c1x)
(d−i)n1 ,

Kj(x, y, z) = xℓ−jℓ1−(e−j)m1yjℓ1z(e−j)m1 .

From (5.1.14) with (5.1.8) and (5.1.9), comparing the coefficients of monomials
yzk−nxn and yyk and yzk−ik1−(d−i)n1yik1x(d−i)n1 in F ◦ T (x, y, z), with the coeffi-
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cients of monomials yxℓ−mzm and yyℓ and yxℓ−jℓ1−(e−j)m1yjℓ1z(e−j)m1 in G(x, y, z),
respectively on both sides where 1 ≤ i ≤ d − 1 and 1 ≤ j ≤ e − 1, then we get the
following equations: Note that k = ℓ, d = gcd(n, k) and e = gcd(m, ℓ).

(5.1.15) yzk−nxn = yxℓ−mzm and yyk = yyℓ

imply that k = ℓ = n+m, and

b2a
k−n
3 cn1 = 1, b2b

k
2 = 1 and

b2Aia
k−ik1−(d−i)n1

3 bik1

2 c
(d−i)n1

1 = Bi for 1 ≤ i ≤ d− 1 = e− 1,

noting by (5.1.15) that yzk−ik1−(d−i)n1yik1x(d−i)n1 and yxℓ−iℓ1−(e−i)m1yiℓ1z(e−i)m1

are the same monomials.
Using (5.1.15) with b2a

k−n
3 cn1 = 1, then b2Aia

k−ik1−(d−i)n1

3 bik1

2 c
(d−i)n1

1 = Bi can

be rewritten as Aia
−i(k1−n1)
3 bik1

2 c−in1

1 = Bi.

Let ρ = a
−(k1−n1)
3 bk1

2 c
−n1

1 . By (5.1.15) ρd = 1, and then Aiρ
i = Bi for each

i = 1, · · · , d− 1.
Thus, the proof for the necessity of the condition in Case(i-b) is done.
Therefore, we finished the proof for the necessity of the condition.

Next, to prove the sufficiency of the condition, suppose that there is a complex

number ρ with ρd = 1 such that Aiρ
i = Bi for i = 1, . . . , d − 1 where either {m =

n and k = ℓ} or {m+ n = k and k = ℓ}, and d = gcd(n, k) and e = gcd(m, ℓ).
If either {m = n and k = ℓ} or {m + n = k and k = ℓ}, note that d = e.
If {m = n and k = ℓ}, define T : C3 → C3 by T (x, y, z) = (x, by, z) for some
number b such that bk/d = ρ. If {m + n = k and k = ℓ}, define T : C3 → C3 by
T (x, y, z) = (z, by, x) for some number b such that bk/d = ρ. Then it is clear that
F ◦ T = G whether {m = n and k = ℓ} or {m + n = k and k = ℓ}. So, the
proof of the sufficiency is done.

Therefore, the proof for the projective equivalence is completely finished.

Theorem 5.2 (The difference between analytic equivalence for weighted

homogeneous polynomials in C[y, z] and projective equivalence for their

homogenization in C[x, y, z] for Case(III) of Theorem 3.6).

Assumption Let f(y, z) and g(y, z) be weighted homogeneous polynomials in

C[y, z], and let F (x, y, z) and G(x, y, z) be the homogenization of f(y, z) and g(y, z) in

C[x, y, z], respectively, satisfying the same assumptions and notations as in Theorem

5.1.
Let f ∼ y(zn +yk) with weights (n+ n

k
, k+1) ∈ (Q − N) × N and deg(f) = k+1,

and let g ∼ y(zm + yℓ) with weights (m+ m
ℓ
, ℓ+1) ∈ (Q − N) × N and deg(g) = ℓ+1.

Conclusion The difference between projective equivalence and analytic equiva-

lence can be represented by three cases (I), (II) and (III), below:

(I) Let gcd(n, k) < n.
(I-a) Let m = n and k = ℓ. Then,

F (x, y, z) ∼proj G(x, y, z) in P2(C)
⇐⇒ f ≈ g at origin in C2.

(I-b) Let m+ n = k and k = ℓ. Then,

F (x, y, z) ∼proj G(x, y, z) in P2(C)
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⇐⇒ f ≈ h at origin in C2.

(II) Let gcd(n, k) = n. Suppose that A1 = B1 = 0 in (5.1.1).
(II-a) Let m = n and k = ℓ. Then,

F (x, y, z) ∼proj G(x, y, z) in P2(C)
⇐⇒ f ≈ g at origin in C2.

(II-b) Let m+ n = k and k = ℓ. Then,

F (x, y, z) ∼proj G(x, y, z) in P2(C)
⇐⇒ f ≈ h at origin in C2.

(III) Let gcd(n, k) = n. Suppose that either A1 6= 0 or B1 6= 0 in (5.1.1).
(III-a) Let m = n and k = ℓ. Then,

F (x, y, z) ∼proj G(x, y, z) in P2(C)
=⇒ f ≈ g at origin in C2.

(III-b) Let m+ n = k and k = ℓ. Then,

F (x, y, z) ∼proj G(x, y, z) in P2(C)
=⇒ f ≈ h at origin in C2.

But the converse for (III) does not hold, which will be proved by the next corol-

lary, Corollary 5.3.

Remark 5.2.1. Under the same assumptions and conclusions as in Theorem
5.1, observe by Theorem 5.1 that if F (x, y, z) ∼proj G(x, y, z) in P2(C) then either
{n = m and k = ℓ} or {m + n = k and k = ℓ}, and also by Theorem 3.6 that
the followings (i) and (ii) are true.

(i) m = n and k = ℓ ⇐⇒ f ∼ g at the origin in C2 with deg(f) = deg(g) where
f(y, z) = F (1, y, z) and g(y, z) = G(1, y, z).

(ii) {m + n = k and k = ℓ} ⇐⇒ f ∼ h at the origin in C2 with deg(f) =
deg(h) where f(y, z) = F (1, y, z) and h(x, y) = G(x, y, 1).

Proof of Theorem 5.2. The proof of the theorem can be done by the same way as
we have seen in the proof of Theorem 4.2.

Corollary 5.3. Let Ft(x, y, z) = y(x2z2 + txy2z + y4) for any complex number

t with t2 6= 4. By Theorem 5.1, Ft(x, y, z) ∼proj Fs(x, y, z) in P2(C) if and only if
t2

t2−4 = s2

s2−4 . But, observe by Theorem 2.9 that Ft(1, y, z) ≈ Fs(1, y, z) at (y, z) =

(0, 0) in C2 and also Ft(1, y, z) ≈ Fs(x, y, 1) at the origin in C2 for any s, t such that
t2

t2−4 = s2

s2−4 or t2

t2−4 6= s2

s2−4 . Thus, an analytic equivalence at any singular point does

not give a projective equivalence.

Theorem 5.4 (The projective equivalence for Case(IV) of Theorem

3.6).

Assumption Let f(y, z) and g(y, z) be weighted homogeneous polynomials in C[y, z],

which are not homogeneous, with isolated singularity at the origin in C2, assuming that

f(y, z) and g(y, z) belong to Case(IV) of Theorem 3.6.
Let f ∼ yz(zn + yk) with weights (n + 1 + n

k
, k + 1 + k

n
) ∈ (Q − N) × Q and

deg(f) = k + 2, and let g ∼ yz(zm + yℓ) with weights (m + 1 + m
ℓ
, ℓ + 1 + ℓ

m
) ∈

(Q − N) × Q and deg(g) = ℓ+ 2.
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By Theorem 3.6, we may assume without loss of generality that f(y, z) and g(y, z)
can be represented as follows:

f(y, z) = yzf1(y, z) with(5.4.1)

f1(y, z) = zn + yk +

d−1∑

i=1

Aiy
ik1z(d−i)n1 ,

g(y, z) = yzg1(y, z) with

g1(y, z) = zm + yℓ +
e−1∑

j=1

Bjy
jℓ1z(e−j)m1 ,

where

(a) 1 ≤ n < k and d = gcd(n, k) with n = n1d and k = k1d,
(b) 1 ≤ m < ℓ and e = gcd(m, ℓ) with m = m1e and ℓ = ℓ1e,
(c) all the Ai and Bj are complex numbers for 1 ≤ i ≤ d− 1 and 1 ≤ j ≤ e− 1,

respectively.

Now, homogenize f and g as follows:

F (x, y, z) = xpf(y/x, z/x) with p = k + 2,(5.4.2)

G(x, y, z) = xqg(y/x, z/x) with q = ℓ+ 2.

Conclusion
F (x, y, z) ∼proj G(x, y, z) in P2(C)

⇐⇒ there is a complex number ρ with ρd = 1 such that Aiρ
i = Bi for i =

1, . . . , d− 1 = e− 1 where n = m and k = ℓ.

In particular, if d = 1, then F (x, y, z) ∼proj G(x, y, z) in P2(C)
⇐⇒ n = m and k = ℓ.

Proof of Theorem 5.4. In preparation for the proof of the theorem, by (5.4.1) and
(5.4.2), F = F (x, y, z) and G = G(x, y, z) can be written by the following:

F = yzF1 with(5.4.3)

F1 = xk−nzn + yk +

d−1∑

i=1

Aix
k−ik1−(d−i)n1yik1z(d−i)n1 ,

G = yzG1 with

G1 = xℓ−mzm + yℓ +
e−1∑

j=1

Bjx
ℓ−jℓ1−(e−j)m1yjℓ1z(e−j)m1 ,

where the Ai and Bj are complex numbers for 1 ≤ i ≤ d− 1 and 1 ≤ j ≤ e− 1.

First, to prove the necessity of the condition, suppose that F ∼proj G in P2(C).

Then, k + 2 = deg(f) = deg(g) = ℓ + 2, and there is a nonsingular linear change of
coordinates T : C3 → C3 with T (0) = 0, satisfying the following conditions:

(5.4.4) F ◦ T (x, y, z) = G(x, y, z) with

T (x, y, z) = (a1x+ a2y + a3z, b1x+ b2y + b3z, c1x+ c2y + c3z),

where the ai, bi, and ci are complex numbers for 1 ≤ i ≤ 3.
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Since both F = 0 and G = 0 have exactly two singular points in P2(C), which are
denoted by (x, y, z) = (1, 0, 0) and (x, y, z) = (0, 0, 1), for the proof of the necessity of
the condition, it suffices to consider the following two subcases, respectively:

Case(i-a) T (1, 0, 0) = λ(1, 0, 0) and T (0, 0, 1) = µ(0, 0, 1) for some nonzero complex
numbers λ and µ.

Case(i-b) T (1, 0, 0) = λ(0, 0, 1) and T (0, 0, 1) = µ(1, 0, 0) for some nonzero complex
numbers λ and µ.

For the proof of the necessity of the condition in these cases, by (5.4.3) and (5.4.4),
observe the followings:

F ◦ T (x, y, z)

(5.4.5)

= (b1x+ b2y + b3z)(c1x+ c2y + c3z)

× {(a1x+ a2y + a3z)
k−n(c1x+ c2y + c3z)

n + (b1x+ b2y + b3z)
k

+

d−1∑

i=1

Ai(a1x+ a2y + a3z)
k−ik1−(d−i)n1(b1x+ b2y + b3z)

ik1(c1x+ c2y + c3z)
(d−i)n1}

= yz{xℓ−mzm + yℓ +

e−1∑

j=1

Bjx
ℓ−jℓ1−(e−j)m1yjℓ1z(e−j)m1}

= G(x, y, z).

Case(i-a): Suppose that T (1, 0, 0) = λ(1, 0, 0) and T (0, 0, 1) = µ(0, 0, 1) for some
nonzero complex numbers λ and µ. Now, we claim that

(5.4.6) T (x, y, z) = (a1x, b2y, c3z).

By Sublemma 4.1.1 in the proof of Theorem 4.1 and by the assumption of Case(i-
a), it is clear that b1 = c1 = a3 = b3 = 0 and the Jacobian determinant of T is
a1b2c3 6= 0.

For the proof of the claim in (5.4.6), it remains to show by (5.4.5) that a2 = c2 = 0.
Using (5.4.4) and (5.4.5) with b1 = c1 = a3 = b3 = 0, then we have the following:

(5.4.7) F ◦ T (x, y, z) = (b2y)(c2x+ c3z){(a1x+ a2y)
k−n(c2y + c3z)

n + (b2y)
k

+

d−1∑

i=1

AiHi(x, y, z)}

= yz{xℓ−mzm + yℓ +

e−1∑

j=1

BjKj(x, y, z)}

= G(x, y, z),

where Hi(x, y, z) = (a1x+ a2y)
k−ik1−(d−i)n1(b2y)

ik1(c2y + c3z)
(d−i)n1 ,

Kj(x, y, z) = xℓ−jℓ1−(e−j)m1yjℓ1z(e−j)m1 .

For the proof of the claim in (5.4.6), using the same notations and methods as
we have seen in Case (ii-a) for the proof of Theorem 4.1, then observe the following
two facts (5.4.8) and (5.4.9) from (5.4.7):
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(5.4.8)
(i) 0 < k − ik1 − (d− i)n1 = (k1 − n1)(d− i) < k − n for 1 ≤ i ≤ d− 1.
(ii) 0 < ik1 < k for 1 ≤ i ≤ d− 1.
(iii) 0 < (d− i)n1 < n for 1 ≤ i ≤ d− 1.
(iv) 0 < ℓ− jℓ1 − (e− j)m1 = (ℓ1 −m1)(e− j) < ℓ−m for 1 ≤ j ≤ e− 1.
(v) 0 < jℓ1 < ℓ for 1 ≤ j ≤ e− 1.
(vi) 0 < (e− j)m1 < m for 1 ≤ j ≤ e− 1.

(5.4.9) Whenever any monomial xαyβzγ belongs to Kj(x, y, z)

for all j = 1, . . . , e− 1, then α, β and γ are all positive integers

by (iv), (v) and (vi) of (5.4.8).

Now, to prove that a2 = c2 = 0, it is enough to consider an existence of the
coefficients of monomials (yz)xk−nyn and (yz)yk−nzn in F ◦ T = G, respectively.

Then, it is easy to prove the following:
(a) By (5.4.7) and (5.4.9), two monomials (yz)xk−nyn and (yz)yk−nzn do not

belong to G(x, y, z).
(b) By (5.4.7) and (i) of (5.4.8), the monomial (yz)xk−nyn has the coefficient

(b2c3)a
k−n
1 cn2 in F ◦ T because xk−nyn 6∈ Hi(x, y, z) for any i = 1, . . . , d− 1, if exists.

(c) By (5.4.7) and (iii) of (5.4.8), the monomial (yz)yk−nzn has the coefficient

(b2c3)a
k−n
2 cn3 in F ◦ T because yk−nzn 6∈ Hi(x, y, z) for any i = 1, . . . , d− 1, if exists.

Because F ◦ T = G and the Jacobian determinant of T is a1b2c3 6= 0, then it
is trivial by (a), (b) and (c) that (b2c3)a

k−n
1 cn2 = (b2c3)a

k−n
2 cn3 = 0, and therefore

c2 = a2 = 0. Thus, we proved that T (x, y, z) = (a1x, b2y, c3z) in (5.4.6).
Using (5.4.6) and (5.4.7), we have the following:

(5.4.10) F ◦ T (x, y, z) = (b2y)(c3z){(a1x)
k−n(c3z)

n + (b2y)
k +

d−1∑

i=1

AiHi(x, y, z)}

= yz{xℓ−mzm + yℓ +

e−1∑

j=1

BjKj(x, y, z)}

= G(x, y, z),

where Hi(x, y, z) = (a1x)
k−ik1−(d−i)n1(b2y)

ik1(c3z)
(d−i)n1 ,

Kj(x, y, z) = xℓ−jℓ1−(e−j)m1yjℓ1z(e−j)m1 .

From (5.4.10) with (5.4.8) and (5.4.9), compare the coefficients of monomials
(yz)xk−nzn, (yz)yk, and (yz)xk−ik1−(d−i)n1yik1z(d−i)n1 in F ◦ T (x, y, z), with the
coefficients of monomials (yz)xℓ−mzm, (yz)yℓ and (yz)xℓ−jℓ1−(e−j)m1yjℓ1z(e−j)m1 in
G(x, y, z), respectively on both sides where 1 ≤ i ≤ d− 1 and 1 ≤ j ≤ e− 1. Then, we
get the following equations: Note that k+ 2 = ℓ+ 2, d = gcd(n, k) and e = gcd(m, ℓ).

(5.4.11) yzxk−nzn = yzxℓ−mzm and yzyk = yzyℓ

imply that n = m and k = ℓ , and

(b2c3)a
k−n
1 cn3 = 1, (b2c3)b

k
2 = 1 and

(b2c3)Aia
k−ik1−(d−i)n1

1 bik1

2 c
(d−i)n1

3 = Bi for 1 ≤ i ≤ d− 1 = e− 1.
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Using (5.4.11) with (b2c3)a
k−n
1 cn3 = 1, then (b2c3)Aia

k−ik1−(d−i)n1

1 bik1

2 c
(d−i)n1

3 =

Bi can be rewritten as Aia
−i(k1−n1)
1 bik1

2 c−in1

3 = Bi.

Let ρ = a
−(k1−n1)
1 bk1

2 c
−n1

3 . By (5.4.11), ρd = 1, and then Aiρ
i = Bi for each

i = 1, · · · , d − 1. Thus, the proof for the necessity of the condition in Case (i-a) is
done.

Case(i-b): Suppose that T (1, 0, 0) = λ(0, 0, 1) and T (0, 0, 1) = µ(1, 0, 0) for some
nonzero complex numbers λ and µ.

We claim that there is no such case.
Assume the contrary. By Sublemma 4.1.2 in the proof of Theorem 4.1 and by the

assumption of Case(i-b), it is clear that a1 = b1 = b3 = c3 = 0, and also the Jacobian
determinant of T is −a3b2c1 6= 0.

Using (5.4.4) and (5.4.5) with a1 = b1 = b3 = c3 = 0, then we have the following:

(5.4.12) F ◦ T (x, y, z) = (b2y)(c1x+ c2y)F1 ◦ T (x, y, z) with

F1 ◦ T (x, y, z) = (a2y + a3z)
k−n(c1x+ c2y)

n + (b2y)
k

+

d−1∑

i=1

AiHi(x, y, z),

G(x, y, z) = yzG1(x, y, z) with

G1(x, y, z) = xℓ−mzm + yℓ +

e−1∑

j=1

BjKj(x, y, z),

where Hi(x, y, z) = (a2y + a3z)
k−ik1−(d−i)n1(b2y)

ik1(c1x+ c2y)
(d−i)n1 ,

Kj(x, y, z) = xℓ−jℓ1−(e−j)m1yjℓ1z(e−j)m1 .

To find an easy proof, from the defining equations of F = F (x, y, z) and G =
G(x, y, z) in (5.4.3), F and G can be rewritten as follows:

F (x, y, z) = yzF1(x, y, z) with(5.4.13)

F1(x, y, z) =

d∏

i=1

(xk1−n1zn1 + siy
k1),

G(x, y, z) = yzG1(x, y, z) with

G1(x, y, z) =

e∏

j=1

(xℓ1−m1zm1 + tiy
ℓ1),

where
(1) all the si are nonzero distinct complex numbers for 1 ≤ i ≤ d,
(2) all the tj are nonzero distinct complex numbers for 1 ≤ j ≤ e,
(3) 0 < k1 − n1 < k1 and 0 < ℓ1 −m1 < ℓ1.

From (5.4.12) and (5.4.13), assuming that two plane curves F (x, y, z) = 0 and
G(x, y, z) = 0 have a unique decomposition of irreducible curves in P2(C), then 0 <
k1 −n1 < k1 and 0 < ℓ1 −m1 < ℓ1 imply that F1(x, y, z) = 0 and G1(x, y, z) = 0 have
no lines at all in P2(C), and so two plane curves F (x, y, z) = 0 and G(x, y, z) = 0 have
exactly two lines in P2(C). Since F ◦ T = G, then b2y(c1x+ c2y) = αyz for a nonzero
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constant α, which would be impossible. Thus, the claim for this case is proved. Thus,
the proof for the necessity of the condition in Case(i-b) is done.

So, we finished the proof for the necessity of the condition.

Next, to prove the sufficiency of the condition , suppose that there is a complex

number ρ with ρd = 1 such that Aiρ
i = Bi for i = 1, 2, . . . , d − 1 where m = n and

k = ℓ, and d = gcd(n, k). Define T : C3 → C3 by T (x, y, z) = (x, by, z) for some
number b such that bk/d = ρ. Then, it is clear that F ◦T = G, and so the proof of the
sufficiency is done.

Thus, the proof for the projective equivalence is completely finished.

Theorem 5.5 (The difference between analytic equivalence for

weighted homogeneous polynomials in C[y, z] and projective equivalence

for their homogenization in C[x, y, z] for Case(IV) of Theorem 3.6).

Assumption Let f(y, z) and g(y, z) be weighted homogeneous polynomials in

C[y, z], and let F (x, y, z) and G(x, y, z) be the homogenization of f(y, z) and g(y, z) in

C[x, y, z], respectively, satisfying the same assumptions and notations as in Theorem

5.4.
Let f ∼ yz(zn + yk) with weights (n + 1 + n

k
, k + 1 + k

n
) ∈ (Q − N) × Q and

deg(f) = k + 2, and let g ∼ yz(zm + yℓ) with weights (m + 1 + m
ℓ
, ℓ + 1 + ℓ

m
) ∈

(Q − N) × Q and deg(g) = ℓ+ 2.

Conclusion The difference between projective equivalence and analytic equiva-

lence can be represented by three cases (I), (II) and (III), below:

(I) Let gcd(n, k) < n. Then,

F (x, y, z) ∼proj G(x, y, z) in P2(C)
⇐⇒ f ≈ g at origin in C2.

(II) Let gcd(n, k) = n. Suppose that A1 = B1 = 0 in (5.4.1). Then,
F (x, y, z) ∼proj G(x, y, z) in P2(C)

⇐⇒ f ≈ g at origin in C2.

(III) Let gcd(n, k) = n. Suppose that either A1 6= 0 or B1 6= 0 in (5.4.1). Then,
F (x, y, z) ∼proj G(x, y, z) in P2(C)

=⇒ f ≈ g at origin in C2.

But the converse for (III) does not hold, which will be proved by the next
corollary, Corollary 5.6.

Remark 5.5.1. Under the same assumptions and conclusions as in Theorem 5.4,
observe by Theorem 5.4 that if F (x, y, z) ∼proj G(x, y, z) in P2(C) then n = m and
k = ℓ, and also by Theorem 3.6 that n = m and k = ℓ if and only if f ∼ g at origin
in C2 with deg(f) = deg(g).

Proof of Theorem 5.5. The proof of the theorem can be done by the same way as
we have seen in the proof of Theorem 4.2.

Corollary 5.6. For example, let f(y, z) = yz(z2 + y4) and g(y, z) = yz(z2 +
3

21/2 y
2z + y4). Put F (x, y, z) = x6f(y/x, z/x) and G(x, y, z) = x6g(y/x, z/x). Then,

F (x, y, z) 6∼proj G(x, y, z) in P2(C), but F (1, y, z) ≈ G(1, y, z) at the origin in C2 and
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also F (x, y, 1) ≈ G(x, y, 1) at the origin in C2, too. Thus, an analytic equivalence at

any singular point does not give a projective equivalence.

Proof of Corollary 5.6. Let f(y, z) = yz(z2 + y4). Then, f(y, z) ≈ yz(z2 −
y4) = yz(z − y2)(z + y2) ≈ yz(z + y2)(z + 2y2) = yz(z2 + 3y2z + 2y4). Define
h(y, z) = yz(z2 + 3y2z + 2y4). Then, h(y, z) ≈ yz(z2 + 3

21/2
y2z + y4) = g(y, z). So,

f(y, z) ≈ g(y, z), but F (x, y, z) = x6f(y/x, z/x) and G(x, y, z) = x6g(y/x, z/x) are
not projectively equivalent in P2(C) by Theorem 5.4. Thus, the proof is done.

6. The summary for the projective equivalence of plane curve singular-

ities defined by the homogenization of weighted homogeneous polynomials

in C[y, z] and its applications to their analytic equivalence. Summing up the
results of Theorem 4.1, Theorem 4.4, Theorem 5.1 and Theorem 5.4, we can find the
solution of the first problem in terms of the following theorem, without any need of
proof.

Theorem 6.1 (The projective equivalence of plane curve singulari-

ties defined by the homogenization of weighted homogeneous polynomi-

als in C[y, z]).
Assumption Let f(y, z) and g(y, z) be weighted homogeneous polynomials in C[y, z],

which are not homogeneous, with isolated singularity at the origin in C2.

By Theorem 3.6, whether or not f 6∼ z2 + y2 and g 6∼ z2 + y2, f and g can be

topologically written in a unique way:

(1) f ∼ yε1zε2(zn + yk) with weights (n + ε2 + n
k
ε1, k + ε1 + k

n
ε2) ∈ Q × Q and

with deg(f) = k + ε1 + ε2,
(2) g ∼ yδ1zδ2(zm + yℓ) with weights (m+ δ2 + m

ℓ
δ1, ℓ+ δ1 + ℓ

m
δ2) ∈ Q × Q and

with deg(g) = ℓ+ δ1 + δ2,
where

(a) 1 ≤ n < k, d = gcd(n, k) with n = n1d and k = k1d,
(b) ε1, ε2 are either 1 or 0, respectively,

(c) 1 ≤ m < ℓ and e = gcd(m, ℓ) with m = m1e and ℓ = ℓ1e,
(d) δ1 and δ2 are either 1 or 0, respectively,

(e) if ε1 = ε2 = 0, then n ≥ 2,
(f) if δ1 = δ2 = 0, then m ≥ 2.
By Theorem 3.6 again, we may assume without loss of generality that

f(y, z) = yε1zε2f1(y, z) with(6.1.1)

f1(y, z) = zn + yk +

d−1∑

i=1

Aiy
ik1z(d−i)n1 ,

g(y, z) = yδ1zδ2g1(y, z) with

g1(y, z) = zm + yℓ +

e−1∑

j=1

Bjy
jℓ1z(e−j)m1 ,

where

(a) all the Ai are complex numbers for 1 ≤ i ≤ d− 1,
(b) all the Bj are complex numbers for 1 ≤ j ≤ e− 1,



506 c. kang

satisfying the following property:

(6.1.2) if gcd(n, k) = n, i.e., n1 = 1, then either A1 = 0 or A1 6= 0,

if gcd(m, ℓ) = m, i.e., m1 = 1, then either B1 = 0 or B1 6= 0.

Conclusion Now, homogenize f and g as follows:

F (x, y, z) = xpf(y/x, z/x) with p = k + ε1 + ε2,(6.1.3)

G(x, y, z) = xqg(y/x, z/x) with q = ℓ+ δ1 + δ2.

Then, F (x, y, z) ∼proj G(x, y, z) in P2(C)
⇐⇒ k = ℓ, εi = δi for i = 1, 2, and there is a complex number ρ with

ρd = 1 such that Aiρ
i = Bi for i = 1, . . . , d − 1 where either {n = m and k = ℓ}

or {n+m = k and k = ℓ}.

Now, using Theorem 6.1 and Theorem 2.9, and also summing up the results of
Theorem 4.2, Theorem 4.5, Theorem 5.2 and Theorem 5.5, then we can get the solution
of the second problem in terms of the following theorem, without any need of proof.

Theorem 6.2 (The difference between analytic equivalence for

weighted homogeneous polynomials in C[y, z] and projective equivalence

for their homogenization in C[x, y, z]).
Assumption Let f(y, z) and g(y, z) be weighted homogeneous polynomials in

C[y, z], and let F (x, y, z) and G(x, y, z) be the homogenization of f(y, z) and g(y, z) in

C[x, y, z], respectively, satisfying the same assumptions and notations as in Theorem

6.1.
For brevity of notation, observe by Theorem 6.1 that if F (x, y, z) ∼proj G(x, y, z)

in P2(C), then either {n = m and k = ℓ} or {n+m = k and k = ℓ}, and εi = δi for

i = 1, 2, and that the followings (i) and (ii) are true.

(i) n = m, k = ℓ and εi = δi for i = 1, 2 if and only if f ∼ g at origin in C2 with

deg(f) = deg(g) where f(y, z) = F (1, y, z) and g(y, z) = G(1, y, z).
(ii) n+m = k, k = ℓ and ε1 = δ1 and ε2 = δ2 = 0 if and only if f ∼ h at origin

in C2 with deg(f) = deg(h) where f(y, z) = F (1, y, z) and h(x, y) = G(x, y, 1).

Conclusion
(I) Let gcd(n, k) < n with d = gcd(n, k).
(I-a) Assume that n = m and k = ℓ. Then,

F (x, y, z) ∼proj G(x, y, z) in P2(C)
⇐⇒ f ≈ g at origin in C2.

(I-b) Assume that n+m = k and k = ℓ. Then,

F (x, y, z) ∼proj G(x, y, z) in P2(C)
⇐⇒ f ≈ h at origin in C2.

(II) Let gcd(n, k) = n. Suppose that A1 = B1 = 0 in (6.1.1).
(II-a) Assume that n = m and k = ℓ. Then,

F (x, y, z) ∼proj G(x, y, z) in P2(C)
⇐⇒ f ≈ g at origin in C2.

(II-b) Assume that n+m = k and k = ℓ. Then,

F (x, y, z) ∼proj G(x, y, z) in P2(C)
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⇐⇒ f ≈ h at origin in C2.

(III) Let gcd(n, k) = n. Suppose that either A1 6= 0 or B1 6= 0 in (6.1.1).
(III-a) Assume that n = m and k = ℓ. Then,

F (x, y, z) ∼proj G(x, y, z) in P2(C)
=⇒ f ≈ g at origin in C2.

(III-b) Assume that n+m = k and k = ℓ. Then,

F (x, y, z) ∼proj G(x, y, z) in P2(C)
=⇒ f ≈ h at origin in C2.

But, the converse for (III) does not hold, which will be proved by the next corollary,

Corollary 6.3.

In other words, summing up the results of (I), (II) and (III), we have the follow-

ings:

If F (x, y, z) ∼proj G(x, y, z) in P2(C) and f ∼ g at origin in C2, then f ≈ g at

origin in C2, and not conversely, and also if F (x, y, z) ∼proj G(x, y, z) in P2(C) and

f ∼ h at origin in C2, then f ≈ h at origin in C2, and not conversely.

Remark 6.2.1. On the assumption that f ∼ g with deg(f) = deg(g) instead
of assuming that n = m and k = ℓ, we may get the same statements (I-a), (II-a)
and (III-a) as before, if necessary. Similarly, on the assumption that f ∼ h with
deg(f) = deg(h) instead of assuming that n+m = ℓ and k = ℓ, we may get the same
statements (I-b), (II-b) and (III-b) as before, if necessary.

Corollary 6.3. Let f(y, z) = yε1zε2(z2+y4) and g(y, z) = yε1zε2(z2+ 3
21/2 y

2z+

y4). Put F (x, y, z) = x4+ε1+ε2f(y/x, z/x) and G(x, y, z) = x4+ε1+ε2g(y/x, z/x).
Then, F (x, y, z) 6∼proj G(x, y, z) in P2(C), but F (1, y, z) ≈ G(1, y, z) at the origin

in C2 and also F (x, y, 1) ≈ G(x, y, 1) at the origin in C2. Thus, an analytic equiva-

lence at any singular point does not give a projective equivalence.

Proof of Corollary 6.3. The proof just follows from Corollary 4.3, Corollary 4.6,
Corollary 5.3 and Corollary 5.6.

As a generalization of Theorem 6.1, we have the following.

Corollary 6.4 (The projective equivalence of plane curve singular-

ities defined by the homogenization of weighted homogeneous polynomi-

als in C[y, z]).
Assumption Let f(y, z) and g(y, z) be weighted homogeneous polynomials in C[y, z],

which are not homogeneous, with isolated singularity at the origin in C2.

By Theorem 3.6, we may assume without loss of generality that f and g can be

written as follows:

(1) f ∼ yε1zε2(zn + yk) with weights (n + ε2 + n
k
ε1, k + ε1 + k

n
ε2) ∈ Q × Q and

with deg(f) = k + ε1 + ε2,
(2) g ∼ yδ1zδ2(zm + yℓ) with weights (m+ δ2 + m

ℓ
δ1, ℓ+ δ1 + ℓ

m
δ2) ∈ Q × Q and

with deg(g) = ℓ+ δ1 + δ2,
where

(a) 1 ≤ n < k, d = gcd(n, k) with n = n1d and k = k1d,
(b) ε1, ε2 are either 1 or 0, respectively,

(c) 1 ≤ m < ℓ and e = gcd(m, ℓ) with m = m1e and ℓ = ℓ1e,
(d) δ1 and δ2 are either 1 or 0, respectively,
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(e) if ε1 = ε2 = 0, then n ≥ 2,
(f) if δ1 = δ2 = 0, then m ≥ 2.
By Theorem 3.6, we may assume without loss of generality that

f(y, z) = yε1zε2f1(y, z) with(6.4.1)

f1(y, z) = A0z
n +Ady

k +

d−1∑

i=1

Aiy
ik1z(d−i)n1 ,

g(y, z) = yδ1zδ2g1(y, z) with

g1(y, z) = B0z
m +Bey

ℓ +
e−1∑

j=1

Bjy
jℓ1z(e−j)m1 ,

where

(a) the Ai are complex numbers for 0 ≤ i ≤ d with A0Ad 6= 0,
(b) the Bj are complex numbers for 0 ≤ j ≤ e with B0Be 6= 0,

satisfying the following property:

(6.4.2) if gcd(n, k) = n, i.e., n1 = 1, then either A1 = 0 or A1 6= 0,

if gcd(m, ℓ) = m, i.e., m1 = 1, then either B1 = 0 or B1 6= 0.

Now, homogenize f and g as follows:

F (x, y, z) = xpf(y/x, z/x) with p = k + ε1 + ε2,(6.4.3)

G(x, y, z) = xqg(y/x, z/x) with q = ℓ+ δ1 + δ2.

Conclusion
Then, F (x, y, z) = 0 and G(x, y, z) = 0 are projectively equivalent in P2(C)

⇐⇒ k = ℓ, εi = δi for i = 1, 2 and there is a complex number ρ with
Ad

A0
ρd =

Bd

B0
such that

Ai

A0
ρi =

Bi

B0
for i = 1, . . . , d − 1 where either {n = m and k = ℓ} or

{n+m = k and k = ℓ}.

Proof of Corollary 6.4. We may start to assume by (6.4.1) that F = F (x, y, z)
and G = G(x, y, z) are written by the following:

(6.4.4) F = yε1zε2(A0x
k−nzn +Ady

k +

d−1∑

i=1

Aix
k−ik1−(d−i)n1yik1z(d−i)n1),

G = yδ1zδ2(B0x
ℓ−mzm +Bey

ℓ +

e−1∑

j=1

Bjx
ℓ−jℓ1−(e−j)m1yjℓ1z(e−j)m1).

From (6.4.4), define F1 = F1(x, y, z) and G1 = G1(x, y, z) by the following:

(6.4.5) F1 = yε1zε2{xk−nzn + (
Ad

A0
)yk +

d−1∑

i=1

Ai

A0
xk−ik1−(d−i)n1yik1z(d−i)n1},

G1 = yδ1zδ2{xℓ−mzm + (
Be

B0
)yℓ +

e−1∑

j=1

Bj

B0
xℓ−jℓ1−(e−j)m1yjℓ1z(e−j)m1}.
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Note that F (x, y, z) ∼proj G(x, y, z) in P2(C) ⇐⇒ F1(x, y, z) ∼proj G1(x, y, z)
in P2(C).

Let v = (Ad

A0
)

1

k y and w = (Be

B0
)

1

ℓ y. Then, yik1 = (Ad

A0
)

−i

d vik1 and yjℓ1 =

(Be

B0
)

−j

e yjℓ1 .

From (6.4.5), define F2 = F2(x, v, z) and G2 = G2(x,w, z) by the following:

(6.4.6) F2 = vε1zε2{xk−nzn + vk +

d−1∑

i=1

Ai

A0
(
Ad

A0
)

−i

d xk−ik1−(d−i)n1vik1z(d−i)n1},

G2 = wδ1zδ2{xℓ−mzm + wℓ +

e−1∑

j=1

Bj

B0
(
Be

B0
)

−j

e xℓ−jℓ1−(e−j)m1wjℓ1z(e−j)m1}.

Note that F1(x, y, z) ∼proj G1(x, y, z) in P2(C) ⇐⇒ F2(x, y, z) ∼proj G2(x, y, z) in
P2(C).

By Theorem 6.1, we have the following consequences:
F2(x, y, z) ∼proj G2(x, y, z) in P2(C)
⇐⇒ k = ℓ, εi = δi for i = 1, 2, and there is a complex number τ with τd = 1

such that Piτ
i = Qi for i = 1, . . . , d − 1 = e − 1 where either {n = m and k = ℓ} or

{n+m = k and k = ℓ}, noting that Pi =
Ai

A0
(
Ad

A0
)

−i

d and Qi =
Bi

B0
(
Bd

B0
)

−i

d .

Now, define ρ by (
Ad

A0
)

1

d ρ = (
Bd

B0
)

1

d τ . Then ρd =

Bd

B0

Ad

A0

, and also Piτ
i = Qi implies

that
Ai

A0
ρi =

Bi

B0
for i = 1, . . . , d− 1, and conversely. Thus, the proof can be finished.
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