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A SIMPLE APPROACH TO THE STRUCTURE

THEOREM FOR NEFVALUE MORPHISMS
∗

HIDETOSHI MAEDA†

Abstract. Let L be an ample line bundle on a smooth complex projective variety X of di-
mension n, let τ be the nefvalue of (X, L), and let φ : X → W be the nefvalue morphism of (X, L).
A simple approach to the complete structure theorem for nefvalue morphisms with τ > n − 2 is
developed.
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Introduction. In this paper varieties are always assumed to be defined over the
field C of complex numbers.

Let X be a smooth projective variety of dimension n ≥ 1, and let L be an ample
line bundle on X . Assume that the canonical bundle KX of X is not nef. Then, as
is well known, τ = min{t ∈ R | KX + tL is nef} is a positive rational number, and τ
is called the nefvalue of (X, L). Keep in mind that τ is the unique rational number
characterized by the condition that KX + τL is nef but not ample. Write τ = u/v for
two coprime positive integers u, v. Then the complete linear system |m(vKX + uL)|
for m ≫ 0 defines a surjective morphism φ : X → W onto a normal projective variety
W with connected fibers such that vKX + uL = φ∗A for some ample line bundle A
on W , and φ is called the nefvalue morphism of (X, L).

Assume that τ > n − 2. Then the structure of nefvalue morphisms is supplied,
for example, in Chapter 7 of [BS]. The purpose of this paper is to complement the
above structure theorem perfectly and to offer the complete structure theorem. The
precise statement of our result is as follows:

Theorem. Let L be an ample line bundle on a smooth projective variety X of

dimension n ≥ 1, let τ be the nefvalue of (X, L), and let φ : X → W be the nefvalue

morphism of (X, L). Assume that τ > n − 2. Then one of the following holds:
(i) τ = n + 1, φ(X) is a point, and (X, L) = (Pn,OPn(1)).

For n ≥ 2,
(ii-1) τ = n, φ(X) is a point, X is a quadric hypersurface Qn in Pn+1, and L =

OQn(1);
(ii-2) τ = n, X is a Pn−1-bundle over a smooth projective curve W , and LF =

OPn−1(1) for any fiber F = Pn−1 of φ;
(ii-3) τ = 3/2, φ(X) is a point, and (X, L) = (P2,OP2(2)).

For n ≥ 3,
(iii-1) τ = n − 1, φ(X) is a point, and KX + (n − 1)L = OX ;
(iii-2) τ = n− 1, W is a smooth projective curve, and any fiber F of φ is a quadric

hypersurface in Pn with LF = OF (1);
(iii-3) τ = n − 1, X is a Pn−2-bundle over a smooth projective surface W , and

LF = OPn−2(1) for any fiber F = Pn−2 of φ;
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(iii-4) τ = n − 1, φ expresses X as the blow-up of a smooth projective variety W
at a nonempty finite set B of points, and there exists an ample line bundle H on W
such that L = φ∗H ⊗OX(−φ−1(B)) and that KW + (n − 1)H is ample;

(iii-5) τ = 5/2, φ(X) is a point, and (X, L) = (P4,OP4(2));
(iii-6) τ = 4/3, φ(X) is a point, and (X, L) = (P3,OP3(3));
(iii-7) τ = 3/2, φ(X) is a point, and (X, L) = (Q3,OQ3(2));
(iii-8) τ = 3/2, X is a P2-bundle over a smooth projective curve W , and LF =

OP2(2) for any fiber F = P2 of φ.

The core of this study is to investigate the case where τ = n − 1. At this point
scrolls and quadric fibrations come into being. Their structure results are discussed, for
example, in [BS, Theorem 14.1.1 and Theorem 14.2.1] by using families of unbreakable
rational curves. On the other hand, the method developed here relies heavily on [I]. At
least for the case τ = n − 1, our method seems to be simple and direct. The proof of
the Theorem takes Section 1. Section 2 is devoted to some remarks on the Theorem.

We use the standard notation from algebraic geometry. The tensor products of
line bundles are denoted additively. The pullback i∗E of a vector bundle E on X by
an embedding i : Y →֒ X is denoted by EY . In particular, for a closed subvariety V
of PN , (OPN (1))V is denoted by OV (1). For a vector bundle E on a projective variety
X , the tautological line bundle on the projective space bundle PX(E) associated to E
is denoted by H(E). A vector bundle E on a projective variety X is said to be ample

if H(E) is ample. We denote by KX the canonical bundle of a smooth variety X .

1. Proof of the Theorem. Before we proceed with the proof, we need the
following

Lemma. Let E be an ample vector bundle of rank r on a smooth projective variety

X of dimension n ≥ 2. Assume that r ≥ n.

(i) If KX + det E is not ample, then either KX + det E = OPn(−1) or (KX +
det E)n = 0.

(ii) Suppose that KX +det E is nef. If KX +detE is not ample and KX +detE 6=
OX , then there exists a vector bundle F of rank n on a smooth projective curve C such

that X = PC(F), and EF = OPn−1(1)⊕n for any fiber F of the bundle projection.

Proof. If KX + det E is not ample, then it follows from [F, Theorem 20.1 and
Theorem 20.8] that (X, E) is one of the following:

(1) (Pn,OPn(1)⊕(n+1));
(2) (Pn,OPn(1)⊕n);
(3) there exists a vector bundle F of rank n on a smooth projective curve C such

that X = PC(F), and EF = OPn−1(1)⊕n for any fiber F of the bundle projection;
(4) (Pn,OPn(2) ⊕OPn(1)⊕(n−1));
(5) (Pn, TPn), where TPn is the tangent bundle of Pn;
(6) (Qn,OQn(1)⊕n).

In cases (1), (4), (5) and (6) we obtain KX + det E = OX . In case (2) we get
KX + det E = OPn(−1). Suppose that (X, E) is as in case (3). Then there exists
a vector bundle G of rank n on C such that E = H(F) ⊗ π∗G, where H(F) is the
tautological line bundle on the projective space bundle PC(F) associated to F and
π : X → C is the bundle projection. We have KX = −nH(F) + π∗(KC + detF) and
det E = nH(F) + π∗(detG), so that KX + det E = π∗(KC + detF + detG). Therefore
(KX + det E)n = 0, and (i) is proved. Moreover, (ii) also follows from the above



a simple approach to the structure theorem 445

argument.

Let us prove the Theorem. The assertions (i), (ii-1) and (ii-2) follow from [BS,
Proposition 7.2.2], and (ii-3) follows from [BS, Theorem 7.2.4]. Moreover, the asser-
tions (iii-5), (iii-6) and (iii-7) follow from [BS, Theorem 7.3.4] except when n = 3,
τ = 3/2, W is a smooth projective curve, and (F, LF ) = (P2,OP2(2)) for a general
fiber F of φ (see [BS, Theorem 7.3.4]). Set H = KX + 2L. Then, since 2 > τ , H is
ample, and HF = OP2(1). Since φ is flat, we obtain H2

G = H2
F = 1 for any fiber G of

φ, so that G is irreducible and reduced. By the upper semicontinuity theorem we get
0 ≤ ∆(G, HG) ≤ ∆(F, HF ) = 2 + 1 − h0(F, HF ) = 0. Hence (G, HG) = (P2,OP2(1)),
and we conclude that X is a P2-bundle over W . Since LG = OP2(2), we are in (iii-8).
Hence it suffices to consider the case τ = n − 1 under the assumption that n ≥ 3.

Assume that τ = n − 1 with n ≥ 3. Then KX + (n − 1)L is nef but not ample.
If KX + (n − 1)L is big, then from the proof of [BS, Theorem 7.3.2] the nefvalue
morphism φ : X → W of (X, L) expresses X as the blow-up of a smooth projective
variety W at a nonempty finite set B of points, and there exists an ample line bundle
H on W such that L = φ∗H ⊗OX(−φ−1(B)) and that KW + (n− 1)H is ample. We
are in (iii-4). Hence we can assume that KX + (n− 1)L is not big. Then dimW < n.
Let F be a general fiber of φ. Then, since KX + (n − 1)L = φ∗A for some ample
line bundle A on W , we have KF + (n − 1)LF = OF , so that F is a Fano manifold
with dimF ≥ n − 2. This implies that dim W ≤ 2. If dimW = 0, then φ(X) is a
point, and KX + (n − 1)L = OX . We are in (iii-1). In what follows we suppose that
either dimW = 1 or dimW = 2. If dimW = 1, then W is smooth, and (F, LF ) =
(Qn−1,OQn−1(1)) because KF + (n − 1)LF = OF . On the other hand, if dimW = 2,
then (F, LF ) = (Pn−2,OPn−2(1)). In either event there exists a curve C on X such
that (KX + (n − 1)L)C = 0. This directly indicates that there exists an extremal
ray R of X such that (KX + (n − 1)L)R = 0. Let ρ : X → Y be the contraction
of R. If R is not nef, then by the proof of [I, Lemma, (b)] there exists an effective
divisor E on X such that (E, LE , (OX(E))E) = (Pn−1,OPn−1(1),OPn−1(−1)), and ρ
is nothing but the contraction of E. Thus there exists a line bundle M on Y such
that L = ρ∗M −OX(E), so that M is also ample by means of [F, Lemma 7.16]. Since
KX = ρ∗KY + (n − 1)OX(E), we have KX + (n − 1)L = ρ∗(KY + (n − 1)M). We
note that KY + (n − 1)M is nef but not big because so is KX + (n − 1)L. By the
assumption that KX + (n − 1)L 6= OX , we obtain KY + (n − 1)M 6= OY . Similarly
there exists an extremal ray R of Y such that (KY + (n − 1)M)R = 0. If R is not
nef, then the same argument as above applies to (Y, M), and there exists a chain

(X, L) = (X0, L0)
ρ1

−→ (X1, L1)
ρ2

−→ · · ·
ρk

−→ (Xk, Lk) = (Z, N) satisfying the following
conditions:

(1) each Xi is a smooth projective variety with dimXi = n;
(2) each Li is an ample line bundle on Xi;
(3) each ρi is a birational contraction as above;
(4) KXi

+ (n − 1)Li is nef but not big, and KXi
+ (n − 1)Li 6= OXi

;
(5) every extremal ray of the final variety Z is nef.

In a similar way there exists an extremal ray R of Z such that (KZ +(n−1)N)R = 0.
Let ρ : Z → Y be the contraction of R. Then, since R is nef and KZ + (n − 1)N 6=
OZ , we have 0 < dimY < n. Moreover, if G denotes a general fiber of ρ, then
KG + (n − 1)NG = OG, so that dim G ≥ n − 2, which implies that either dimY = 1
or dimY = 2. By virtue of the proof of [I, Lemma, (c)] one of the following holds:
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(a) Y is a smooth projective curve, and any fiber G of ρ is a quadric hypersurface
in Pn with NG = OG(1);

(b) Z is a Pn−2-bundle over a smooth projective surface Y , and NG = OPn−2(1)
for any fiber G = Pn−2 of ρ.
Let E be the exceptional divisor on Xk−1 with respect to ρk, and set z = ρk(E). Then
in either event there exists a smooth rational curve l through z such that Nl = 1. Let

l̃ be the strict transform of l by ρk. Then, since Lk−1 = ρ∗kN − OXk−1
(E), we have

Lk−1 l̃ = Nl−OXk−1
(E)l̃ = 0, which contradicts the ampleness of Lk−1. Consequently

k = 0, i.e., (X, L) = (Z, N), and there exists a surjective morphism g : Y → W with
connected fibers such that g ◦ ρ = φ.

Assume first that (X, L) is as in case (a). Then, since dim Y = 1, we have
dimW = 1, and we see that g is an isomorphism, i.e., φ = ρ and Y ∼= W . We are in
(iii-2).

Finally assume that (X, L) is as in case (b). Then there exists an ample vector
bundle E of rank n − 1 on Y such that (X, L) = (PY (E), H(E)), where H(E) is the
tautological line bundle on the projective space bundle PY (E) associated to E . Let us
recall that KX + (n − 1)L = φ∗A for some ample line bundle A on W . On the other
hand, we can write KX +(n−1)L = ρ∗(KY +det E), so that ρ∗(KY +det E) = ρ∗g∗A.
Thus KY + det E = g∗A. Now, since dim Y = 2, we have either dimW = 2 or
dimW = 1. If dimW = 2, then g is birational, so that KY + det E is nef and big.
Note that rankE ≥ dimY because n ≥ 3. Hence by (i) of the Lemma, KY +det E itself
is ample, so that g is finite. The Zariski main theorem tells us that g is an isomorphism,
that is, φ = ρ and (Y, KY + det E) ∼= (W, A). We are in (iii-3). Next, for the case
dimW = 1, let F be a general fiber of φ again, and take a general fiber D of g. Then
F = PD(ED). Since F = Qn−1, we obtain n = 3 and F = P1 × P1. Hence D = P1,
which directly indicates that g is a P1-fibration. Furthermore, KY + det E = g∗A
is nef with (KY + det E)2 = (g∗A)2 = 0. Moreover, it should be emphasized that
KY + det E 6= OY because A is ample. Thus by (ii) of the Lemma, there exists a
vector bundle F of rank two on a smooth projective curve C such that Y = PC(F),
and Ef = OP1(1)⊕2 for any fiber f of the bundle projection π : Y → C. In particular,
Y is a geometrically ruled surface. Therefore g = π and W ∼= C unless Y = P1 × P1,
W = P1, C = P1 and g is another ruling different from π. We claim that the latter
does not occur. To see this, let D denote an arbitrary fiber of g. Then D = P1.
Since KY + det E = g∗A, we have (det E)D = (−KY )D = 2, which implies that
ED = OP1(1)⊕2. Combining this with the fact that Ef = OP1(1)⊕2 for any fiber f of π
gives det E = O(2, 2), so that KY +detE = OY . This is a contradiction. Consequently
n = 3, g = π and W ∼= C. What we want to emphasize is that every fiber F of ρ is a
smooth quadric surface Pf (Ef ) = PP1(OP1(1)⊕2) = P1 × P1 in P3 with LF = OF (1).
We are still in (iii-2), and this completes the proof of the Theorem.

2. Remarks. (2.1) In [BS, Remark 7.3.5], when (X, L) is as in (iii-8), the con-
clusion that (F, LF ) = (P2,OP2(2)) for any fiber F of φ is given under the assumption
that KX + 2L is generated by its global sections. However, in order to reach this
conclusion, as we have seen in the proof of the Theorem, it is enough to assume that
L is simply ample.

(2.2) When τ > n − 2 and n ≥ 3, if we assume that dim φ(X) ≥ 1, then the
nefvalue morphism is almost equal to the contraction of an extremal ray. There are
two exceptions with the aid of the proof of the Theorem.
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Corollary 1. Let L be an ample line bundle on a smooth projective variety X
of dimension n ≥ 3, let τ be the nefvalue of (X, L), and let φ : X → W be the nefvalue

morphism of (X, L). Assume that τ > n − 2 and that dimW ≥ 1. If φ is not the

contraction of an extremal ray, then one of the following holds:
(1) τ = n − 1, and X has at least two effective divisors E such that (E, LE ,

(OX(E))E) = (Pn−1,OPn−1(1),OPn−1(−1));
(2) n = 3, τ = 2, W is a smooth projective curve, and any fiber F of φ is a

smooth quadric surface Q2 in P3 with LF = OQ2(1).

Furthermore, we obtain the following

Corollary 2. Let L be an ample line bundle on a smooth projective variety

X of dimension n ≥ 3, let τ be the nefvalue of (X, L), and let φ : X → W be the

nefvalue morphism of (X, L). Assume that τ = n − 1 and that dimW ≥ 1. Let ρ
be the contraction of an extremal ray R with (KX + (n − 1)L)R = 0. Assume that

(X, L) = (PY (E), H(E)) for some ample vector bundle E of rank n − 1 on a smooth

projective surface Y under ρ. Then KX + (n − 1)L is the pullback of an ample line

bundle on Y unless n = 3, W is a smooth projective curve, there exists a vector bundle

F of rank two on W such that Y = PW (F), and Ef = OP1(1)⊕2 for any fiber f of the

bundle projection.

(2.3) Let L be an ample line bundle on a smooth projective variety X of dimension
n ≥ 1. Then the following follows from the Theorem:

(i) If KX + nL is not nef, then (X, L) is as in (i) of the Theorem.
(ii) Assume that n ≥ 2 and that KX + nL is nef. If KX + (n − 1)L is not nef,

then (X, L) is as in (ii-1), (ii-2) or (ii-3).
(iii) Assume that n ≥ 3 and that KX + (n − 1)L is nef. If KX + (n − 2)L is not

nef, then (X, L) satisfies one of the conditions (iii-1)–(iii-8).
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