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BOUNDARY VALUE PROBLEMS FOR HOLOMORPHIC

FUNCTIONS ON THE UPPER HALF-PLANE∗

MIRAN ČERNE† AND MANUEL FLORES‡

Abstract. Let Π ⊆ C be the open upper half-plane and let {γz}z∈∂Π be a smooth family of
smooth Jordan curves in the complex plane C parametrized by the boundary of Π. Then there exists
a smooth up to the boundary holomorphic function f on Π such that f(z) ∈ γz for every z ∈ ∂Π.
Similar result is also proved on an arbitrary bordered Riemann surface.
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1. Introduction. Let Π = {z ∈ C; Im(z) > 0} be the open upper half-plane
and let {γz}z∈∂Π be a smooth family of smooth Jordan curves in the complex plane
parametrized by the boundary ∂Π of Π, that is, there exists a function ρ ∈ C∞(∂Π×C)
such that

γz = {w ∈ C; ρ(z, w) = 0}

and ∂wρ(z, w) 6= 0 for every z ∈ ∂Π and w ∈ γz. We are interested in the existence of
solutions of the corresponding Riemann-Hilbert problem and we show the following
theorem.

Theorem 1.1. Let {γz}z∈∂Π be a smooth family of smooth Jordan curves in C.
Then there exists a smooth up to the boundary holomorphic function f on Π such that
f(z) ∈ γz for every z ∈ ∂Π.

Using conformal equivalence between the open upper half-plane Π and the open
unit disc ∆ one gets the following equivalent statement.

Theorem 1.2. Let {γz}z∈∂∆\{1} be a smooth family of smooth Jordan curves in

C. Then there exists a smooth function f on ∆ \ {1}, holomorphic on ∆, such that
f(z) ∈ γz for every z ∈ ∂∆ \ {1}.

Let {γz}z∈∂∆ be a smooth family of smooth Jordan curves in C parametrized
by the whole boundary ∂∆ of ∆. By Theorem 1.2 there are no obstructions to the
existence of a solution of the Riemann-Hilbert problem on the disc for the family
of Jordan curves {γz}z∈∂∆ if we allow solutions to be “wild” at only one boundary
point. On the other hand the existence of a smooth up to the boundary holomorphic
function f on ∆ such that f(z) ∈ γz for every z ∈ ∂∆ is not always guaranteed. For
example one can take

ρ(z, w) = |w − z|2 − r2,
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that is, γz is a circle with radius r centered at z. It is easy to see, using either the
maximum principle or the argument principle, that in the case 0 < r < 1 there is
no holomorphic function f on ∆ which is continuous on ∆ and such that f(z) ∈ γz

for every z ∈ ∂∆. Forstnerič [13] and independently Šnirelman [23] showed that the
assumption on the existence of an analytic selector for the family {γz}z∈∂∆ is sufficient
for the existence of a smooth up to the whole boundary solution of the corresponding
Riemann-Hilbert problem. A holomorphic function g on ∆ which is continuous on
∆ is said to be an analytic selector for the family of Jordan curves {γz}z∈∂∆ if g(z)
belongs to the bounded component of C \ γz for every z ∈ ∂∆. Later Slodkowski [22]
proved that there exists a solution of the Riemann-Hilbert problem for {γz}z∈∂∆ if
and only if the polynomial hull of the maximal real torus

T = ∪z∈∂∆({z} × γz) ⊆ ∂∆ × C

is nontrivial, that is, it contains a point over ∆. See also [25].
On the formal level Theorem 1.2 seems to be similar to a result by Alexander

[1] on the existence of a nontrivial nearly smooth analytic disc with boundary in a
given maximal real submanifold. However, there is a major difference between these
two results. All analytic discs considered by Alexander in [1] are bounded which is in
general far from being the case in Theorem 1.2.

It also follows from [13, 22, 23] that the family of smooth up to the whole boundary
solutions of the Riemann-Hilbert problem on the disc is quite “rigid”: it is the union
of at most countably many finite dimensional manifolds. If the regularity of solutions
of the Riemann-Hilbert problem is not required at only one boundary point, we have,
as it should be expected, much more flexibility. In addition to Theorem 1.1 we also
have a version with approximation.

Theorem 1.3. Let {γz}z∈∂Π be a smooth family of smooth Jordan curves in
C. Let Γ : ∂Π → C be a Ck (k ∈ N ∪ {0}) function such that Γ(z) ∈ γz for every
z ∈ ∂Π and let ε : ∂Π → (0,∞) be a continuous positive function. Then there exists
a smooth up to the boundary holomorphic function f on Π such that f(z) ∈ γz and
|f (r)(z) − Γ(r)(z)| < ε(z) for every z ∈ ∂Π and every 0 ≤ r ≤ k.

These results can also be seen as a one-sided version of Carleman type approxi-
mation. For example one has the following corollary.

Corollary 1.4. Let a : R → C and ε : R → (0,∞) be smooth functions on the
real line. Then there exists a smooth up to the boundary holomorphic function f on
Π such that |f(z)− a(z)| = ε(z) for every z ∈ R.

There are natural generalizations of previous results in the context of bordered
Riemann surfaces. See [3, 6, 7, 9, 10, 11, 20] for results which give sufficient conditions
for the existence of solutions of the nonlinear Riemann-Hilbert problem on a finitely
connected planar domains or more general bordered Riemann surfaces and which are
smooth up to the whole boundary of the surface. On the other hand, if just one
boundary point is removed, we always have a solution.

Theorem 1.5. Let Σ be a bordered Riemann surface with real analytic boundary,
let p0 ∈ ∂Σ and let {γz}z∈∂Σ\{p0} be a smooth family of smooth Jordan curves in

C. Then there exists a smooth function f on Σ \ {p0}, holomorphic on Σ, such that
f(z) ∈ γz for every z ∈ ∂Σ \ {p0}.

Similarly as before we also have a version with approximation.
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Theorem 1.6. Let {γz}z∈∂Σ\{p0} be a smooth family of smooth Jordan curves

in C. Let Γ : ∂Σ \ {p0} → C be a Ck (k ∈ N ∪ {0}) function such that Γ(z) ∈ γz for
every z ∈ ∂Σ \ {p0} and let ε : ∂Σ \ {p0} → (0,∞) be a continuous positive function.
Then there exists a holomorphic function f on Σ, smooth up to ∂Σ \ {p0}, such that
f(z) ∈ γz and |f (r)(z)− Γ(r)(z)| < ε(z) for every z ∈ ∂Σ \ {p0} and every 0 ≤ r ≤ k.

Results presented and proved in the last section are natural generalizations of
the results proved in the first three sections. Formally it would be enough to present
and prove just those results and skip some of the results in the first three sections.
However, besides the fact that the first three sections of the paper could not be
omitted completely and that some of the material would have to be presented anyway,
we believe that the upper half-plane case is the most natural object to start our
presentation with.

2. Some lemmas. In this section we prove some lemmas we need in the proof
of the main results.

Lemma 2.1. Let a > 0 be a positive real number and let

K = {z ∈ C; |Re(z)| ≤ 3a, 0 ≤ Im(z) ≤ 3a}.

Let k ∈ N and

f : K ∪ R −→ C

a continuous function such that
a) f : R −→ C is a Ck function whose support is contained in [−7a, 7a],
b) f is holomorphic on the interior of K.

Then there exists a sequence of entire functions {pn}n∈N which
i) in the Ck sense on [−6a, 6a] ⊂ R converges to f ,
ii) uniformly on

Q = {z ∈ C; |Re(z)| ≤ a, 0 ≤ Im(z) ≤ a}.

converges to f .

Lemma 2.1 is stated and proved in the form we can use it in our construction,
however, its statement is far from being the most general approximation result one
can get. See [2, 17, 21, 24] for more results. As in [2] convolution with the heat kernel
will be used in our proof. Before we start with the proof of Lemma 2.1 we prove an
elementary estimate.

Lemma 2.2. Let a > 0. Let z ∈ C be such that |Re(z)| ≤ a and 0 ≤ Im(z) ≤ a.
Let t > 0 and let ξ ∈ C be such that |Re(ξ)| ≥ 3a and 0 ≤ Im(ξ) ≤ Im(z). Then

|e−
(z−ξ)

2

4t | ≤ e−
3a2

4t .

Proof. We start with

|e−
(z−ξ)

2

4t | = e−Re( (z−ξ)
2

4t
) = e

−(Re(z)−Re(ξ))
2
+(Im(z)−Im(ξ))

2

4t .

Since 0 ≤ Im(ξ) ≤ Im(z) and 0 ≤ Im(z) ≤ a, we have (Im(z) − Im(ξ))2 ≤ (Im(z))2 ≤
a2. Also, because |Re(ξ)| ≥ 3a and |Re(z)| ≤ a, we have (Re(z) − Re(ξ))2 ≥ (2a)2.
Thus

|e−
(z−ξ)

2

4t | ≤ e
a2

−4a2

4t = e−
3a2

4t .



612 M. ČERNE AND M. FLORES

Proof. (Lemma 2.1) For t > 0 we define

pt(z) =
1√
4πt

∫ ∞

−∞
e−

(z−ξ)
2

4t f(ξ) dξ.

Then pt is an entire function and

pt(z) =
1√
π

∫ ∞

−∞
e−ξ2

f(z −
√

4t ξ) dξ

for z ∈ R. It is a classical result (see, for example, [12]) that pt converges to f in Ck

sense on [−6a, 6a].
Let z0 ∈ Q and let

Kz0
= {ξ ∈ C; |Re(ξ)| ≤ 3a, 0 ≤ Im(ξ) ≤ Im(z0)}.

Since f is holomorphic in the interior of K we get by Cauchy formula

1√
4πt

∫

∂Kz0

e−
(z0−ξ)

2

4t f(ξ) dξ = 0.

From Lemma 2.2 we have an estimate on the vertical edges I− = {ξ ∈ C; Re(ξ) =
−3a, 0 ≤ Im(ξ) ≤ Im(z0)} and I+ = {ξ ∈ C; Re(ξ) = 3a, 0 ≤ Im(ξ) ≤ Im(z0)} of the
rectangle Kz0

|e−
(z0−ξ)

2

4t | ≤ e−
3a2

4t .

Since f is bounded, the limits

lim
t↓0

1√
4πt

∫

I−

e−
(z0−ξ)

2

4t f(ξ) dξ = lim
t↓0

1√
4πt

∫

I+

e−
(z0−ξ)

2

4t f(ξ) dξ = 0

exist and are both equal to 0. Similary we get from Lemma 2.2 and the assumption
on the support of f that

lim
t↓0

1√
4πt

∫ ∞

3a

e−
(z0−ξ)

2

4t f(ξ) dξ = lim
t↓0

1√
4πt

∫ −3a

−∞
e−

(z0−ξ)
2

4t f(ξ) dξ = 0.

By the classical result [12] we have

f(z0) = lim
t↓0

1√
4πt

∫ 3a

−3a

e−
(Re(z0)−ξ)

2

4t f(ξ + i Im(z0)) dξ

and the limit is uniform for z0 ∈ Q.
Therefore the limits

lim
t↓0

pt(z0) = lim
t↓0

1√
4πt

∫ ∞

−∞
e−

(z0−ξ)
2

4t f(ξ) dξ = lim
t↓0

1√
4πt

∫ 3a

−3a

e−
(z0−ξ)

2

4t f(ξ) dξ

exist and are equal to

lim
t↓0

1√
4πt

∫ 3a

−3a

e−
(Re(z0)−ξ)

2

4t f(ξ + i Im(z0)) dξ = f(z0).
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Since all the estimates and limits we made are uniform with respect to z0 ∈ Q, we
see that pt converges uniformly on Q to f as t ↓ 0.

We also need solutions of the linear Riemann-Hilbert problem. Let A(∆) denote
the space of all continuous functions on ∆ which are holomorphic on ∆. Let k ∈ N∪{0}
and 0 < α < 1. By Ak,α(∆) we will denote the Banach space Ck,α(∆) ∩A(∆) of all
holomorphic functions on ∆ which are of Hölder class Ck,α on ∆.

Lemma 2.3. Let ∆ ⊆ C be the open unit disk centered at 0. Let I be a proper
closed arc on ∂∆ and let ω : I → C \ {0} be a Ck,α function. Then the mapping

Φ : Ak,α(∆) −→ C
k,α
R

(I)

defined as

Φ(f) = Re(ω f)

is a bounded surjective linear operator with a bounded right inverse

B : Ck,α
R

(I) −→ Ak,α(∆).

In addition, our construction of the right inverse operator is made locally continuous,
that is, if a sequence of nonzero functions {ωn}n∈N on I in the Ck,α sense converges
to ω, then there are right inverses Bn of the corresponding linear operators so that
the sequence {Bn}n∈N converges to B in the operator norm.

Remark 2.4. By Ck,α
R

(I) we denote the Banach space of all real k-times differ-
entiable functions on I whose k-th derivative is Hölder continuous of order α.

Proof. It is obvious that Φ is a well defined bounded linear operator such that

‖Φ‖ ≤ ‖ω‖k,α.

To show that it is surjective and that there is an appropriate right inverse we
proceed as follows. Let

H : Ck,α
R

(∂∆) → C
k,α
R

(∂∆)

denote the standard Hilbert transform and let E be an extension operator on I, that
is, a bounded linear operator

E : Ck,α
R

(I) → C
k,α
R

(∂∆)

such that

E(u)|I = u

for every u ∈ C
k,α
R

(I), [15].
Since ω is nonzero on I, there exists a well-defined logarithm of ω on I

ω = eb,

where b : I → C is of class Ck,α. Let E(b) = c + id, where c and d are real Ck,α

functions on ∂∆. Then we define

B(u) = e−i(d+iHd)[e−(c+Hd)E(u) + iH(e−(c+Hd)E(u))].
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A simple computation

(Φ ◦B)(u) = Re(ω B(u)) =

= Re(ec+id e−i(d+iHd)[e−(c+Hd)E(u) + iH(e−(c+Hd)E(u))]) =

= Re(E(u) + iec+HdH(e−(c+Hd)E(u))) = E(u) = u

shows that Φ ◦B is the identity on Ck,α
R

(I).
Let {ωn}n∈N be a sequence of nonzero functions on I which in the Ck,α sense

converges to ω. The corresponding logarithms bn of ωn can be chosen so that the
sequence {bn}n∈N in the Ck,α sense on I converges to b. Thus the sequence of right
inverses {Bn}n∈N constructed as above in the operator norm converges to B.

3. Proofs of results on the open upper half plane. We will construct a
solution of the Riemann-Hilbert problem on the upper half-plane inductively. Let
ρ ∈ C∞(∂Π×C) be a defining function for the family of Jordan curves {γz}z∈∂Π and
let Ω be a smoothly bounded convex domain in the upper half-plane such that its
closure Ω contains the rectangle

R = {z ∈ C; |Re(z)| ≤ 3, 0 ≤ Im(z) ≤ 3}

and that Ω ∩ ∂Π = [−3, 3].

Proposition 3.1. Let k ∈ N ∪ {0} and α ∈ (0, 1). Let a > 0 and

f : aΩ −→ C

an Ak,α(aΩ) holomorphic function such that

ρ(z, f(z)) = 0

for every z ∈ [−3a, 3a]. Let ε0 > 0. Then there exists a holomorphic function
g ∈ Ak,α(2aΩ) such that

ρ(z, g(z)) = 0

for every z ∈ [−6a, 6a] and ‖g − f‖ a
3

R < ε0.

In the proof of Proposition 3.1 we will use the following result due to Begehr and
Efendiev [3] based on the Newton’s iteration method.

Theorem 3.2 (Begehr-Efendiev). Let X and Y be Banach spaces. Let A : X →
Y be a continuous mapping, Fréchet differentiable in a neighbourhood of x0 ∈ X.
Assume that (DA)(x0) has a bounded right inverse B(x0) with the norm ω1 > 0.
Also, let ω2 > 0 be such that the derivative (DA)(x) satisfies a Lipschitz condition

‖(DA)(x1) − (DA)(x2)‖ < ω2‖x1 − x2‖

for x1, x2 in a neighbourhood of x0. Finally, let ω3 > 0 be such that

4ω1(ω1 + 1)(ω2 + 1)ω3 < 1.
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Then for every y ∈ Y such that ‖A(x0) − y‖ < ω3 there exists a solution of the
equation A(x) = y.

It follows from the proof of Theorem 3.2 that solution of the equation A(x) = y,
which one gets using Newton’s iteration method, is close to the initial data x0. The
distance is, under the assumptions of the theorem, bounded by the product 2ω1 ω3.

Proof. (Proposition 3.1) Recall that by a theorem of Čirka [8], f is smooth on
[−3a, 3a]. We extend f to a smooth function on ∂Π with the support in [−7a, 7a] and
such that

ρ(z, f(z)) = 0 z ∈ [−6a, 6a].

Remark 3.3. Let Γ : ∂Π → C be a Ck (k ∈ N ∪ {0}) function such that
Γ(z) ∈ γz for every z ∈ ∂Π and let ε : ∂Π → (0,∞) be a continuous positive function.
If |f (r)(z)−Γ(r)(z)| < ε(z) on [−3a, 3a] and every 0 ≤ r ≤ k, we can extend f in such
a way that |f (r)(z) − Γ(r)(z)| < ε(z) on [−6a, 6a] and every 0 ≤ r ≤ k.

By Lemma 2.1 there exists a sequence of entire functions {pn}n∈N which
i) in the Ck+1 sense on [−6a, 6a] ⊂ ∂Π converges to f ,
ii) uniformly on

Q = {z ∈ C; |Re(z)| ≤ a, 0 ≤ Im(z) ≤ a}.

converges to f .
Let X = Ak,α(2aΩ) and let Y = C

k,α
R

([−6a, 6a]). Let A : X → Y be a nonlinear
operator defined as A(ϕ)(z) = ρ(z, ϕ(z)) for every ϕ ∈ X and every z ∈ [−6a, 6a].
From [16] it follows that A is a C2 smooth mapping with the derivative

ϕ 7−→ 2 Re(∂wρ(z, ϕ0(z))ϕ(z)).

at point ϕ0 ∈ X . From the smoothness of the defining function ρ we have

lim
n→∞

ρ(z, pn(z)) = 0

in the Ck,α sense on [−6a, 6a]. Hence limn→∞A(pn) = 0 in Y . Also, for n large
enough is the second derivative of the operator A at the point pn in norm close to the
bilinear mapping

(ϕ, ψ) ∈ X ×X 7−→ 2 Re(∂2
wwρ(z, f(z))ϕ(z)ψ(z) + ∂2

wwρ(z, f(z))ϕ(z)ψ(z)) ∈ Y.

Finally, the right inverse Bn to the derivative (DA)(pn) constructed in Lemma
2.3 is in norm close to the right inverse of the operator

ϕ 7−→ Re(∂wρ(z, f(z))ϕ(z)).

By Theorem 3.2 we conclude that there is a holomorphic function g ∈ Ak,α(2aΩ) such
that A(g)(z) = ρ(z, g(z)) = 0 for every z ∈ [−6a, 6a],

|g(r)(z) − f (r)(z)| < ε(z)

for every z ∈ [−6a, 6a], 0 ≤ r ≤ k, and ‖g − f‖ a
3

R < ε0.
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Proof. (Theorem 1.1) The proof of Theorem 1.1 is clear. For n ∈ N let Ωn = 2n Ω,
Rn = 2nR, In = 2n [−3, 3] and εn = 1

2n .
We let f1 ∈ Ak,α(Ω1) be any function for which ρ(z, f1(z)) = 0 on I1. One can

get such function using Lemma 2.1 and results from [13, 23].

Remark 3.4. If, in addition, we also need some approximation of a given function
Γ we proceed as follows: we first approximate Γ in the Ck sense on ∂Π by a smooth
function ˜Γ for which ρ(z, ˜Γ(z)) = 0 for every z ∈ ∂Π. Then we get, using Lemma 2.1,

a sequence {pm}m∈N of entire functions which in the Ck+1 sense converges to ˜Γ on
I1. Lastly we use Theorem 3.2 as in the proof of Proposition 3.1 to get a function

f1 ∈ Ak,α(Ω1) so that ρ(z, f1(z)) = 0 and |˜Γ(r)(z) − f
(r)
1 (z)| < ε(z) for every z ∈ I1

and 0 ≤ r ≤ k.

Now we use Proposition 3.1 inductively to construct a sequence {fn}n∈N of func-
tions fn ∈ Ak,α(Ωn) such that

1. ρ(z, fn(z)) = 0 for z ∈ In,
2. ‖fn − fn+1‖ 1

3
Rn

< εn.

The second condition implies that the sequence {fn}n∈N converges uniformly on com-
pact subsets of Π to a continuous function f : Π → C which is holomorphic on Π.
The first condition implies that f is a solution of the Riemann-Hilbert problem for
{γz}z∈∂Π. By a theorem of Čirka [8], f is smooth up to the boundary of Π.

The same arguments, with the necessary modifications which we have already
indicated along the proof, actually show a stronger result.

Theorem 3.5. Let {γz}z∈∂Π be a smooth family of smooth Jordan curves in
C. Let Γ : ∂Π → C be a Ck (k ∈ N ∪ {0}) function such that Γ(z) ∈ γz for every
z ∈ ∂Π and let ε : ∂Π → (0,∞) be a positive continuous function. Then there exists
a smooth up to the boundary holomorphic function f on Π such that f(z) ∈ γz and
|f (r)(z) − Γ(r)(z)| < ε(z) for every z ∈ ∂Π and every 0 ≤ r ≤ k.

Remark 3.6. Function f could also be constructed to agree with Γ up to order
k on a prescribed discrete set of points on ∂Π.

4. Bordered Riemann surfaces. Let Σ be a bordered Riemann surface with
real analytic boundary and let p0 ∈ ∂Σ. Let {γz}z∈∂Σ\{p0} be a smooth family of
smooth Jordan curves in C defined by a defining function ρ ∈ C∞((∂Σ \ {p0}) × C).
As a natural generalization of Theorem 1.2 we have the following theorem.

Theorem 4.1. Let {γz}z∈∂Σ\{p0} be a smooth family of smooth Jordan curves in

C. Then there exists a smooth function f on Σ \ {p0}, holomorphic on Σ, such that
f(z) ∈ γz for every z ∈ ∂Σ \ {p0}.

Similarly as before we need solutions of the linear Riemann-Hilbert problem. Let
k ∈ N ∪ {0} and 0 < α < 1.

Lemma 4.2. Let Σ be a bordered Riemann surface with genus g and m real
analytic boundary components. Let I be a proper closed arc of ∂Σ and let ω : I →
C \ {0} be a Ck,α function. Then the mapping

Φ : Ak,α(Σ) −→ C
k,α
R

(I)

defined as

Φ(f) = Re(ω f)
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is a bounded surjective linear operator with a bounded right inverse

B : Ck,α
R

(I) −→ Ak,α(Σ).

In addition, our construction of the right inverse operator can be made locally con-
tinuous, that is, if a sequence of nonzero functions {ωn}n∈N on I in the Ck,α sense
converges to ω, then there are right inverses Bn of the corresponding linear operators
so that the sequence {Bn}n∈N converges to B in the operator norm.

Proof. Mapping Φ is a well defined bounded linear operator. Using an extension
operator E [15] we extend ω to a nonzero Ck,α function on ∂Σ. Let W (ω) denote
the winding number of (the extended function) ω along ∂Σ, where ∂Σ is oriented
coherently with the natural orientation of Σ as a Riemann surface. Let J be a closed
subarc of ∂Σ \ I and let µ : ∂Σ → C \ {0} be a smooth nowhere zero function such
that µ = 1 on ∂Σ \ J , and such that the winding number W (µ) of µ along ∂Σ is

W (µ) = −W (ω) + 2g +m− 1.

Then z 7→ µ(z)ω(z) is a well defined nonzero Ck,α function on ∂Σ such that W (µω) =
2g +m− 1. By [19] we have that the mapping

˜Φ : f 7−→ Re((µω)f)

from Ak,α(Σ) into C
k,α
R

(∂Σ) is surjective with 2W (µω) − (2g + m − 2) = 2g + m

dimensional kernel and hence there is a well defined bounded right inverse operator

˜B : Ck,α
R

(∂Σ) −→ Ak,α(Σ).

Finally we define B = ˜B ◦ E.
Let {ωn}n∈N be a sequence of nonzero functions on I which in the Ck,α sense

converges to ω. Without loss of generality we may assume that functions ωn (n ∈ N)
are already defined and nonzero on ∂Σ. Each function ωn (n ∈ N) defines a bounded
linear operator

˜Φn : Ak,α(Σ) −→ C
k,α
R

(∂Σ)

defined as

˜Φn : f 7−→ Re((µωn)f).

Since ˜B is a bounded right inverse of the operator ˜Φ, its image is a closed subspace
of Ak,α(Σ) such that

Ak,α(Σ) = Im( ˜B) ⊕ Ker(˜Φ)

and ˜Φ : Im( ˜B) → Ck,α(∂Σ) is an isomorphism. Hence the same is true for the

operators ˜Φn. Finally, the operator Bn (n ∈ N) is defined as the inverse of the
operator

˜Φn : Im( ˜B) −→ C
k,α
R

(∂Σ)

composed with E.
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Remark 4.3. On an arbitrary bordered Riemann surface Σ there is no canonical
way to define the right inverse operators Bn as it was done on the disc in Lemma 2.3.

Proof. (Theorem 4.1) Let D be a smoothly bounded simply connected domain
in Σ such that D ∩ ∂Σ is a closed arc which contains point p0 in its interior. Also,
let q0 ∈ ∂D ∩ Int(Σ). Then there is a biholomorphic map ψ from D onto Π that is
smooth on D \ {p0}, which takes point q0 to 0, point p0 to infinity and such that the
preimage by ψ of the half-lines (−∞,−1] ∪ [1,∞) belongs to the boundary ∂Σ.

Let P (a) ⊂ Σ (a > 0) be the preimage by ψ of the closed rectangle {z ∈
C; |Re(z)| ≤ 3a, 0 ≤ Im(z) ≤ 3a} and let Ωn ⊆ Π be as in the proof of Theorem
1.1. For n ∈ N we define smoothly bounded domains

Un = ψ−1(Ωn) ∪ (Σ \D).

We will denote by ∂′Un the part of the boundary of Un which belongs to the boundary
of Σ, that is,

∂′Un = ∂Un ∩ ∂Σ.

Finally, let χ be a smooth function on Σ whose support is contained in D \P (1
3 ) and

which equals 1 on D \ P (1
2 ).

Proposition 4.4. Let k ∈ N ∪ {0} and α ∈ (0, 1). Let

fn : Un −→ C

be a holomorphic function of class Ck,α such that

ρ(z, fn(z)) = 0

for every z ∈ ∂′Un. Let ε0 > 0. Then there exists a holomorphic function fn+1 ∈
Ak,α(Un+1) such that

ρ(z, fn+1(z)) = 0

for every z ∈ ∂′Un+1 and ‖fn+1 − fn‖P ( 1

3
2n)∪(Σ\D) < ε0.

Before we start with the proof of Proposition 4.4 we observe that the sequence
of entire functions {pn}n∈N constructed in Lemma 2.1 converges to f in the Ck sense
on Q.

Proof. The proof of Proposition 4.4 is similar to the proof of Proposition 3.1.
However, since we are working on an arbitrary bordered Riemann surface, we need to
solve a ∂-problem to get function fn+1.

Recall that by a theorem of Čirka [8], fn is smooth on ∂′Un. We extend fn to
a smooth function on ∂Σ with support in a neighbourhood of ∂′Un+1 and such that
ρ(z, fn(z)) = 0 on ∂′Un+1. If necessary, we can extend fn so that it approximates a
given function Γ with values in {γz}z∈∂Σ\{p0}. By Lemma 2.1 there exists a sequence
of holomorphic functions {pm}m∈N on D, smooth up to ∂D \ {p0}, such that

i) in the Ck+1 sense on ∂ψ−1(Ωn+1) ∩ ∂Σ converges to the extended function
fn,

ii) uniformly on P (1
32n) converges to fn.
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We define

˜fm,n = χpm + (1 − χ) fn.

Then ˜fm,n converges in the Ck+1 sense on ∂′Un+1 to the extended function fn and

∂ ˜fm,n = ∂χ(pm − fn)

converges in the Ck norm on Σ to 0. Solving ∂ equation on Σ we get a holomorphic
function hm,n on Σ which is in the Ck,α sense close to ˜fm,n on ∂′Un+1 and uniformly

close to fn on P (1
32n) ∪ (Σ \D). Using Lemma 4.2 and Theorem 3.2 as before we

show that there exists a holomorphic function fn+1 from Ak,α(Un+1) which solves the
Riemann-Hilbert problem on ∂′Un+1 and which is uniformly arbitrarily close to fn

on P (1
32n) ∪ (Σ \D).

To complete the proof of Theorem 4.1 we need to construct function f1. The rest
is done by inductive procedure like in the proof of Theorem 1.1.

Let Γ : ∂Σ\{p0} → C be a Ck function such that Γ(z) ∈ γz for every z ∈ ∂Σ\{p0}.
We approximate Γ in the Ck sense on ∂Σ \ {p0} by a smooth function ˜Γ for which

ρ(z, ˜Γ(z)) = 0 for every z ∈ ∂Σ \ {p0}.
Without loss of generality we may assume that Σ is a closed subset of an open

Riemann surface ˜Σ with the same genus and the same number of boundary compo-
nents as Σ. Each boundary component K of Σ has a neighbourhood in ˜Σ which is
conformally equivalent to some annulus

Aa = {ξ ∈ C; e−a < |ξ| < ea} (a > 0)

and such that K is mapped by the conformal equivalence to the unit circle |ξ| = 1.
Using the mapping e−iξ which takes the strip

Sa = {ξ ∈ C;−a < Im(ξ) < a}

onto Aa and the convolution with the heat kernel, we conclude that there is a sequence
of holomorphic functions on a neighbourhood of K in ˜Σ which in the Ck+1 sense
converges to ˜Γ on K. Observe that the convolution of a periodic function on R with
the heat kernel gives a periodic entire function with the same period. For the boundary
component K0 of Σ which contains the point p0 the conclusion of approximation is
done only in a neighbourhood of K0 ∩ ∂′U1 in ˜Σ. By a generalized Runge’s theorem
[4, 5, 18] then there exists a sequence {qn}n∈N of holomorphic functions on ˜Σ which

in the Ck+1 sense on ∂′U1 converges to ˜Γ.
We use Theorem 3.2 and Lemma 4.2 again to show that there exists a holomorphic

function f1 on U1 of class Ck,α which solves the Riemann-Hilbert problem on ∂′U1

and which is on ∂′U1 in the Ck sense close to ˜Γ and hence also to Γ.
As before we also have a version with approximation.

Theorem 4.5. Let {γz}z∈∂Σ\{p0} be a smooth family of smooth Jordan curves

in C. Let Γ : ∂Σ \ {p0} → C be a Ck (k ∈ N ∪ {0}) function such that Γ(z) ∈ γz for
every z ∈ ∂Σ \ {p0} and let ε : ∂Σ \ {p0} → (0,∞) be a continuous positive function.
Then there exists a holomorphic function f on Σ, smooth up to ∂Σ \ {p0}, such that
f(z) ∈ γz and |f (r)(z)− Γ(r)(z)| < ε(z) for every z ∈ ∂Σ \ {p0} and every 0 ≤ r ≤ k.

Remark 4.6. Using the same technique and a result on the boundary regularity
of analytic varieties [8], one can prove similar statements under the assumption that
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ρ ∈ Ck+1((∂Σ \ {p0}) × C) for some k ≥ 2. In that case one gets solutions of the
Riemann-Hilbert problem of Hölder class Ck,α.

REFERENCES

[1] H. Alexander, Gromov’s method and Bennequin’s problem, Invent. Math., 125 (1996),
pp. 135–148.

[2] M. S. Baouendi and F. Treves, A property of the functions and distributions annihilated
by a locally integrable system of complex vector fields, Ann. of Math. (2), 113 (1981),
pp. 387–421.

[3] H. Begehr and M. A. Efendiev, On the asymptotics of meromorphic solutions for nonlinear
Riemann-Hilbert problems, Math. Proc. Cambridge Philos. Soc., 127 (1999), pp. 159–172.

[4] H. Behnke and K. Stein, Entwicklung analytischer Funktionen auf Riemannschen Flächen,
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Mickiewicz Univ., Poznań, 1972), pp. 63–69. Reidel, Dordrecht, 1975.

[15] D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order,
Grundlehren der Mathematischen Wissenschaften, Vol. 224, Springer, Berlin-New York,
1977.

[16] C. D. Hill and G. Taiani, Families of analytic discs in Cn with boundaries on prescribed CR
submanifold, Ann. Scuola. Norm. Sup. Pisa, 5 (1978), pp. 327–380.

[17] W. Kaplan, Approximation by entire functions, Michigan Math. J., 3 (1955), pp. 43–52.
[18] L. K. Kodama, Boundary measures of analytic differentials and uniform approximation on a

Riemann surface, Pacific J. Math., 15 (1965), pp. 1261–1277.
[19] W. Koppelman, The Riemann-Hilbert problem for finite Riemann surfaces, Comm. Pure Appl.

Math., 12 (1959), pp. 13–35.
[20] F. G. Maksudov and M. A. Efendiev, The nonlinear Hilbert problem for a doubly connected

domain (Russian), Dokl. Akad. Nauk SSSR, 290 (1986), pp. 789–791.
[21] S. Scheinberg, Uniform approximation by entire functions, J. Analyse Math., 29 (1976),

pp. 16–18.
[22] Z. Slodkowski, Polynomial hulls in C2 and quasicircles, Ann. Scuola Norm. Sup. Pisa, 16

(1989), pp. 367–391.
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