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Define a line bundle E over the Riemann sphere Ĉ = C∪ {∞} by gluing together
two copies of C × C using the transition mapping (z, w) 7→ (1/z, iw/z). Since the

square of this bundle is the holomorphic cotangent bundle of Ĉ it is reasonable to use
the notation f(z)

√
dz for sections of E.

If f(z) is holomorphic on R < |z| < ∞ then f(z)
√
dz extends to a holomorphic

section of E over R < |z| ≤ ∞ if and only if f(z) → 0 as z → ∞.

A Möbius transformation T : z 7→ az+b
cz+d of Ĉ lifts to (a pair of) maps E → E

given by (z, w) 7→
(
Tz,

√
ad−bc
cz+d w

)
. Note that the norm

(1) ‖F‖γ =

√√√√
∫

γ

|f(z)|2 |dz|

of a section F = f(z)
√
dz of E over a curve γ in Ĉ is Möbius-invariant.

Given a smooth Jordan curve γ ⊂ C and a section F = f(z)
√
dz of E over γ

then the Cauchy integral

(2)
1

2πi

∫

w∈γ

f(w)
√
dw

√
dz

√
dw

w − z

defines a pair of holomorphic sections Cin
γ F and Cout

γ F over the two components γin

and γout of Ĉ \ γ with the property that F is the jump

b. v.Cin
γ F − b. v.Cout

γ F

between boundary values of Cin
γ F and Cout

γ F ; moreover, the operators Cin
γ and Cout

γ are
completely characterized by this description. (This is a restatement of the classical
Plemelj formula – see for example [Hen, §14.1].)

Since the characterization of Cin
γ F and Cout

γ F given above is Möbius-invariant it

follows that the operators Cin
γ and Cout

γ are Möbius-invariant. (This can also be checked

by a direct computation verifying that the Cauchy kernel 1
2πi

√
dz

√
dw

w−z is Möbius-
invariant.)

We also consider the following Möbius-invariant operators.
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The Cauchy operator: This is the operator Cγ mapping sections of E over γ
to sections of E over γ given by the principal value of (2) or by the formula

CγF =
1

2

(
b. v.Cin

γ F + b. v.Cout
γ F

)

[Hen, §14.1].

The Kerzman-Stein operator: This is the operator Aγ defined as twice the

anti-self-adjoint part of Cγ with respect to the norm (1); if F = f(z)
√
dz

then AγF is given by

1

2πi

∫

w∈γ

f(w)
√
dw

(√
dz

√
dw

w − z
−

√
dz

√
dw

w − z

)
.

In view of the Möbius-invariance of these operators it makes sense to try to relate
their properties to Möbius-invariant properties of the curve γ.

Important Möbius-invariant geometric quantities attached to γ include the fol-
lowing.

Cross-ratio: The cross-ratio CR(a, b, c, d) =
(c− a)(d− b)

(d− a)(c− b)
of four points along

γ; the cross-ratio satisfies the transformation law

CR(Ta, T b, T c, T d) = CR(a, b, c, d).

Kerzman-Stein “distance”: For z, w ∈ γ this is the quantity θ(z, w) given
by the formula

θ(z, w) = argTγz + argTγw − 2 arg(w − z)

= Im log
Tγz · Tγw

(w − z)2
(3)

where Tγz and Tγw are the forward tangent directions at z and w, respec-
tively.

This is a Möbius-invariant quantity admitting the following Möbius-
invariant geometric interpretation: θ(z, w) is the angle between the circle
passing through z and w and tangent to γ at z and the circle passing through
z and w and tangent to γ at w. (See [KeSt, §7] for a more euclidean geometric
interpretation.)

The definition of θ(z, w) given above doesn’t make sense when z = w
but the approximation (6) below shows that θ extends continuously to the
diagonal if we set θ(z, z) = 0.

At first θ seems to take values in R/(2πZ). However, it is easy to check that
θ(z, w) ≡ 0 when γ is a circle, and a deformation argument then shows that
θ(z, w) may be uniquely defined as a continuous R-valued function vanishing
on the diagonal.

Note that θ is not a metric in general; it can vanish off the diagonal and
can take negative values.

The formula

(4) θ(z, w) = π + lim
γ∋ζցz
γ∋ωցw

arg CR(z, w, ζ, ω)
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shows that θ may be viewed as a partial infinitesimalization of the cross-ratio.
(The notations ζ ց z and ω ց w are to indicate that ζ and ω approach z
and w from the forward side.)

(One way to prove the geometric characterization of θ given above is to
first establish Möbius invariance using (4) above or (9) below and then to
reduce to the case where one of the circles is the extended real axis.)

Schwarzian derivative: The Schwarzian derivative

Sγ∗ =
γ′′′∗
γ′∗

− 3

2

(
γ′′∗
γ′∗

)2

of a parameterization γ∗ of an arc of γ satisfies the following transformation
laws:

S (T ◦ γ∗) = Sγ∗

S (γ∗ ◦ φ) = (Sγ∗ ◦ φ) · (φ′)2 + Sφ

Im S (γ∗ ◦ φ) = (Im Sγ∗ ◦ φ) · (φ′)2 ,(5)

where T is a Möbius transformation and φ is a diffeomorphism of real inter-
vals.

The expansions

θ (γ∗(t), γ∗(u)) =
1

6
(u− t)2 Im Sγ∗(t) + o

(
|u− t|2

)
(6)

CR (γ∗(r), γ∗(t), γ∗(u), γ∗(v)) = CR(r, t, u, v)(7)

+
1

6
(t− r)(v − u)Sγ∗(t)

+ o
(
|t− r|2 + |u− t|2 + |v − u|2

)

ImCR (γ∗(r), γ∗(t), γ∗(u), γ∗(v)) =
1

6
(t− r)(v − u) ImSγ∗(t)(8)

+ o
(
|t− r|2 + |u− t|2 + |v − u|2

)

show that the imaginary part of the Schwarzian may be viewed as an infini-
tesimalization of θ or as a complete infinitesimalization of the imaginary part
of the cross-ratio.

Inversive arc-length: From (5) we see that
√
| Im Sγ∗(t)| dt defines a

parametrization-independent Möbius-invariant 1-form on γ. The integral

∫

γ

√
| Im Sγ∗(t)| dt

is called the inversive arc-length of γ ([Lie], [Pat], [CaSh], [Mae1]).
From (6) we see that the inversive arc-length of γ may also be viewed as

the limit of Riemann sums

∑

j

√
6 |θ(zj, zj+1)|.
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In terms of the euclidean curvature κ and arc-length ds, the inversive arc-
length of γ may be written as

∫

γ

√
|dκ ds| =

∫

γ

√∣∣∣∣
dκ

ds

∣∣∣∣ ds.

Inversive curvature: Consider an arc of γ on which dκ 6= 0. If we reparame-
terize the arc by inversive arc-length we will have Im Sγ∗(t) = ±1. Since this
parameterization is unique up to precomposition with a translation of R, the
real part of Sγ∗ becomes a scalar Möbius invariant known as the inversive
curvature κinv of γ ([Pat], [Mae1], [Mae2]).

Writing euclidean curvature κ as a function of euclidean arc-length as
above, the inversive curvature may be written in the form

κinv =
4(κ′′′ − κ2κ′)κ′ − 5(κ′′)2

8(κ′)3
.

Our arc can be reconstructed up to post-composition with a Möbius trans-
formation from the inversive curvature (viewed as a function of inversive
arc-length) by solving the equation

Sγ∗ = ±i+ κinv

[Leh, Thm. II.1.1].
Note that the four-vertex theorem guarantees that our Jordan curves γ will

have at least four troublesome points where dκ = 0 (see for example [CaSh,
§3]).

The expansion (6) can be extended to read

θ (γ∗(t), γ∗(u)) = ±1

6
(u − t)2 ± 1

180
(u− t)4κinv(t) + o

(
|u− t|4

)

for an arc parameterized by inversive arc-length. Note in particular that
this shows that

√
|θ| will satisfy a local triangle inequality or a local reverse

triangle inequality depending on whether κinv is negative or positive.

Returning finally to the Cauchy integrals we find that the Cauchy kernel

C(z, w) =
1

2πi

√
dz

√
dw

w − z

restricted to γ × γ satisfies

(9) 2 argC(z, w) = θ(z, w) + π.

(To clarify the meaning of (9), write z = γ∗(t), w = γ∗(u); then C(z, w) =

1
2πi

√
γ′

∗
(t)

√
γ′

∗
(u)

w−z

√
dt
√
du, and argC(z, w) denotes the argument of the scalar func-

tion 1
2πi

√
γ′

∗
(t)

√
γ′

∗
(u)

w−z . To verify (9) note that 2 argC(z, w) = argC(z, w)2 =

arg −1
4π2

dz dw
(w−z)2 .)
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The adjoint kernel

C(w, z) =
1

2πi

√
dz

√
dw

w − z

satisfies
∣∣∣C(w, z)

∣∣∣ = |C(z, w)|

argC(w, z) = argC(z, w) − θ(z, w)

C(w, z) = e−iθ(z,w)C(z, w).

For the Kerzman-Stein kernel

A(z, w) = C(z, w) − C(w, z)

= 2i sin
θ(z, w)

2
e−iθ(z,w)/2C(z, w)(10)

we have the following results.

Theorem 1. The kernel 2π
√

6 |A(z, w)C(z, w)| extends to a continuous kernel

on γ×γ; the trace of the extended kernel along the diagonal is the element of inversive

arc-length.

Proof. Setting z = γ∗(t), w = γ∗(u) and quoting (6) we have

2π
√

6 |A(z, w)C(z, w)| = 4π

√
3
∣∣∣sin θ(z,w)

2

∣∣∣ |C(z, w)|

=
(√

|Im(Sγ∗)(t)| |u− t| + o(|u − t|)
)

·
√
|γ′∗(t)||γ′∗(u)|

√
dt
√
du

|γ∗(t) − γ∗(u)|
→
√
|Im(Sγ∗)(t)| dt

as u→ t.

Theorem 2. |A(z, w)|2 = − 1
4π2 tan θ

2 dzdwθ.

Proof. Differentiating (3) with respect to z and w and quoting (9) we have

dzdwθ = 8π2 ImC(z, w)2

= −8π2 sin θ(z, w) · |C(z, w)|2.

Combining this with (10) we obtain the theorem.

Theorem 3. The Hilbert-Schmidt norm ‖Aγ‖2
H−S =

∫
γ×γ

|A(z, w)|2 equals

− 1
4π2

∫
γ×γ

tan θ
2 dzdwθ.

Proof. This follows from the previous result by integration.

Theorem 4. If the function θ(z, w) takes values in the interval (−π, π) then

(11) ‖Aγ‖2
H−S =

1

2π2

∫

γ×γ

dzψ dwψ
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where ψ = log
(
sec θ

2 + tan θ
2

)
.

Proof. This follows from the previous result using integration by parts and dψ =
1
2 sec θ

2 dθ.

Example. Consider the “stadium domain” obtained by capping a strip of unit
height and length M with two semi-circles of unit diameter.

It is easy to check using Theorem 4 that ‖Aγ‖2
H−S ≈ C ·M for M large. The

inversive arc-length of γ, however is zero!
(Actually, this is cheating a bit since γ is piecewise C3 but not actually C3.

However, γ can be approximated by C3 curves with arbitrarily small inversive arc-
length without any significant change to ‖Aγ‖H−S .)

The example shows that it is problematic to represent ‖Aγ‖2
H−S as the integral

over γ of any purely local Möbius-invariant quantity. But ‖Aγ‖2
H−S can be controlled

by a non-local variant of inversive arc-length times a “diameter” factor based on total
variation.

Theorem 5. Assume that θ(z, w) takes values in the interval (−π, π) and let

L1 = max
z∈γ

∫

w∈γ

|dwψ(z, w)|,

L2 =

∫

z∈γ

max
w∈γ

|dzψ(z, w)| =

∫

w∈γ

max
z∈γ

|dwψ(z, w)|.

Then

(12) ‖Aγ‖2
H−S ≤ L1L2

2π2
.

Note that L1 is the maximum over z ∈ γ of the total variations of the functions
ψ(z, ·)

Proof. By (11) we have

‖Aγ‖2
H−S =

1

2π2

∫

γ×γ

dzψ dwψ

≤ 1

2π2

∫

z∈γ

max
w

|dzψ|
∫

w∈γ

|dwψ|

≤ 1

2π2

∫

z∈γ

L1 max
w

|dzψ|

=
L1L2

2π2
.
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Note that L1 ≤ L2; thus (12) implies

(13) ‖A2
γ‖H−S ≤ L2

2

2π2
.

Theorem 6. If θ(z, w) takes values in the interval (−π, π) and the quantity L2

given above is <
√

2π then the Szegő projection operator for γ is represented by the

sum

(14)

∞∑

j=0

(−1)j

(
Cγ +

1

2
I

)
A

j
γ .

Proof. By (13) we have ‖Aγ‖H−S < 1. The conclusion (14) follows by quoting
Theorem 8.1(a) of [KeSt].

Returning to the stadium domains discussed above we find that L1 ≈ C logM
and L2 ≈ CM for M large. Thus (13) is a factor of M away from being sharp for
this family while (12) is only off by a factor of logM .

See [Bol] for lower bounds for ‖Aγ‖H−S .
It would be interesting to know if the quantity L2 has any general utility in

Möbius-invariant geometric analysis.
Note: The current authors are preparing a longer work which will examine the

inversive arc-length in parallel with a number of other invariant arc-lengths such as
the affine arc-length of Blaschke ([Bla], [Buc]).
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