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MODIFYING HYPERKÄHLER MANIFOLDS WITH
CIRCLE SYMMETRY∗
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Abstract. A construction is introduced for modifying hyperkähler manifolds with tri-
Hamiltonian circle action, that in favourable situations increases the second Betti number by one.
This is based on the symplectic cut construction of Lerman. In 4 or 8 dimensions the construction
may be interpreted as adding a D6-brane. A number of examples are given and a generalisation to
three-Sasaki geometry discussed.
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1. Introduction. The symplectic cut construction of Lerman [17] has proved
to be a valuable tool in the study of symplectic manifolds with Hamiltonian circle
action. The purpose of this paper is to investigate analogues of this construction in
quaternionic geometry, in particular for hyperkähler manifolds.

We define a modification construction for a hyperkähler manifold M with tri-
Hamiltonian circle action, which involves replacing a level set of the moment map
by its quotient by the circle action. The relationship between the complement of
the level set in M and the complement of the quotient in the new manifold Mmod

is more complicated than in the symplectic case. In the symplectic case one has
diffeomorphisms between corresponding components, but only ‘half’ of the original
manifold appears. For the hyperkähler modification all of M is involved, but all we
can say, in general, is that there is a third space which is a circle bundle over each
complement.

When we perform the construction, we create a new hyperkähler submanifold of
real codimension four, which is a component of the fixed set of the circle action in the
modified space; this submanifold is in fact the quotient of a level set mentioned above
and is the hyperkähler quotient of M at the chosen level. In physical terms this can
be interpreted as adding a new brane to the space.

The lowest dimensional example of this construction produces the Gibbons-
Hawking multi-instanton spaces out of flat space. At each stage a circle level set
is collapsed to a point, but the topology at long range is also changed. This can be
generalised in a higher-dimensional setting to the toric hyperkähler manifolds of [3],
where our construction can be interpreted as adding a new affine flat to the combina-
torial data associated to the manifold.

We study how the topology changes under our construction. In particular, we
prove that in the simply-connected case the second Betti number increases by one.

We conclude by briefly discussing an analogous construction for three-Sasaki
spaces.
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2. Symplectic cuts. We shall first review Lerman’s symplectic cut construc-
tion [17].

Let (M,ω) be symplectic with a Hamiltonian circle action whose moment map is
µ : M → R. We now consider M × C with the product symplectic structure and the
S1-action

eiθ : (m, z) 7→ (eiθ.m, e−iθz).

whose moment map is

Φ: (m, z) 7→ µ(m)− |z|2 .

The symplectic cut Mcut = Φ−1(ε)/S1 is the symplectic quotient of M ×C at level ε.
This fits into the following diagram:

M
π
← Φ−1(ε)

p
→Mcut.

Here π : Φ−1(ε)→M is projection (m, z) 7→ m, and its image is {m ∈M : µ(m) > ε}.
The map p : Φ−1(ε) → Mcut is just the quotient map for the S1-action. If the circle
action on M (or, more generally, on Φ−1(ε)), is free then the fibres of p are all
circles. However the fibres of π over points in its image are only circles away from the
locus µ−1(ε). Over µ−1(ε), by contrast, π is injective.

Notice that π admits a section s : m 7→ (m,+
√

µ(m)− ε). This is essentially

derived from the section of the map φ0 : z 7→ |z|
2

, the moment map for the action
on C, which expresses C as a circle bundle over R>0 with one special (point) fibre
over the origin. Now p ◦ s gives a surjection from {m ∈ M : µ(m) > ε} onto Mcut,
which is a diffeomorphism away from µ−1(ε) but has circle fibres on µ−1(ε).

We can rephrase this as follows. The set Φ−1(ε) is the disjoint union Σ1 ∪ Σ2

where

Σ1 = { (m, z) : µ(m) > ε, |z| = +
√

µ(m)− ε },

Σ2 = { (m, 0) : µ(m) = ε }.

On Σ1, each orbit of the circle action contains a unique (m, z) with z real and positive
(z = +

√

µ(m)− ε). Hence Σ1/S
1 may be identified with {m : µ(m) > ε}. On the

other hand, Σ2/S
1 is just the symplectic quotient µ−1(ε)/S1.

Thus one sees that the symplectic cut Φ−1(ε)/S1 may be viewed as coming
from {m : µ(m) > ε} by factoring out the circle action on the boundary µ−1(ε).

3. Hyperkähler modifications. To define a hyperkähler manifold we start
with a Riemannian manifold (M, g) and three compatible complex structures I,
J and K such that IJ = K = −JI. Compatibility means that the tensors
FI(X,Y ) = g(IX, Y ), etc., are all 2-forms. One says that M is hyperkähler if these
three 2-forms are closed. In particular, FI , FJ and FK define symplectic structures
on M .

To generalise the symplectic cut construction to hyperkähler geometry, we replace
the extra factor C in the previous section with H

∼= R
4. The flat metric on H is

hyperkähler with complex structures induced by multiplication by unit quaternions
on the right. Fixing i we will often write H = C+ jC with complex coordinates (z, w).
This carries a circle action preserving the geometry given by

eiθ : (z, w) 7→ (eiθz, e−iθw). (3.1)
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This action is tri-Hamiltonian, meaning that it is Hamiltonian with respect to each
of the three symplectic structures. We may combine the three moment maps into the
single map taking values in R

3 = R× C:

(z, w) 7→ (1

2
(|z|

2

− |w|
2

), izw). (3.2)

Now let M be a hyperkähler manifold with a tri-Hamiltonian circle action. Con-
sider M ×H with action:

eiθ : (m, z, w) 7→ (eiθm, e−iθz, eiθw).

The associated moment map Φ: M ×H→ R
3 = R× C is defined by

Φ: (m, z, w) 7→ (µ
R
(m)− 1

2
(|z|

2

− |w|
2

), µ
C
(m)− izw), (3.3)

where µ = (µ
R
, µ

C
) : M → R

3 = R× C is the hyperkähler moment map for the circle
action on M .

Definition 3.1. The modification of the tri-Hamiltonian hyperkähler mani-
fold M at level ε is defined to be Mmod = Φ−1(ε)/S1, where ε = (ε

R
, ε

C
) and Φ is as

in equation (3.3).

The S1-action on M × H is free except at points (m, 0, 0) where m is a point
of Mnon-free, the set of points of M with non-trivial stabiliser. The results of [14]
on the hyperkähler quotient construction, show that the modification Mmod will be a
smooth manifold provided we choose the level ε to be outside µ(Mnon-free).

Definition 3.2. A good modification of M is the modification Mmod at a level ε
lying in µ(M) \ µ(Mnon-free). Such an ε will also be called good.

Any good modification Mmod carries a hyperkähler structure obtained by restric-
ting the Kähler forms of M ×H to the level set and descending to the quotient. This
is a consequence of the general theory of hyperkähler quotients in [14]. In addition,
in this case Mmod will be complete as long as M is complete.

Note that, analogously to the symplectic case, the circle action

(m, z, w) 7→ (eiψ.m, z, w) (3.4)

on M ×H preserves the level set of Φ and commutes with our previous S1-action on
that set. So the action (3.4) descends to a tri-Hamiltonian action on Mmod. More
specifically, writing [m, z, w] for the point of Mmod represented by (m, z, w) ∈ Φ−1(ε),
the moment map for the action on Mmod is [m, z, w] 7→ µ(m).

Summarising the discussion so far we have:

Proposition 3.3. Let M be a hyperkähler manifold with tri-Hamiltonian circle

action with moment map µ : M → R
3. Then each good modification Mmod of M

is a again a smooth hyperkähler manifold, of the same dimension as M , with tri-

Hamiltonian circle action.

Note that the circle action on Mmod induced by (3.4) is free except when there
exist eiθ ∈ S1 and eiψ ∈ S1 \ {1} with

(eiψ .m, z, w) = (eiθ.m, e−iθz, eiθw).
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This set is the union of the two sets

{[m, 0, 0] : µ(m) = ε},

{[m, z, w] : m ∈Mnon-free, Φ(m, z, w) = ε}

so

µ((Mmod)
non-free

) = {ε} ∪ µ(Mnon-free).

The modification construction may therefore be iterated, provided that we choose
our level set suitably at each stage (and µ(M) \ µ(Mnon-free) is not a finite set). In
particular, if the circle action on M is free then we may iterate the construction
provided we change the level set at each stage.

Remark 3.4. If one chooses to work in the orbifold category then all that one
requires is that the circle action be non-trivial and that the fixed-point set MS1

does
not meet the level set µ−1(ε).

4. Topology. Let us now analyse the structure of the modificationMmod. Recall
(see [3] for example) that (3.2) is a map φ : H→ R

3 = R×C such that φ−1(0, 0) is (0, 0)

and whose fibre over any other point is exactly a free orbit of the circle action (3.1).

This is the hyperkähler analogue of the map φ0 : z 7→ |z|
2

from C to R discussed in
the symplectic case. However, there are two important differences:

(i) the map φ is onto R
3, whereas its symplectic analogue φ0 is only onto the

closed halfline R>0 ⊂ R;
(ii) the map φ does not admit a section, unlike φ0. Indeed on spheres in H, we

see that φ is the Hopf fibration S3 → S2.
Point (i) is the reason for our choice of terminology ‘modification’ instead of ‘cut’
since the whole of M contributes to the construction of Mmod rather than a proper
subset.

We have a diagram

M
π
← N

p
→Mmod. (4.1)

Here N = Φ−1(ε) and as before p is just the quotient map for the circle action on N ,
which has circle fibres if S1 acts freely on N . Also π : N → M is just projection
(m, z, w) 7→ m. It is now onto M (in contrast to the symplectic case) because of (i).
So we do not remove half the manifold when we perform the hyperkähler modification.

The fibre of π is a circle except on the set X̃ = µ−1(ε) × {(0, 0)}, where π is
injective. Thus under the modification, the set X = µ−1(ε) in M is being replaced
by its S1-quotient X̂ = X/S1, the hyperkähler quotient of M at level ε, in Mmod.
When ε is good, this set is a component of the fixed-point set of the circle action (3.4)
on Mmod, see the discussion after Proposition 3.3. Using the results of [10], we thus
have:

Proposition 4.1. Suppose Mmod is a good modification of M at level ε. Then

Mmod contains the hyperkähler quotient of M at level ε as a hyperkähler submanifold

of codimension 4.

The relation between the complements M∗ = M \X and M∗
mod

= Mmod \ X̂ is
more complicated than in the symplectic case, as (due to (ii)) the map π does not
admit a global section. What we do have is a space N∗ = N \ X̃ which is a circle
bundle over both M∗ and M∗

mod
.
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Remark 4.2. If µ(M) 6= R
3 then one also has the possibility of modifying M at

a level ε /∈ µ(M). In this situation no new fixed-points are created, but Mmod will
not be isometric to M and again there will be a common circle bundle above both
spaces. This situation is excluded by our definition of good modification.

4.1. Euler characteristic. As mentioned above the collapsed set X̂ in Mmod

will be a component L of the fixed-point set of the hyperkähler circle action (3.4)
on Mmod. It has real codimension 4 in Mmod and its normal bundle will be a non-
trivial circle representation of quaternionic dimension one.

Suppose the circle action on Mmod has no non-trivial finite isotropy groups, and
that all components of L are of codimension 4. Then Mmod/S

1 will be a smooth
manifold: the spheres in the normal bundle are copies of S3, whose quotient by S1

will be S2. As this is a boundary it can therefore be filled in in the quotient, see
[12, 13, 1].

In the language of string theory such a component of L is a D6-brane when the
ambient space is 4- or 8-dimensional. Whenever we modify M , therefore, we are
adding in a new brane whose position is determined by the level ε.

Note also that, by a standard argument, the Euler characteristic of Mmod will be
the sum of the Euler characteristics of the components of the fixed-point sets of the
circle action. Indeed if L has finitely many connected components Li, for i = 1, . . . , k,
and Vi are mutually disjoint tubular neighbourhoods of Li, then as the circle action
on Mmod \ L is free, we see that the intersection with Vi has χ = 0, so

χ(Mmod) =

k
∑

i=1

χ(Vi) + χ(Mmod \ L) =

k
∑

i=1

χ(Li) = χ(L).

This can sometimes yield useful information on the topology of Mmod.

4.2. Cohomology. Our aim is to relate the cohomology ofM and its good modi-
fication Mmod. In our cohomology calculations we shall take coefficients over R unless
otherwise stated. We shall also assume that our manifolds have finite topological
type.

We use the notation introduced at the beginning of this section, and in addition
choose a tubular neighbourhood U of X = µ−1(ε) in M . Noting that X̃ = π−1(X),
we write Ũ = π−1(U) and put Umod = p(Ũ). Again p(X̃) = X̂ and Umod is a
neighbourhood of X̂ in Mmod. As above, a star ∗ on a set will denote the complement
of the corresponding set associated to X , e.g., U∗

mod
= Umod \ X̂ .

Observe that in the diagram (4.1), N∗ is the total space of circle fibrations over
both M∗ and M∗

mod
. We denote the Euler classes by e and e′, respectively. Similarly,

we have that Ũ∗ is the total space of circle fibrations over U∗ and U∗
mod

.
We note that the normal bundle of X in M is trivial. In fact if ξ denotes the

Killing field for the circle action on X , then Iξ, Jξ,Kξ give an explicit trivialisation.
Hence we may take U∗ to be homotopic to S2 ×X .

Lemma 4.3. Suppose M is simply connected. Then Mmod is also simply connected

and

b2(M
∗) = b2(M

∗
mod) = b2(Mmod).

Proof. As X has codimension 3 in M , we deduce that M∗ is also simply connec-
ted so H1(M∗,Z) = 0 and H2(M∗,Z) is torsion-free, by the Universal Coefficient
Theorem.
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Applying the Gysin sequence to the fibration S1 → N∗ π
→M∗ we obtain:

0→ H1(N∗)
π∗→ H0(M∗)

∧e
→ H2(M∗)

π∗

→ H2(N∗)
π∗→ H1(M∗) = 0.

As remarked after Proposition 4.1, π admits no section, so the Euler class e is non-zero.
We deduce that H0(M∗) injects into H2(M∗), that H1(N∗) = 0 and that

b2(M
∗) = b2(N

∗) + 1. (4.2)

The long exact homotopy sequence from S1 → N∗ p
→M∗ yields:

1→ π2(N
∗)→ π2(M

∗)→ Z→ π1(N
∗)→ 1;

hence π1(N
∗) is a homomorphic image of Z. As H1(N∗) = 0, we deduce that π1(N

∗)

is trivial or Z/mZ for some m. In the latter case the universal cover P of N∗ is a
principal circle bundle P → M∗ such that Pm = N∗. However, the set U ⊂ M is
diffeomorphic to the normal bundle of X in M , and over a fibre of this normal bundle
the restriction of N∗ is homotopic to the Hopf fibration, so N∗ admits no such mth
root P . We conclude that N∗ is simply connected.

The long exact homotopy sequence from S1 → N∗ →M∗
mod

now gives:

1→ π2(N
∗)→ π2(M

∗
mod)→ Z→ π1(N

∗) = 1→ π1(M
∗
mod)→ 1;

so π1(M
∗
mod

) is trivial.

The Gysin sequence from S1 → N∗ p
→M∗

mod
gives:

0→ H0(M∗
mod)

∧e′
→ H2(M∗

mod)
p∗

→ H2(N∗)
p∗
→ H1(M∗

mod) = 0.

We deduce that e′ 6= 0 and

b2(M
∗
mod) = b2(N

∗) + 1. (4.3)

Now X̂ is codimension 4 inMmod, so π1(Mmod) = π1(M
∗
mod

) = 1 and π2(Mmod) =

π2(M
∗
mod

). By Hurewicz H2(Mmod,Z) = H2(M∗
mod

,Z) and the required result follows
from (4.2) and (4.3).

Theorem 4.4. Suppose M is a hyperkähler manifold with tri-Hamiltonian circle

action and finite topological type. Let Mmod be a good modification of M at a level ε
such that X = µ−1(ε) has finite topological type. If M is simply connected, then

b2(Mmod) = b2(M) + 1.

Proof. By the Lemma, we need to compare b2(M
∗) and b2(M).

We have a Thom-Gysin sequence

· · · → Hi(M)→ Hi(M∗)→ Hi−2(X)→ Hi+1(M)→ · · · (4.4)

This can be obtained by applying Mayer-Vietoris to M = M∗ ∪ U . Recalling that
U is homotopic to X and that M∗ ∩ U = U∗ is homotopic to S2 ×X , we obtain:

· · · → Hi(M)→ Hi(M∗)⊕Hi(X)→ Hi−2(X)⊕Hi(X)→ Hi+1(M)→ · · · ,
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where the Hi−2(X)⊕Hi(X) term is the Künneth decomposition of Hi(S2×X). Now

if ∗ is a basepoint in S2 we can consider X
κ
→ S2×X

ι
→ R

3×X
π
→ X , where κ : x 7→

(∗, x), the map ι is inclusion and π is projection. As πικ is the identity and π∗ is
an isomorphism on cohomology, we deduce ι∗ maps Hi(R3 ×X) = Hi(U) = Hi(X)

isomorphically onto the Hi(X)-part of Hi(S2 ×X). This yields the sequence (4.4).
As we are assuming M is simply connected the sequence (4.4) begins

0→ H2(M)→ H2(M∗)→ R→ H3(M)→ H3(M∗)→ · · · (4.5)

The map from R = H0(X)→ H3(M) is the Thom isomorphism for the normal bundle
of X followed by extension by zero. So the image of 1 ∈ H0(X) is the closed Poincaré
dual ηX of X in H3(M), [4, eqn. (5.13), p. 51]. However, the operation of taking the
Poincaré dual is natural with respect to maps in the sense that ηf−1

(S)
= f∗ηS if S

is transverse to f . This gives

ηX = ηµ−1
(ε) = µ∗η{ε},

since ε is a good and so a regular value of µ. Now η{ε} is zero as it lives in H3(R3) = 0,
so ηX = 0 ∈ H3(M) and the sequence (4.5) splits after R. Thus the desired conclusion
on the second Betti numbers now follows.

5. Examples.

5.1. Multi-instanton metrics. Let M = H with circle action q 7→ eitq. The
associated moment map µ : M → R

3 has circle fibres, except for the point fibre over
the origin. Modifying at a non-zero level, we obtain a new hyperkähler 4-manifold
with a hyperkähler circle action. One of the level sets of µ has been replaced by
its quotient by the circle action, that is, it has been shrunk to a point. So Mmod

maps to R
3 but now has two point fibres. This is the Eguchi-Hanson space, which

has b2 = 1. Repeating the construction gives the multi-instanton series of Gibbons
& Hawking [11]. The topology of these spaces is generated by a chain of k − 1 two-
spheres, where k is the number of point fibres. Each time we perform the construction,
therefore, the second Betti number increases by one.

5.2. Taub-NUT metrics. Let us take M to be R
3 × S1 = H/Z with the flat

hyperkähler structure induced from that on H. The free circle action has a moment
map which is just projection onto the R

3 factor. Applying the modification construc-
tion shrinks one of the fibres to a point, and we obtain the Taub-NUT space which
is topologically H but has a non-flat metric. Repeating the construction gives the
multi-Taub-NUT series which are topologically, but not metrically, the same as the
multi-instanton series.

5.3. Hyperkähler toric manifolds. A generalisation of Example §5.1 is pro-
vided by the toric hyperkähler manifolds of [3]. These arise as hyperkähler quotients
of H

d by a sub-torus N of T
d. We choose N by taking its Lie algebra n to be the

kernel of a surjective linear map β : R
d → R

n given by

β : ek 7−→ uk, (5.1)

with ui ∈ Z
n (here e1, . . . , ed are the standard basis vectors for R

d). So N is deter-
mined by a choice of d vectors u1, . . . , ud spanning R

n.
The hyperkähler quotient M has dimension 4n, and n = d− dimN . Much of the

geometry of M is determined by the flats Hk, k = 1, . . . , d which are codimension 3
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affine subspaces of R
3n defined by equations:

{y ∈ R
n ⊗ R

3 : 〈y, uk〉 = λk},

where the λk = (λ1

k, λ
2

k, λ
3

k) ∈ R
3. The projections of

∑d
k=1

λjkek, j = 1, 2, 3, to n∗

give the choice of level set involved in defining the hyperkähler quotient M .
Now M admits a hyperkähler action of T

n = T
d/N . The moment map φ : M →

R
3n for this action is surjective and its fibres over generic points are copies of T

n.
However the fibres are lower-dimensional tori over points lying in the union of the
flats Hk. More precisely, the T

n-stabiliser of a point in M lying over y has Lie algebra
spanned by those vectors uk such that y ∈ Hk, see [3, §3]. Also, M has at worst
orbifold singularities if and only if no n+ 1 flats meet.

The modification Mmod may also be viewed as a toric hyperkähler manifold which
is now a quotient of H

d+1 by a torus N̂ with Lie algebra n̂. We can view n̂ as the
kernel of a map β̂ : R

d+1 → R
n, where β̂ is defined as in (5.1), except that we now

introduce an additional vector ud+1 =
∑d

i=1
ξiui. So n̂ is an extension of n by the

1-dimensional algebra 〈ξ〉. (We can regard ξ as the generator of the circle action on M
by which we choose to perform the modification).

In terms of the configuration of flats, forming Mmod fromM corresponds therefore
to adding one new flat Hd+1.

Note that the multi-instanton spaces of Example §5.1 are just the n = 1 case of
this discussion. Here the flats Hk are just points in R

3.
In [3, §6], the topology of M was examined in terms of the combinatorial data of

the flats. We considered the hyperplanes H1

k in R
n defined by 〈x, uk〉 = λ1

k. These di-
vide up R

n into a union of polyhedra, and we formed the bounded polyhedral complex C
consisting of the bounded polyhedra in this collection and their faces.

Theorem 6.5 of [3] showed that M is simply connected with Poincaré polynomial

Pt(M) =

n
∑

k=0

dk(t
2 − 1)k, (5.2)

where dk is the number of k-dimensional elements of C. In particular, the odd-
dimensional cohomology vanishes. (Theorem 6.5 is in fact still true if M is allowed
to have orbifold singularities). It follows from the discussion of §4.2 that b2(Mmod) =

b2(M) + 1.
As an example we can consider the Calabi space M = T ∗

P
2, which corresponds

to taking d = 3, n = 2, u1 = e1, u2 = e2 and u3 = −(e1 + e2). The complex C
therefore consists of a right triangle and its faces. We have a T

2-action on M and can
choose any circle subgroup of T

2 in forming the modified space Mmod.

Figure 5.1. T ∗
P
2 (left) and two of its modifications.
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Forming Mmod will involve adding a new hyperplane; depending on the choice of
hyperplane (i.e., the choice of circle action) we can arrange for (d1, d2) of Mmod to
equal (6, 2) or (8, 3), see Figure 5.1. (For Mmod to be an orbifold we require that no
three hyperplanes meet).

The Betti numbers of a toric hyperkähler orbifold with n = 2 are, from (5.2),
given by b2 = d1 − 2d2 and b4 = d2. Note that for M we have (d1, d2) = (3, 1) so
b2 = b4 = 1, as we know from the description of M as T ∗

P
2.

Both the possibilities for Mmod mentioned above yield b2 = 2 but b4 can be 2 or 3

depending on the choice of circle action.
The quadratic homogeneity of the moment map involved in forming toric hyper-

kähler quotients means that we can apply the arguments for asymptotics used by
Kronheimer [16] in four dimensions. Radially scaling by r in H

d corresponds to stay-
ing instead at the same distance from 0 in H

d and scaling λ by r−2. It follows that the
toric hyperkähler quotients are asymptotically conical in generic directions. The base
of the cone is an open set in the three-Sasaki space corresponding to λ = 0, cf. §6.
However there may be bad directions where this fails, corresponding to singularities
of the three-Sasaki quotient (cf. Bielawski [2]).

Forming the modification, therefore, preserves the generic asymptotically conical
nature of the manifold, but will in general alter the base of the cone.

More generally, for general hyperkähler manifolds, we conjecture that generic
asymptotically conical or asymptotically locally conical (asymptotic to a constant
circle over a cone) behaviour will be preserved under modification, but with the base
of the cone being changed, and possibly with bad non-generic directions being created.

5.4. Gauge theory quotients. We shall now consider some spaces arising from
infinite-dimensional gauge theoretic constructions. In contrast to the preceding ex-
amples, these spaces may have odd-dimensional cohomology (in particular non-zero
b3).

Recall from [15] that the cotangent bundle T ∗G
C

of the complexification of a
compact Lie group G admits a hyperkähler structure. This is obtained by identify-
ing T ∗G

C
with the space of g-valued solutions to Nahm’s equations smooth on [0, 1],

modulo gauge transformations that are the identity at t = 0, 1.
These spaces were analysed by the authors in [9]. They admit two commuting

actions of G preserving the hyperkähler structure, corresponding to gauge transfor-
mations that are the identity at one endpoint but not necessarily at both. It follows
from [9, Proposition 4] that these actions are free, as that Proposition constructed
equivariant diffeomorphisms between T ∗G

C
and an open set in G × (g∗)3 contai-

ning G × (0, 0, 0), where G acts by left or right translations on the factor G in the
image.

We therefore have a large supply of free hyperkähler circle actions on T ∗G
C
. We

can perform the modification construction repeatedly on T ∗G
C
, giving new families

of hyperkähler manifolds of dimension 4 dimG. Using a single circle one obtains for
example manifolds with G×N(S1)-symmetry containing, where N(S1) is the norma-
liser of the chosen circle S1 in G. Some of these examples will contain T ∗(G

C
/C∗)

in the fixed set of the circle action. Repeatedly modifying with respect to factors
of a maximal torus T

n, one can also obtain families of G × T
n-invariant complete

hyperkähler metrics.
Other examples of hyperkähler spaces with free group actions may be obtained

by considering moduli spaces of Nahm data defined on sets of intervals, where the
Nahm matrices are non-singular at some subset of endpoints. An example is the
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hyperkähler 8-manifold M with free SU(2)-action studied in [7, 8]. This space is
homeomorphic to SU(2)×R

5. The hyperkähler quotients µ−1(ε)/S1 of M by a circle
subgroup of SU(2) all have the homotopy type of the double cover of the Atiyah-
Hitchin manifold, which corresponds to taking ε = 0. This non-compact 4-manifold
retracts onto S2. We deduce from §4.1 that the corresponding modification Mmod has
Euler characteristic equal to 2.

5.5. Toric modifications. In the symplectic case, Burns, Guillemin & Ler-
man [6] have generalised the cut construction by considering symplectic manifolds M
with a T

n action and moment map µ. They then take a toric variety X of complex
dimension n with a T

n-action and associated moment map ψ : X → ∆, where ∆ is
a polytope in R

n, and consider the product M ×X with the anti-diagonal T
n-action

and associated moment map µ− ψ. The symplectic quotient is then called the sym-
plectic cut of M by the toric variety X . One can think of the cut as being obtained
by removing the complement of µ−1(∆ + ε) and factoring out on the boundary the
actions of the torus stabilisers corresponding to faces of ∆.

We may perform an analogous construction in the hyperkähler case, taking X to
be one of the toric hyperkähler manifolds mentioned in Example §5.3 with quaternionic
dimension n. As mentioned above the hyperkähler moment map φ : X → R

3n is
surjective, and its fibres are generically T

n but become lower-dimensional tori on the
intersections Ij of the flats Hk. At points of X in the pre-image of such intersections,
the T

n-action has non-trivial torus stabilisers, see [3, §3].
Forming the generalised hyperkähler modification (Mmod)X therefore involves fac-

toring out the sets µ−1(Ij+ε) by the corresponding torus stabilisers. The complement
of these sets in M is not necessarily diffeomorphic to the complement in (Mmod)X of
the quotients of these sets; as in the original construction, all we can say is that there
is a third space which is a T

n-bundle over each complement.

6. Modifying three-Sasaki structures. A three-Sasaki manifold (S, g) is best
described by the property that the cone (C(S) = R>0 × S, dt

2 + t2g) is hyperkähler.
Three-Sasaki manifolds are of dimension 4n+3 and provide many interesting examples
of compact Einstein manifolds of positive scalar curvature; see the survey [5] and more
recent papers by the same authors.

If S admits a circle action, then this provides a tri-Hamiltonian symmetry of the
cone C(S). On C(S) there is a unique choice of hyperkähler moment map µ that
is homogeneous with respect to scaling in the t variable. The restriction µS of µ
to S at t = 1 may then be used to define a quotient construction in the three-Sasaki
category provided one reduces at the level 0.

To modify S with respect to the circle action, consider the hyperkähler modifica-
tion of C(S) at level 0. This is the quotient of the set

{(t, s, z, w) ∈ R>0 × S × C× C : t2µS(s) = (1

2
(|z|

2

− |w|
2

), izw) (6.1)

by the action

eiθ : (t, s, z, w) 7→ (t, eiθ.s, e−iθz, eiθw). (6.2)

Since the defining equations in (6.1) are homogeneous with respect to the scaling
(t, s, z, w) 7→ (λt, s, λz, λw) the quotient space is a hyperkähler cone of a three-Sasaki
space Smod that we call the modification of S.

More concretely, Smod is the quotient of the set of points in (6.1) satisfying

t2 + |z|
2

+ |w|
2

= 1 (6.3)
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by the action (6.2). This is a smooth three-Sasaki manifold of the same dimension
as S provided the circle action is free on µ−1

S (0) ⊂ S.

Proposition 6.1. Let S be a compact three-Sasaki manifold with circle action

that is free on µ−1

S (0). The three-Sasaki modification Smod is also compact and con-

tains a copy of the three-Sasaki quotient of S.

Proof. It is sufficient to show that t is bounded away from zero on the intersection
of (6.3) with (6.1).

As S is compact, there is a K > 0 such that ‖µS(s)‖ 6 K for all s ∈ S. Since

(1

2
(|z|

2

− |w|
2

), izw) has length 1

2
(|z|

2

+ |w|
2

), we see that

t2K >

∥

∥t2µS(s)
∥

∥ = 1

2
(1− t2).

Thus t2 > 1/(1 + 2K), as required.
The three-Sasaki quotient of S arises as the image of the points where z = 0 = w.

Simple examples of this construction are provided by taking S to be a round
sphere S4n−1 ⊂ H

n with the diagonal circle action. The modification is then the
three-Sasaki quotient of the sphere S4n+3 by the circle with weights (1, . . . , 1,−1),
which is shown to be smooth in [5]. More generally, if we consider the circle action
on S4n−1 with pairwise co-prime non-zero weights (p1, . . . , pn), then the modification
is the smooth three-Sasaki quotient of S4n+3 by the circle of weights (p1, . . . , pn,−1).
The cohomology calculations of Bielawski [2] again show that for toric three-Sasaki
orbifolds the modification increases the second Betti number by one.
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