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To advance our basic knowledge of manifolds with positive (sectional) curvature
it is essential to search for new examples, and to get a deeper understanding of
the known ones. Although any positively curved manifold can be perturbed so as
to have trivial isometry group, it is natural to look for, and understand the most
symmetric ones, as in the case of homogeneous spaces. In addition to the compact rank
one symmetric spaces, the complete list (see [BB]) of simply connected homogeneous
manifolds of positive curvature consists of the Berger spaces B7 and B13 [Be], the
Wallach spaces W 6, W 12 and W 24 [Wa], and the infinite class of so-called Aloff–
Wallach spaces, A7 [AW]. Their full isometry groups were determined in [Sh2], and
this knowledge provided new basic information about possible fundamental groups
of positively curved manifolds, and in particular to counter-examples of the so-called
Chern conjecture (see [Sh1] and [GSh, Ba2]), which states that every abelian subgroup
of the fundamental group is cyclic.

Our purpose here is to begin a systematic analysis of the isometry groups of the
remaining known manifolds of positive curvature, i.e., of the so-called Eschenburg
spaces, E7 [Es1, Es2] (plus one in dimension 6) and the Bazaikin spaces, B13 [Ba1],
with an emphasis on the former. In particular, we completely determine the iden-
tity component of the isometry group of any positively curved Eschenburg space. A
member of E is a so-called bi-quotient of SU(3) by a circle:

E = diag(zk1 , zk2 , zk3)\ SU(3)/ diag(zl1 , zl2 , zl3)−1, |z| = 1

with
∑

ki =
∑

li. Further conditions on the integers are required for E to be a
manifold and for the Eschenburg metric to have positive curvature, see (1.1). They
contain the homogeneous Aloff–Wallach spaces A, corresponding to li = 0, i = 1, 2, 3,
as a special subfamily. Similarly, any member of B is a bi-quotient of SU(5) by Sp(2) S1

and the Berger space, B13 ∈ B. It was already noticed several years ago by the first
and last author, that both E and B contain an infinite family E1 respectively B1 of
cohomogeneity one, i.e., they admit an isometric group action with 1-dimensional
orbit space (see section 1 and [Zi]). There is a larger interesting subclass E2 ⊂ E ,
corresponding to l1 = l2 = 0, which contains E1 as well as A, and whose members
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admit an isometric cohomogeneity two action. The remaining spaces E − E2 all have
a cohomogeneity four action. We point out that E1 ∩ A has only one member A1,1,
the unique Aloff–Wallach space that is also a normal homogeneous space (see [Wi1]).

Theorem A. The isometry group of any positively curved Eschenburg space E
has rank 3 and dimension 11, 9, 7, 5, or 3 corresponding to the cases E = A1,1,
E ∈ A− {A1,1}, E ∈ E1 − {A1,1}, E ∈ E2 − (E1 ∪ A), or E ∈ E − E2 respectively.

There are at most two possible groups for each class, and in all cases we know explicitly
what they are (at least up to components, see Theorems 2.4, 2.5, 3.6, and 4.1.)

For more information about equivalences up to diffeomorphism, homeomorphism
and homotopy within the classes E and B, we refer to [KS], [Kr2], [Sh3], [CEZ] and
[FZ1]. We note in particular that there are spaces from the disjoint classes E −E2 and
E2 that are diffeomorphic, but Theorem A implies they cannot be isometric.

The explicit description of each E ∈ E gives rise to a “natural group” of isometries
N(E) ⊂ Iso(E) (see section 1) consisting of isometries of the metric on SU(3) which
commute with the circle action. This action has cohomogeneity 0, 1, 2 or 4. In the
proof of Theorem A we show that this group cannot be enlarged to a bigger (con-
nected) group of isometries. Here we strongly use the conditions for the Eschenburg
space to have positive curvature since it puts severe restrictions on the possible groups
that can act isometrically.

Our concrete knowledge of the isometry groups of spaces E ∈ E allows us to
expand the list of positively curved manifolds with interesting fundamental groups.
Here subgroups of SO(3) are particularly interesting, since many of them do not occur
as space form groups, i.e., as fundamental groups of spaces of constant curvature. The
non-abelian simple group A5 and the abelian non-cyclic group Z2 ⊕ Z2 are examples
of such groups. We will see that SO(3) itself acts freely and isometrically on only one
Aloff–Wallach space, and one Eschenburg space (already found in [Sh1]). Nevertheless
we will show the following, which adds infinitely many spaces with distinct homotopy
types that violate Chern’s conjecture for fundamental groups of positively curved
manifolds.

Theorem B. For any finite subgroup Γ ⊆ SO(3), there exist infinitely many
spaces in E1 as well as in E2 − E1 on which Γ acts freely and isometrically.

Moreover, for any odd positive integers p and q with gcd(p + 1, q) = 1 the group
Z2 × Z2q acts freely and isometrically on Ep ∈ E1.

We have divided the paper into five sections. In the first section we set up nota-
tion, including the precise definitions of the objects we are interested in, and present
the tools needed for our proofs. Section 2 deals with the cohomogeneity one spaces
E1 and B1. The bulk of our work is in section 3 which provides a detailed analysis
of the class E2 (we also include a brief discussion for the 6-dimensional “Eschenburg
flag”). Section 4 is concerned with the class E −E2. In section 5 we use our knowledge
of isometry groups developed in sections 2 and 3 to find free isometric actions on
manifolds from E2.

It is our pleasure to thank Burkhard Wilking for informing us about how to deal
with the spaces in E − E2 (Theorem 4.1).

1. Preliminaries and tools. The general strategy for determining the isometry
groups of the Eschenburg and Bazaikin spaces has two steps. The first and fairly
simple step is to exhibit a (connected) group of isometries which arises naturally from
the description of the space. In the second and more difficult step we then show
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that it cannot be enlarged to a group of larger dimension. This uses an analysis of
orbit spaces and isotropy groups. The possible choices of enlargements are severely
restricted by a number of classification theorems about positively curved manifolds
with large isometry groups. In this section we will describe the first step, and provide
the general tools needed for the second step.

Biquotient metrics and Natural Isometries.
Throughout the paper, we let Iso(M) denote the full group of isometries of a

Riemannian manifold M . As usual, the identity component of a Lie group G will be
denoted by G

0
, and if H ⊂ G is a closed subgroup, then NG(H) is the normalizer of

H in G, or just N(H) if it is clear from the context.
By definition, a biquotient manifold M is the orbit space G // U of a compact Lie

group G, by a subgroup U ⊂ G×G acting freely as

U×G → G, (u1, u2) · g → u1 · g · u−1
2 ,

When U lies strictly in one factor of G×G, then the quotient is a homogeneous space.
The Riemannian metrics we consider on a biquotient M = G // U are always

induced from a left invariant, Ad(K)-invariant metric on G where U ⊂ G×K, and
K ⊂ G is a closed subgroup. We then have the inclusions Iso(M) ⊃ NIso(G)(U)/ U ⊃
NG×K(U)/ U since G×K ⊂ Iso(G). We will refer to N(M) := NG×K(U)/ U as the
natural group of isometries of the biquotient M = G // U.

Eschenburg and Bazaikin spaces.
We will now describe the special biquotients we are dealing with in this paper,

namely the Eschenburg and the Bazaikin spaces E and B. For both classes G = SU(n)
and K = U(n − 1) = S(U(n − 1)U(1)), where n = 3 and 5 respectively. From the
above discussion this will already determine the metrics we consider on the orbit
spaces G // U, for U ⊂ G×K.

To describe the spaces in E7, we proceed as follows:
Let ā := (a1, a2, a3), b̄ := (b1, b2, b3) be triples of integers such that

∑
ai =

∑
bi := c.

Let

S1
ā,b̄ = {(diag(za1 , za2 , za3), diag(zb1 , zb2 , zb3)) | z ∈ U(1)}

The S1
ā,b̄ action on SU(3) is free if and only if for every permutation σ ∈ S3, gcd(a1 −

bσ(1), a2 − bσ(2)) = 1. In this case, we will call the resulting 7-manifold, Eā,b̄ :=

SU(3)// S1
ā,b̄, an Eschenburg space. Note that S1

ā,b̄ ( SU(3) × U(2), but its action is

the same, up to an ineffective kernel, as that by S1
3ā−c̄,3b̄−c̄ ⊂ SU(3) × U(2), where

c̄ = (c, c, c). In [Es1] it was shown that the Eschenburg metric on Eā,b̄ has positive
sectional curvature if and only if one of the following holds:

(1.1) bi 6∈ [amin, amax], or ai 6∈ [bmin, bmax] for all i.

Strictly speaking, we need to allow the invariance of the metric to be switched, and
to choose any of the 3 different block embeddings of U(2) ⊂ SU(3) in order to ob-
tain this necessary and sufficient condition. But for convenience, we will fix the
embedding and assume the metric is left invariant. We reserve the notation E for
those Eschenburg spaces Eā,b̄ that have positive curvature. If the action by S1

ā,b̄

is only one sided, we obtain the subfamily of homogeneous Aloff–Wallach spaces
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Ak,l = SU(3)/ diag(k, l,−(k + l)) with gcd(k, l) = 1. Here we can assume, up to
conjugacy and change of orientation, that k ≥ l ≥ 0. Ak,l admits a homogeneous
metric with positive curvature if and only if l > 0.

To describe the spaces in B, consider a five tuple of integers p̄ = (p1, p2, p3, p4, p5)
with q :=

∑
pi. Let

Sp(2) S1
p̄ = {(diag(zp1 , zp2 , zp3, zp4 , zp5), diag(Sp(2), zq)},

where Sp(2) ⊂ SU(4) is embedded in the upper block of SU(5). The action of Sp(2) S1
p̄

on SU(5) is free if and only if all pi are odd and for all permutations σ ∈ S5, gcd(pσ(1)+

pσ(2), pσ(3) +pσ(4)) = 2. In this case, we say that Bp̄ := SU(5)// Sp(2) S1
p̄ is a Bazaikin

space. As for the Eschenburg spaces above we note that Sp(2) S1
p̄ ( SU(5)×U(4), but

its action is the same as that of Sp(2) S1
5p̄−q̄ ⊂ SU(5) × U(4), where q̄ = (q, q, q, q, q).

From the treatment in [Zi] of Bazaikin’s work [Ba1], we know that the Eschenburg
metric on Bp̄ has positive curvature if and only if

(1.2) pσ(1) + pσ(2) > 0 for all permutations σ ∈ S5.

We reserve the notation B for those Bazaikin spaces Bp̄ that have positive curva-
ture. In the case of p̄ = (1, . . . , 1) we obtain the unique Bazaikin space which is
homogeneous, the Berger space B13 = SU(5)/ Sp(2) S1.

Group Enlargements.
In this subsection we consider the situation where an isometric G action on M

is a sub-action of an isometric G∗ action, and G ⊆ G∗ and M are all compact and
connected. Clearly then, one has an induced submetry π : M/ G −→ M/ G∗ and
dim(M/ G∗) ≤ dim(M/ G). Moreover, if we let (M/ G)0 denote the regular part of
M/ G, corresponding to the principal G orbits M0 in M , and similarly for the G∗

action, we have:
Lemma 1.3 (Submetry). All principal G∗ orbits in M are equivalent as G man-

ifolds as well. Moreover, the subset (M/ G)0 ∩ π−1(M/ G∗)0 is open and dense in
M/ G, and the image π((M/ G)0 ∩ π−1(M/ G∗)0) = (M/ G∗)0. In particular, M/ G
and M/ G∗ are isometric if dim(M/ G) = dim(M/ G∗).

Proof. Let P and P ∗ denote the projections from M to M/ G and M/ G∗ respec-
tively. We have the following commutative diagram.

M
P

//

P∗

""E

E

E

E

E

E

E

E

E

M/ G

π

��

M/ G∗

The collection M∗
0 of all principal G∗ orbits in M is an open and dense G invariant

subset of M . Moreover, all principal G∗ orbits are equivalent as G manifolds as well.
Clearly then, the set of principal G orbits in M∗

0 is open and dense in M , and in fact
P ∗(M0 ∩ M∗

0 ) = (M/ G∗)0 and P (M0 ∩ M∗
0 ) = (M/ G)0 ∩ π−1(M/ G∗)0.

Now suppose dim(M/ G) = dim(M/ G∗). Then the map π is a local isometry
from (M/ G)0 ∩ π−1(M/ G∗)0 onto (M/ G∗)0. Since G and G∗ are connected, it is
also clearly 1-1, and hence an isometry. It now follows from the first part that M/ G
and M/ G∗ are isometric under π.
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Size Restrictions.
In the presence of positive curvature, the size of the isometry group is restricted,

which will be an important tool in our discussions.
Recall that the symmetry rank of a manifold by definition is the rank of its

isometry group. In positive curvature this rank is bounded above by [GS1].
Theorem 1.4 (Rank Rigidity). Assume that a k-dimensional torus acts effec-

tively and isometrically on a positively curved simply connected n-manifold M . Then
k ≤ [n+1

2 ], and equality holds only when M is diffeomorphic to Sn or CPn/2.

Another measurement for the size of a group is its dimension. The degree of
symmetry of a Riemannian manifold M is by definition the dimension of its isometry
group. This dimension is severely restricted in positive curvature by the following
result of Wilking [Wi3]

Theorem 1.5 (Symmetry Degree). Let (Mn, g) be a simply connected, Rie-
mannian manifold of positive curvature. If the symmetry degree of Mn is at least
2n− 6, then Mn is homotopy equivalent to a compact, rank one symmetric space, or
Mn is isometric to a homogeneous space of positive sectional curvature.

The cohomogeneity, i.e., the dimension of the orbit space gives yet another mea-
surement for the size of a transformation group. A related invariant is the so-called
fixed point cohomogeneity which is the dimension of the normal sphere to the fixed
point set in the orbit space. A manifold that supports an action of fixed point co-
homogeneity 0 is called fixed point homogeneous. Although this will not be used in
the sense of size here, the following classification results of [GS2] and [GK] are quite
useful for our investigations:

Theorem 1.6 (Low cofix). A simply connected manifold of positive curvature
with fixed point cohomogeneity at most one, is diffeomorphic to a rank one symmetric
space.

2. Cohomogeneity One. In this section we single out the subclasses E1 ⊂ E
and B1 ⊂ B of positively curved cohomogeneity one Eschenburg and Bazaikin spaces,
and determine their full isometry groups. Here

(2.1) E1 = {Ep = Eā,b̄ ∈ E | ā = (1, 1, p), b̄ = (0, 0, p + 2), p > 0}

and

(2.2) B1 = {Bp = Bp̄ ∈ B | p̄ = (1, 1, 1, 1, 2p− 1), p > 0}

From (1.1) and (1.2) we know that all these manifolds have positive curvature when
equipped with the Eschenburg biquotient metric. We also point out that the S1

p,

and S1
−p−1 actions on SU(3) are equivalent via the inverse map of SU(3). Moreover,

E0 ≈ E−1 only has non-negative curvature in the Eschenburg metric, and in fact does
not support any cohomogeneity one metric of positive curvature by [GWZ]. Note also,
that E1 is the homogeneous Aloff–Wallach space A1,1 and B1 is the homogeneous
Berger space B13.

To see that each Ep has cohomogeneity one note that the natural action by
U(2) × SU(2) (as well as by SU(2) × U(2)) on SU(3) commutes with the S1

p action,

and that U(2)\ SU(3)/ SU(2) = CP2/ SU(2), which is an interval. We also note that
SU(2) × SU(2) and S1

p generates U(2) × SU(2) and hence the sub-action by SU(2) ×
SU(2) is cohomogeneity one as well.
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In the case of Bp we see that the natural left action by U(4) on SU(5) commutes
with the action of Sp(2) S1

p which in turn has cohomogeneity one. Indeed, the induced

action by Sp(2) on U(4)\ SU(5) = CP4 is the standard sub-action of Sp(2) ⊂ SU(4) ⊂
SU(5) and hence, U(4)\ SU(5)/ Sp(2) is an interval. As in the case of Eschenburg
spaces, we note that the group generated by SU(4) and Sp(2) S1

p is the same as the
one generated by U(4) and Sp(2), and therefore the sub-action by SU(4) is also of
cohomogeneity one.

Using the tools from section 1 one can prove that if any of these actions extend
to a transitive isometric action then p = 1 for both classes. It is actually known that
none of Ep or Bp for p > 1 is even homeomorphic to a homogeneous space (see [Sh3],
[FZ1]). Since the full isometry groups of these homogeneous spaces were determined
in [Sh1] it remains to consider Ep and Bp for p > 1.

We first determine the identity component of Iso(Ep) by analyzing the sub-action
by G = SU(2)× SU(2) ⊂ U(2)× SU(2) , which we noted above is also cohomogeneity
one. It is important for us, however, to determine the associated group diagram,
H ⊂ {K−, K+} ⊂ G, i.e., the isotropy groups along a minimal geodesic between the
two non-principal orbits B± = G / K± corresponding to the end points of the orbit
space interval. This information is also used as a recognition tool in the classification
work of [GWZ].

Proposition 2.3. The cohomogeneity one action of G = SU(2) × SU(2) on
Ep has principal isotropy group H = {(±id)p+1, (±id)p} ∼= Z2 and singular isotropy
groups K− = ∆SU(2) · H and K+ = S1

(p+1,p) embedded with slope (p + 1, p) in a
maximal torus of SU(2) × SU(2).

Proof. Consider the point p− = S1
p(e) = {diag(z, z, z̄2)} in Ep, and let B− =

G(p−) be the orbit of this point under the action of SU(2) × SU(2). The identity
component of the isotropy group at p− is clearly K−

0
= ∆SU(2) and the second

component in K is generated by (id,− id). Hence B−
∼= SO(3) ∼= RP3.

Since we already saw that Ep is cohomogeneity one, the action of K− (effectively
by K−

0
= SU(2)) on the normal space T⊥

p−
to B− at p− is the standard action of

SU(2) on C2 ∼= R4. Because this action of SU(2) restricted to the normal 3-sphere is
both transitive and free, the effective version of the action by G has trivial principal
isotropy group.

To find the other singular orbit B+, note that v− = E13 ∈ su(3) (standard basis
element for the skew symmetric matrices) represents a normal vector to B− at p−.
One easily checks that the one parameter group exp(tv−) is still a geodesic in the
left invariant Eschenburg metric on SU(3) and hence on Ep as well. It intersects B−

again at time π, and not earlier. This implies that p+ = exp(π
2 v−) ∈ B+, and p+ is

represented by E13 + diag(0, 1, 0). To determine K+, let (g1, g2) ∈ SU(2) × SU(2) ⊂
SU(3) × SU(3). We identify SU(2) with the unit sphere in C3 as usual and let (a, b)
correspond to g1 and (α, β) to g2. Then (g1, g2) ∈ K+ if and only if (g1, g2) · p+ ∈
S1

p(p+). This implies that b = β = 0, a = z̄p+1 and α = z̄p. Or equivalently, a = zp+1

and α = zp. Notice that if p is even, then S1
(p+1,p) goes through (− id, id) while it

goes through (id,− id) if p is odd and hence H = {(±id)p+1, (±id)p}.

The action of G is ineffective with kernel H, and hence the natural group of
isometries is U(2)× SO(3) when p is odd, and SO(3)×U(2) when p is even. Further-
more, complex conjugation on SU(3) normalizes the circle action and hence induces
an isometry as well.
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Theorem 2.4. For any integer p > 1, the full isometry group of Ep is given by

Iso(Ep) = (U(2) ⋊ Z2) × SO(3),

where the second component is induced by complex conjugation in SU(3).

Proof. We already saw that U(2) × SO(3) ⊂ Iso0(Ep). Since Ep, p > 1 is not
diffeomorphic to a homogeneous space ([Sh3]), any extension of the group action
must again be of cohomogeneity one. Moreover, since the two singular orbits B−

and B+ are non-isometric (not even of the same dimension), it must act trivially on
the orbit space interval. In other words any extension of the action will have the
same orbits. We now consider the codimension two orbit B+ = S3 × S3 / S1

(p+1,p) and
claim that the action of Iso(Ep) on B+ must be effective. Indeed, assume that an
element γ ∈ Iso(Ep) acts trivially on B+. Then B+ is either totally geodesic, or γ acts
by reflection on the two dimensional normal space to B+. The former is impossible
since B+ does not support a homogeneous metric of positive curvature. The latter
is impossible as well, since Ep would then have a totally geodesic hypersurface, but
in positive curvature this is only possible when the manifold is homeomorphic to the
sphere or to real projective space.

We will now examine the size of the isometry group for a homogeneous met-
ric on B+. We already know that G = S3 × S3 × S1 (effectively U(2) × SO(3))
acts by isometries on B+. From the classification of 5-dimensional homogeneous
manifolds it follows that it is also the identity component of the isometry group,
i.e., no larger connected group can act transitively. One easily checks that L =
{diag(zp+1, zp, 1), diag(1, w, w)} is the full isotropy group of S3 × S3 × S1 and that
N(L)/(L ·Z(G)) is trivial. Furthermore, there exists an outer automorphism of
S3 × S3 × S1, unique up to inner automorphisms, which preserves L. From [WZ, The-
orem 3.1], (cf. also [Sh2]), it then follows that the isometry group of any homogeneous
metric on B+ can have at most two components. Altogether, this completes the proof.

We now turn to the isometry groups of the Bazaikin spaces Bp ∈ B1, p > 1.
We already saw that the natural left U(4) action on SU(5) induces a cohomogeneity
one action on Bp. Furthermore, complex conjugation in SU(5) generates a second
component.

Theorem 2.5. The full isometry group of the cohomogeneity one manifold
Bp, p > 1 may be written as:

Iso(Bp) = U(4) ⋊ Z2,

where the second component is induced by complex conjugation in SU(5).

Proof. We proceed as in the case of Eschenburg spaces above. Since Bp, p > 1 is
not diffeomorphic to a homogeneous space ([FZ1]), any extension of the group action
will have cohomogeneity one and in fact the same orbits when the singular orbits are
different.

To determine the orbit structure of the action (cf. also [GWZ]) we consider the
orbit equivalent sub-action by G = SU(4) ⊂ U(4). The orbit through the identity is
SU(4)/(Sp(2)∪ i Sp(2)) = RP5 and the action by K− = Sp(2)∪ i Sp(2) on the slice is
nontrivial and hence H = SU(2)·Z2. Since Bp is simply connected, the cohomogeneity
one action cannot have any exceptional orbits and since K+ / H is a sphere and H is not
connected, it must be one dimensional, i.e., K+ = SU(2)·S1. Since the centralizer of H
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in G is two dimensional, S1 is allowed to have slopes (r, s) inside this two-torus. These
slopes are then determined from those for the Eschenburg spaces,since Ep is the fixed
point set of the involution diag(1, 1,−1,−1, 1) ∈ SU(5), assuming that SU(2) ⊂ H is
the lower 2× 2 block of SU(5), (see [Ta]). It thus follows that (r, s) = (p + 1, p). Note
that since Ep is not homogeneous, this observation also provides a simple geometric
proof that Bp cannot be homogeneous, since a totally geodesic submanifold of a
homogeneous space is itself homogeneous (cf. [KN], Chapter VII, Corollary 8.10).

We again have that Iso(Bp) acts effectively on B+ = G / K+ since B+ does not
support a homogeneous metric with positive curvature, and next determine the isom-
etry group of the metric on B+. To see that U(4) is the identity component, one
uses [On, Theorem 4.1] to show that U(4) cannot be enlarged to a bigger tran-
sitive action. By computing the isotropy representation of G / K+, it follows that
N(K+) ⊂ SU(2) · U(2) and hence N(K+)/ K+ = S1 is connected. Since furthermore,
U(4) has, up to inner automorphisms, a unique outer automorphism, [WZ, Theorem
3.1] finishes the proof.

3. Cohomogeneity Two. In this section we define and analyze a subclass E2 ⊂
E of positively curved, cohomogeneity two Eschenburg spaces, and determine their
isometry groups. We will also briefly treat the single 6-dimensional Eschenburg space,
E6.

Define

(3.1) E2 = {Ep̄ = Eā,b̄ ∈ E | ā = (p1, p2, p3), b̄ = (0, 0, p1 + p2 + p3)}

We note that the S1
p̄ action on SU(3) is free if and only if gcd(pi, pj) = 1 for all

i 6= j. In particular at most one pi is even. From (1.1) it easily follows that the
Eschenburg metric has positive curvature, if and only if, up to reordering of the pi’s
and changing the sign of all three, one of the following holds:

(3.2) 0 < p1 ≤ p2 ≤ p3 or 0 < p2 ≤ p3 and p1 < −p3

This class obviously contains the cohomogeneity one Eschenburg spaces, Ep ∈ B1,
where p̄ = (1, 1, p). Moreover, it contains the (homogeneous) Aloff–Wallach spaces A,
since Ap1,p2

= Ep̄ when p3 = −(p1 + p2).

Note that the natural action on SU(3) by T2 ×U(2) commutes with the S1
p̄ ac-

tion, and that T2 \ SU(3)/ U(2) = T2 \CP2 is a right angled triangle. Since S1
p̄ and

T2 × SU(2) generate T2 ×U(2), we see that the induced action by T2 × SU(2) on Ep̄

has cohomogeneity two. Clearly the effective group is T2 × SO(3) when all pi are odd,
and T2 × SU(2) otherwise. For convenience we will work with T2 × SU(2) directly.
Although we do not need the full orbit structure of this cohomogeneity two action,
the following information will be crucial.

Lemma 3.3. The orbits of the T2 × SU(2) action on Ep̄, corresponding to the
vertices in the quotient triangle, are lens spaces with fundamental groups of order
|pi + pj |.

Proof. Let us first consider the orbit B1 going through the image of id ∈ SU(3) in
Ep̄. The element ((w1, w2), diag(r, r̄)) ∈ T2 × SU(2) lies in the isotropy of this point
if and only if diag(w1r, w2r̄, w̄1w̄2) = diag(zp1 , zp2 , z̄p1+p2) for some z ∈ U(1). Since
w1 and w2 can be described arbitrarily, the subgroup 1 × SU(2) acts transitively on
B1 and has isotropy group diag(zp1 , zp2) with zp1+p2 = 1, i.e., B1 is a lens space with
fundamental group Z|p1+p2|.
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The two other vertices can be represented by E13 + diag(0, 1, 0) and E23 +
diag(1, 0, 0) since they are the endpoints of a geodesic of length π/2 with initial vec-
tors orthogonal to B1 and singular with respect to the isotropy action on the normal
space of B1. The same computation as above shows that the orbits through these two
points are lens spaces with fundamental group Z|p1+p3| and Z|p2+p3| respectively.

In order to determine the full isometry group, we need to prove the following
claims:

• If the T2 × SU(2) action on Ep̄ ∈ E2 extends to an isometric cohomogeneity
one action, then p1 = p2 = 0, i.e., Ep̄ ∈ E1.

• If the T2 × SU(2) action on Ep̄ ∈ E2 extends to a transitive isometric action,
then p3 = −p1 − p2, i.e., Ep̄ ∈ A.

We point out that classification results for positively curved manifolds in cohomogene-
ity zero and one immediately yield diffeomorphism conclusions in the above cases, but
our results are about equality of the integer parameters.

Recall that by the rank rigidity theorem (1.4), Iso(Ep̄) must have rank 3, and by
the degree theorem (1.5), dim Iso(Ep̄) ≤ 8, unless Ep̄ is isometric to a homogeneous
space with positive curvature. This leaves only the following possible (almost effective)
connected extensions G∗ of G = T2 × SU(2):

• G∗ = S1 × SU(2) × SU(2)
• G∗ = S1 × SU(3), or G∗ = SU(2) × SU(3)

We first deal with the latter extension case:
Proposition 3.4 (Homogeneous Case). Let Ep̄ ∈ E2, and assume the action of

G = T2 × SU(2) extends to a larger (connected) group G∗ with dim(G∗) > 8, then
one of the following must occur:

(i) G∗ = SU(2) × SU(3), p̄ = (1, 1,−2) and Ep̄ is the Aloff–Wallach space A1,1.
(ii) G∗ = S1 × SU(3), p̄ = (p1, p2,−p1 − p2) and Ep̄ is the Aloff–Wallach space

Ap1,p2
.

Proof. The degree theorem implies that under the assumption dim(G∗) > 8,
the Eschenburg space must be isometric to a homogeneous space. Since among the
positively curved homogeneous spaces in dimension 7, only the Aloff–Wallach spaces
have possibly the same homotopy type as an Eschenburg space ([Es1]), it only remains
to check the claims about p̄.

In the first case we note that only A1,1 has an 11-dimensional isometry group (cf.
[Sh2]). To see that indeed p̄ = (1, 1,−2), we use the fact that the fourth cohomology
group of Ep̄ is a finite cyclic group of order r = |p1p2 + p1p3 + p2p3| (cf. [Es3]). Using
the positive curvature condition (3.2), one easily sees that r = 3 is only assumed in
the case of p̄ = (1, 1,−2).

In the second case, observe that there is, up to conjugacy, only one immersed
subgroup T2 × SU(2) in S1 × SU(3). Thus the cohomogeneity two action agrees with
the one considered above on the Aloff–Wallach spaces Ak,l and hence the vertices
in the orbit space correspond to 3-dimensional lens spaces with fundamental groups
of orders |k|, |l|, |k + l|. On the other hand, for the action of T2 × SU(2) on Ep̄ the
vertices correspond to lens spaces whose fundamental groups have orders |pi + pj |.
This imposes severe restrictions on the pi’s, and one easily shows that under the
positive curvature condition (3.2) this is only possible when

∑
pi = 0.

For the first extension case, we will show:

Proposition 3.5 (Cohomogeneity One Case). Let Ep̄ ∈ E2, and assume that
the (almost effective) action of G = T2 × SU(2) extends to a larger (connected) group
G∗ with dim(G∗) ≤ 7. Then G∗ = S1 × SU(2) × SU(2) and p̄ = (1, 1, p), p > 0.
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Proof. We have already seen that G∗ = S1 × SU(2) × SU(2). It remains to show
that the action by G∗ must be of cohomogeneity one, and then to recognize p̄.

If the G∗ action also has cohomogeneity two, we see from the submetry lemma
(1.3), that it is orbit equivalent to the G action. Since the latter must have finite
principal isotropy group, the fundamental group of the common principal orbits have
Z-rank at least 2. On the other hand, any homogeneous quotient of G∗ has funda-
mental group with Z-rank at most 1, and we conclude that the G∗ cation must have
cohomogeneity one.

Now consider the submetry π : M/ G → M/ G∗. From the submetry lemma, we
see that the inverse image of one of the end points of the interval M/ G∗ is a vertex
of the right angled triangle M/ G, and that the opposite side is the inverse image of
the other end point. Let us denote the common singular G and G∗ orbit by B1 = B∗

−,
and the other singular G∗ orbit by B∗

+. Then B∗
+ is a cohomogeneity one G manifold

at maximal distance to B1.

As we saw, B1 is a lens space with fundamental group of order |pi + pj | for some
i, j and now the bigger group G∗ = S1 × SU(2) × SU(2) also acts transitively on B1.
This implies that B1 is either S3 or RP3, i.e., that |pi + pj| ≤ 2. Indeed, if not, the
G∗ action on B1 has a kernel C of dimension at least 3 since the isometry group of
any lens space S3/Zm, with m ≥ 3 has dimension at most 4. In particular, C must
contain an SU(2) ⊂ G∗. Since B1 has codimension 4, this SU(2) acts either trivially
or transitively on the normal spheres to B1. In the first case SU(2) then acts trivially
on M , and in the second case M is fixed point homogeneous. Either one yields a
contradiction (the second by 1.6).

Our next claim is that the two other vertex G orbits, B2 and B3, are lens spaces
with isomorphic fundamental groups. To see this, consider the cohomogeneity one G
manifold B∗

+ = G∗ /K+∗
. The singular orbits B− = B2 and B+ = B3 are again 3-

dimensional lens spaces with isotropy group T2, and the principal orbits have isotropy
S1. In particular dimB∗

+ = 5, and since codimB∗
− = 4 > 2 it follows that B∗

+ is simply

connected by transversality . Thus K+∗
= T2 and B∗

+ = S1 × SU(2) × SU(2)/ T2 =

SU(2) × SU(2)/ S1
s,t for some s, t. Note also, that since the SU(2) ⊂ G commutes

with T2 it must be one of the SU(2) factors of G∗, and we have a sub-action by
G′ = S1 × SU(2) ⊂ SU(2) × SU(2) which is orbit equivalent to the G action on B∗

+.

The isotropy groups of the G′ action are the intersections of S1 × SU(2) with all
conjugates of S1

s,t. Since obviously both singular isotropy groups are 1-dimensional

they are S1
s,t and S1

−s,t, and thus both B± have fundamental group Z|s|.

We now combine the information |pi + pj| ≤ 2 and |pi + pk| = |pk + pj | gained
so far, with the conditions for positive curvature. One easily sees that this is only
possible if either p̄ = (1, 1, p) with p > 0 or p̄ = (−k, 1, k − 2) with k odd and k ≥ 5.
To exclude the latter case we use the fact that by [GWZ] the only manifolds where
S1 × SU(2)×SU(2) acts by cohomogeneity one are the Eschenburg spaces Ep for some
p. We will now see that this contradicts topological invariants for these spaces. Any
Eschenburg space has finite, cyclic fourth cohomology group, and for Ep̄ ∈ E2, this
order is r = |p1p2 + p1p3 + p2p3|. Kruggel also computed the first Pontrjagin class of
an Eschenburg space [Kr1] and it follows in particular that p1(Ep̄) ≡ 2(p1 + p2 + p3)

2

mod r. The cohomogeneity one manifold Ep therefore has r = 2p + 1 and p1 ≡ p + 5
mod r whereas E(−k,1,k−2) satisfies r = (k − 1)2 + 1 and p1 ≡ 2 mod r. This yields
the desired contradiction.

In the remaining cases it follows that:
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Theorem 3.6 (Cohomogeneity two Case). The identity component of the isom-
etry group of an Ep̄ ∈ E2 − (E1 ∪ A) is given by

Iso0(Ep̄) = T2 × S,

where S = SO(3) when all pi are odd, and S = SU(2) otherwise.

As in the previous cases, there exists another component of the isometry group
generated by complex conjugation in SU(3). We suspect that this is then the full
isometry group, but were not able to prove it.

We end this section with a brief discussion of the isometry group of Eschenburg’s
so-called twisted flag. This is the T2 biquotient of SU(3) defined by

E6 := SU(3)// T2, whereT2 = {(diag(z, w, zw), diag(1, 1, z2w2)) | z, w ∈ U(1)}.

The metric on E6 induced from the Ad U(2) invariant metric on SU(3) used in the
previous sections has positive curvature (cf. [Es2]). The right action of U(2) =
S(U(2)U(1)) ⊂ SU(3) commutes with the T2 action and in particular induces an
isometric action on E. Moreover, as before, E/ U(2) = T2 \ SU(3)/ U(2) = T2 \CP2

is a triangle and thus E has cohomogeneity two. There are in fact no more isometries
in the identity component of the isometry group.

Proposition 3.7. The identity component Iso
0
(E6) of the twisted flag E6 is

U(2).

Proof. In [Sh3] it was shown that E is not homotopy equivalent to any homoge-
neous space and in [Se] that E does not support any positively curved cohomogeneity
one metric. So any potential extension of the U(2) action is again by cohomogeneity
two.

From the rank rigidity theorem (1.4) we know that Iso(E6) has rank at most 2,
and from the degree theorem (1.5) that dim Iso(E6) ≤ 6. The only rank 2 group
containing U(2) of dimension at most 6 is SO(4). If the U(2) action were to extend
to SO(4), it would have to have the same orbits by the submetry lemma. But the
4-dimensional principal U(2) orbits have infinite fundamental group whereas a 4-
dimensional quotient of SO(4) has finite fundamental group.

Finally, since the commuting actions by U(2) and T2 on SU(3) only have id in
common, the induced U(2) action on E6 is effective.

Remark. It is interesting to note that the normal homogeneous Aloff–Wallach
space, E1,1,−2, admits actions of any possible cohomogeneity k, with 0 ≤ k ≤ 7.

4. Cohomogeneity Four. In this section we complete our discussion of isom-
etry groups of Eschenburg spaces. The biquotient action of the maximal torus in
SU(3)×SU(3) induces an isometric action of a 3-torus T3 on Eā,b̄. Since any effective
action by an abelian group has trivial principal isotropy group, the quotient is four
dimensional, i.e. an Eschenburg space in Eā,b̄ ∈ E −E2 has cohomogeneity 4. We now
show that this is the connected group of isometries.

Theorem 4.1. The identity component of Iso(Eā,b̄) for any Eā,b̄ ∈ E − E2 is the

3-torus T3.

Proof. From the rank rigidity theorem it follows that Iso(Eā,b̄) has rank 3, so if

dim Iso(Eā,b̄) > 3 a finite cover of it will contain S3 ×T2.
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Suppose now that G = S3 ×T2 acts almost effectively and isometrically on Eā,b̄.

One easily sees that the group T3 ⊂ G of natural isometries has isotropy group T2

at the point p ∈ Eā,b̄ corresponding to the identity matrix of SU(3). In particular Gp

has rank 2 and therefore its identity component is either S3 × S1 or T2. In the first
case the orbit G p is a circle and in the second case a 3-dimensional lens space.

We rule out the first case as follows: Since S3 × S1 is a normal subgroup of G,
the circle orbit C = G p is fixed by S3 × S1. First assume that the S1 factor, or some
non-trivial cyclic subgroup Γ of it, fixes a 2-dimensional or a 4-dimensional subspace
of the 6-dimensional normal space to C. Then the S3 factor acts as the direct sum
of a trivial and a 3 or 4 dimensional irreducible representation on this normal space
since it preserves the fixed point set of Γ. This implies that the S3 factor acts fixed
point homogeneously on Eā,b̄. So by (1.6) we conclude that the S1 factor must act

freely on the normal 5-sphere, i.e., it is the Hopf action. This means that the S3

representation is a 3-dimensional complex representation. In particular it is either
fixed point homogeneous, or it is the sub-action of SO(3) in SU(3). In the latter case
the action of S3 × S1 is effectively the tensor product action of SO(3) × SO(2) which
has cohomogeneity one on the normal 5-sphere. Thus the S3 action on Eā,b̄ has fixed
point cohomogeneity one, contradicting Theorem (1.6).

In the second case we claim that the Eschenburg space lies in E2: The identity
component T2 of the isotropy group Gp contains a circle, S, in the T2 factor of G.
In particular, S fixes the 3-dimensional orbit G p. Since the fixed point set of S has
even codimension, it follows again from (1.6) that the homogeneous space G p is a
component of the fixed point set of S. Note that S consists of natural isometries,
and one easily analyzes the fixed point sets of such isometries (see [FZ2]). The circle
actions S and S1

ā,b̄ define an action of a 2-torus on SU(3) and a fixed point of S on Eā,b̄

corresponds to g ∈ SU(3) whose orbit under the 2-torus is one dimensional. Hence
there exist a circle action S1

c̄,d̄ inside this two torus which fixes g which means that ic̄

(considered as a diagonal matrix in su(3)) is conjugate to id̄ via the matrix g. Thus,
up to permutation, the diagonal entries agree. If the diagonal entries are distinct, g
must be diagonal (up to permutations of the rows), which implies that the fixed point
set of S is a circle in Eā,b̄. Since the fixed point set is 3-dimensional, we conclude they
both have a double eigenvalue which agrees. Since by assumption the component of
the fixed point set also contains Id, it follows that g lies in one of the three blocks
U(2) ⊂ SU(3).

We finally claim that the image U(2)// S1
ā,b̄ in Eā,b̄, which agrees with G p by

assumption, is homogeneous if and only if the induced action by S1
ā,b̄ on U(2) is one

sided, which is precisely when the Eschenburg space has cohomogeneity two (cf. (3.1)
where U(2) is chosen as the 12 block). To see this, we observe that the universal
cover of U(2)// S1

ā,b̄ can be written as S1 × S3 / S1
p,q for some p, q ∈ Z, where the

S1 = S1
p,q action is given by z · (w, t) = (zw, zptz−q). Furthermore, S3 is endowed

with a left invariant, S1-right invariant metric and S1 × S3 carries the product metric.
The homogeneous orbit G p is, up to covering, a Berger sphere since the rank of its
isometry group is 2. This in turn implies that the natural T2 action on it has two
circle orbits and the length of these two orbits coincide. On U(2)// S1

ā,b̄ we also have

a natural isometric T2 action coming from torus actions on the left and on the right.
These T2 actions would have to coincide since they are both maximal tori in the
full isometry group. The inverse image of the singular orbits of this T2 action in
S1 × S3 are two dimensional tori namely S1 × S1 and S1 ×j S1 for the quaternion j.
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Clearly the volume of these two tori coincide and hence the length of (S1 × S1)// S1

and (S1 ×j S1)// S1 can only be the same if the S1 actions on the two tori have orbits
of the same length. But this implies that |p − q| = |p + q|, i.e., p = 0 or q = 0, and
the action is one sided.

5. Fundamental Groups. It is a simple and well known fact that any finite
group is the fundamental group of a non-negatively curved manifold. A basic question
is if there are any obstructions in positive curvature other than finiteness of the
fundamental group.

In analogy with the situation in negative curvature, where a theorem of Preis-
mann asserts that any abelian subgroup must be cyclic, Chern proposed the same
obstruction for positive curvature in [Ch]. However, in [Sh1], it was shown that two
well known positively curved manifolds, the Aloff–Wallach space A1,1 and the coho-
mogeneity one Eschenburg space E1,1,2, both admit a free, isometric SO(3)-action. In
particular, any finite group F ⊂ SO(3) containing Z2 ⊕Z2 = S(O(1)O(1)O(1)) is the
fundamental group of a positively curved manifold contradicting Chern’s conjecture.
Soon after infinitely many examples with fundamental group Z3 ⊕ Z3 were found in
[GSh] (one of these was also found independently in [Ba2]). These as well as other
groups were in fact the first non-space form groups, to be exhibited in positive curva-
ture. We proceed to exhibit an abundance of examples of positively curved manifolds
with non-space form groups as fundamental groups.

In all cases we have encountered, we only get something interesting from sub-
groups of the identity component. Moreover, as observed in [GSh], if Γ ⊆ Iso0 acts
freely, then Γ intersects any maximal torus in a cyclic group. According to Borel
[Bo] a compact, connected group G has a non-toral Zp ⊕ Zp if and only if π1(G)
has p-torsion. From our description of isometry groups here, this already suggests
not to expect more interesting free, finite sub-actions from U(2) × SO(3) = Iso0(Ep)
than from SU(2) × SO(3). Similarly, only when all pi are odd, is there a chance that
Iso0(Ep̄) = T2 × SO(3) has interesting free finite sub-actions, and they all come al-
ready from S1 × SO(3). Evidently, the cohomogeneity four Eschenburg spaces do not
admit free, isometric actions of non-cyclic, abelian subgroups.

Since SO(3) has many interesting finite subgroups that are not space form groups,
it is worthwhile to determine for which Ep̄ ∈ E2 an SO(3) ⊂ Iso(Ep̄) acts freely. More-
over, SO(3) is a normal subgroup in Iso(Ep̄), so the isotropy groups of the action are
simply its intersection with the regular and singular isotropy groups of the cohomo-
geneity two action. By considering the isotropy groups corresponding to the vertex
points determined in (3.3), it follows that if the action is free, then p̄ = (1, 1, 1) or
p̄ = (1, 1, 2). This recovers the main result in [Sh1] (see also [Cha] where it is shown
that A1,1 is a fat, SO(3)-principal bundle over CP2.)

Theorem 5.1. SO(3) ⊆ Iso(Ep̄) acts freely if and only if p̄ = (1, 1, 1) or p̄ =
(1, 1, 2).

Although SO(3) does not act freely on other Eschenburg spaces, we will see that
any finite subgroup F ⊂ SO(3) in fact acts freely on a large class of these spaces.
As we will see, the same assertion holds for the product of many cyclic groups with
F ⊂ SO(3).

We begin with the cohomogeneity one spaces Ep, where Iso(Ep)0
∼= SO(3)×U(2).

For any finite group Γ ⊂ SU(2) × SU(2), we let Γ(p) ⊂ Iso(Ep) be the image. Recall
that H = {(±id)p+1, (±id)p} is the kernel of the action.
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Proposition 5.2. For a finite group Γ ⊂ SU(2) × SU(2), the group Γ(p) acts
freely on Ep if and only if for all (γ1, γ2) ∈ Γ − H we have the conditions

• |γ1| 6= |γ2|, and (γ1, γ2) 6= ±(− id, id), and
• |γ1| does not divide p|γ2| or |γ2| does not divide (p + 1)|γ1|,

where |γi| denotes the order of γi.

Proof. Any element of SU(2) has eigenvalues {λ, λ̄} for some λ ∈ U(1); let γi

have eigenvalues {λi, λ̄i}. Clearly Γ(p) fails to act freely only if for some (γ1, γ2) ∈
Γ − H there is a (diag(z, z, zp), diag(1, 1, zp+2) ∈ S1

p such that diag(z, z, zp)γ1 and
diag(1, 1, zp+2)γ2 are conjugate, i.e., have the same set of eigenvalues. So the action
is free unless the sets {zλ1, zλ̄1, z

p} and {λ2, λ̄2, z
p+2} are the same. This happens

only if either: (a) λ1 = ±λ2, or λ1 = ±λ̄2 or (b) λp
1 = λp+1

2 or λp
1 = λ̄p+1

2 . Case (a)
corresponds to |γ1| = |γ2| or (γ1, γ2) = ±(− id, id) while in case (b) we have that |γ2|
divides |γ1|(p + 1) and |γ1| divides |γ2|p.

This has some interesting consequences. For instance, if Γ ⊂ SU(2) × {id}, and
p is even, then Γ(p) acts freely if none of the orders of elements of Γ\{− id} divide
p. Also, Γ(p) × Zq acts freely on Ep, p even if gcd(|Γ|, q) = gcd(|Γ|, p) = 1 or
gcd(|Γ|, q) = gcd(|Γ|, p+1) = 1 We deal with Γ(p) and Zq ×Γ(p) for Γ ⊂ {id}×SU(2),
and p is odd similarly. This proves the cohomogeneity one part of Theorem B in
the introduction. Note that the quaternion group Γ = {±1,±i,±j,±k} ⊂ SU(2)
corresponds to Γ(p) = Z2 ⊕ Z2 ⊂ SO(3), and that Zq × (Z2 ⊕ Z2) = Z2q ⊕ Z2.

For the cohomogeneity two Eschenburg spaces Ep1,p2,p3
with all pi odd, recall

that the right action by SU(2) acts effectively as SO(3). For these we have

Proposition 5.3. Any finite group F ⊂ SO(3) acts freely on an infinite family
of spaces Ep̄ ∈ E2, in particular when all pi are odd and distinct and pi ≡ 1 mod |F |.

Proof. As usual we let F∗ be the inverse image of F by the map SU(2) → SO(3) =
SU(2)/{± id}. In particular, the order of any element of F∗ divides the order of F.

Let p1, p2, p3 be three distinct primes, all congruent to 1 modulo |F | (infinitely
many such primes exist by Dirichlet’s theorem on primes in arithmetic progression).
As in the proof above we see that the action of F on the space Ep1,p2,p3

fails to be
free only if the sets {zp1 , zp2 , zp3} and {γ, γ̄, z

P
pi} are the same for some z ∈ U(1).

Without loss of generality we may assume that zp1 = γ, zp2 = γ̄, zp1+p2 = 1. Since in
particular p1 and p2 are relatively prime, we can find integers a, b such that ap1+bp2 =
1. Then z = zap1+bp2 = γa−b. But since also p1 and p2 are both congruent to 1 modulo
|F |, we have: γ = zp1 = γ(a−b)p1 = γa−b and γ̄ = zp2 = γ(a−b)p2 = γa−b. This implies
γ = γ̄ = ± id which is simply the kernel of the action. Hence, F∗ /{± id} = F acts
freely and isometrically on each of these spaces.
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