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SUPERSYMMETRIES IN CALABI-YAU GEOMETRY∗

HUAI-DONG CAO† AND JIAN ZHOU‡

Abstract. We introduce a class of Lie superalgebras, called spinc supersymmetry algebras,
constructed from spinor representations. The construction is motivated by supersymmetry algebras
used by physicists. On a Riemannian manifold, a Kähler manifold, and a hyperkähler manifold
respectively, it is known that some natural operators on the space of differential forms generate
certain Lie superalgebras. It turns out that they correspond to spinc(2), spinc(3), and spinc(5)
supersymmetry algebras respectively. Motivated by Mirror Symmetry Conjecture, we also consider
supersymmetries on Calabi-Yau manifolds.

Key words. supersymmetry, Calabi-Yau manifolds

AMS subject classifications. 53Z05

The supersymmetry (SUSY) algebra [10] is a special kind of Lie superalgebras [6]
which involves spinor representations. It was invented by physicists in the seventies
to formulate a unified theory for fermions and bosons. A guiding principle in physics
is to examine the symmetries of Lagrangians. Quite often a classical Lagrangian
can be extended to have supersymmetries. For example, Donaldson theory has been
interpreted by Witten [12] as a twisted N = 2 supersymmetric quantum field theory
which extends the Lagrangian of the classical Yang-Mills theory. The study of this
theory has led to Seiberg-Witten theory [13]. Other examples include supersymmetric
extensions of nonlinear sigma models. When the source manifold is a Riemann surface,
it turns out [1] that an N = 1 supersymmetric extension is always possible; when the
target Riemannian manifold is Kähler, anN = 2 supersymmetric extension is possible;
when the target manifold is hyperkähler, an N = 4 supersymmetric extension is
possible.

It is well-known to physicists that when one considers the large volume limit, the
topological sigma model leads to the space of differential forms on the target manifold
and differential operators on it. So it is conceivable that supersymmetries in the
topological sigma model leads to some supersymmetries among these operators. One
is naturally led to the problem of finding a relationship between manifolds with special
holonomy groups and the supersymmetry algebras formed by differential operators
on them. Another motivation for this problem is to find the analogues of Kähler
manifolds etc. in non-commutative geometry. This is discussed in a recent paper by
Fröhlich, Grandjean and Recknagel [3]. Their idea is as follows: since the space of
exterior forms is a super vector space, the space of linear operators on it is naturally a
Lie superalgebra (actually a Poisson superalgebra) under the supercommutators. For
manifolds with special holonomy groups, one can find operators which generate finite
dimensional Lie (super)algebras.

Actually some examples of this type have been well-known. In Riemannian geom-
etry, Witten considered the following very simple Lie superalgebra in his influential pa-
per on Morse theory [11]: for a Riemannian manifold (M, g), let d : Ω∗(M) → Ω∗(M)
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be the exterior differential operator, d∗ its formal adjoint. Set Q1 = d + d∗,
Q2 =

√
−1(d− d∗), H = � = dd∗ + d∗d. Then one has

[Q1, Q1] = [Q2, Q2] =
1

2
H,[Q1, Q2] = 0.

In Kähler geometry, the proof of the Hard Lefschetz Theorem for Kähler manifolds,
usually attributed to Chern, uses three algebraic operators (see e.g. Griffiths-Harris
[4]): L is the exterior product with the Kähler form, Λ its adjoint, H is defined by
H(α) = (m− p)α for exterior form α of degree p on a manifold of complex dimension
m. Then we have

[Λ, L] = H, [H,L] = −2L, [H,Λ] = 2Λ.

These are the commutation relations of the Lie algebra sl(2,R). The Hodge identities
and their consequences (�∂ = �∂̄ = 1

2∆) reveal that the operators L, Λ, H , ∂, ∂̄,
∂∗, ∂̄∗, ∆ generates a Lie superalgebra. In hyperkähler geometry, the Lie algebra
generated by the multiplications by the three Kähler forms and their adjoints has
been studied by Verbitskii [9]. Together with the ∂ and ∂̄ operators for each of
the three complex structures and their adjoints, they generate a Lie superalgebra.
These observations appear in the paper by Fröhlich et al mentioned above. They
will be reviewed in §1. Our observation in this paper is that the Lie superalgebras of
operators in Riemannian, Kähler and hyperkähler geometries mentioned above can be
constructed in a unified way using spinor representations of spinc(n). Hence they will
be called spinc(n) SUSY algebras. It turns out that for Riemannian geometry, n = 2;
for Kähler geometry, n = 3; for hyperkähler geometry, n = 5. A strange coincidence
here is that 2 = 1 + 1, 3 = 2 + 1, 5 = 4 + 1, and 1, 2, 4 correspond respectively
to the number N in supersymmetry extensions of nonlinear sigma models in these
geometries.

The main motivation for this paper comes from Mirror Symmetry Conjecture. On
a Calabi-Yau n-manifold M , there are some natural operators on Ω−∗,∗(M). Con-
jecturally, these operators correspond to the operators ∂, ∂̄, ∂∗ and ∂̄∗ on a mirror
manifold of M . Furthermore, there is an obvious analogue of H . One naturally asks
whether there is an element of Ω−1,1(M) which corresponds to the Kähler form and
defines the analogues of the operators L and Λ. For Calabi-Yau hypersurfaces in
weighted (n+1)-projective spaces, Hübsch and Yau [5] have found such an element in
H−1,1(M) and discussed the induced SL(2,C)-action on ⊕np=0H

n−p,p(M). In this pa-
per, we will give conditions for an element in Ω−1,1(M) to play the role of the Kähler
form in the sense that together with the natural differential operators on Ω−∗,∗(M),
it generates the Spinc(3) SUSY algebra.

1. Spinc supersymmetry algebras. In this section, we first review the defini-
tion of Lie superalgebras and briefly describe supersymmetry algebras. We then give
a construction of a Lie superalgebra using spinor representation which we call Spinc
SUSY algebras.

1.1. Lie superalgebras. A Z2-graded vector space L = L0 ⊕ L1 over a field k

is called a Lie superalgebra over k if there is an even k-linear map [·, ·] : L ⊗ L → L,
such that

[a, b] = −(−1)|a||b|[b, a], (super anti-symmetric)

[a, [b, c]] = [[a, b], c] + (−1)|a||b|[b, [a, c]], (super Jacobi identity)
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for homogeneous elements a, b, c ∈ L, where | · | stands for the degree. It follows
that L0 is a Lie algebra, and L1 is a representation of L0. Hence, to construct a Lie
superalgebra, one can start with a Lie algebra L0, a representation L1 of L0, then
carefully specify [·, ·] on L1 × L1.

Example 1.1. Let V = V0 ⊕ V1 be a super vector space (not necessarily finite
dimensional). Then End(V ) has an induced Z2-grading. A linear transformation
φ ∈ End(V ) is said to be even if φ(Vj) ⊂ Vj , j = 0, 1. It is said to be odd if switch V0

with V1. For homogeneous φ, ψ ∈ End(V ), set

[φ, ψ] = φψ − (−1)|φ||ψ|ψφ.

Then (End(V ), [·, ·]) is a Lie superalgebra. Furthermore, if φ, ψ and ϕ are homoge-
neous elements of End(V ), then we have

[φ, ψϕ] = [φ, ψ]ϕ+ (−1)||φ||ψ|ψ[φ, ϕ].

This means (End(V ), [·, ·]) is actually a Poisson superalgebra. For us, V will be
the space of exterior forms on manifold graded by degrees, and we will consider Lie
superalgebras generated by differential operators.

1.2. SUSY algebra. The supersymmetry algebra used by physicists in super-
gravity theory on flat Minkowski spaces has L0 the Lie algebra of Poincaré group,
it is the semi-direct product of the Lie algebra of Lorentz group with its standard
representation on the Minkowski space. A set of generators for L0 are given by Lij ’s,
which generates the rotations and boosts, and Pk’s, which generates the space-time
translations. The odd part L1 are some copies of spinor representations. The bracket
of two elements in L1 are linear combinations of Pk’s. For details, see Wess-Bagger
[10].

1.3. Spinc supersymmetry algebra. Motivated by Seiberg-Witten theory
[13], we introduce the notion of spinc(n) supersymmetry algebras.

Let us first describe a procedure to produce Lie superalgebras. Let g be any
complex Lie algebra, V + a complex representation of g, and V − = (V +)∗ the dual
representation. The pairing of V + with V − extends to a natural pairing 〈·, ·〉 on
L1 = V + ⊕ V −. Take L0 = g ⊕ C. Let C ⊂ L0 acts trivially on V + and V −, hence
L1 is a representation of L0. Now we define a bracket on L = L0 ⊕L1. For a, b ∈ L0,
[a, b] is the Lie bracket in L0. For a ∈ L0, b ∈ L1, [a, b] is given by the action of
a on b by the representation. For a ∈ L1, b ∈ L0, [a, b] = −[b, a]. For a, b ∈ L1,
[a, b] = 〈a, b〉 ∈ C ⊂ L0.

Lemma 1.1. (L, [·, ·]) defined above is a Lie superalgebra.

Proof. It is clear that [·, ·] is super-antisymmetric, so we only need to check the
super-Jacobi identity. It certainly holds when a, b, c are all from L0 or L1. If two of
them are in L0, and the third in L1, it suffices to check the Jacobi identity for the
case of a, b ∈ L0, c ∈ L1:

[a, [b, c]] = [[a, b], c] + [b, [a, c]].

This follows from the fact that L1 is a representation of L0. When two of them are
from L1, and the third from L0, it suffices to check the Jacobi identity for the case of
a ∈ L0, b, c ∈ L1. Now the required identity is reduced to

0 = 〈[a, b], c〉 + 〈b, [a, c]〉.(1)
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The terms on the right hand side are nonzero only if one of b and c lies in V , the other
lies in V ∗. Without loss of generality, let b ∈ V ∗ and c ∈ V , then (1) is equivalent to
the definition of dual representation.

The above construction can certainly be carried out for real Lie algebra and real
representations. One can also let C act on V and V ∗ with opposite weights.

When g is the complexified so(n), L0 = so(n,C)⊕C is the complexified Lie algebra
of Spinc(n). We take V + to be N copies of an irreducible spinor representation, when
restricted to so(n). The resulting Lie superalgebra is called the N -extended spinc
SUSY algebra, and denote it by N -spinc(n). For N = 1, it is also called the spinc(n)
SUSY algebra. We remark that the N -spinc(n) SUSY algebra can be understood
as the non-relativistic version of SUSY algebra, since L0 consists of so(n,C), the Lie
algebra of rotation group, and C, which corresponds to the Hamiltonian. Furthermore,
the bracket of two odd elements lies in C.

2. Examples. We review some results appeared in Fröchlich et al [3] concerning
the the supersymmetry algebras in Riemannian, Kähler and hyperkähler geometries.
They are examples of Spinc SUSY algebras defined in last section.

2.1. Spinc(2) SUSY algebra and Riemannian geometry. Denote the gen-
erator of so(2) ∼= R by T , and the generator of C by H . The spinor representation
S+ of SO(2) = S1 has weight 1/2. For N = 1, let G+ be a generator of S+, and G−

the dual basis for S−. Then for spinc(1) SUSY algebra, we have

[T, T ] = [H,H ] = [T,H ] = 0,

[T,G±] = ±1

2
G±, [H,G±] = 0,

[G±, G±] = 0, [G+, G−] = H.

Let (M, g) be a Riemannian manifold. Define h : Ω∗(M) → Ω∗(M) by h(α) =
(n− p)α for α ∈ Ωp(M). Denote by � the Laplace operator. Then we have

[h, h] = [�,�] = [h,�] = 0, [�, d] = [�, d∗] = 0,

[h, d] = d, [h, d∗] = −d∗,
[d, d] = [d∗, d∗] = 0, [d, d∗] = �.

Then G+ 7→ d, G− 7→ d∗, H 7→ � = dd∗ + d∗d, T 7→ 1
2h defines a representation of

spinc(2) SUSY algebra. Let

Q1 = G+ +G−,Q2 =
√
−1(G+ −G−).

Then we have

[Q1, Q1] = [Q2, Q2] = 2H,[Q1, Q2] = 0.

This is the supersymmetry algebra used in Witten [11].

2.2. Spinc(3) SUSY algebra and Kähler geoemtry. It is well-known that
there is an isomorphism so(3) ∼= su(2). The spinor representation of so(3) is given
by the natural representation of su(2) on C2. Alternatively, there is an isomorphism
so(3,C) ∼= sl(2,C). The spinor representation extends the standard representation
of sl(2,C) on C2 or its dual. In fact, since there is only one irreducible complex
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two-dimensional representation for so(3) up to isomorphisms, any irreducible two-
dimensional representation of so(3,C) restricted to so(3) is the spinor representation.
Explicitly, so(3,C) has a basis {T i, i = 1, 2, 3}, such that

[T i, T j] =
√
−1ǫijk T

k.

Let {Ga+, a = 1, 2} be a basis of the spinor representation of so(3), such that

T i(Ga+) =
1

2
τ iabG

b+,

where τ i’s are the Pauli matrices. Denote a (suitable) generator of C by H , we then
get the following set of commutation relations for spinc(3) SUSY algebra:

[H,Ga±] = 0, a = 1, 2,

[H,T i] = 0, i = 1, 2, 3,

[Ga±, Gb±] = 0, a, b = 1, 2,

[Ga−, Gb+] = δabH, a, b = 1, 2,

T i(Ga+) =
1

2
τ iabG

b+, i = 1, 2, 3, a = 1, 2,

T i(Ga−) =
1

2
τ iabG

b−, i = 1, 2, 3, a = 1, 2,

[T i, T j] =
√
−1ǫijk T

k, i, j = 1, 2, 3.

Let (M, g, ω) be a Kähler manifold. As usual, denote by L the operator on exterior
forms given by multiplication by the Kähler form ω, Λ its adjoint, and h = [Λ, L].
Then the identities used in the proof of the Hard Lefschetz Theorem (see e.g. Griffiths-
Harris [4], p.p. 111 - 121) are

[Λ, L] = h, [h, L] = −2L, [h,Λ] = 2Λ,

[L, ∂] = 0, [Λ, ∂] =
√
−1∂̄∗, [h, ∂] = −∂,

[L,
√
−1∂̄∗] = ∂, [Λ,

√
−1∂̄∗] = 0, [h,

√
−1∂̄∗] =

√
−1∂̄∗,

[L, ∂̄] = 0, [Λ, ∂̄] = −
√
−1∂∗, [h, ∂̄] = −∂̄,

[L,
√
−1∂∗] = ∂̄, [Λ,

√
−1∂∗] = 0, [h,

√
−1∂∗] =

√
−1∂∗,

[∂, ∂] = 0, [∂̄, ∂̄] = 0, [∂, ∂̄] = 0,

[∂∗, ∂∗] = 0, [∂̄∗, ∂̄∗] = 0, [∂∗, ∂̄∗] = 0,

[∂, ∂̄∗] = 0, [∂∗, ∂̄] = 0,

[∂, ∂∗] =
1

2
δ, [∂̄, ∂̄∗] =

1

2
�,

These identities reveal that the involved operators generate the spinc(3) SUSY alge-
bra. Indeed, L,Λ, h generate the Lie algebra sl(2,R). They correspond to the basis
{T i} after a suitable basis change. ∂ and ∂̄∗ span a spinor representation and they
correspond to G1+ and G2+ respectively, while ∂̄ and ∂∗ span the dual representa-
tion and correspond to G1− and G2− respectively. Finally, the Laplace operator �

corresponds to the Hamiltonian H .
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2.3. Spinc(5) SUSY algebra and hyperkähler geometry. There is an iso-
morphism so(5) ∼= sp(2). Therefore, the spinor representation of so(5,C) is a complex
4-dimensional vector space with an invariant complex symplectic form.

A Riemannian manifold (M, g) is called hyperkähler if there are three complex
structures J1, J2, J3, such that J1J2 = −J2J1 = J3, and each of them makes (M, g)
a Kähler manifold. For j = 1, 2, 3, let ωj be the Kähler form for Jj . Let Lj be the
multiplication by ωj, and Λj its adjoint. Let H : Λ∗(M) → Λ∗(M) be defined as
above by H(α) = (2m− p)α, α ∈ Ωp(M). For i 6= j, set Kij = [Li,Λj ]. The meaning
of operators Kjk is as follows. Let α ∈ Ωp,q(M) for J1 then K32(α) =

√
−1(q − p)α.

Similarly for K12 and K31. It is straightforward to check that [9]:

[Li, Lj] = [Λi,Λj ] = 0,[Li,Λi] = −H ;(2)

[H,Li] = −2Li,[H,Λj ] = 2Λj,(3)

Kij = −Kji,[Kij ,Kjk] = 2Kik, [Hij ,K] = 0,(4)

[Kij , Lj] = 2Li,[Kij ,Λj] = 2Λj,(5)

[Kij , Lk] = [Kij ,Λk] = 0, k 6= i, j.(6)

As shown by Verbitskii [9], these are the translation relations of the Lie algebra
so(4, 1). One can also consider the commutation relations of the above algebraic
operator with the natural differential differential operators ∂j = 1

2 (d−
√
−1Jjd) and

∂̄j . Fröchlich et al [3] showed that these differential operators, together with the above
so(4, 1) Lie algebra, generate the Spinc(5) SUSY algebra.

3. Supersymmetries in Calabi-Yau geometry. For a Calabi-Yau n-manifold
M , besides those operators on Dolbeault complex Ω∗,∗(M), we are also interested

in operators on Ω−∗,∗(M) = ⊕p,q≥0Γ(M,ΛpTM ⊗ ΛqT
∗
M). There is a canonical

way to obtain an operator on Ω−∗,∗(M) from an operator on Ω∗,∗(M). Indeed, let
Ω be a nontrivial holomorphic volume for on M , then Ω defines an isomorphism
♭ : Ω−p,q(M) → Ωn−p,q(M). Let ♯ denote the inverse of ♭. For any linear operator
φ on Ω∗,∗(M), define φ̃ on Ω−∗,∗(M) by φ̃(α) = φ(α♭)♯ for α ∈ Ω−∗,∗(M). Such
a construction first appeared in Tian [7] and Todorov [8]. It induces a homomor-
phism End(Ω∗,∗(M)) → End(Ω−∗,∗(M)), which is a morphism of graded Poisson
superalgebras. Under this homomorphism, the Spinc(3) SUSY algebra formed by
L,Λ, H, ∂, ∂̄, ∂∗, ∂̄∗,� gives rise to a Spinc(3) SUSY algebra formed by the corre-
sponding operators on Ω−∗,∗(M). However, mirror symmetry requires Ω−p,q(M) to
have degree (p, q). In this grading, L̃ has degree (−1, 1). So this Spinc(3) SUSY
algebra on Ω−∗,∗(M) does not correspond to the Spinc(3) SUSY algebra on the Dol-
beault complex of its mirror manifold. The right approach is to find an element in
Ω−1,1(M) which will play the role of the Kähler form, in the sense that the exterior
multiplication by this element will generate the right Spinc(3) SUSY algebra together

with its adjoint operator and ∂̃, ˜̄∂, etc. We will give some sufficient conditions for an
element in Ω−1,1(M) to have this property.
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3.1. A method of obtaining Spinc(3) SUSY operator algebra. Let (A,∧)
be a graded commutative C-algebra with a Hermitian metric. Suppose that we
have two operators d1 and d2, together with their adjoints d∗1 and d∗2, such that
(A,∧, d1,

√
−1d∗2, [· • ·]√−1d∗

2

) and (A,∧, d2,−
√
−1d∗1, [· • ·]−√

−1d∗

1

) are DGBV alge-

bras (for definition, see e.g. Cao-Zhou [2]). This assumption implies many identities,
in particular,

[dj , dj ] = [d∗j , d
∗
j ] = 0,

[d1, d
∗
2] = [d2, d

∗
1] = 0.

Denote by h : A → A the operator defined by h(α) = (n − p)α for α ∈ Ap, and a
fixed number n. For j = 1, 2, since dj and d∗j have degree 1 and −1 respectively, we
have

[h, dj ] = −dj ,[h, d
∗
j ] = d∗j .

For an element ω ∈ A2, let L : A → A be the multiplication by ω, and Λ : A → A its
adjoint. We make the following assumptions:

[Λ, L] = h,(7)

d1ω = 0,(8)

[Λ, d1] = −
√
−1d∗2.(9)

From (7), we get

[h, L] = −2L, [h,Λ] = 2Λ.

That is, {L,Λ, h} span a Lie algebra isomorphic to sl(2). Note that (8) is equivalent
to [L, d1] = 0. From (9), we have

[L, d∗2] =
√
−1[L, [Λ, d1]] =

√
−1[[L,Λ], d1] +

√
−1[Λ, [L, d1]]

= −
√
−1[h, d1] =

√
−1d1.

We also need [Λ, d∗2] = 0. By (9), this is equivalent to [Λ, [Λ,
√
−1d1]] = 0, or by

taking the adjoint, to [L, [L,
√
−1d∗1]] = 0. Recall that

[α • β]√−1d∗

1

= (−1)|α|
√
−1(d∗1(α ∧ β) − (d∗1α) ∧ β − (−1)|α|α ∧ d∗1β),

and

[(α ∧ β) • γ]√
1d∗

1
= α ∧ [β • γ]√

1d∗

1
+ (−1)|β|(|γ|−1)[α • γ]√−1d∗

1

∧ β.

So we have

[L, [L,
√
−1d∗1]]α = (L2

√
−1d∗1 − 2Ld∗1L+

√
−1d∗1L

2)α

=
√
−1d∗1(ω

2 ∧ α) − 2ω ∧
√
−1d∗1(ω ∧ α) + ω2 ∧

√
−1d∗1(α)

= (
√
−1d∗1(ω

2 ∧ α) − (
√
−1d∗1ω

2) ∧ α− ω2 ∧
√
−1d∗1α)

−2ω ∧ (
√
−1d∗1(ω ∧ α) − (

√
−1d∗1ω) ∧ α− ω ∧

√
−1d∗1α)

+(
√
−1d∗1ω

2 − 2ω ∧
√
−1d∗1ω) ∧ α

= [ω2 • α]√−1d∗

1

− 2ω ∧ [ω • α]√−1d∗

1

+ [ω • ω]√−1d∗

1

∧ α
= [ω • ω]√−1d∗

1

∧ α.
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Therefore, if

[ω • ω]√−1d∗

1

= 0,(10)

then we have

[Λ, d∗2] = 0.

On the other hand, condition (10) is equivalent to

d2ω = 0.(11)

This follows from

[ω • ω]√−1d∗

1

=
√
−1d∗1ω

2 − 2ω ∧
√
−1d∗1ω = [Λ, d2]ω

2 − 2ω ∧ [Λ, d2]ω

= Λd2ω
2 − d2Λω

2 − 2ω ∧ Λd2ω + 2ω ∧ d2Λω

= 2Λ(ω ∧ d2ω) − (2n− 2)d2ω − 2LΛd2ω

= 2ΛLd2ω − 2LΛd2ω − (2n− 2)d2ω

= 2hd2ω − 2(n− 1)d2ω = −4d2ω.

Here we have used the facts Λω = n, Λω2 = (2n− 2)ω, and
√
−1d∗1 = [Λ, d2].

Therefore, under conditions (7), (8), (9) and (11), {d1, d
∗
2} span a spinor repre-

sentation. Taking their adjoints, one obtains the identities for {d2, d
∗
1} to be the dual

representation. If in addition

[d1, d2] = 0,

then we have [d∗1, d
∗
2] = 0. Furthermore,

[d2, d
∗
2] =

√
−1[d2, [Λ, d1]] =

√
−1[[d2,Λ], d1] +

√
−1[Λ, [d2, d1]]

= [d∗1, d1] = [d1, d
∗
1].

To summarize, we have proved the following

Lemma 3.1. Let (A,∧) be a graded commutative C-algebra with a Hermitian

metric and two supercommuting linear operators d1 and d2 of degree 1, such that

(A,∧, d1,
√
−1d∗2, [· • ·]√−1d∗

2

) and (A,∧, d2,−
√
−1d∗1, [· • ·]−√

−1d∗

1

) are two DGBV

algebras. Assume that ω ∈ A2 is an element such that

[Λ, L] = h, d1ω = 0, d2ω = 0, d∗2 =
√
−1[Λ, d1],

where Λ, L and h are defined as above. Then the operators L,Λ, h, d1, d2, d
∗
1, d

∗
2,� =

[d1, d
∗
1] generate the Spinc(3) SUSY algebra under supercommutators.

Usually we have the freedom in interchanging the roles of d1 and d2: d′1 = d2,
d′2 = −d1. The fourth condition in the above lemma is symmetric with this switching
of operators: it is equivalent to d∗1 = −

√
−1[Λ, d2]. A consequence of this condition

is d2α = [ω • α]−
√
−1d∗

1

and d1α = [ω • α]√−1d∗

2

.
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3.2. Applications to Calabi-Yau manifolds. On a Calabi-Yau n-manifold
M , we can consider

Ω−∗,∗(M) = Γ(M,Λ∗TM ⊗ Λ∗T
∗
M).

Besides the operator ∂̄ which has degree (0, 1), Tian [7] defined an operator ∆ of degree
(−1, 0) as follows (see also Todorov [8]): contraction of poly-vector fields with the
holomorphic n-form Ω defines an isomorphism ♭ : Ω−∗,∗(M) → Ωn−∗,∗(M). Denote
by ♯ its inverse. Then ∆α = (∂α♭)♯. As noticed by the second author in [14], Theorem
2.3, d1 = ∂̄ and d2 = ∆∗ satisfy the condition of Lemma 3.1. Also Tian-Todorov
Lemma implies that [· • ·]∆ is just the Schouten-Nijenhuis bracket on Ω−∗,∗(M).
Therefore, we have the following

Theorem 3.1. Let M be a closed Calabi-Yau n-manifold. Suppose that there is

an element ω̃ ∈ Ω−1,1(M), such that

[Λ̃, L̃] = h̃, ∂̄ω̃ = 0, ∆∗ω̃ = 0, ∆ =
√
−1[Λ̃, ∂̄],

where L̃ is given by multiplication by ω̃, Λ̃ its adjoint and h̃ is defined by h̃(α) =

(n− (p+ q))α for α ∈ Ω−p,q(M). Then the operators L̃, Λ̃, h̃, ∂̄,∆, ∂̄∗,∆∗, �̃ = [∂̄, ∂̄∗]
generate the Spinc(3) SUSY algebra under supercommutators.

Definition 3.1. A representation of sl(2,R) on a bigraded vector space is said
to be of Lefschetz type if X acts by an operator of bidegree (−1,−1), Y acts by an
operator of bidegree (1, 1), and H acts by an operator of bidegree (0, 0), where X , Y ,
H are generators of sl(2,R) such that

[X,Y ] = H, [H,X ] = 2X, [H,Y ] = −2Y.

Corollary 3.1. Under the condition of Theorem 3.1, there is an action of

sl(2,R) on H−∗,∗(M) of Lefschetz type.

Remark 3.1. For Calabi-Yau hypersurfaces M in weighted projective (n + 1)-
spaces, Hübsch and Yau [5] have found an action by SL(2,C) on Hn−∗,∗(M) ∼=
H−∗,∗(M). They constructed on such manifolds an element ϑ which corresponds to
the Kähler class. It is interesting to see whether their construction yields an element
ω̃ satisfying the conditions in Theorem 3.1.
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