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BERSTEIN TYPE THEOREMS WITHOUT GRAPHIC CONDITION∗

Y. L. XIN†

Abstract. We prove Bernstein type theorems for minimal n-submanifolds in R
n+p with flat

normal bundle under certain growth conditions for p ≥ 2 and n ≤ 5, as well as for arbitrary n and
p = 1. When M is a graphic minimal hypersurface we recover the known result.
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1. Introduction. There are various generalizations of the Bernstein theorem .
For an entire minimal graph M = (x, f(x)) of dimension n ≤ 7 in R

n+1 the problem
has been settled in [Si], [B-G-G]. If there is no dimension limitation, we have results
in [M], [C-N-S], [Ni] and [E-H] under the growth condition on the function f.

For general minimal hypersurfaces, a natural condition is stable, or even ones
with finite index. In this situation [C-S-Z] and [L-W] conclude that they have only
one end or finitely many ends, respectively.

Higher codimensional Bernstein problem becomes more complicated. In [H-J-
W] Moser’s result has been generalized to minimal graphs of higher codimension.
Recently, we obtained better results under a bound for the slope of the vector-valued
functions f which is independent of the dimension and codimension [J-X1] [J-X2](also
see [Wm]. On the other hand, the counter example of [L-O] prevents us from going
further.

For general minimal surfaces in a Euclidean space, so-called parametric case, the
Bernstein theorem was generalized to the beautiful theory of the value distribution of
its Gauss image [Os] [Xa] [F].

In the present article we study minimal n-submanifolds of R
n+p, p ≥ 2, which

are not necessary graphs. Normal bundle of the submanifold plays an important role
in this situation. In the first step, it is natural to study the case when normal bundle
is flat. One expects minimal submanifolds with flat normal bundle share similar
properties with hypersurfaces in certain sense. As done in a series of papers [T1],
[T2], [T3] and [H-P-T], Terng established a theory of isoparametric submanifolds in
the frame work of flat normal bundle.

We define a w-function on M in §3. It is closely related to its generalized Gauss
image of M in R

n+p. It satisfies a nice formula in the case when M has parallel mean
curvature with flat normal bundle. If w-function is always positive, its inverse v = 1

w

is the volume element locally (globally when M is a graph). It is natural to consider
its growth condition, instead of the growth condition on the function f for the minimal
graph (x, f(x)) in R

n+1, where x ∈ R
n.

In section 2 we list known Bochner formula for the squared norm of the second
fundamental form. The technique in [S-S-Y] can be applied to obtain a Kato type
inequality in our case.
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In section 4 we derive volume growth of minimal submanifolds in a Cartan-
Hadamard manifold by an elementary way. For the ambient Euclidean space the
fact is well-known.

In the final section we prove our main results for a complete minimal submanifold
M with flat normal bundle and positive w-function. First of all, it has only one end.
Furthermore, under certain growth condition for v-function and polynomial volume
growth we conclude that M is flat, if dimension n ≤ 5, and codimension p ≥ 2. In the
case when M is minimal graph, the conclusion follows only from the growth condition
for v-function.

In the case when the codimension p = 1, the normal bundle of the minimal
hypersurface is flat automatically. Our argument can also be carried out similarly.

By the Bochner formula for the squared norm of the second fundamental form,
a Kato type inequality and the formula for the v-function, we obtain nonnegative
subharmonic functions on minimal submanifolds. From the heat kernel estimate in
[C-L-Y] we have mean-value inequality for subharmonic functions. Then some more
integral estimates lead to our desired conclusion.

2. A Bochner-Type Formula. Let M → M̄ be an isometric immersion with
the second fundamental form B, which can be viewed as a cross-section of the vector
bundle Hom(⊙2TM, NM) over M, where TM and NM denote the tangent bundle
and the normal bundle along M , respectively. A connection on Hom(⊙2TM, NM)
can be induced from those of TM and NM naturally.

For ν ∈ Γ(NM) the shape operator Aν : TM → TM satisfies

〈BXY , ν〉 = 〈Aν(X), Y 〉 .

The second fundamental form, curvature tensors of the submanifold, curvature
tensor of the normal bundle and that of the ambient manifold satisfy the Gauss equa-
tions, the Codazzi equations and the Ricci equations as follows.

〈RXY Z, W 〉 =
〈

R̄XY Z, W
〉

− 〈BXW , BY Z〉 + 〈BXZ , BY W 〉 , (2.1)

(∇XB)Y Z − (∇Y B)XZ = −(R̄XY Z)N , (2.2)

〈RXY µ, ν〉 =
〈

R̄XY µ, ν
〉

+ 〈BXei
, µ〉 〈BY ei

, ν〉 − 〈BXei
, ν〉 〈BY ei

, µ〉 , (2.3)

where {ei} is a local orthonormal frame field of M ; X, Y and Z are tangent vector
fields; µ, ν are normal vector fields in M. Here and in the sequel we use the summation
convention.

There is the trace-Laplace operator ∇2 acting on any cross-section of a Riemann-
ian vector bundle E over M .

Now, we consider a minimal submanifold M of dimension n in Euclidean (n+ p)-
space R

n+p. We have (see [Si])

∇2B = −B̃ − B. (2.4)

We recall the following notations:

B̃
def.
= = B ◦ Bt ◦ B,
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where Bt is the conjugate map of B,

BX Y

def.
=

p
∑

j=1

(

BA
νj A

νj (X) Y + BX A
νj A

νj (Y ) − 2 BA
νj (X) A

νj (Y )

)

,

where νj are basis vectors of normal space. It is obvious that BX Y is symmetric in
X and Y, which is a cross-section of the bundle Hom(⊙2TM, NM). Simons also gave
an estimate [Si]

〈

B̃ + B, B
〉

≤

(

2 −
1

p

)

|B|4.

It is optimal for the codimension 1.

In the case when p ≥ 2, there is a refined estimate [L-L]

〈

B̃ + B, B
〉

≤
3

2
|B|4.

Substituting it into (2.4) gives

〈

∇2B, B
〉

≥ −
3

2
|B|4. (2.5)

It follows that

∆|B|2 ≥ −3|B|4 + 2|∇B|2. (2.6)

3. Submanifolds with Flat Normal Bundle. Let M → R
n+p be an oriented

submanifold. Around a point x ∈ M choose the Darboux frame field {ei, eα}, such
that ei ∈ TM, eα ∈ NM. We agree the following range of indices in the sequel

i, j, k, · · · = 1, · · · , n; α, β, γ, · · · = n + 1, · · · , n + p.

Set Beiej
= hαijeα with hαij = hαji. We have

|B|2 =
∑

α,i,j

h2
αij ,

(∇ek
B)eiej

= hαijkeα.

By the Codazzi equations (2.2), hαijk is symmetric in all indices i, j, k.
If the curvature of the normal bundle vanishes, M is called a submanifold with flat

normal bundle. By the Ricci equations (2.3), the coefficients of the second fundamental
form hαij satisfy

hαijhβik − hβijhαik = 0, (3.1)

which means that p (n × n)-matrices

hn+1 ij , · · · , hn+p ij

can be diagonalized simultaneously at a fixed point .
We need a Kato-type inequality in order to use the formula (2.6). Namely, we

would estimate |∇B|2 in terms of |∇|B||2. Schoen-Simon-Yau [S-S-Y] did such an
estimate for codimension p = 1. For any p with flat normal bundle their technique is
also applicable.
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|∇|B||2 =

〈

∇ek

√

∑

α,i,j

h2
αij ,∇ek

√

∑

β,l,m

h2
βlm

〉

=
1

∑

α,i,j h2
αij

∑

k

(
∑

βl,m

hβlmhβlmk)2,

|∇B|2 − |∇|B||2 =
∑

α,i,j,k

h2
αijk −

1
∑

α,i,j h2
αij

∑

k

(
∑

β,i,j

hβijhβijk)2

=
1

|B|2





∑

β,l,m

h2
βlm

∑

α,i,j,k

h2
αijk −

∑

k

(
∑

α,i,j

hαijhαijk)2





=
1

2|B|2

∑

α,β,i,j,k,l,m

(hαijhβlmk − hβlmhαijk)2. (3.2)

For any x ∈ M, we can choose a local frame field {e1, · · · , en} around x so that
hαij = λαiδij at x, since normal bundle is flat. Hence, at the point x

|B|2 =
∑

α,i

h2
αii.

Then we have

∑

α,β,i,j,k

(hαijhβlmk−hβlmhαijk)2 =
∑

α,β,i,k,l,m

(hαiihβlmk − hβlmhαiik)2

+
∑

β,l,m

h2
βlm

∑

i6=j,k

h2
αijk

≥
∑

α,β,i,k,l 6=m

h2
αiih

2
βlmk +

∑

β,l,m

h2
βlm

∑

α,i6=j,k

h2
αijk

= 2 |B|2
∑

i6=j,k

h2
αijk.

Substituting it into (3.2) gives

|∇B|2 − |∇|B||2 ≥
∑

α,i6=j,k

h2
αijk

=
∑

α,i6=j

h2
αiji +

∑

α,i6=j

h2
αijj +

∑

α,i6=j,k 6=j,k 6=j

h2
αijk

≥ 2
∑

α,i6=j

h2
αiij . (3.3)
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On the other hand,

|∇|B||2 =
1

|B|2

∑

k

(
∑

α,i,j

hαijhαijk)2

=
1

|B|2

∑

k

(
∑

α,i

hαiihαiik)2

≤
1

|B|2

∑

k





∑

α,i

h2
αii









∑

β,j

h2
βjjk





=
∑

α,i,k

h2
αiik

=
∑

α,i6=k

h2
αiik +

∑

α,i

h2
αiii

=
∑

α,i6=k

h2
αiik +

∑

i

(
∑

α,j 6=i

hαjji)
2

≤
∑

α,i6=k

h2
αiik + (n − 1)

∑

α,j 6=i

h2
αjji = n

∑

α.i6=j

h2
αiij .

Substituting it into (3.3) gives

|∇B|2 − |∇|B||2 ≥
2

n
|∇|B||2. (3.4)

This is our desired Kato-type inequality. From (2.6) and (3.4) we have

Lemma 3.1. Let M → R
n+p, p ≥ 2, be a minimal n-submanifold with flat normal

bundle. Its second fundamental form satisfies

|B|∆|B| ≥ −
3

2
|B|4 +

2

n
|∇|B||2. (3.5)

For an n-dimensional oriented submanifold M in Euclidean space R
n+p we have

the generalized Gauss map. By the parallel translation in the ambient Euclidean space,
the tangent space TxM at each point x ∈ M is moved to the origin of R

n+p to obtain
an n-subspace in R

n+p, namely, a point of the Grassmannian manifold γ(x) ∈ Gn,p.

Thus, we define a generalized Gauss map γ : M → Gn,p.

For two simple n-vectors

A = a1 ∧ · · · ∧ an, B = b1 ∧ · · · ∧ bn,

their inner product is defined by

〈A, B〉 = det (〈ai, bj〉) .

It is well-defined, if A and B are unit n-vectors. Choose an orthonormal frame field
{ei, eα} along M such that ei ∈ TM and eα ∈ NM . Fix a unit simple n-vector
A = a1 ∧ · · · ∧ an define a function w on M by

w = 〈e1 ∧ · · · ∧ en, a1 ∧ · · · ∧ an〉 = det (〈ei, aj〉) .
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Let M = (x, f(x)) be a graph in R
n+p defined by p functions fα(x1, · · · , xn).

Choose A to be one representing (x1, · · · , xn) coordinate n-plane. The w is the inverse
volume element of M [J-X1].

We derive now a basic formula of the function w. Since

ei(w) =
∑

j

〈

e1 ∧ · · · ∧ ∇̄ei
ej ∧ · · · ∧ en, a1 ∧ · · · ∧ an

〉

=
∑

j

〈

e1 ∧ · · · ∧ (∇̄ei
ej)

T ∧ · · · ∧ en, a1 ∧ · · · ∧ an

〉

+
∑

j

〈

e1 ∧ · · · ∧ (∇̄ei
ej)

N ∧ · · · ∧ en, a1 ∧ · · · ∧ an

〉

=
∑

α,j

hαij 〈e1 ∧ · · · ∧ ej−1 ∧ eα ∧ ej+1 · · · ∧ en, a1 ∧ · · · ∧ an〉 ,

∆w = −|B|2w +
∑

α,i,j

hαiij 〈e1 ∧ · · · ∧ ej−1 ∧ eα ∧ ej+1 · · · ∧ en, a1 ∧ · · · ∧ an〉

+
∑

α,β,i,j,k

〈e1 ∧ · · · ∧ hαijeα ∧ · · · ∧ hβikeβ ∧ · · · ∧ en, a1 ∧ · · · ∧ an〉

= −|B|2w +
∑

α,i,j

hαiij 〈e1 ∧ · · · ∧ ej−1 ∧ eα ∧ ej+1 · · · ∧ en, a1 ∧ · · · ∧ an〉

+
∑

α<β,i,j,k

(hαijhβik − hβijhαik)

〈e1 ∧ · · · ∧ eα ∧ · · · ∧ eβ ∧ · · · ∧ en, a1 ∧ · · · ∧ an〉 .

(3.6)

Lemma 3.2. Let M be an n-submanifold in R
n+p with parallel mean curvature

and flat normal bundle. Then the above defined w-function satisfies

∆w = −|B|2 w (3.7)

4. Volume Growth. Let N be a complete simply connected Riemannian man-
ifold with non-positive sectional curvature, M → N be a minimal immersion. Fix a
point o ∈ M ⊂ N , denote the distance function from o on N by ρ and that on M by
r. It is obvious that ρ ≤ r. By using the triangle inequality we see that

∂ρ

∂r
≤ 1.

By using the Hessian comparison theorem on N

Hess(ρ)(X, Y ) ≥
1

ρ
(〈X, Y 〉 − 〈X,∇ρ〉 〈Y,∇ρ〉) , (4.1)

where X, Y ∈ TN .
The restriction of ρ on M is a function on M . Then we have for X, Y ∈ TM ⊂ TN

Hess(ρ)(X, Y ) = XY (ρ) −
(

∇̄XY −
(

∇̄XY
)N

)

ρ

= Hess(ρ)(X, Y ) + 〈BXY ,∇ρ〉 . (4.2)
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Taking trace in (4.2) and using (4.1), we obtain

∆ρ ≥
1

ρ

(

n − |∇ρ|2M
)

+ 〈n H,∇ρ〉 ,

∆ρ2 = 2 |∇ρ|2M + 2 ρ ∆ρ

≥ 2 n + 2 ρ 〈n H,∇ρ〉 ,

where H is the mean curvature vector of M in N . In particular, when M is minimal

∆ρ2 ≥ 2 n. (4.3)

Let B̄(ρ) be a geodesic ball of radius ρ and centered at o ∈ M ⊂ N in N. Its
restriction on M is denoted by

D(ρ) = B̄(ρ) ∩ M.

It is obvious that B(s) ⊂ D(s), where B(s) denotes the geodesic ball of radius s

and centered at o in M. We know that ∂
∂ρ

is the unit normal vector to ∂B̄(ρ). Its

orthogonal projection to M is normal to ∂D(ρ).
Let eα be unit normal frame field of M in N at the concerned point. Then

∂

∂ρ
−

〈

∂

∂ρ
, eα

〉

eα

is normal to ∂D(ρ). Define

a =
1

√

1 −
∑

α(eα(ρ))2
.

Hence,

ν = a

(

∂

∂ρ
− eα(ρ) eα

)

is the unit normal vector to ∂D(ρ).
Integrating (4.3) over D(ρ) and using Stokes’ theorem, we have

2 n vol(D(ρ)) ≤

∫

D(ρ)

∆ ρ2 ∗ 1

=

∫

∂D(ρ)

〈

ν,∇ρ2
〉

∗ 1. (4.4)

Noting
〈

∂

∂ρ
,∇ρ2

〉

= 2 ρ,

〈

ηα,∇ρ2
〉

= 2 ρ eα(ρ),

and then,
〈

ν,∇ρ2
〉

= a (2 ρ −
∑

α

eα(ρ) · 2 ρ eα(ρ))

= 2 ρ

√

1 −
∑

α

(ηα(ρ))2 ≤ 2 ρ,
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(4.4) becomes

2 n vol(D(ρ)) ≤ 2

∫

∂D(ρ)

ρ ∗ 1 = 2 ρ vol(∂D(ρ)). (4.5)

On the other hand, since |∇ρ|M ≤ 1, the co-area formula gives us that

d (vol(D(ρ)))

d ρ
≥ vol(∂D(ρ)). (4.6)

Combining (4.5) and (4.6), we obtain that

d (vol(D(ρ)))

volD(ρ)
≥

n d ρ

ρ
.

It follows that
vol(D(ρ))

ρn
(4.7)

is a nondecreasing function in ρ, which implies immediately that vol(M) is infinite
and it has at least polynomial growth of order n. If

lim
ρ→∞

vol(D(ρ))

ρn
< ∞,

then M has the minimal volume growth and we say that M has Euclidean volume
growth.

5. Proof of the Main Theorem.

Theorem 5.1. Let M be a complete minimal n-submanifold in R
n+p with flat

normal bundle and positive w-function. Then any L2-harmonic 1-form vanishes.

Proof. If the function w, as defined in §3, is positive everywhere, then we have
∫

M

|∇φ|2 ∗ 1 ≥

∫

M

|B|2φ2 ∗ 1, (5.1)

for any function with compact support D ⊂ M. In fact, let

Lφ = −∆φ − |B|2φ.

Its first eigenvalue with the Dirichlet boundary condition in D is λ1 and the corre-
sponding eigenfunction is u. Without loss of generality, we assume that u achieves the
positive maximum. Consider a smooth function

f =
u

w
.

Since f |∂D = 0, it achieves the positive maximum at x ∈ D. Therefore, at the point x,

∇f = 0,

∆f ≤ 0.

It follows that
w∆u ≤ u ∆w.

Namely, at x,
∆u

u
≤

∆w

w
,
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∆u + |B|2u

u
≤

∆w + |B|2w

w
. (5.2)

Since the normal bundle is flat, we have (3.7) and the right hand side of (5.2) is equal
to zero. On the other hand,

∆u + |B|2u

u
= −λ1. (5.3)

(5.2) and (5.3) implies that λ1 ≥ 0. We thus have

0 ≤ λ1 = inf

∫

D
φLφ ∗ 1

∫

D
φ2 ∗ 1

≤

∫

D
φLφ ∗ 1

∫

D
φ2 ∗ 1

,

which shows (5.1) holds true.
Let ω be an L2-harmonic 1-form on M. We have the Weitzenböck formula [X]

∆ω = −∇2ω + S, (5.4)

where for any X ∈ TM

S(X) = −(R(ei, X)ω)ei = ω(RicX).

We obtain

∆|ω|2 = 2|∇ω|2 + 2
〈

Ric ω♯, ω♯
〉

, (5.5)

where ω♯ is the dual vector field of the 1-form ω. By using the Gauss equation (2.1)

〈Ric ek, el〉 = −〈Beiek
, Beiel

〉 = −hαikhαil ≥ −|B|2δkl,
〈

Ric ω♯, ω♯
〉

≥ −|B|2|ω|2.

So, (5.5) becomes

∆|ω|2 ≥ 2 |∇ω|2 − 2 |B|2|ω|2 ≥
2n

n − 1
|∇|ω||2 − 2 |B|2|ω|2, (5.6)

here the second inequality holds because of the Kato inequality for harmonic 1-form
[W]:

|∇ω|2 ≥
n

n − 1
|∇|ω||2.

Replacing φ by |ω|φ in (5.1), integrating by parts and using (5.6), we arrive at the
following inequality

∫

M

|ω|2|∇φ|2 ∗ 1 ≥
1

n − 1

∫

M

|∇|ω||2φ2 ∗ 1. (5.7)

By taking the standard cut-off function φ in the above expression we have
∫

M

|∇|ω||2 ∗ 1 ≤ lim
R→∞

C

R2

∫

B(R)

|ω|2 ∗ 1.

The finite assumption of the integral of |ω|2 forces that |ω| must be constant. On
the other hand, by the previous argument that any minimal submanifold in Eu-
clidean space has infinite volume. We conclude that any L2-harmonic 1-form has
to be zero.

More generally, we have
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Theorem 5.2. Let M be one as in Theorem 5.1, N be a manifold with non-

positive sectional curvature. Then any harmonic map f : M → N with finite energy

has to be constant.

Proof. We also have the Bochner formula for the energy density of the harmonic
map [X]

∆e(f) =|∇df |2 +
〈

f∗RicMei, f∗ei

〉

−
〈

RN (f∗ei, f∗ej)f∗ei, f∗ej

〉

≥ |∇df |2 − 2 |B|2 e(f). (5.8)

There is also the Kato inequality [O]

|∇|df ||2 ≤
n − 1

n
|∇df |2.

Thus, (5.8) becomes

∆e(f) ≥
n

n − 1
|∇|df ||2 − 2 |B|2e(f). (5.9)

Replacing φ by
√

e(f)φ in (5.1), integrating by parts and using (5.9), we obtain
∫

M

e(f) |∇φ|2 ∗ 1 ≥
1

n − 1

∫

M

|∇
√

e(f)|2φ2 ∗ 1. (5.10)

By the standard argument it follows that the energy density e(f) is constant, which
has to be zero by the finite energy and infinite volume of M.

The argument in [C-S-Z] and Theorem 5.1 give

Theorem 5.3. Any complete minimal submanifold in Euclidean space with flat

normal bundle and positive w-function has only one end.

In the case when w-function is positive, set v = 1
w

. We have a Bernstein type
result.

Theorem 5.4. Let M be a minimal n-submanifold in R
n+p, n ≤ 5, p ≥ 2, , with

flat normal bundle. If M has polynomial volume growth and v-function has growth

v = O
(

R
2

3
µ
)

,

where 0 ≤ µ < 1 and R is the Euclidean distance from any point in M . Then M has

to be an affine linear subspace.

Proof. From (3.7) we obtain

∆v = v |B|2 +
2

v
|∇v|2. (5.11)

From (3.5) and (5.11) we obtain for any real q and s

∆(vq|B|s) ≥q (q + 1) vq−2|B|s |∇v|2 + s

(

s −
n − 2

n

)

vq|B|s−2|∇|B||2

+

(

q −
3

2
s

)

vq|B|s+2 + 2 q s vq−1|B|s−1 〈∇v,∇|B|〉 .

(5.12)
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By using the Cauchy inequality with ε > 0

vq−1|B|s−1 〈∇v,∇|B|〉 ≤
1

2

(

ε−1vq−2|B|s|∇v|2 + εvq|B|s−2|∇|B||2
)

which is substituted in (5.12) we have

∆ (vq|B|s) ≥ q (q + 1 − ε−1s) vq−2|B|s|∇v|2

+ s

(

s −
n − 2

n
− ε q

)

vq|B|s−2|∇|B||2 +

(

q −
3

2
s

)

vq|B|s+2

(5.13)

In the case of n < 6, we can choose an adequate

n − 2

n
≤ ε <

2

3
,

such that










q + 1 − ε−1s ≥ 0,

s − n−2
n

− ε q ≥ 0,

q = 3
2 s + k,

(5.14)

where k ≥ 0. From (5.13) we have for k ≥ 0

∆(vq |B|s) ≥ k vq|B|s−2. (5.15)

For example, the following two cases satisfy (5.14)
1.

q = 3l, s = 2l, k = 0

and
2l

3l + 1
≤ ε ≤

2l − n−2
n

3l

with

l ≥
n − 2

6 − n
.

2.

q = 3l, s = 2l − 1, k =
3

2

and

2l − 1

3l + 1
≤ ε ≤

2l − 2(n−1)
n

3l

with

l ≥
2(n − 1)

6 − n
.

We notice that the ranges of ε and l in the second case include that of the first
case.

Choosing the first case yields

∆(v3l|B|2l) ≥ 0.
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We have the mean value inequality for any subharmonic function on minimal subman-
ifold M in R

n+p [C-L-Y], [N] which gives

v3l|B|2l(o) ≤
C

Rn

∫

DR

v3l|B|2l ∗ 1 ≤
C vol(DR)

1

2

Rn

(∫

DR

v6l|B|4l ∗ 1

)
1

2

, (5.16)

where we assume o ∈ M ⊂ R
n+p, C is a constant depending only on n. Choosing the

second case, we obtain

∆(v3l|B|2l−1) ≥
3

2
v3l|B|2l+1.

Multiplying by v3l|B|2l−1φ4l, where φ is any smooth function with compact support,
in the above inequality, then integrating by parts and using the Cauchy inequality, we
have

∫

M

v6l|B|4lφ4l ∗ 1 ≤
3

2

∫

M

v3l|B|2l−1φ4l∆(v3l|B|2l−1) ∗ 1

= −
3

2

∫

M

〈

∇(v3l|B|2l−1φ4l),∇(v3l|B|2l−1
〉

∗ 1

= −
3

2

∫

M

|∇(v3l|B|2l−1)|2φ4l

− 6l

∫

M

〈

φ2l−1|B|2l−1v3l∇φ, φ2l∇(v3l|B|2l−1)
〉

≤ C1(l)

∫

M

v6l|B|4l−2φ4l−2|∇φ|2 ∗ 1. (5.17)

By using Young’s inequality

ab ≤
αpap

p
+

α−qbq

q

for any real numbers p, q, α, a, b with 1
p

+ 1
q

= 1, (5.17) becomes

∫

M

v6l|B|4lφ4l ∗ 1 ≤ C2(l)

∫

M

v6l|∇φ|4l ∗ 1. (5.18)

Choosing φ as the standard cut-off function, we obtain
∫

DR

v6l|B|4l ∗ 1 ≤ C2(l)R−4l

∫

D2R

v6l ∗ 1

≤ C2(l)R−4lvol(D2R) sup
D2R

v6l, (5.19)

We know that M has polynomial volume growth of order n + m, m ≥ 0. From (5.16)
and (5.19) we obtain

v3l|B|2l(o) ≤ C3(n)R−n−2lRn+m sup
D2R

v3l,

then

v
3

2 |B|(o) ≤ C(n)R−1+ m
2l

+µ. (5.20)
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For given m ≥ 0 and 0 ≤ µ < 1, we can choose l large enough such that

−1 +
m

2l
+ µ < 0.

Let R go to infinity, we have |B|(o) = 0. Since o is any point in M , we complete the
proof.

In the case if M is an entire graph defined by p functions on R
n+p, v-function is

just the volume element. If

v = O
(

R
2

3
µ
)

,

then
vol(DR) = O(Rn+ 2

3
µ).

In this case we need not assume that M has polynomial growth and have the following
result.

Corollary 5.5. Let M = (x, f(x)) be a minimal graph given by p functions

fα(x1, · · · , xn), p ≥ 2, n < 6, with flat normal bundle. If for 0 ≤ µ < 1

(det(δij + fα
i fα

j ))
1

2 = O(R
2

3
µ),

where R2 = |x|2 + |f |2. Then fα are affine linear functions.

Remark. For a minimal hypersurface M in R
n+1 we have

∆|B|2 ≥ −2|B|4 + 2 |∇B|2

and

|B|∆|B| ≥ −|B|4 +
2

n
|∇|B||2,

instead of (2.6) and (3.5) for p ≥ 2. We then have

∆ (vq|B|s) ≥q (q + 1 − ε−1s) vq−2|B|s|∇v|2

+ s

(

s −
n − 2

n
− ε q

)

vq|B|s−2|∇|B||2 + (q − s) vq|B|s+2.

Choose s sufficiently large, we have

∆(vs|B|s) ≥ 0,

∆(vs+1|B|s) ≥ vs+1|B|s+2.

Then by the similar argument as the higher codimension we obtain

v |B|(o) ≤ C(n)R−1+ m
s

+µ,

provided we assume that M has polynomial volume growth of order n + m, m > 0,

and v-function has growth
v = O(Rµ)

with 0 ≤ µ < 1. We then can conclude that M is flat. In particular, when M is a
graphic minimal hypersurface, we recover the result in [Ni] and [E-H].

Added in proof: In an author’s joint work with K. Smoczyk and Guofang Wang,
the dimension limitation in Theorem 5.4 has been removed. The paper will appear in
Calculus of Variations and PDE.
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