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CUBIC EQUATIONS FOR THE HYPERELLIPTIC LOCUS ∗

SAMUEL GRUSHEVSKY†

Abstract. We prove a conjecture from [BK2] that the multi-dimensional vector addition formula
for Baker-Akhiezer functions obtained there characterizes Jacobians among principally polarized
abelian varieties. We also show that this addition formula is equivalent to Gunning’s multisecant
formula for the Kummer variety obtained in [Gu2].

We then use this addition formula to obtain cubic relations among theta functions that character-
ize the locus of hyperelliptic Jacobians among irreducible abelian varieties. In genus 3 our equations
are equivalent to the vanishing of one theta-null, and thus are classical (see [M], [P]), but already for
genus 4 they appear to be new.

1. Definitions and notations. We work over C, and fix the dimension/genus
g > 1. Let Hg be the Siegel upper half-space — the set of all g × g period matrices
τ , i.e. symmetric complex g × g matrices with positive definite imaginary part. Each
such τ corresponds to an abelian variety Xτ := C

g/τZ
g + Z

g, and the moduli space
Ag of principally polarized abelian varieties (ppavs) is then the quotient of Hg by a
certain action of the symplectic group Sp(2g, Z).

A ppav is called irreducible if it is not isomorphic to a product of two lower-
dimensional ppavs (with polarization). For convenience we denote by Airr

g the moduli
space of irreducible ppavs of genus g. When in the following we say “abelian variety”,
we actually mean a ppav.

Denoting e(x) := exp(πix), for a period matrix τ and a vector z ∈ C
g we define

the theta function with characteristics ε, δ ∈ (Z/2Z)g, thought of as vectors consisting
of zeros and ones, to be

θ

[
ε
δ

]
(τ, z) :=

∑
m∈Zg

e
[(

m +
ε

2
, τ(m +

ε

2
)
)

+ 2
(

m +
ε

2
, z +

δ

2

)]
,

where (·, ·) denotes the scalar product. A theta function with characteristics is even
or odd as a function of z depending on whether the scalar product (ε, δ) is even or
odd.

We denote by θ(τ, z) := θ

[
0
0

]
(τ, z) the classical Riemann’s theta function. Theta

functions with characteristics are, up to a constant factor, just the values of Riemann’s
theta function of a shifted argument:

(1)

θ(τ, z + τε+δ
2 ) =

∑
m∈Zg

e
[
(m, τm) + 2

(
m, z + τε+δ

2

)]
=

∑
m∈Zg

e
[(

m+ ε
2 , τ(m+ ε

2 )
)

+ 2
(
m+ ε

2 , z+ δ
2

) − ( ε
2 , τ ε

2 ) − (
ε, z + δ

2

)]

= (−1)(ε,δ)e
[− 1

4 (ε, τε) − (ε, z)
]
θ

[
ε
δ

]
(τ, z).

Thus instead of thinking of a characteristic
[
ε
δ

]
as two integer vectors it sometimes is

better to think of it as the point τε+δ
2 of order two on the abelian variety Xτ .
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We further define theta functions of the second order to be

Θ[ε](τ, z) := θ

[
ε
0

]
(2τ, 2z).

For a fixed τ the theta functions, as functions of the variable z, are sections of certain
bundles on the abelian variety Xτ , which is to say that if the variable z is translated
by a vector of the lattice τZ

g + Z
g, theta functions multiply by a certain number. In

fact it is known that all theta functions of the second order are sections of the same
bundle, denoted 2Θ, and transform as follows:

(2) Θ[ε](τ, z + ej + τek) = e(−2(ek, τek) − 4(ek, z))Θ[ε](τ, z),

where we denote by ek the basis vector for the k’th direction in C
g.

Theta functions of the second order form a basis for the sections of 2Θ over Xτ .
The square of any theta function with characteristics is also a section of 2Θ, and thus
is expressible as a linear combination of theta functions of the second order. In fact
a slightly more general formula, Riemann’s bilinear addition theorem, holds:

(3) θ

[
ε
δ

]
(z)θ

[
ε
δ

]
(w) =

∑
σ∈(Z/2Z)g

(−1)(δ,σ)Θ[σ + ε]
(

z + w

2

)
Θ[σ]

(
z − w

2

)
.

For a fixed τ the map z → {Θ[ε](τ, z)}all ε defines the Kummer embedding K :
Xτ/ ± 1 → P

2g−1. This map is well-defined since all theta functions of the second
order are sections of the same line bundle, and are even in z.

The values of theta functions at z = 0 are called the associated theta constants.
Theta constants of the second order are modular forms of weight one half with re-
spect to a certain finite index normal subgroup Γ(2, 4) ⊂ Sp(2g, Z), which is to say
that if we act upon τ by some γ ∈ Γ(2, 4), then Θ[ε](γτ) = k(γ, τ)Θ[ε](τ), where
k is some multiplier depending on γ and τ , but independent of ε. Thus letting
Ag(2, 4) := Hg/Γ(2, 4), we see that theta constants of the second order define a map
Th : Ag(2, 4) → P

2g−1, which is known to be generically injective for all genera, and
injective for g ≤ 3. The level moduli space Ag(2, 4) is a finite cover of Ag.

Let us denote by Jg ⊂ Ag the locus of Jacobians of Riemann surfaces of genus
g, and by Ig ⊂ Jg — the locus of Jacobians of hyperelliptic Riemann surfaces. The
question of characterizing Jg within Ag is called the Schottky problem, and that of
characterizing Ig — the Schottky problem for the hyperelliptics. More precisely, one
takes the preimages Jg(2, 4) and Ig(2, 4) of Jg and Ig, respectively, under the covering
map π : Ag(2, 4) → Ag, and asks to describe Th(Jg(2, 4)) and Th(Ig(2, 4)) inside
Th(Ag(2, 4)). The question of describing Th(Ag(2, 4)) ⊂ P

2g−1, i.e. determining all
the relations in the subring of the ring of modular forms generated by theta constants
is also of interest, but we will not discuss it here. Notice that Jg and Ig are irreducible,
while Jg(2, 4) and Ig(2, 4) have many irreducible components. We refer the reader to
[I] for more details on theta functions, and to [Gr] for more details on the Schottky
problem.

We will always think of a curve C embedded in its Jacobian by the Abel-Jacobi
map A : C → J(C) with some choice of the basis for the space of holomorphic
differentials and of the starting point P made. This choice will be made explicitly
when necessary. To avoid technical difficulties in the following sections, it will often
be easier to work with the universal cover C̃ of a curve C and the universal cover C

g

of the abelian variety Xτ , and later take the automorphy properties of theta functions
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into account. The abelian variety will be fixed throughout, and thus we will often
omit τ from the notations for theta functions and constants.

In this work we first prove a conjecture stated in [BK2] that the validity of a
certain g-dimensional addition formula developed there and in [BK1] characterizes
Jacobians, and then proceed to obtain from this some explicit identities for theta
functions of hyperelliptic curves. In [M], theorem 9.1 and references therein Mumford
showed that the hyperelliptic locus is characterized by a certain set of vanishing and
non-vanishing conditions for theta constants with characteristics (the idea goes back
at least to Thomae, see [T]). In [P] Poor showed that on Airr

g Mumford’s vanishing
conditions (without the non-vanishing) define precisely the hyperelliptic locus, i.e.
that there are no extra components. However, it is still not known how to obtain an
ideal-theoretic description of the closure of Th(Ig) inside Th(Ag). It is known that
if the vanishing holds and we also have some vanishing instead of non-vanishing, the
abelian variety must be reducible, but then it does not necessarily have to be a limit
of hyperelliptic Jacobians. Thus it would be interesting to study our equations on the
reducible locus. It would also be very interesting to compare Mumford’s equations to
ours, but we have not been able to achieve this yet.

We would also like to refer to a recent work [SM] for a further discussion of these
issues as well as a description of components of I2,4

g as locally complete intersections.

2. Addition formula and multisecants. From [BK2] we know the following
addition formula (called “formula” to distinguish it from Riemann’s addition “theo-
rem”):

Fact 1 ([BK2], theorem 1). Let P := A0, A1, . . . , Ag, Q := Ag+1 ∈ C̃ ⊂ C
g, and

denote by R := K −
g∑

i=1

Ai the vector of Riemann constants shifted by −∑
Ai. Then

for all x, y ∈ C
g the following identity is satisfied:

θ(Q + x + y + R)θ(P + R)
θ(Q + R)θ(P + x + y + R)

=

=
θ(Q + x + R)θ(P + R)
θ(Q + R)θ(P + x + R)

· θ(Q + y + R)θ(P + R)
θ(Q + R)θ(P + y + R)

−
g∑

k=1

θ(Q + R + Ak − P )θ(Q + R − Ak + P + x + y)
θ2(Q + R)θ(P + x + y + R)θ(2Ak − P + R)

·θ(R + Ak + x)θ(P + R)
θ(P + x + R)

· θ(R + Ak + y)θ(P + R)
θ(P + y + R)

.

Though this formula may look formidable, it is very explicit and is written entirely
in terms of theta functions. In the following, we take the Abel-Jacobi map to start
at P , so that P = 0 ∈ C

g. Upon cancellations and multiplication by the common
denominators, the above formula becomes simply

θ(Q + x + y + R)θ(Q + R)θ(x + R)θ(y + R) =
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= θ(x + y + R)θ(R)θ(Q + x + R)θ(Q + y + R)

−
g∑

k=1

θ(R)θ(Q+Ak+R)θ(Q−Ak+x+y+R)θ(Ak+x+R)θ(Ak+y+R)
θ(2Ak+R)

.

To see that this is in fact equivalent to Gunning’s general multisecant formula from
[Gu2] (see Poor’s work [P] for an in-depth discussion) we use Riemann’s bilinear
addition theorem for the last two factors of each term. Denoting z := x+y

2 and
w := x−y

2 , notice that the half-difference is always simply x−y
2 , so we will have a

common factor of Θ[σ](w), and the resulting equation will be

0 =
∑

σ

[
θ(Q+2z+R)θ(Q+R)Θ[σ](z+R) − θ(2z+R)θ(R)Θ[σ](Q+z+R)(4)

+
g∑

k=1

θ(R)θ(Q+Ak+R)θ(Q−Ak+2z+R)Θ[σ](Ak+z+R)
θ(2Ak+R)

]
Θ[σ](w)

In the above the coefficient in the square brackets does not depend on w, so we
have an equation

∑
σ bσΘ[σ](w) = 0 ∀w, where the coefficients bσ do not depend on

w. Since theta functions of the second order are a basis for sections of 2Θ and thus
linearly independent, it means that all coefficients bσ must be zero. Then since bσ

actually are some functions of z multiplied by Θ[σ](Ai + z + R) (i here ranges from
0 to g + 1, i.e. includes P and Q), we have

∀σ,∀z

g+1∑
i=0

ci(z,Ai)Θ[σ](Ai + z + R) = 0

for appropriate ci’s.
Since R does not depend on z, in the above we can shift z by R and redefine

the functions ci to see that the addition formula of [BK2] implies the existence of
holomorphic functions ci, never all vanishing simultaneously, such that for some fixed
A’s lying on the image A(C) ⊂ J(C) we have

(5)
g+1∑
i=0

ci(z)K(Ai + z) = 0 ∀z ∈ C
g,

which is equivalent to saying that the g+2 points K(Ai +z) lie on a g-plane in P
2g−1.

In fact Gunning proves a more general theorem:

Fact 2 ([Gu2], theorem 2). For any curve C of genus g, for any 1 ≤ m ≤ g and
for any points x1, . . . , xm, A0, . . . , Am+1 ∈ A(C) the m+2 points K(Ai +

∑
x−∑

A)
are collinear, i.e. lie on the intersection of the Kummer variety of C with an m-plane
in the projective space P

2g−1.

In particular since the g’th symmetric power of the curve is its Jacobian,
Sg(A(C)) = J(C), the case m = g of this theorem is formula (5), while the case
m = 1 is the case of a family of trisecant lines. It is shown in [Gu1] that the existence
of a family of trisecants characterizes Jacobians among irreducible ppavs.
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3. Characterizing Jacobians by families of multisecants. We will now
show that Buchstaber-Krichever’s addition formula and Gunning’s multisecant for-
mula also characterize Jacobians.

Theorem 3. Let X be an irreducible principally polarized abelian variety of
dimension g, and let A0, . . . , Ag+1 be distinct points of X. Suppose that ∀z ∈ X the
g + 2 points K(Ai + z) are linearly dependent. Then X is the Jacobian of some curve
C, and Ai ∈ A(C).

Proof. Assume g ≥ 4, otherwise the theorem is trivial. Working in the spirit of
Gunning’s work [Gu1], we reduce the theorem to the case of the trisecant.

Indeed, formula (5) is a large number of linear conditions on ci(z). If we can pick
characteristics ε0 . . . εg so that the matrix

⎛
⎜⎝

Θ[ε0](A0 + z) . . . Θ[ε0](Ag+1 + z)
...

. . .
...

Θ[εg](A0 + z) . . . Θ[εg](Ag+1 + z)

⎞
⎟⎠

has rank g + 1, then each ci(z) is the determinant of this matrix with i’s column
deleted, multiplied by (−1)i.

Lemma 4. The functions ci(z) defined as the appropriate determinants above can
be continued to all of C

g to define a holomorphic map �c : C
g → P

g+1 such that (5) is
satisfied.

Proof. If a choice of ε’s as above is impossible, it means that the g + 2 vectors
K(Ai + z) actually lie on a (projective) (g− 1)-plane instead of a g-plane. Suppose in
fact their linear span is generated by K(Ai1 + z), . . . ,K(Aik

+ z). Here k must be at
least 2 and at most g. Indeed if k is 1, then since K is injective on X/ ± 1, it would
mean that all Aj + z are equal to ±(Ai1 + z) and in particular at least two of Aj ’s
would coincide. Now assume n �∈ {i1 . . . ik} and An + z is not of order two, and vary
the point An by adding to it a small vector v. Since by a theorem of Wirtinger (see
[Wi]) for any y ∈ Xτ not of order two the g+1 vectors K(y) and ∂

∂zj
K(y) are linearly

independent, it means that for some j the vector ∂
∂zj

K(An + z) does not lie in the
linear span of K(Ai1 + z), . . . ,K(Aik

+ z), and thus by infinitesimally varying An in
some direction we can make K(An +z), which was a linear combination of K(Aij

+z),
linearly independent with these k vectors. Varying if necessary a few more of the A’s
we can then increase the rank of the (g + 2)× 2g matrix K(A0 + x), . . . , K(Ag+1 + x)
to g + 1, and then all the determinants needed to compute ci’s will be non-zero. We
then compute these ci’s after a small perturbation of A’s as above and then take the
limit of the point �c ∈ P

g+1 as the A’s return to their original positions.
If in fact in the above we had An +x of order two no matter what index n we pick

(in particular all points Ai differ by vectors of order two, and this is the case which
is needed for studying the hyperelliptic Jacobians), then we note that the functions
ci can be defined uniquely for all y’s near z, as then An + y is not of order two.
Then since c’s are given as polynomials in thetas, their ratios cannot have essential
singularities and thus can be continued to the point z.

Remark 5. It would be nice to have a map �c : X → P
g+1 instead of a map from

C
g, but unfortunately this is usually impossible. Indeed, the multipliers for different

functions θ(Ai +z) from formula (2) are different (unless Ai differ only by half-integer
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vectors), i.e. they are sections of different bundles on X, and thus the map from X
to P

g is not well-defined.

We will show that p := (1 : −1 : 0 : . . . : 0) = �c(y) for some y ∈ C
g and that

the differential d�c : TyC
g → TpP

g+1 is of maximal rank. This will then imply that
locally near p the image �c(Cg) is of dimension g and thus locally the preimage of some
coordinate plane P

2 ⊂ P
g+1 containing p is at least one-dimensional. Then we have

a one-dimensional family of trisecants of the Kummer variety, and by Welters’ [We]
infinitesimal version of Gunning’s trisecant criterion from [Gu1], X is a Jacobian of
some curve C with the points A0, A1, A2 lying on A(C). Changing the point p by
renumbering coordinates we see that all Ai lie on A(C).

Indeed let y := −A0+A1
2 as a point of C

g. Then A0 + y = −(A1 + y) (in C
g)

and, since theta functions are even, K(A0 + y) = K(A1 + y) (as points of C
g, non-

projectivized), which means that �c(y) = p (if we compute the determinants above, all
the ci(y) with i ≥ 2 will vanish as the matrix will have two identical columns, and
the determinants for c0(y) and c1(y) will be the same, but taken with opposite signs).
Now suppose that the rank of d�c|y is not maximal, i.e. that there is some vector
v ∈ C

g such that for all i we have ∂
∂v ci(z)|y = λci(p) for some constant λ independent

of i — this means that the derivative ∂
∂v of the projective point �c is zero.

Let us take the derivative ∂
∂v of (5) at y:

g+1∑
i=0

∂ci(z)
∂v K(Ai + z) + ci(z)∂K

∂v (Ai + z)
∣∣∣
y

= λc0(y)(K(A0 + y) − K(A1 + y)) + c0(y)(∂K
∂v (A0 + y) − ∂K

∂v (A1 + y))

= 2c0(y)∂K
∂v (A0 + y) = 0,

because theta functions are even and their derivatives are odd. But this then implies
that ∂K

∂v (A0 + y) = 0, which is impossible by Wirtinger’s theorem unless A0 + y =
A0−A1

2 is a point of order two in X. If this is the case, though, it would mean that
A0 −A1 = 0 ∈ X, which contradicts the assumption that all Ai are distinct. Thus we
have arrived at a contradiction and showed that the differential d�c : TyC

g → TP P
g+1

is injective.

With more work it can also be shown that Gunning’s addition formula for all
other values of m also serves to characterize Jacobians:

Proposition 6. Let X be an irreducible principally polarized abelian variety of
dimension g, and let A0, . . . , Am+1 be different points of X. Suppose that the m + 2
points K(Ai+z) are linearly dependent for any z ∈ M , where the set M ⊂ X is at least
m-dimensional at the point y = −Ai+Aj

2 for some i and j (i.e. has a non-degenerate
m-jet at y). Then X is the Jacobian of some curve.

Proof. The proof is analogous to the one above. We take the largest M possible,
and then the lemma still works to define a map �cm : M → P

m+1. Then we want to
show that d�c is injective on TyM̃ . But since d�c is non-degenerate on TyC

g, it is also
non-degenerate on a subspace, and we are done.

Remark 7. By imitating the Gunning’s proof of the trisecant theorem in [Gu1]
it seems to be also possible to show that if M is m-dimensional at some point, not
necessarily −Ai+Aj

2 , then X is a Jacobian. However, as we do not need this result in
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what follows, and the proof would be technically rather complicated, we will not give
it.

In [Gu2] Gunning shows that for a Jacobian X with fixed A’s the coefficients ci

in (5) are unique up to scaling and expressible in terms of the Klein-Gunning prime
form. The Klein-Gunning prime form expression is rather hard to deal with (see [P]
for a detailed discussion and computations); however, the expression for ci obtained
in formula (4) seems more amenable.

Equation (4) includes, however, both theta functions of the second order and the
classical Riemann’s theta function with zero characteristic. Let us use the addition
theorem once again for the last two factors of the type θ(. . .)θ(. . .) in each term. We
then get for all σ

(6)

∑
ε

Θ[ε](Q+z+R)Θ[ε](z)Θ[σ](z+R) − Θ[ε](z+R)Θ[ε](z)Θ[σ](Q+z+R)

+
∑
k,ε

θ(R)
θ(2Ak+R)Θ[ε](Q + z + R)Θ[ε](z − Ak)Θ[σ](Ak + z + R) = 0.

Since all the transformations that we have done so far are equivalencies, we do not
lose any information. Moreover, since by Gunning’s results in [Gu2] the coefficients
ci in (5) are unique, they must be exactly the ones given by formula (6), and thus
formula (6) is satisfied if and only if the collinearity condition (5) is satisfied.

Proposition 8. With the same assumptions and notations as above, identity (6)
characterizes Jacobians among all irreducible abelian varieties.

4. Addition formula for the hyperelliptic case. Formula (6) we obtained is
in terms of theta functions evaluated at different points. In the classical approach to
the Schottky problem (see [S] for the origins and [F], [Gr] for a review) one wants to
characterize the Jacobian locus by some algebraic relations among theta constants.
Thus it would be nice if for some special values of z, P,Q and A’s the addition formula
yielded such equations.

However, from the transformation rule (2) for theta functions it is easy to see
that if a vector v is not a point of order two, then Θ[ε](z + v) is not a section of the
bundle 2Θ and thus cannot be expressed as a linear combination of theta functions
of the second order. Thus we only have a reasonable hope of getting from (6) some
equations for theta constants if we are so lucky that all the “shifts” of z that appear
there are points of order two. In particular, this means that the points Ai + z + R
must be of order two for all i.

Now suppose that indeed both Ai + z + R and Aj + z + R for i �= j are points
of order two on J(C). Then their difference, Ai − Aj , is also of order two, so we
have 2Ai − 2Aj = 0 ∈ J(C). By Abel’s theorem this then means that there is a
function f on C whose divisor is equal to 2Ai − 2Aj , i.e. with a double pole at Aj

and holomorphic on C − {Aj}. Since the existence of such a function characterizes
hyperelliptic curves, it means that C then has to be hyperelliptic. For the hyperelliptic
curves it is known (see, for example, [M]) that if we take P = 0 to be the image of
one of the Weierstrass points, then the other 2g + 1 Weierstrass points will also map
to points of order two on the Jacobian.

Thus let us assume that all A’s and Q in formula 6 are chosen to be points of
order two, i.e. that we are dealing with a hyperelliptic curve, and let us rewrite the
addition formula in this case. Denote Q = τα0+β0

2 , Ak = ταk+βk

2 and R = τα+β
2 —

in fact R is expressible in terms of A’s and Riemann constants, but we will deal with
this later.
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Now we rewrite formula (6) for these A’s and Q. In doing this, we need to be
extra careful to remember that we are actually working on C̃ and C

g, as not to omit
any important automorphy factors. Indeed, from the automorphy properties of θ it
follows that

θ(R)
θ(2Ak + R)

=
θ
(

τα+β
2

)

θ
(
ταk + βk + τα+β

2

) = e[(αk, ταk) + (α, ταk)].

Also for any integers a and b it follows from (1) and (2) that

(7)

Θ[δ]
(
τ, z + τa+b

2

)
= θ

[
δ
0

]
(2τ, 2z + τa + b)

= θ(2τ, 2z + τδ + τa)e
[

1
2 (δ, τδ) + 2(δ, z) + (δ, τa) + (δ, b)

]

= θ

[
δ + a

0

]
(2τ, 2z)e

[− 1
2 (δ + a, τ(δ + a)) − 2(δ + a, z)

]

·e [
1
2 (δ, τδ) + 2(δ, z) + (δ, τa) + (δ, b)

]
= (−1)(δ,b)e

[− 1
2 (a, τa) − 2(a, z)

]
Θ[δ + a](τ, z).

When we substitute this into (6) notice that as functions of z all terms are actually
sections of the same bundle, 6Θ, as each is cubic in theta functions of the second
order. Thus the e[(∗, z)] factors must cancel everywhere. Also evaluating at z = 0
and noticing that all terms are modular forms in τ with respect to Γ(2, 4) of the
same weight, we expect the factors e[(∗, τ∗)] to cancel as well. A trivial but tedious
computation confirms this, and we arrive at

Proposition 9. An irreducible abelian variety Xτ with some points P =
0, Q,A1, . . . , Ag with Ai = ταk+βk

2 ∈ C
g is the Jacobian of a hyperelliptic curve C,

and P,Q,Ai ∈ A(C̃) ⊂ C
g if and only if the following is satisfied for all σ ∈ (Z/2Z)g

and for all z ∈ C
g:

(8)

∑
ε

(−1)(ε,β+β0)Θ[ε + α + α0](z)Θ[ε](z)Θ[σ + α](z)

=
∑
e,k

(−1)(ε,β+β0+βk)+(σ,βk)Θ[ε+α+α0](z)Θ[ε+αk](z)Θ[σ+α+αk](z)

+
∑
ε

(−1)(ε,β)+(σ,β0)Θ[ε + α](z)Θ[ε](z)Θ[σ + α + α0](z).

5. Cubic equations for the hyperelliptic locus. To make formula (8) en-
tirely explicit, we now need to pick some specific way to map a hyperelliptic curve
into its Jacobian, and pick some g + 2 Weierstrass points on it in a certain way. This
is indeed a very classical construction.

Let us think of a hyperelliptic curve sitting on a skewer that intersects it in
precisely the 2g + 2 Weierstrass points. Label them p1, . . . , p2g+2 going from left to
right along the skewer. Then pick for the basis of the cycles ai to be the loop around
the i’th handle, passing through points p2i−1 and p2i, and bi to be the loop around
the i’th hole, passing through p2i and p2i+1. Then thinking of the skewer as being the
x axis and the whole picture being that of y2 =

∏
(x−pi), we can compute the images
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of pi in the Jacobian. Indeed, let us use p1 as the starting point, so that A(p1) = 0.
Then we see that A(p2) = e1

2 , A(p3) = τe1+e1
2 , A(p4) = τe1+e1

2 + e1+e2
2 = τe1+e2

2 + e1,
A(p5) = τ(e1+e2)+e2

2 + e1, and in general we have A(p2i) = τsi−1+ei

2 + si−1 and
A(p2i+1) = τsi+ei

2 + si−1 for 1 ≤ i ≤ g, while A(p2g+2) = τsg

2 (where for convenience

we have denoted sk :=
k∑

i=1

ei).

For our purposes let us choose P := 0 = A(p1), Q := A(p2) and Ak := A(p2k+2)
for 1 ≤ k ≤ g. We now need to compute the vector R, i.e to compute the vector
of Riemann constants and subtract from it the sum of A’s. The result is certainly
classical: R = Q = A(p2). To prove this one can note that by definition R is the
unique vector such that θ(A(p) + R) as a function of p ∈ C has precisely g zeroes at
A−1(Ak), i.e. at p2k+2. To check that this is the case we note that A(p2) + A(p2i)
is always odd, as a theta characteristic, so that even Riemann’s theta function will
vanish at the point A(p2) + A(p2i); thus R = A(p2).

Let us now substitute all this into formula (8). We have α = α0 = 0, β = β0 = e1,
αk = sk and βk = ek+1, where we understand eg+1 to be zero. Since all theta functions
of the second order are periodic with respect to z → z + ei, the additional integer
shifts by si do not matter, and finally (8) yields

Theorem 10. An irreducible period matrix τ ∈ Hg is the period matrix of
a hyperelliptic Jacobian with the basis of cycles chosen as above if and only if the
following cubic identity for theta functions of the second order is satisfied for all
σ ∈ (Z/2Z)g and for all z ∈ Xτ (and thus for all z ∈ C

g):

(9)

∑
ε

Θ[ε](z)Θ[ε](z)Θ[σ](z)

=
∑
ε

g∑
k=0

(−1)(ε+σ,ek+1)Θ[ε](z)Θ[ε + sk]Θ[σ + sk](z),

where we understand eg+1 to be zero.

To check that this makes sense let us do the computations in low genus and see
what we get. To simplify formulas, we write [ε] for Θ[ε](z). We order the ε for
summation of the terms of (9) lexicographically to keep track of where we are.

Genus 2: We do not expect to get any meaningful equations, as any irreducible
abelian variety of dimension two is a hyperelliptic Jacobian, so our characterization
should be vacuous. We verify this; here is what formula (9) yields for σ = 00:

[00][00][00] + [01][01][00] + [10][10][00] + [11][11][00]
= [00][00][00] + [01][01][00] − [10][10][00] − [11][11][00]
+ [00][10][10] − [01][11][10] + [10][00][10] − [11][01][10]
+ [00][11][11] + [01][10][11] + [10][01][11] + [11][00][11]

and all the terms cancel. A similar computation shows that the identity is also trivial
for all other choices of σ.

Genus 3: Here we have dimJ3 = dimA3 = 6, while dim I3 = 5, so we should have
a non-trivial identity. Indeed let us choose σ = 000 and write down (9) in this case;
after multiple cancellations and dividing by two it becomes simply

Θ[000](z)Θ[101](z)Θ[101](z) + Θ[011](z)Θ[101](z)Θ[110](z)
= Θ[010](z)Θ[101](z)Θ[111](z) + Θ[001](z)Θ[100](z)Θ[101](z),
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which using formula (3) is equivalent to

(10) Θ[101](z) · θ
[
101
111

]
(2z) · θ

[
101
111

]
(0) = 0.

Choosing a different σ yields a different equation: in general we get

Θ[101 + σ](z) · θ
[
101
111

]
(2z) · θ

[
101
111

]
(0) = 0.

All of these equations together are equivalent to θ

[
101
111

]
(0) = 0, since theta functions

of the second order never all vanish simultaneously and θ

[
101
111

]
(2z) cannot be iden-

tically zero in z. Now to actually characterize I3 ⊂ A3 we need to get rid of the
condition “that the basis of cycles is chosen as above” in theorem 10. But choosing
a different basis of cycles means acting on the period matrix by a symplectic trans-
formation. Since theta constants are modular with respect to Γ(2, 4), conjugating
equation (10) by any γ ∈ Γ(2, 4) would not change it, so we only need to act by
the finite group Sp(2g, Z)/Γ(2, 4). It is well known that the action of this group is
transitive on the set of even theta characteristics (see [I]), so we can get the vanishing
of a theta constant with any even characteristic.

Proposition 11. An irreducible abelian variety of genus 3 is a hyperelliptic
Jacobian if and only if it has a vanishing theta constant with even characteristic.
This is known classically, see [M].
Genus 4: here the situation is more interesting: Mumford’s conditions include some
non-vanishing, so getting the explicit equations for the closure of Th(I4) ⊂ Th(A4),
without any inequalities serving to cut off the extra components inside the reducible
locus, would be interesting. For the case of σ = 0000 the equation we get from
(9) after cancellations becomes the following cubic (we have rearranged the terms
lexicographically and omitted square brackets):

0000·1001·1001 + 0000·1010·1010 + 0000·1011·1011 + 0000·1101·1101
0011·1101·1110 + 0101·1000·1101 + 0101·1011·1110 + 0110·1010·1100
0111·1001·1110 + 0111·1011·1100 = 0001·1000·1001 + 0001·1100·1101
0010·1000·1010 + 0010·1101·1111 + 0011·1000·1011 + 0100·1010·1110
0100·1011·1111 + 0101·1001·1100 + 0101·1010·1111 + 0110·1001·1111,

while for example for σ = 0001 we get

0000·1000·1001 + 0000·1100·1101 + 0010·1001·1010 + 0011·1001·1011
0011·1100·1110 + 0100·1000·1101 + 0100·1011·1110 + 0101·1010·1110
0101·1011·1111 + 0111·1000·1110 = 0001·1000·1000 + 0001·1010·1010
0001·1011·1011 + 0001·1100·1100 + 0010·1100·1111 + 0100·1001·1100
0100·1010·1111 + 0110·1000·1111 + 0110·1010·1101 + 0111·1011·1101.

Neither of these cubics is equal to Θ[δ](z) θ

[
α
β

]
(2z)θ

[
α
β

]
(0) for any α, β, δ. How-

ever, from theorem 10 we see that

Proposition 12. The vanishing of the full set of 16 cubics similar to the
ones above, for all σ, identically in z characterizes a component of Th(I4(2, 4)) ⊂
Th(Airr

4 (2, 4)).
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By Mumford’s and Poor’s results such a component is also determined by identical
vanishing of some set of theta constants with characteristics. Thus the vanishing of
our 16 cubics should imply, for irreducible abelian varieties, the vanishing of some
theta constants with characteristics and vice versa, but we are now unable to see this
directly.

The difficulty in doing so is not only due to the fact that the cubic equations are
very complicated. Indeed, thinking of each cubic fσ, evaluated at z = 0, as a poly-
nomial on P

15 with zero locus Z(fσ), we can only say that ∩
σ

Z(fσ) ∩ Th(Airr
4 (2, 4))

is contained in the common zero locus of some quadrics (which are by (3) the expres-
sions for theta constants with characteristics in terms of theta constants of the second
order) on Th(Airr

4 (2, 4)). It may in fact not be the case that the whole ∩Z(fσ) is
contained in the zero locus of these quadrics in P

15. Thus to be able to see the relation
of the vanishing of our cubics to the vanishing of theta constants with characteristics,
we may need to know the equations for the closure of Th(Airr

4 (2, 4)) ⊂ P
15, which are

not known.
The above discussion was for just one component of Th(I4(2, 4)). The equations

for the other components corresponding to different choices of the basis of cycles on
the curve are of course obtained by acting on the set of 16 cubics by elements of
Sp(8, Z)/Γ(2, 4).

Final Remark. It seems likely that in any genus evaluating equations (9) only
at z = 0 for all σ should yield the defining set of equations for a component of
Th(Ig(2, 4)). Indeed using (7) it can be easily shown that if these are satisfied, then
(9) is satisfied for z being any point of order two. Thus both sides of (9) are sections
of 6Θ that agree at all points of order two, and one would hope that then they agree
everywhere and give the same function of z, so that (9) is true identically and we can
apply theorem 10.
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