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Abstract

In this paper, we consider the following nonlinear second-order differential equa-
tions: −(Φ(u′(t)))′ = f (t,u(t),u′(t))+Ξ(u(t)) a.e on Ω= [0,T ] with a discontinuous per-
turbation and multivalued boundary conditions. The nonlinear differential operator is
not necessarily homogeneous and incorporates as a special case the one-dimensional
p-Laplacian. By combining lower and upper solutions method, a fixed point theorem
for multifunction and theory of monotone operators, we show the existence of solu-
tions and existence of extremal solutions in the order interval [α,β] where α and β
are assumed respectively an ordered pair of lower and upper solutions of the problem.
Moreover, we show that our method of proof also applies to the periodic problem.
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1 Introduction

We consider the nonlinear second order problem: −
(
Φ(u′(t))

)′
= f (t,u(t),u′(t))+Ξ(u(t)) a.e on Ω = [0,T ]

u′(0) ∈ B1(u(0)),−u′(T ) ∈ B2(u(T ))
(1.1)

where B1 and B2 are maximal monotone graphs in R2 and are some multifunctions which
describe the boundary conditions, f : Ω×R2 → R is Lp−Caratheodory function, p ≥ 2,
Ξ :R→R is a not necessarily continuous map, Φ :R→R is an increasing homeomorphism.
The Φ−Laplacian operators in the problem (1.1) contain, for example, some version of
Φ−Laplacian operators like the case when, for all z ∈ R, Φ(z) = a(z)Φp(z) with a : R→
]0,+∞[ is a continuous map and for all z ∈ R, Φp(z) = |z|p−2 z,.

Second order boundary value problems involving a Φ−Laplacian operators have re-
ceived a lot of attention with respect to existence and multiplicity solutions. As examples,
see [1,5,6,7,8,11,12,13,14,15] and references therein. In their book, Papageorgiou and
Kyritsi [6] (see the problem (5.111) p.390) study the following single-valued version of the
problem in Staicu-Papageorgiou [12] : −

(
a(u′(t))Φp(u′(t))

)′
= f (t,u(t),u′(t))+Ξ(u(t)) a.e on Ω = [0,T ]

u′(0) ∈ B1(u(0)),−u′(T ) ∈ B2(u(T ))

where B1,B2,Ξ and f are defined as in problem (1.1) and for all z ∈ R, a(z) = 1. The
results of the present paper hold for some a : R→ ]0,+∞[. So, our work generalize the
one of Kyritsi-Bader [6]. Furthermore, when the maps B1 and B2 of problem (1.1) are
single- valued, continuous and monotone, by setting B1 = g0 and B2 = −gT , then problem
(1.1) become Neumann-Steklov problem. So, the formulation of problem (1.1) incorpo-
rates Neumann-Steklov type problems considered by Goli and Adjé in [15] but, here, the
kind of Φ−Laplacian differential operators are different. Also, the boundary conditions of
problem (1.1) unify the classical problems of Dirichlet, Neumann, Sturm-Liouville but not
the periodic case. However, as in [6], our method of proof stay true for the periodic case.

The goal of this paper is to establish existence of solution and extremal solutions con-
cerning the problem (1.1 ). The method of proof, in this work, is the same of the one of
Kyritsi-Papageorgiou[6]. It combines lower and upper solutions method, theory of mono-
tone operators and a fixed point theorem for multifunctions in ordered Banach space, due
to Heikilla-Hu [9].

2 Notations and preliminaries

In this section, we introduce our terminology and notations. We also recall some basic
definitions and facts from multivalued analysis that we shall need in the sequel. Our main
sources are the books of Hu-Papageorgiou [10] and Zeidler [2].
We denote:

• L1 (Ω): the Banach space of Lebesgue-integrable functions on Ω ;
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• ‖u‖1 =
∫ T

0 |u(t)|dt: the norm on L1 (Ω) ;

• L1 (Ω)+ =
{
u ∈ L1 (Ω) : u(t) ≥ 0 a.e on Ω

}
;

• Lp (Ω) =
{
u mesurable and

∫
Ω
|u(t)|p dt <∞

}
;

• ‖u‖p =
(∫ T

0 |u(t)|p dt
) 1

p
: the norm on Lp (Ω) ;

• L∞ (Ω) = {u mesurable on Ω and there exists C such that |u(t)| ≤C a.e on Ω} ;

• W1,p (Ω) = {u ∈ Lp (Ω) : u′ ∈ Lp (Ω)} with u′ the weak derivative of u ;

• ‖y‖ =
(∫ T

0 |y(t)|p+ |y′(t)|p
) 1

p
: the norm on W1,p (Ω) ;

• W1,p
0 (Ω) =

{
u ∈W1,p (Ω) : u = 0 on ∂Ω

}
where ∂Ω denotes the boundary of Ω ;

• W−1,p (Ω) : the dual of W1,p
0 (Ω) ;

• ‖.‖R2 : the euclidean norm in R2 ;

• C (Ω): the banach space of continuous functions on Ω ;

• ‖u‖∞ =max {|u(t)| : t ∈Ω}: the norm on C (Ω) ;

• C1 (Ω) = {u :Ω→ R : u′ ∈C (Ω)} with u′ the derivative function of u ;

• ⇀: the weak convergence ;

• −→: the strong convergence ;

• s+ =max {s,0} ;

• |x|: absolute value of number x ;

• R(A) : image of operator A ;

• Φp(x) = |x|p−2 x: the one-dimensional operator p−Laplacian ;

• P(X∗) : the family of subsets of space X∗.

Let X be a reflexive Banach space and X∗ the topological dual of X. A map A : D(A)⊆ X −→
P(X∗) is said to be monotone, if for all x,y ∈ D(A) and for all x∗ ∈ A(x),y∗ ∈ A(y), we have
〈x∗− y∗, x− y〉 ≥ 0. By 〈.〉, we denote the duality brackets for the pair (X,X∗). If additionally,
the fact that 〈x∗− y∗, x− y〉 = 0 implies that x = y, then we say that A is strictly monotone.
The map A is said to be maximal monotone, if it is monotone and for all x ∈D(A), x∗ ∈ A(x),
the fact that 〈x∗− y∗, x− y〉 ≥ 0 implies that y ∈D(A) and y∗ ∈ A(y). It is clear from this defini-
tion that A is maximal monotone if and only if its graph GrA = {(x, x∗) ∈ X×X∗ : x∗ ∈ A(x)}
is maximal with respect to inclusion among the graphs of monotone maps . If A is maxi-
mal monotone , for any x ∈ D(A), the set A(x) is nonempty, closed and convex. Moreover
, GrA is demiclosed, ie, if (xn, x∗n) ∈ GrA,n ≥ 1, either xn → x in X and x∗n ⇀ x∗ in X∗, or
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xn ⇀ x in X and x∗n → x∗ in X∗, then (x, x∗) ∈ GrA. If A : X −→ X∗ is everywhere defined
and single-valued, we say that A is demicontinuous, if for every sequence (xn)n≥1 such that
xn −→ x in X, we have that A(xn) ⇀ A(x) in X∗. If map A : X ⊇ D(A) −→ X∗ is monotone
and demicontinuous, then it is also maximal monotone. A map : X ⊇ D(A) −→ P(X∗) is said
to be coercive, if D(A) ⊆ X is bounded or if D(A) is unbounded and we have that

inf {〈x∗, x〉X : x∗ ∈ A(x)}
‖x‖X

−→ +∞ as ‖x‖X −→ +∞, x ∈ D(A).

A maximal monotone and coercive map is surjective. Let Y,Z be Banach spaces and
L : Y −→ Z. We say:

(a) L is completely continuous, if yn ⇀ y in Y implies L(yn) −→ L(y) in Z and

(b) L is compact, if it is continuous and maps bounded sets into relatively compact sets.

In general, these two notions are distinct. However, if Y is reflexive, then complete conti-
nuity implies compactness. Moreover, if Y is reflexive and L is linear, then the two notions
are equivalent.

To establish the existence of a solution for problem (1.1), we will need the following
fixed point theorem for multifunctions in ordered Banach spaces due to Heikkila-Hu [9].

Theorem 2.1. Let X be a separable, reflexive and ordered Banach space, U ⊆ X a nonempty
and weakly closed set. Let S : U −→ P(U)\{∅} be a multifunction with weakly closed values.
We suppose that S (U) is bounded and :

(i) V = {u ∈ U : u ≤ v, for some v ∈ S (u)} is nonempty ;

(ii) if u1 ≤ y1,y1 ∈ S (u1) and u1 ≤ u2, then we can find y2 ∈ S (u2) such that y1 ≤ y2.

Then S has a fixed point , that’s mean there exists u ∈ U such that u ∈ S (u).

3 Auxiliary results

Let p,q ∈N∗ such that 1
p +

1
q = 1 and p ≥ 2. First, let us define what we mean by solution of

problem (1.1).

Definition 3.1. A function u ∈C1 (Ω) such thatΦ(u′(.)) ∈W1,q ((0,T )) is said to be a solution
of the problem (1.1), if it verifies (1.1).

Next, we introduce the notions of upper and lower solutions for problem (1.1).

Definition 3.2. (a) A function β ∈ C1 (Ω) such that Φ(β′(.)) ∈ W1,q ((0,T )) is said to be
an upper solution of the problem (1.1), if: −

(
Φ(β′(t))

)′
≥ f (t,β(t),β′(t))+Ξ(β(t)) a.e on Ω = [0,T ]

β′(0) ∈ B1(β(0))−R+,−β′(T ) ∈ B2(β(T ))−R+.
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(b) A function α ∈ C1 (Ω) such that Φ(α′(.)) ∈W1,q ((0,T )) is said to be a lower solution
of problem (1.1), if: −

(
Φ(α′(t))

)′
≤ f (t,α(t),α′(t))+Ξ(α(t)) a.e on Ω = [0,T ]

α′(0) ∈ B1(α(0))+R+,−α′(T ) ∈ B2(α(T ))+R+.

Remark 3.3. In general, for a given problem, there is not methodology (single valued and
multivalued alike) which allows to generate a lower and an upper solutions. But, one should
try simple functions such as constants, linear, quadratic, exponentials, eigenfunctions of
simple operator, etc.

Our hypotheses on the data of (1.1) are the following:

(H0) : There exist a lower solution α ∈C1 (Ω) and an upper solution β ∈C1 (Ω) .

(HΦ) Φ : R −→ R is an increasing continuous map such that:

(a) Φ(0) = 0 ;

(b) there exists d1 > 0 such that: Φ(x)x ≥ d1 |x|p for all x ∈ R ;

(c) there exist d2,d3 > 0 such that for a.e t ∈Ω and for all x ∈ R :

|Φ(x)| ≤ d2+d3 |x|p−1 .

Remark 3.4. Suppose that Φ(z) = Φp(z) = |z|p−2 z, p ≥ 2 . Then this function sat-
isfies hypothesis (HΦ). This function correspond to the one-dimensional operator
p−Laplacian. Another interesting case which satisfies hypothesis (HΦ) is when Φ
is defined by Φ(z) = a(z) |z|p−2 z with a : R→ ]0,+∞[ continuous, a(y) ≥ k > 0 for all
y ≥ 0 and y 7→ a(y) |y|p−2 y is strictly increasing on R and a(y) |y|p−1 ≤ d2+d3 |y|p−1.
In fact, one can write a(z)= ϕ(|z|) with ϕ : ]0,+∞[→ ]0,+∞[. For examples, we have:

ϕ(|y|) =

√
1+

(
1+ |y|p−1

)2

1+ |y|p−1 and ϕ(|y|) = 1+
1

1+ |y|p−1 .

It is well-know that under the monotonicity condition and hypotheses (a) and (b) , Φ
is a homeomorphism from R onto R. And Φ−1 is strictly monotone and

∣∣∣Φ−1(y)
∣∣∣→

+∞ as |y| → +∞ (See Deimling [4] chap. 3 ).

(H f ) f :Ω×R2→ R is a function such that:

(i) for all x,y ∈ R, t 7−→ f (t, x,y) is measurable;

(ii) for a.e t ∈Ω, (x,y) 7−→ f (t, x,y) is continuous;

(iii) for a.e t ∈Ω, for all (x,y) ∈ [α(t),β(t)]×R, we have :

| f (t, x,y)| < η (|Φ(y)|) (ψ(t)+ c |y|)

where ψ ∈ L1 (Ω)+ ,c> 0 and η :R+ −→R+ \{0} a Borel measurable nondecreas-
ing functions such that:∫ +∞

Φ( λ)

ds
η(s)

>‖ψ‖1+ c
(
max
Ω

β−min
Ω
α
)
+

T
η(λ)

sup
{
|Ξ(z)| : |z| ≤max

{
‖α‖∞ ,‖β‖∞

}}



Lower and Upper Solutions Method for Nonlinear 2nd Order Differential Equations 27

with λ =
max {|α(T )−β(0)| , |α(0)−β(T )|}

T
;

(iv) for every r > 0, there exists γr ∈ Lq (Ω) such that for a.e t ∈ Ω and for all x,y ∈
R with
|x| , |y| ≤ r , we have: | f (t, x,y)| ≤ γr(t).

Remark 3.5. Hypothesis (H f )(iii) is known as a BernsteinNagumo Wintner growth
condition and produces an uniform a priori bound of the derivatives of the solutions
of problem (1.1).
And the hypotheses (H f )(i), (ii) and (iv) are well known as Lp−Caratheodory condi-
tions.

(HB) : B1 and B2 : R −→ P (R) are maximal monotone maps such that 0 ∈ B1 (0)∩B2 (0).

Remark 3.6. There exist functions E1,E2 : R→ R∪ {+∞} proper, convex and lower
semicontinuous which are not identically equal to +∞ such that B1 = ∂E1,B2 = ∂E2
. More exactly, there exists some increasing positives functions p1 and p2 such that
pi(s) = Proj (0; Bi(s)) (the minimum absolute value element in the closed, convex set
Bi(s)). Then Ei(s)=

∫ s
0 pi(t)dt, i= 1,2. We have: for all s ∈R, Bi(s)= [pi(s−); pi(s+)],

where pi(s−) = limε→0+ pi(s−ε) and pi(s+) = limε→0+ pi(s+ε) , i = 1,2.

(HΞ) : Ξ : R −→ R is a function that maps bounded sets to bounded sets and there exists
M > 0 such that x −→ Ξ(x)+Mx is increasing.

Remark 3.7. We emphasize that Ξ need not be continuous.

Lemma 3.8. If u ∈C1 (Ω) and hypotheses (HΦ) and (H f )(iii) hold,

−
(
Φ(u′(t))

)′
= f (t,u(t),u′(t))+Ξ(u(t)) a.e on Ω = [0,T ]

and if
α(t) ≤ u(t) ≤ β(t) for all t ∈Ω

then, there exists M1 > 0 (depending only on α,β,η,ψ,Ξ,c ) such that: |u′(t)| ≤M1 for all t ∈
Ω.

Proof. Set µ =
(

1
η(λ)

)
sup

{
|Ξ(z)| : |z| ≤max

{
‖α‖∞ ,‖β‖∞

}}
(See hypothesis HΞ). By hypoth-

esis (iii) of (H f ), we can find M1 > λ such that∫ Φ(M1)

Φ(λ)

ds
η(s)

>‖ψ‖1+ c
(
max
Ω

β−min
Ω
α
)
+µT.

We claim that |u′(t)| ≤ M1 for all t ∈ Ω. Suppose that this is not the case. Then, we can find
t1 ∈Ω such that ∣∣∣u′(t1)

∣∣∣ > M1.

By the mean value theorem, there exists t2 ∈ (0,T ) such that u(T )−u(0) = u′(t2)T . Without
any loss of generality, we assume that t2 ≤ t1. We obtain:
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∣∣∣u′(t2)
∣∣∣ = 1

T
|u(T )−u(0)| ≤

1
T

max {|α(T )−β(0)| , |β(T )−α(0)|} =⇒
∣∣∣u′(t2)

∣∣∣ ≤ λ < M1.

Since u ∈ C1 (Ω), by the intermediate value theorem, there exists t3 and t4 ∈ [t2, t1) with
t3 < t4 such that |u′(t3)| = λ and |u′(t4)| = M1. Then λ < |u′(t)| < M1 for all t ∈ (t3, t4) . So, we
have two possibilities:

(a) u′(t3) = λ , u′(t4) = M1 and λ < u′(t) < M1 for t3 < t < t4,

(b) u′(t3) = −λ , u′(t4) = −M1 and −M1 < u′(t) < −λ for t3 < t < t4.

We will treat case (a). In similarly fashion , case (b) can be analysed. We have:

−(Φ(u′(t)))′ = f (t,u(t),u′(t))+Ξ(u(t)) a.e on Ω = [0,T ]

⇒
∣∣∣Φ(u′(t))

∣∣∣′ ≤ ∣∣∣(Φ(u′(t)))′
∣∣∣ ≤ ∣∣∣ f (t,u(t),u′(t))

∣∣∣+ |Ξ(u(t))|

≤ η
(∣∣∣Φ(u′(t))

∣∣∣) (ψ(t)+ c
∣∣∣u′(t)∣∣∣)+ |Ξ(u(t))| ae on Ω.

Thus:
|Φ(u′(t))|′

η (|Φ(u′(t))|)
≤ ψ(t)+ c

∣∣∣u′(t)∣∣∣+ |Ξ(u(t))|
η (|Φ(u′(t))|)

a.e on [t3, t4]

and then ∫ t4

t3

|Φ(u′(t))|′

η (|Φ(u′(t))|)
dt ≤ ‖ψ‖1+ c

(
max
Ω

β−min
Ω
α
)
+µT.

Setting s = |Φ(u′(t))|, we have :∫ Φ(M1)

Φ(λ)

ds
η(s)
≤ ‖ψ‖1+ c

(
max
Ω

β−min
Ω
α
)
+µT

which contradicts the choice of M1 > 0. �

Now, we introduce the truncation map : % :Ω×R×R −→ R2 defined by:

%(t, x,y) =



(
α(t),α′(t)

)
if x < α(t)(

β(t),β′(t)
)

if x > β(t)
(x,M0) if α(t) ≤ x ≤ β(t),y > M0

(x,−M0) if α(t) ≤ x ≤ β(t),y < −M0

(x,y) if α(t) ≤ x ≤ β(t), |y| ≤ M0

(3.1)

where M0 > max
{
M1,‖α

′‖∞ ,‖β
′‖∞

}
and the penalty function Λ :Ω×R −→ R defined by:

Λ(t, x) =


Φp(α(t))−Φp(x) if x < α(t)

0 if α(t) ≤ x ≤ β(t)

Φp(β(t))−Φp(x) if x > β(t).

(3.2)
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We set f1(t, x,y) = f (t,%(t, x,y)). Note that for ae x ∈
[
α(t),β(t)

]
and all |y| < M0, we have

f1(t, x,y) = f (t, x,y). Moreover, for almost all t ∈ Ω and all x,y ∈ R, we have: | f1(t, x,y)| ≤
γr(t) with r =max

{
M0,‖α‖∞ ,‖β‖∞

}
. For every u ∈W1,p((0,T )), we set

N1(u)(.) = f1(.,u(.),u′(.))

and

Λ̂(u)(.) = Λ(.,u(.))

the Nemitsky operators corresponding to f1 and Λ respectively. We set J(u) = N1(u)+Λ̂(u)
for every u ∈W1,p ((0,T )).

Proposition 3.9. If hypothesis (H f )(ii) holds, then: J : W1,p ((0,T ))−→ Lq(Ω) is continuous
.

Proof. Since N1 and Λ̂ are Nemitsky operators, it is standard to show that they are contin-
uous. It follows that J is continuous. �

We introduce the set

D =
{
u ∈C1(Ω) : Φ(u′) ∈W1,q(0,T ),u′(0) ∈ B1(u(0)) and −u′(T ) ∈ B2(u(T ))

}
and then we define the nonlinear operator: ϑ : D ⊆ Lp(Ω) −→ Lq(Ω) by

ϑ(u)(.) = −(Φ(u′(.)))′ for all u ∈ D.

Proposition 3.10. If the hypotheses (HΦ) and (HB) hold, then ϑ is maximal monotone.

Proof. Given h ∈ Lq (Ω) , we consider the following nonlinear boundary value problem: −
(
Φ(u′(t))

)′
+Φp(u(t)) = h(t) a.e on Ω = [0,T ]

u′(0) ∈ B1(u(0)),−u′(T ) ∈ B2(u(T )).
(3.3)

We show that problem (3.3) has a unique solution u ∈C1(Ω). To this end, given v,w ∈R,
we consider the following two-point boundary value problem: −

(
Φ(u′(t))

)′
+Φp(u(t)) = h(t) a.e on Ω = [0,T ]

u(0) = v,u(T ) = w.
(3.4)

We set γ(t) =
(
1− t

T

)
v+ t

T w. Then γ(0) = v and γ(T ) = w. We consider the function y
defined by
y(t) = u(t)−γ(t) and rewrite (3.4) in the terms of the function y : − (Φ(y′(t)+γ′(t)))′+Φp(y(t)+γ(t)) = h(t) a.e on Ω = [0,T ]

y(0) = y(T ) = 0.
(3.5)

This is a homogeneous Dirichlet problem for (3.4). To solve (3.5), we argue as follows:
Let V1 : W1,p

0 (Ω) −→W−1,q (Ω) be nonlinear operator defined by :

〈V1(y),z〉0 =
∫ T

0
Φ(y′(t)+γ′(t))z′(t)dt+

∫ T

0
Φp(y(t)+γ(t))z(t)dt,∀y,z ∈W1,p

0 (Ω)
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where 〈〉0 denotes the duality brackets for the pair
(
W−1,q (Ω) ,W1,p

0 (Ω)
)
.

• Let us show that V1 is strictly monotone.
Let y,z ∈W1,p

0 (Ω). We have:

〈V1(y)−V1(z),y− z〉0 = 〈V1(y),y− z〉0−〈V1(z),y− z〉0

=

∫ T

0
Φ(y′(t)+γ′(t))(y′(t)− z′(t))dt+

∫ T

0
Φp(y(t)+γ(t))(y(t)− z(t))dt

−

∫ T

0
Φ(z′(t)+γ′(t))(y′(t)− z′(t))dt−

∫ T

0
Φp(z(t)+γ(t))(y(t)− z(t))dt.

Then

〈V1(y)−V1(z),y− z〉0 =
∫ T

0

(
Φ(y′(t)+γ′(t))−Φ(z′(t)+γ′(t))

) (
(y′(t)+γ′(t))− (z′(t)+γ′(t))

)
dt

+

∫ T

0

(
Φp(y(t)+γ(t))−Φp(z(t)+γ(t))

)
((y(t)+γ(t))− (z(t)+γ(t)))dt.

Therefore, V1 is strictly monotone because Φ is monotone and Φp is strictly monotone.

• Let us show that V1 is demicontinuous.
Using the extended dominated convergence theorem (see for example Hu-Papageorgiou
[10], Theorem A.2.54, p. 907 or Bader-Papageorgiou [13] page 75), it follows easily that
V1 is demicontinuous.

~ Recall that an operator monotone and demicontinuous is maximal monotone. So V1
is maximal monotone.

• Let us show that V1 is coercive.
For y ∈W1,p

0 (Ω) we have:

〈V1(y),y〉0 =
∫ T

0
Φ(y′(t)+γ′(t))y′(t)dt+

∫ T

0
Φp(y(t)+γ(t))y(t)dt

≥

∫ T

0
Φ(y′(t)+γ′(t))(y′(t)+γ′(t))dt−

∫ T

0

∣∣∣Φ(y′(t)+γ′(t))
∣∣∣ ∣∣∣γ′(t)∣∣∣dt

+

∫ T

0
Φp(y(t)+γ(t))(y(t)+γ(t))dt−

∫ T

0

∣∣∣Φp(y(t)+γ(t))
∣∣∣ |γ(t)|dt.

Using the hypotheses (b) and (c) on Φ, it follows

〈V1(y),y〉0 ≥ η1 ‖y+γ‖p−η2 ‖y+γ‖p−1−η3, for some η1,η2,η3 > 0.

Therefore , V1 is coercive.

~ Recall that an operator maximal monotone which is coercive is surjective. So, V1 is
surjective.
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Moreover, since V1 is strictly monotone, we infer that there exists an unique y ∈W1,p
0 ((0,T ))

such that V1(y) = h . For any test function φ , we have:

〈V1(y),φ〉0 = 〈h,φ〉0

⇔

∫ T

0
Φ(y′(t)+γ′(t))φ′(t)dt =

∫ T

0

(
h(t)−Φp(y(t)+γ(t))

)
φ(t)dt.

From the definition of the distributional derivative, it follows that:

−
(
Φ(y′(t)+γ′(t))

)′
= h(t)−Φp(y(t)+γ(t)) a.e on Ω.

Whence y is the unique solution of problem (3.5). Then u = y+ γ ∈ C1 (Ω) is the unique
solution of the problem (3.4). We can define the solution map σ : R×R −→ C1 (Ω) which
assigns to each pair (v,w) the unique solution of the problem (3.4). Let Q : R×R −→ R×R
be defined by:

Q(v,w) = (−Φ(σ(v,w)′(0)),Φ(σ(v,w)′((T )).

•We claim that Q is monotone.
Indeed, for (v1,w1), (v2,w2) ∈ R2, we have :

〈Q(v1,w1)−Q(v2,w2), (v1,w1)− (v2,w2)〉2

=
〈
−
(
Φ(u′1(0))−Φ(u′2(0)),Φ(u′1(T ))−Φ(u′2(T ))

)
, (u1(0)−u2(0),u1(T )−u2(T ))

〉
2

=
(
Φ(u′2(0))−Φ(u′1(0))

)
(u1(0)−u2(0))+

(
Φ(u′1(T ))−Φ(u′2(T ))

)
(u1(T )−u2(T ))

=

∫ T

0

(
Φ(u′1(t))

)′
−

(
Φ(u′2(t))

)′
(u1(t)−u2(t))dt+

∫ T

0

(
Φ(u′1(t))−Φ(u′2(t))

) (
u′1(t)−u′2(t)

)
dt

where 〈〉2 is the scalar product in R2.

From (3.4), we have
(
Φ(u′1(t))

)′
−

(
Φ(u′2(t))

)′
= Φp(u1(t))−Φp(u2(t)). Because of mono-

tonicity of the operators Φ and Φp , we obtain the monotonicity of Q.

•We claim that Q is continuous.
Indeed, let (bn)n≥1 and (en)n≥1 be real sequences converging respectively to b and e.
Let us set :

un = σ(bn,en), u = σ(b,e), γn(t) = (1−
t
T

)bn+
t
T

en, γ(t) = (1−
t
T

)b+
t
T

e

and yn = un−γn, for all n ≥ 1.

Now, we consider the following sequence of problems: − (Φ(y′n(t)+γ′n(t)))′+Φp(yn(t)+γn(t)) = h(t) a.e on Ω = [0,T ]

yn(0) = yn(T ) = 0.
(3.6)

•We claim that {un = yn+γn}n≥1 ⊆W1,p (Ω) is bounded.
Let us multiply (3.6) by yn(t) and then integrate on Ω. We obtain:∫ T

0
−(Φ(y′n(t)+γ′n(t)))′yn(t)dt+

∫ T

0
(Φp(yn(t)+γn(t)))yn(t)dt =

∫ T

0
h(t)yn(t)dt.
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By using green’s formula, we obtain:∫ T

0
(Φ(y′n(t)+γ′n(t)))′y′n(t)dt+

∫ T

0
(Φp(yn(t)+γn(t)))yn(t)dt =

∫ T

0
h(t)yn(t)dt

≥

∫ T

0
(Φ(y′n(t)+γ′n(t))′

(
y′n(t)+γ′n(t)

)
dt+

∫ T

0
(Φp(yn(t)+γn(t)) (yn(t)+γn(t))dt

−

∫ T

0

∣∣∣(Φ(y′n(t)+γ′n(t))′
∣∣∣ ∣∣∣γ′n(t)

∣∣∣dt−
∫ T

0

∣∣∣(Φp(yn(t)+γn(t))
∣∣∣ |γn(t)|dt

Whence:∫ T

0
h(t)yn(t)dt ≥ η′1 ‖yn+γn‖

P−η′2 ‖yn+γn‖
p−1−η′3 for some η′1,η

′
2,η
′
3 > 0.

Furthermore, using the Cauchy-Schwartz inequality and then the triangular inequality, we
obtain the following inequalities:∫ T

0
h(t)yn(t)dt ≤ ‖h‖q ‖yn‖p ≤ ‖h‖q

(
‖yn+γn‖p+ ‖γn‖p

)
≤ ‖h‖q

(
‖yn+γn‖+ ‖γn‖p

)
.

Then:
η′1 ‖yn+γn‖

p ≤ η′2 ‖yn+γn‖
p−1+ ‖h‖q ‖yn+γn‖+ ‖h‖q ‖γn‖p+η

′
3.

So

η4 ‖yn+γn‖
p ≤ η5 ‖yn+γn‖

p−1+η6 ‖yn+γn‖+η7 for some η4,η5,η6,η7 > 0.

Therefore, the sequence {un = yn+γn}n≥1 ⊆ W1,p (Ω) is bounded. It follows immediately
that the sequences

{
Φp(un)

}
n≥1
⊆ Lq (Ω) is bounded. Then, directly from the problem (3.4),

we get that the sequence
{
(Φ(u′n))′

}
n≥1 ⊆ Lq (Ω) is bounded . By integration, we obtain{

Φ(u′n)
}
n≥1 ⊆ Lq (Ω) is bounded. So the sequence

{
Φ(u′n)

}
n≥1 ⊆ W1,q ((0,T )) is bounded.

Then we have respectively

un ⇀ u in W1,p (Ω) ,Φp(un) ⇀ v in Lq (0,T ) and Φ(u′n) ⇀ w in W1,q ((0,T ))

Due to the compact embedding of W1,p ((0,T )) in C (Ω) , we have:

un −→ u in C (Ω) and Φ(u′n) −→ w in C (Ω) .

Since Φ is an homeomorphism, Φ−1 exists and is continuous. So, we have: u′n −→ Φ
−1(w)

in C(Ω). Whence u′ = Φ−1(w) (ie Φ(u′) = w). Therefore passing to the limit as n −→ +∞ ,
we have:  − (Φ(u′(t))′+Φp(u(t)) = h(t) a.e on Ω = [0,T ]

u(0) = b,u(T ) = e

=⇒ u = σ(b,e)
(

ie σ : R×R −→C1 (Ω) is continuous
)

. So, Q is continuous.
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•We claim that Q is coercive.
For (v,w) ∈ R2, we have:

〈Q(v,w), (v,w)〉2
‖(v,w)‖R2

=
Φ(u′(T ))u(T )−Φ(u′(0))u(0)

‖(v,w)‖R2
=

∫ T
0 (Φ(u′(t)))′ u(t)dt+

∫ T
0 Φ(u′(t))u′(t)dt

‖(v,w)‖R2∫ T
0 (Φ(u′(t)))′ u(t)dt+

∫ T
0 Φ(u′(t))u′(t)dt

‖(v,w)‖R2
=

∫ T
0 Φp(u(t))u(t)dt−

∫ T
0 h(t)u(t)dt+

∫ T
0 Φ(u′(t))u′(t)dt

‖(v,w)‖R2

≥

∫ T
0

(
|u(t)|p+d1 |u′(t)|p

)
dt−

(∫ T
0 |h(t)|q

) 1
q
(∫ T

0 |u(t)|p
) 1

p

‖(v,w)‖R2
≥

d4
(
‖u‖pp+ ‖u′‖

p
p

)
−‖h‖q ‖u‖p

‖(v,w)‖R2
.

.

Then
〈Q(v,w), (v,w)〉2
‖(v,w)‖R2

≥
d4 ‖u‖p−‖h‖q ‖u‖p
‖(v,w)‖R2

for some d4 > 0

Since u ∈ W1,p (Ω), by mean value theorem, there is some t0 ∈ (0,T ) such that |u(t0)|T =∫ T
0 |u(t)|dt.

As u(t)−u(t0) =
∫ t

t0
u′(s)ds, we have :

|u(t)| ≤ |u(t0)|+
∫ T

0 |u
′(s)|ds ≤ 1

T ‖u‖1 +T
1
q ‖u′‖P ≤

T
1
q

T ‖u‖P +T
1
q ‖u′‖p for all t ∈ Ω . In par-

ticular, we have:

‖(v,w)‖R2 ≤
√

2

T
1
q

T
‖u‖p+T

1
q
∥∥∥u′

∥∥∥
P

 ≤ √2max

T
1
q

T
,T

1
q

(
‖u‖P+

∥∥∥u′
∥∥∥

P

)
.

So
‖(v,w)‖R2 ≤ ζ ‖u‖ for some ζ > 0.

Then
〈Q(v,w), (v,w)〉2
‖(v,w)‖R2

≥
d4 ‖u‖p−‖h‖q ‖u‖p

ζ ‖u‖
.

Therefore Q is coercive.

We infer that Q is maximal monotone (being continuous, monotone) and coercive. Thus Q
is surjective. Now, let B : R×R −→ P (R×R) be defined by:

B(v,w) = (Φ◦B1(v),Φ◦B2(w)) for all (v,w) ∈ R×R.

We have B is maximal monotone (see Claim 4 in the proof of Proposition 3.8 in BaderPa-
pageorgiou [7]). Next, let θ : R×R −→ P (R×R) be defined by:

θ(v,w) = Q(v,w)+B(v,w) for all (v,w) ∈ R×R.

Then θ is maximal monotone (see Brezis [3, Corollary 2.7, p. 36] or Zeidler [2, Theorem
32.I, p. 897]). Moreover, since Q is coercive, B is maximal monotone and (0,0) ∈ B(0,0) , it
follows that θ is coercive. Thus θ is surjective. We infer that we can find (b,e) ∈ R×R such
that (0,0) ∈ θ(b,e). So Φ(u(0)) ∈ Φ◦B1(b) and −Φ(u(T )) ∈ Φ◦B2(e) . Whence, by acting
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with Φ−1, we obtain (u′(0),−u′(T )) ∈ (B1(b),B2(e)). Therefore x0 = σ(b,e) is the unique
solution of the problem (3.3).

Let H : Lp (Ω) −→ Lq (Ω) be the operator defined by:

H(u)(.) = Φp(u(.)).

Since Φp is continuous and monotone, then H is continuous and monotone. Therefore H is
maximal monotone. Also, since Φp is strictly monotone, H is strictly monotone.

Since in (3.3), the choice of h is arbitrary, by the previous arguments, we have:

R(ϑ+H) = Lq (Ω) ( ie ϑ+H is surjective ). (3.7)

We denote by < ., . >p the duality brackets between the pair (Lp(Ω),Lq(Ω)).

• Let us show that ϑ+H surjective implies ϑ is maximal monotone

For this purpose, we suppose that, for some y ∈ Lp (Ω) and some v ∈ Lq (Ω) :

< ϑ(u)− v,u− y >p≥ 0 for all u ∈ D. (3.8)

Because of (3.7), we can find u1 ∈ D such that:

ϑ(u1)+H(u1) = v+H(y).

We use this in (3.8) with u = u1, to obtain :

< ϑ(u1)−ϑ(u1)−H(u1)+H(y),u1− y >p≥ 0.

⇒< H(y)−H(u1),u1− y >p≥ 0 (3.9)

Because H is strictly monotone, from (3.9), we conclude that y = u1 ∈ D and v = ϑ(u1). So
ϑ is maximal monotone. In addition, since ϑ is monotone, we have < ϑ(u)+H(u),u >p≥<

H(u),u >2= |u|p. Whence the operator ϑ+H : D ⊆ Lp (Ω) −→ Lq (Ω) is maximal monotone
, strictly monotone and coercive. Therefore Ψ = (ϑ+H)−1 : Lq (Ω) −→ D ⊆W1,p ((0,T )) is
well defined, single valued, and maximal monotone ( From Lq (Ω) into Lp (Ω)). �

Proposition 3.11. If hypotheses (HΦ) and (HB) hold, then Ψ : Lq (Ω) −→ D ⊆W1,p ((0,T ))
is completly continuous.

Proof. Suppose that vn ⇀ v in Lq (Ω). We have to show that Ψ(vn) −→Ψ(v) in W1,p (Ω). let
us set un = Ψ(vn) for all n ≥ 1. We have

un ∈ D and ϑ(un)+H(un) = vn.

=⇒ 〈ϑ(un),un〉p+ 〈H(un),un〉p = 〈vn,un〉p . (3.10)
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By integration by part, we obtain:

−Φ(u′n(T ))un(T )+Φ(u′n(0))un(0)+
∫ T

0
Φ(u′n(t))u′n(t)dt+

∫ T

0
Φp(un(t))un(t)dt = 〈vn,un〉p .

(3.11)
Since un ∈ D, we have u′n(0) ∈ B1(un(0)) and −u′n(T ) ∈ B1(un(T )) for all n ≥ 1 . We recall
that
(0,0) ∈Gr(Bi), i = 1,2, then :

u′n(0)un(0) ≥ 0 and u′n(T )un(T ) ≤ 0. (3.12)

Moreover, the map Φ being increasing , we have :

Φ(u′n(0))u′n(0) ≥ 0 and Φ(u′n(T ))u′n(T ) ≥ 0. (3.13)

From (3.12) and (3.13), we obtain :

Φ(u′n(0))un(0) ≥ 0 and Φ(u′n(T ))un(T ) ≤ 0. (3.14)

From (3.11) and (3.14), we infer that :

〈vn,un〉2 ≥

∫ T

0
Φ(u′n(t))u′n(t)dt+

∫ T

0
Φp(un(t))un(t)dt. (3.15)

By hypothesis b) on Φ , we have :∫ T

0
Φ(u′n(t))u′n(t)dt+

∫ T

0
Φp(un(t))un(t)dt ≥

∫ T

0

(
d1

∣∣∣u′n(t)
∣∣∣p+ |un(t)|p

)
dt. (3.16)

It follows from (3.15) and (3.16) that :

〈vn,un〉p ≥

∫ T

0

(
d1

∣∣∣u′n(t)
∣∣∣p+ |un(t)|p

)
dt.

Whence:
‖un‖

p−1 ≤ η7 for some η7 > 0.

Therefore the sequence {un}n≥1 ⊆W1,p ((0,T )) is bounded. Then we can find a convergent
subsequence of {un}n≥1. So un ⇀ u in W1,p ((0,T )). Due to the compact embedding of
W1,p ((0,T )) in C (Ω), we have un −→ u in C (Ω). Since {un}n≥1 ⊆W1,p ((0,T )) is bounded,
we have

{
u′n

}
n≥1 ⊆ Lp (Ω) and {un}n≥1 ⊆ Lp (Ω) are bounded. It follows that:

{
Φp(un)

}
n≥1
⊆

Lq (Ω) is bounded. Then ϑ(un)+H(un) = vn implies that
{(
Φ(u′n)

)′}
n≥1
⊆ Lq (Ω) is bounded.

Whence, by integration,
{
Φ(u′n)

}
n≥1 ⊆ W1,q ((0,T )) is bounded. So we can suppose that

Φ(u′n) ⇀ h in W1,q ((0,T )) . Due to the compact embedding of W1,q (0,T ) in C (Ω), we
obtain Φ(u′n)→ h in C (Ω). Since Φ is an homeomorphism , Φ−1 exists and is continuous.
So, we have Φ−1 (Φ(u′n(t))

)
−→ Φ−1 (h(t)) for all t ∈ Ω . Then u′n(t) −→ Φ−1 (h(t)) for all

t ∈ Ω. It follows that u′n(.) −→ Φ−1 (h(.)) in LP (Ω) ( By Lebesgue dominated convergence
theorem ). We infer that : u′ = Φ−1 (h(.)). So, h = Φ(u′). We have:

Φ(u′n) −→ Φ(u′) in C (Ω)

=⇒ u′n −→ u′ in Lp (Ω) .

But recall that un −→ u in Lp (Ω). Thus un −→ u in W1,p ((0,T )). This prove that the operator
Ψ is completely continuous. �
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4 Existence results

We introduce the order interval :

U =
[
α,β

]
=

{
u ∈W1,p ((0,T )) : α(t) ≤ u(t) ≤ β(t) for all t ∈Ω

}
We consider the operator τ : W1,p ((0,T )) −→W1,p ((0,T )) defined by :

τ(u)(t) =max {α(t),min {u(t),β(t)}} =


α(t) if u(t) < α(t)

u(t) if α(t) ≤ u(t) ≤ β(t)

β(t) if u(t) > β(t).

We see that τ is bounded and is continuous.
Let w ∈ U. we consider the following auxiliary boundary problem : − (Φ(u′(t)))′ = f1(t,u(t),u′(t))+Λ(t,u(t))+Ξ(w(t))−Mτ(u(t))+Mw(t) a.e on Ω = [0,T ]

u′(0) ∈ B1(u(0)),−u′(T ) ∈ B2(u(T )).
(4.1)

Proposition 4.1. If the hypotheses (H0), (H f ), (HΦ) and (HΞ) hold, then the problem (4.1)
has a solution u ∈C1 (Ω)∩U.

Proof. Let J1 : W1,p ((0,T )) −→ Lq (Ω) be the nonlinear operator defined by:

J1(u) = J(u)+H(u)−Mτ(u)+Ξ̂(w)+Mw, ∀u ∈W1,p ((0,T )) .

From the proposition 3.1 and the continuity of the operators H and τ, we infer that J1 is
continuous. For all u ∈W1,p ((0,T )), we have:

‖J1(u)‖q ≤ ‖γr‖q+T
1
q max

{
‖α‖

p−1
∞ ,‖β‖

p−1
∞ )

}
+T

1
q M max

{
‖α‖∞ ,‖β‖∞

}
+

∥∥∥Ξ̂(w)
∥∥∥

q+M ‖w‖q = M2

We recall that :
r =max

{
M0,‖α‖∞ ,‖β‖∞

}
.

We set
Γ =

{
v ∈ Lq (Ω) : ‖v‖q ≤ M2

}
.

We see that J1 maps bounded sets to bounded ones.
And Ψ

(
J1

(
W1,p (0,T )

))
⊆ Ψ(Γ) which is relatively compact in W1,p (0,T )

( see proposition 3.3). Therefore, we can find u ∈ D ⊆W1,p ((0,T )) such that :

u = Ψ (J1(u))

=⇒ ϑ(u)+H(u) = J(u)+H(u)−Mτ(u)+Ξ̂(w)+Mw

=⇒ ϑ(u) = J(u)−Mτ(u)+Ξ̂(w)+Mw.

Then u ∈ D ⊆C1 (Ω) solves the problem (4.1).
It remains to show that u ∈U. Since α ∈C1 (Ω) is a lower solution of the problem (1.1), we
have :  − (Φ(α′(t)))′ ≤ f (t,α(t),α′(t))+Ξ(α(t)) a.e on Ω = [0,T ]

α′(0) ∈ B1(α(0))+R+,−α′(T ) ∈ B2(α(T ))+R+.
(4.2)
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Soustraying (4.2) from (4.1), we obtain:

(Φ(α′(t)))′− (Φ(u′(t))′ ≥ f1(t,u(t),u′(t))+Λ(t,u(t))+Ξ(w(t))−Mτ(u(t))+Mw(t)

− f (t,α(t),α′(t))−Ξ(α(t))
(4.3)

We multiply (4.3) by (α−u)+ ∈W1,p ((0,T )) and then integrate on Ω. We obtain:∫ T

0

[
(Φ(α′(t)))′− (Φ(u′(t)))′

]
(α−u)+ (t)dt

≥

∫ T

0

[
f1(t,u(t),u′(t))− f (t,α(t),α′(t))

]
(α−u)+ (t)dt+

∫ T

0
Λ(t,u(t)) (α−u)+ (t)dt+∫ T

0
[Ξ(w(t))−Ξ(α(t))−Mτ(u(t))+Mw(t)] (α−u)+ (t)dt.

(4.4)

The integration by parts of the left-hand side in inequality, yields :∫ T

0

[
(Φ(α′(t))′− (Φ(u′(t))′

]
(α−u)+ (t)dt

=
(
Φ(α′(T ))−Φ(u′(T ))

)
(α−u)+ (T )−

(
Φ(α′(0))−Φ(u′(0))

)
(α−u)+ (0)

−

∫ T

0

[
Φ(α′(t))−Φ(u′(t))

]
(α−u)′+ (t)dt

≥

∫ T

0

[
f1(t,u(t),u′(t))− f (t,α(t),α′(t))

]
(α−u)+ (t)dt+

∫ T

0
Λ(t,u(t)) (α−u)+ (t)dt+∫ T

0
[Ξ(w(t))−Ξ(α(t))−Mτ(u(t))+Mw(t)] (α−u)+ (t)dt.

(4.5)

We set [
(α−u)+

]′ (t) =  (α(t)−u(t))′ if α(t) > u(t)

0 if α(t) ≤ u(t).
(4.6)

Also, from the boundary conditions in (4.1) and (4.2), we have:

−u′(T ) ∈ B1(u(T )) and −α′(T ) ∈ B1(α(T ))+ eT with eT ≥ 0.

If α(T ) ≥ u(T ) , then from the monotony of B2 (See hypothesis (HB) ), we have:

α′(T ) ≤ u′(T ). Since Φ is increasing, we have : Φ(α′(T )) ≤ Φ(u′(T )).

So, it follows that
(Φ(α′(T ))−Φ(u′(T )))(α(T )−u(T )) ≤ 0. (4.7)

In a similar fashion, using the boundary conditions u′(0) ∈ B1(u(0)) and α′(0) ∈ B1(α(0))+
e0 with e0 ≥ 0, if α(0) ≥ u(0), we have:

α′(0) ≥ u′(0). We infer that Φ(α′(0)) ≥ Φ(u′(0)).

It follows that
(Φ(α′(0))−Φ(u′(0)))(α(0)−u(0)) ≥ 0. (4.8)
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Also, since Φ is an increasing homeomorphism, we have:∫ T

0

(
Φ(α′(t))−Φ(u′(t))

)
(α−u)′+ (t)dt =

∫
{α>u}

(
Φ(α′(t))−Φ(u′(t))

)
(α−u)′ (t)dt ≥ 0 (4.9)

where {α > u} = {t ∈ [0,T ] : α(t) > u(t)} .
Using the inequalities (4.7), (4.8) and (4.9) in the first member of (4.5), we obtain:∫ T

0

[
(Φ(u′(t))′− (Φ(α′(t))′

]
(α−u)+ (t)dt ≤ 0. (4.10)

Furthermore:

f1(t,u(t),u′(t))− f (t,α(t),α′(t)) = f (t,α(t),α′(t))− f (t,α(t),α′(t)) = 0 a.e on {α > u}

⇒

∫ T

0

(
f1(t,u(t),u′(t))− f (t,α(t),α′(t))

)
(α−u)+ (t)dt = 0.

(4.11)
Also from the definiton of the penalty map Λ , if |{α > u}| > 0 ( By |.|, we denote the
Lebesgue mesure in R ), then:∫ T

0
Λ(t,u(t)) (α−u)+ (t)dt =

∫
{α>u}

(Φ(α(t))−Φ(u(t))) (α−u)+ (t)dt > 0. (4.12)

Finally, by virtue of hypothesis (HΞ) and, since w ∈ U , we see that:∫ T

0
(Ξ(w(t))−Ξ(α(t))−Mτ(u(t))−Mw(t)) (α−u)+ (t)dt

=

∫
{α>u}

(Ξ(w(t))−Ξ(α(t))+Mw(t)−Mα(t)) (α−u)+ (t)dt ≥ 0.
(4.13)

Using the inequalities (4.11), (4.12) and (4.13) in the second member of (4.5), we infer that
: ∫ T

0

[
f1(t,u(t),u′(t))− f (t,α(t),α′(t))

]
(α−u)+ dt+

∫ T

0
Λ(t,u(t)) (α−u)+ dt+∫ T

0
(Ξ(w(t))−Ξ(α(t))+Mw(t)−Mα(t)) (α−u)+ (t)dt > 0.

(4.14)

We consider (4.5) and using (4.10) and (4.14), we have a contradiction when |{α > u}| > 0.
Therefore , for all t ∈ Ω,α(t) ≤ u(t). In a similar fashion we show that u(t) ≤ β(t) for all
t ∈Ω; thus u ∈ U. �

We use the solvability of the auxiliary problem (4.1) in order to produce a solution
for the original problem (1.1). For this purpose, we need the fixed point theorem 2.1 for
multifunctions in an ordered Banach space. To apply this theorem, we use the follow-
ing data: X = W1,p((0,T )) is the separable, reflexive, ordered Banach space, U = [α,β] ⊆
W1,p((0,T )) and S : U −→ P(U)\ {∅} is the solution multifunction for the auxiliary problem
(4.1) . Then for every w ∈ U , S (w) is subset of U solutions of the problem (4.1) . From
Proposition 4.1 , we know that: S (w) , ∅ and S (w) ⊆ U .
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Theorem 4.2. If the hypotheses (H f ), (HB), and (HΞ) hold, then problem (1.1) has a solu-
tion u ∈C1 (Ω).

Proof. Some simple modifications in the proof of theorem 5.2.21 p.400 of Kyritsi-Papageorgiou
[6] concerning the differential operator allows easily to obtain the proof . �

4.1 Existence of extremal solutions

We establish the existence of a greatest and of a smallest solution in the order interval U.
So let

C1 =
{
u ∈W1,p (Ω) : u be a solution of (1.1) and u ∈ U

}
.

On L∞(Ω) , we consider the partial order structure induced by the order cone

L∞(Ω)+ =
{
u ∈ L∞(Ω) : u(t) ≥ 0 a.e on Ω

}
.

So u ≤ y in L∞(Ω)+ if and only if u(t) ≤ y(t) almost everywhere onΩ. From the theorem 2.1,
we know that under hypotheses (H0), (H f ), (HB) and (HΞ), the set C1 is nonempty. Recall
that the espace C in a partially ordered set is a chain ( or totally ordered subset) , if for every
x,y ∈C either x ≤ y or y ≤ x.

Proposition 4.3. If hypotheses (H0), (H f ), (HB), (Hg) and (HΞ) hold, then every chain C in
C1 has an upper bound.

Proof. Simple modifications in the proof of proposition 5.2.22 p.401 of Kyritsi-Papageorgiou
[6] concerning the differential operator allows easily to obtain the proof. �

Recall if (C0,≤) is a partially ordered set, we say that C0 is directed, if every pair of u1
and u2 ∈C0 such that u1 ≤ u3 and u2 ≤ u3.

Proposition 4.4. If the hypotheses (H0), (H f ), (Hg) and H(Ξ) hold, then the partially or-
dered set C1 ⊆W1,p ((0,T )) is directed.

Proof. Simple modifications in the proof of proposition 5.2.23 p.402 of Kyritsi-Papageorgiou
[6] concerning the differential operator allows easily to obtain the proof. �

Theorem 4.5. If the hypotheses (H0), (H f ), (HB), and (HΞ) hold, then the problem (1.1)
have some extremal solutions in the order interval U = [α,β].

Proof. Using the same arguments of the proof of theorem 5.2.24 p. 403 of Kyritsi-Papageorgiou
[6], we obtain the proof. �

5 Example and periodic problem

5.1 Example

Let us consider the following problem:
−


√

1+
(
1+ |u′(t)|p−1

)2

1+ |u′(t)|p−1

∣∣∣u′(t)∣∣∣p−2
u′(t)


′

= f (t,u(t),u′(t))+Ξ(u(t)) a.e on Ω = [0,T ]

u′(0) ∈ B1 (u(0)) , −u′(T ) ∈ B2 (u(T ))
(5.1)
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where f ,Ξ,B1 and B2 are defined as in problem (1.1). Here,Φ(z)=

√
1+

(
1+ |z|p−1

)2

1+ |z|p−1 |z|p−2 z,

for all z ∈ R and by the remark 3.2, it satisfies hypothesis (HΦ) . Therefore, theorem 4.1
and theorem 4.2 are true for the problem (5.1). Moreover, by [6] ( see example 5.2.25 page
404), this problem unifies classical problems of Dirichlet, Neumann and Sturm-Liouville
and go beyong them.

5.2 Periodic problem

Let us consider the following periodic problem: − (Φ(u′(t)))′ = f (t,u(t),u′(t))+Ξ(u(t)) a.e on Ω = [0,T ]

u(0) = u(T ) , u′(0) = u′(T ).
(5.2)

Remark 5.1. The theorems 4.1 and 4.2 stay true for this problem ( see [6] remark 5.2.26
page 404 and also [7] section 6 page 23).
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