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Abstract

We introduce and study the notion of abelian groups graded Lie algebroid struc-
tures on almost commutative algebras A and show that any graded Poisson bracket on
A induces a graded Lie algebroid structure on the A-module of 1-forms on A as in the
classical Poisson manifolds. We also derive from our formalism the graded Poisson
cohomology.
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1 Introduction

An almost commutative algebra A is characterized by its multiplication which is given on
homogeneous elements by fg = p(|f|,|g])gf where p is a commutation factor defined on
an abelian group G [1, 2, 3]. Almost commutative algebras are also found in the litera-
ture under other names such as graded e-commutative algebras[4], p-algebras[5], I'-graded
associative algebras[6], colour algebras[7, 8, 9], etc.

The commutative algebra C*(M) of smooth functions on a manifold M is a particular
case where p = 1. It is well known that when the latter algebra is endowed with a Poisson
bracket, the cotangent bundle of M is endowed with a structure of Lie algebroid and the
algebra of multivectors on M with a Poisson cohomology etc. ( see [10, 11] and references
therein). In a previous work [3] we introduced the notion of Poisson almost commutative
algebra (PACA) with symplectic almost commutative algebras as particular cases. Hence
it was natural to find which classical geometric objects on Poisson manifold have their
equivalents in the context of PACA.

In this work, we start bringing answer to that question by providing Algebroid structure
and Poisson cohomology for PACA.

We start in the following section 2 by a brief generality on PACA. We recall definitions
of the graded Schouten-Nijenhuis structure and the graded Poisson bracket. In section 3, we
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give our formalism of graded Lie algebroid. The main result of this section is Theorem3.3
where we show that to each PACA, A, is associated a graded Lie algebra QYA LD.
Section 4 is devoted to the so called graded Poisson cohomology. We give in addition
analog of classical formulae linking interior, Lie and exterior derivatives. We compute
explicitly the Poisson cohomology of the Quantum plane when the latter is endowed with
its canonical graded sympletic form.

2 Poisson Almost Commutative Algebras

In this section we give a brief review on the notion of Poisson almost commutative algebra
(PACA) from [3] using the same notations as in the latter reference. Let G be an abelian
group and let A be a G-graded almost commutative C-algebra, namely the product in A
obeys

fe=pfl.1ghgf> 2.1

for homogeneous elements f,g € A, where p : G XG — C is a two-cycle or commutation
factor, i.e. p(u,v) = p(v,u)~", p(u+v,w) = p(u,w)p(v,w).

The A-bimodule of graded derivations of A is denoted by y!(A). It is the space of graded
endomorphisms X of A obeying X.(fg) = (X.)g +p(IX],|f)f(X.g). The space (x'(A),[;])
is a graded Lie-algebra [12] with the p-commutator of two p-derivations given by [X,Y] =
XY - p(IX],IYDYX.

On the graded algebra Ay (A) = EB;O:O xiA) (XO(A) = A) of graded multivectors on A, we
consider the Schouten-Nijenhuis bracket given in the following definition:

Definition 2.1. [3] The graded Schouten-Nijenhuis bracket (SNB) on A is the C-bilinear
map [.] : Ax(A) X AxY(A) — Ax(A) which is defined by:

1) For f,g€A,[f.81=0,

2) For X € x'(A), Q € Ax(A), [X, Q] is the Lie derivative Ly Q,

3) And for homogeneous P € y?(A), Q € x9(A), [P, Q] is given by the following formula:

q
[Xi A...AX,,P] = Z(—l)q_fp(lle, X1l + o+ X DX1 A A X AXy ALX, P
j=1

where the graded Lie derivative LxQ is defined by

q
<@t lxQ> = p() |l IXDX. < @i, ....aq0 > (2.2)
i=1

q q
= DOl IXD) < sy L g3 Q>

i=1 k=i

Theorem 2.2. [3] The SNB verifies the following properties:
For Z x G-homogeneous P € yP(A), Q € xY1(A) and R € " (A).
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() [Q,PAR]=[Q,PIAR+(-1)""VPp(1Ql,|P)P A[Q,R] (2.3)
(i)  [Q,P]=—(=D VP Vo0, |PDIP,Q] (2.4)
(iiiy  [PAQ,Rl=PA[Q,R]+(=D"Yp(Ql,IRNIP,R] A Q (2.5)

and the following graded Jacobi identity:
@) PR, P)IP[Q,RI]+p(P,OINQ,[R,Pl]+p(Q.R)R,[P,Q]] =0 (2.6)
which can take the following form
[P[Q,R]] = [[P, O, R] +p(P, Q)[ O, [P, R]]. 2.7

where p(P, Q) = (=1)?=D=Dp(|P|,|Q)).

Definition 2.3 ([3]). A p-graded Poisson structure(GPS) on A is a Leibniz bracket {,} of
order 2 and of certain G-degree D, whose Jacobi anomaly vanishes identically. Namely,
{,} : AXA — A is a bilinear map which in addition satisfies:

{f.8}

—p(If1.1gDig. f} (2.8)
{fg.n} fig.h} +p(lgl 1kl + D){f, h}g (2.9)

pALIfDLf Ag Y} p(f1.18D{g: {h. £+ p(Igl. 1hDih. {f. &)} = 0 (2.10)
Equivalently, we have shown in [3] that a GPS on A is defined by a bivector 7 € y*(A)

such that its SNB vanishes, i.e [x,7] = 0. The relation between {,} and its graded Poisson
bivector 7 is given by:

+

{f,g}=<df,dg;m> (2.11)
Hence one has D = |x|.

Definition 2.4. [3] The grade Hamiltonian derivation (or vector field) associated to f € A
is defined by

Xr.8 =& fip(f1+ Il gD = ={f, ghp(lnl. 18D (2.12)

It is easily to check that X is a graded left derivation on A of G-degree |X| = |f] + ||
and we have:

Xp=p(fl |, f1=[f,7]. (2.13)

Definition 2.5. [3] Let (A,7) be a GPS on A. A graded derivation X is called a graded
”Poisson vector field” if [X, 7] = 0.

We have the following properties:
(1) All Hamiltonian vectors fields X, are graded Poisson vectors fields.
(i1) if Y is a Poisson vector field, then [Y,X¢] = Xy 5
(i) [X7.Xe] = —p(I7l.18DX 1g)-



98 F. Ngakeu
3 Graded Lie Algebroid structures

In this section we introduce the notion of graded Lie algebroid structure and apply the
formalism to almost commutative algebras endowed with graded poisson structures.

Let A be an almost commutative algebra and y'(A) the A-bimodule of graded derivations
on A as above.

Definition 3.1. A graded Lie algebroid on A is a G-graded A-bimodule E which is also a
graded Lie algebra (E,[,]) endowed with a module morphism # : E — y'(A) of G-degree
D, called anchor map, such that

[fu,v] = flu,v]+p(f1+ lul, V| + D)(#v. fu, 3.D
Yu,ve E, VYfeA.

Example 3.2. 1) A simple example of graded Lie algebroid on any almost commutative
algebra A is E = (XI(A), [,]) with the identity map as the anchor map. Indeed, the bracket
[X,Y]=XoY—p(X|,|Y))Y o X endows y!(A) with a structure of graded Lie algebra and in
addition, we have for all f,ae A, X,Y E)(l(A),

[fX,Y].a

JX(X.a) - p(If1+ X [YDY(fX.a)
JX(X.a)=p(If|+ XL IYDX.f)(X.a) = p( f1 +X],[YDf Y (X.q)
fIX(Y.a) - p(IX], Y)Y (X.a)] = p(|f] + X, [YD(Y.f)(X.a)

hence

[fX, Y] = fIX, Y]=p(f|+ XL IYDX.£)X. (3.2)

2) The classical Lie algebroid on a manifold M is a graded Lie algebroid on A = C*(M)
with G ={0} and p = 1.

3) The following example which is the main aim of our study shows that a graded poisson
structure leads to an algebroid structure on A.

3.1 Graded Poisson Lie Algebroid

In this subsection we show that a graded Poisson structure on a almost commutative algebra
A induces a canonical Lie algebroid structure on QlA).

Let (A, ) be a poisson almost commutative algebra (PACA) and let ff : Q'(A) — x'(A) be
the morphism of A-modules defined by #(adf) = aXy, Va,f €A.

Theorem 3.3. There exists a unique graded Lie bracket [,] on the A-bimodule Q' (A) which
satisfies the following conditions:

[df.dgl=d{f.g}, VYf.g€A (3.3)

[fa.B] = fla.Bl+pld +1 1, 1Bl + IT)(HB.Na,  Va.B € Q(A),Vf € A. (3.4
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Proof. Itis enough to set @ = adf,3 = bdg. Then || = |b| + |g|, #(B) = bX,.

[a,B]

aldf,Bl+p(lal +|f1.18] + Ix)(#B).ad f (3.5)
= —p(f1.18DalB.df1+p(al +f1,1B+ T (#B).a)d f

= —p(f1.1BDalbdg,d f1+p(lal+ /1, 18] + Ix)(#B).a)d f

= —p(f1.BDatbldg.d f1+p(Ib| + gl | f1 + |x)(Xr.D)dg}

+ pllal+1f1 181+ x)((#B)-a)d f

hence, [@,f] is uniquely given by:

[@.B] = —p(fl.Ibl+Ighab(dlg. f}) — p(bl + gl ImDa(Xs.b)dg
+ p(lal+ 11,161 + gl + [ ((DX,).a)d f (3.6)

We now prove the graded Jacobi identity

Pyl leDle. B, y11 + p(lal, IBDIB. [y a1l + p(1BI, [y DLy, [@.B1] = 0. (3.7

Let us set & = adf, B = bdg, vy = cdh which are all homogeneous elements in Q!(A).
Then by direct computation we have

[a,[B,¥]] = ladf,—p(Igl,lyDbc(d{h,g})]
+  [adf,—p(yl,In)b(X,.c)dh] + [ad f,p(|Bl, Iy + |n))c(Xp.b)dg]  (3.8)

Let compute explicitly any of the three terms in Equation (3.8). We obtain

lad f,=p(Igl, lyDbc(dih, g})]

P8l lyDedlf1, 181+ lyDabc(df{h, g}, f1)
+ p(gl. lyDp(B8l + Iyl IthaX.(be)d{h, g} (3.9
= pUgl.lyDedal, 18l + |yl + 2lm)be(Xin.gy.a)d f

ladf,—p(yl,In)b(Xg.c)dh] = p(lyl,IxDe(f1, |81+ Iyl + Ix)ab(X,.c)dih, f}
+  p(ylIxhe(Bl+ Wyl Ir)aXr.(DX,.c)dh (3.10)
= p(ylImhedal, 8] + Iyl + 2|7)b(X,.c)(Xp.a)d f

lad f,p(1Bl, Iyl + |n))c(Xp-b)dg)] —p(Bl, 1 +17Dp(f1, 1Bl + Yl + [nDac(Xy.b)d{g, f}
= pUBL I+ 2Bl + Iyl InhaX s .(cXy.D)dg (3.11)

+ p(Bl. Iyl + [Dedlal, |Bl + Iyl + 2lr)e(Xp-b)(X,.a)d f

We then compute the sum of Equations (3.9),(3.10),(3.11) which leads to the explicit
expression of p(lyl,|al)[e, [5,y]] as follows:



100 F. Ngakeu

Pyl leDla, (8,711 Pyl laDp(lgl. lyDo(f1, 181 + lyDabe(dith, g}, 1)

[=o(lgl. yDedlal, 1Bl + 2laDbeXin,gy.a = p(yl; IxDodlal, 18] + 21m)b(X, .c)(Xh.a)
PBL, Iyl + |Dp(lel, 18] + 2lm)c(Xy.D)(X,.a))d f

Pyl leDp(yl IxDedBl + Iyl InhaX (DX, .c)dh

Pyl laDp(BL byl + 7D (Bl + Iyl IxDaX r .(cXy.b)dg

Pyl laDedgl lyDe(Bl + Iyl InaX r(be)d{h, g}

P Doyl IxDedf1 18l + Iyl + Inhab(Xe.c)dih, f}

= pyllaDp(Bl Iy + |2De(f1. 18l + Iy + Inhac(X,.b)dig, f}-

We make the cyclic permutation of the last formula and we sum the three expressions

obtained of p(lyl,laDla,[B,¥1], p(lalBDB,[y,.all and p(|8l,|yDly,[e,B]] and we finally
have:

I+ + o+

+ +

+

Pyl laDla, [B,71] p(al, IBDIB. [y, all +p(1Bl. [yDly. [@.B]]
p(cllaDpdlhl laDpdlgl leDedlf1 1bhabe

dlp(nl, |fDUf g, 13} +p(1f1,18D8g (A, 1} + p(Igl 1hD{A L, g 11D
=0

X

which proves the graded Jacobi identity. O

One then observes that the bracket [;] given in Theorem 3.3 defines a graded Lie alge-
broid structure on Q!(A) with anchor maps §.

Definition 3.4. The graded Lie algebroid structure (Q'(A), [, ], ) from Theorem 3.3 is called
graded Poisson Lie algebroid structure on Q'(A).

Remark 3.5. : From now on, we set o := f(a).

Proposition 3.6. The graded algebroid bracket from Theorem 3.3 is given by the following
formula

[@. ] = pllal, 1B + 2D L, —p(Bl, Iﬂl)Liu —d(<a.p,n>) (3.12)

and the action of the anchor map § on this bracket gives

[@.B1 = —p(Bl. InD)a*. 5 (3.13)
Proof. : Weset @ =adf, B =bdg. Using Equation(3.6) we have

[@.B] —p(f1,18Dd(ab < dg,df,7m >)+p(If],|BDd(ab) < dg,df, 7 >
= p(Bl,Itha(Xy.b)dg +p(lal + 11,18 + lx) (B’ .a)d f
= d<a,B,m>)+p(fl,|8)da < B,df,m > +p(|al,|B))db < dg,a,m >

— p(BlInha(Xy.b)dg +p(lal, |8l + 1) (B’ .a)d f (3.14)
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Let us recall that the graded Lie derivation satisfies
L{{” = X.Nw+p(XLIDFLY, Liy=fLy+df <Xw>, (3.15)
VfeA Xex' (A),weQl(A), from which one deduces
L/; = L’;jg = (a*.b)dg + p(ja| + |, |b|)bLZ§ (3.16)
(Fb)dg = L, ~p(al+al. IbhbLS,
Badf = L, ~p(Bl+nl.lahaLy] (3.17)
and
LY = aLdf+da <phdf >= aL I+ p(B|+ |7, | fda < df.B,n > (3.18)
o P . .
Hence
df _ df
da < B,df,m>—p(|fl, Iﬂl)aLm =—p(fl, |7r|)La,,5,i (3.19)
and similarly
db < dg,a,1 > +p(gl, ol + )DL = p(lgl, ol + Ix)LE, (3.20)
We then compute (3.14) using (3.17),(3.19), (3.20)and we obtain
(.81 = p(eal|6l+ Iﬂl)L“ﬁ = p(Bl, Iﬂl)Lﬂ +d(<a,B,m>)
+ p(fLIBNda < B.df.w> —p(flIxDaLy])
+ plla, BDidb < dg,a > +p(lgl, la + |n|)bLj§ )
= plal.|BI+I)LE, ~p(BL DL, +d(< @.B.x >)
= pUSLIB+ DL, +p(a. BDpIgl ol + DL, (3.21)

Finally we compute (3.21)using

= d(aB’.f) = p(lal, 1B +)d(< B, @ >) = p(Bl+ Ixl, |fd(< . B,7 >)

and

L%, = p(lal + I, Ighd(< B, a7 >)

and we obtain

[@.B1 = plal, 1Bl + 1D L, — p(Bl, IﬂI)Liﬁ —d(<a.p.r>)
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as expected.

We now prove (3.13), namely [, 8] = —p(|8l, |7 [a*, 5]
Applying the map § to (3.6) gives:

[, 81" = =p(If1. IBhabX g 5y — p(B ITDa(X r.b)X, + pled, 18+ I)((B).0)X ¢

On the other hand
[of,8%]

as expected.

[aX 7, bX,] = a(X;.b)X, — p(lal + |, |8l + [n))b(X,.a) X ¢
plal + |7, 181+ Ix)p(lg] + Inl, lahbal X, X /]

a(Xy.b)X, —p(lal, |8 + Ixp(nl, IB)B*.a) X

(. | fDe(el + |, 18+ IxDo(Bl + I, laabX e, 1)
—p(Il, 1B (e, BT

4 Graded Poisson Cohomology

In this section we show that the graded Lie algebroid structure on Q'(A) induces on y(A) a
graded analog of the classical Poisson cohomology.

4.1 Graded contravariant exterior differentiation

Let (A, ) be a PACA with the Poisson bivector 7. We define a graded exterior differentiation
0 of G-degree |0 = || on the complex Ay(A) = @Xq(A) by: VfeA, Q€ xiA),Va,a; €

Ql(A), we set:

<@g, a1,...,0g;00 >

Proposition 4.1.

q

<@;6f> =db.f 4.1)

q

q
D00 Y el e lends leiber. < o, ..aq; 0 >
i=0

k=0,k+i k<i
DO el laahpC Y- el lerjho( ) T, bl
0<i<j 0<k<i 0<k<jk#i k#i,j
X < [a/,-,a/j],a/o,...,d,-,...,dj,...,aq;Q> (42)
00 =—-[n,0], Hence 606=0 4.3)

Proof. : First, Suppose that 6Q = —[x, Q]. Then using Equation (2.7) one deduces:

606Q =[n,[n, Q1] = [[7, 7], Q] + p(7, m)[7, [7, Q] = —[m, [7, Q]] hence 60 6Q = 0.

Next to show that 6Q = —[r, O], we proceed by induction. We first show this equality for
QO=fecAand Q=Xecy'(A). Letusseta=bdg, b,gcA.

<a;=[mnf1> = —plallfD) <@ Xy >=—p(nl,|fD)b < dg; Xy >

= —p(nl,IfDblg, f} = bXy.f = af.f =< a;5f > .
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<anandX> = plaalladal.(<axnX >)
- plail el + Iﬂl)ozg- <apX>+<[a, 2} X > 4.4)

To check that < ay,a2;0X >=< a1,a2;—[r, X] > it is sufficient to do it with | = dg, ap =
dh, g,h € A. Then (4.4) becomes

<ap,a;0X >

p(lhl,|n).X, < dh; X > —p(|gl, |hl + |7)X}. < dg; X > + < [dg,dh]; X >
= p(hl, 1X]+ |7)X,.(X.1) — p(Igl, 1Al + I + | X)X (X.8)

+  p(gl+ Al + |7l IXDX.({g, 1})

= —p(lhl+|nl,1X{g. X-h} — p(Ig] + |hl + |7|, IX{X.g, h}

+  p(lgl+ 1Al +Inl,IX)X.({g. h}) 4.5)

On the other hand

<ay,a;—[r,X] >= p(|nl,|1X]) < a1, a2; L >
= p(al, XDp(lai] + |aal, IXDX. < a1, @21 > —p(|n| + || + |azl, IX]) < LY, a3 >
— p(nl+laal,IX]) < @y, LY ;70 >
= p(lrl, IXDo(gl + Il IXDX. < dg,dh; > —p(inl + |g| + |l IX]) < L, dh; x>
= pld. IXDp(ALIX]) < dg, LY 7 >
= —p(lhl+Inl,1X){g, X-h} — p(Igl + 1Al + |7, IXD{X.g, h}
+ p(lgl + Al + |n, IX)X.({g, 1}

<ap,ay-[mX]> = <ai,a2;6X >. 4.6)

Next to show that 6Q = —[x, Q] for Q € y9(A), ¢ =2, we suppose by induction that this
formula is true for any Q" € y”(A) for p < g and set Q = X A Q’, then

—[r, XA Q'] =~ XIA Q" +p(nl,IXDX Alm, Q'] = 6X A Q" —p(Inl, IXDX A 6Q’

We then compute < dfp,...,df;;0X A Q" — p(|n],| X)X A 6Q" > using formula (4.2)and find
the expression of < dfy,...,df;;00 >. O

Definition 4.2. (y(A),0) is called the graded Lichnerowicz-Poisson cochains Complex of
the PACA (A, ).

Letus set: Z9(A) = ker(d : y9(A) — x9*1(A)) and BI(A) = Im(5 : x7~'(A) — x?(A))
Z(A)
Bi(A)’ q>0.

Definition 4.3. The spaces H7;p(A), ¢ > 0 are called the Lichnerowicz-Poisson coho-
mology groups of the PACA (A, n).

One easily checks that HA)={fe A, Xy = 0} wich is the center of the PACA (A,r),
Z'(A) is the space of the graded Poisson derivations and B'(A) is the space of Hamiltonian
derivations.

The space H?*(A) contains a particular class [r]. When this class vanishes, we say as in the
classical case that (A, ) is an exact Poisson almost commutative algebra (EPACA).

HIL(A) = 4.7)
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4.2 Interior and Lie derivative of multivectors

We now introduce the graded analog of classical interior and Lie derivative of multivectors
with respect to graded 1-forms. For Q € y9(A), a,a; € Q'(A), feA, we set

iof 0, <ai,@g1i00>= (D" <ay, . ap1,0;0>
Lof = aﬁ.f,

q
POl led + et < ..o aq3 Q>
k=1

<ai,...aq; L, 0>

q q
Zp( Z lakl, lal +In)) < ay, ... [a;, al...ay; O > 4.8)

=1 k=i+l
Then we have the following properties:

Proposition 4.4.

Ly =iq 06+ p(lal, 1616 0 i (4.9)

60 Ly =p(|0],la])Le 0 6. (4.10)

i8] = p(ll,|B)ig © Lo — (1Bl 7)) Lo 0 ig 4.11)

Lia g1 = p(lal, |8l + 7)) Lg © Lo — p(Bl, I7) Lo © Lg 4.12)

Remark 4.5. : To recover the usual formulae as in [10], one should take p = 1 and the

opposite of the actual bracket of 1-forms.

We now give main steps in the proof of Proposition 4.4.

Proof. Forall Q € x1(A), a,ay,....,a € Q'(A), a direct computation gives:

<ap,..,@g;000,0 >

q q
DD e lehp(Y lad il < s dirg 030 >
i=1

k#i k<i
q
0 DT ek labp( > lardlal)
1<i<j<q k#i,j k<j.k#i
X p(z lagl, i) < [ai, ], an,s ..., @@, g, @, O > 4.13)

k<i
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<ay,..,ag10(60) >= (-1 < ay,...,ga;60 >

i= k=i+1 k<i

q q
= DD Jard + aslalp() ek lail + Ixhal. < e, . g, 03 Q>
=1

q
+ p(Y el lel+ et < i, g0 >

k=1
q
i+j+1
L DTN ol +lab e Y ladla)
1<i<j<q ki, j k<jk#i

X pOY lehlenl) < [, @), s GV o0y, 0 >
k<i

q
+

(=1 laulaiDpC Y lewl el + 1)) < [ai, ), a1, g3 O >

i=1 k<i k#i

Multiplying Equation (4.13) by p(|a|,|7|) and summing the result with the equation above
gives the expression of < ay,...,a4; L, Q > and proves Equation(4.9).
The proof of Equation(4.10) is obviously deduced from (4.9). Next we have

< @1, @go1;p(00l B (g 0 La)(Q) >= (1) p(lal, 1B) < @1, .., 21,8 LaQ >

q-1
(=1 (Yl lol+ lxp (Bl et < @i, aq-1,8:0 >

k=1
1" p(el,1B]) < a1,....aq-1.[B.2]: Q >
q-1 q-1
= DT Y e Y ek el + DBl b < @i @il 01,80 >
=1 k=i+l

On the other hand
<y @g-1; =B, [T (Lg 0 ip)(Q) >

q-1
= —(=1)*"p(BLINp() larllal + et < ar, ... q1,8;0 >
k=1

q-1 q-1
£ DT 0 lard el + xDp(BL ) < s iy, @0, g1, B O >
i=1  k=i+l

summing the two last equations above gives —(—l)q‘lp(lal, 18D <ai,...,ag-1,[B,al; Q >which
in turn is < a1, ...,@y-1,i[eg); Q > and that proves the property given in (4.11).
Finally the proof of Equation (4.12) is easily done using formula (4.9). O

Example 4.6. : We consider the quantum plane A = Ré with its symplectic form w =dy Adx
as in [3]. Its Poisson bivector is 7 = % A a%.

The Hamiltonian vector field associted to f € Ais Xy =[f,n] = g'-h 3—]; % —g\/h % a%. where
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|1 =(fl1,Ifl2) The poisson bracket {,} is defined by:
Xr.g =<Xr,dg >=< X7, X,,w >=—p(|gl,|wD{f, g} which explicitly is
il af o —le|; OF &
(f>8} = —p(lwl,IghXs.g = —¢' VN |g|1+|g|za_.§£ 4 gMfPlgh-lgh a—ﬁa—f
LetX=f a% + g(% be a general homogeneous vector. We have:
[X,7] = —qX; A % — éXg A (%' On the other hand, using the formula of X, above, one finds

that Poisson vectors X = f % + gaﬁy are solutions of the following graded PDE:

g2 - 98 (4.14)
Ox oy

Solving this Equation (4.14) gives

p)
ety 2y ke, moneN. (4.15)

0
X = "——
Ky ox n+l1 ay

One easily checks that the latter is a Hamiltonian vector, hence H 1(Rz) ={0}.
on the other hand we have 7 = §Xy where Xy = —ya%, meaning that any closed bivector is

exact, and this leads to H2(R621) = {0}. Finally the Poisson cohomology of the symplectic
quantum plane is given by:

H'R)=C, H'R})=1{0}, H*R})=10}. (4.16)
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