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Abstract

We prove an alternative method in order to obtain generation and analyticity results

for the semigroups generated by some degenerate second order differential operators

linked to the hypergeometric equation.
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1 Introduction

A particular case of the hypergeometric equation is

x(1− x)u′′(x)+ (c− x)u′(x) = 0, (1.1)

where c is a real or complex parameter. The related operator

Au(x) := x(1− x)u′′(x)+ (α+βx)u′ (x), (1.2)

with α = β = 0, arose in genetics, and was studied by Feller in 1952 in a famous paper

[8]. By equipping A with Wentzell boundary conditions (Au(x) = 0 for x = 0,1), Feller
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showed that A (with α = β = 0) generates a strongly continuous contraction semigroup on

X := C[0,1], equipped with the sup-norm ‖ · ‖∞ . That is, for the solution of the resolvent

equation

λv−Av = h (1.3)

(and the general solution of this ordinary equation was known in the nineteenth century),

Feller obtained the estimate

‖v‖∞ ≤
‖h‖∞
Reλ

for Reλ > 0. The natural question arising from Feller’s result was whether the semigroup

generated by A is an analytic semigroup. This question was affirmatively answered by G.

Metafune in 1998 (see [12]).

The result followed from Metafune’s estimate

‖v‖∞ ≤ M
‖h‖∞
|λ|

for v satisfying (1.3) and Reλ > K, where M and K are suitable positive constants. Our

proofs make use of known properties of hypergeometric functions, so assuming the reader

knows some of this background, our proofs can be regarded as simpler, more direct and

extendable to other cases.

These arguments allow us to save the above analyticity results even in other cases (see

Section 3). For analyticity results related to degenerate operators with Wentzell boundary

conditions in C[0,1] see, e.g., [1, 2],[ 5- 7] and [10] .

2 The semigroup generated by the operator Au= x(1− x)u′′ with

Wentzell boundary conditions

We would like to study the realization of the operator Au := x(1− x)u′′ in C[0.1] with domain

D(A) := {u ∈C[0,1]∩C2(0,1) : lim
x→ j

Au(x) = 0, j = 0,1}. (2.1)

We first consider the homogeneous equation

x(1− x)u′′(x)−λu(x) = 0 (2.2)

where Reλ > 0, |λ| large. We seek for a solution to (2.2) in C[0,1]∩C2(0,1) under the form

of a power series

u1(x) = φ(x) =

∞
∑

n=0

anxn. (2.3)

We find that

a0 = 0, a2 =
λ

2
a1, an+1 =

λ+n(n−1)

n(n+1)
an, n = 1,2, ...

Take a1 = 1, so that

an+1 =
λ+n(n−1)

(n+1)n
·
λ+ (n−1)(n−2)

n(n−1)
· · ·

λ+4 ·3
5 ·4

·
λ+3 ·2

4 ·3
·
λ+2 ·1

3 ·2
·
λ+1 ·0

2 ·1
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=
(λ+n(n−1))(λ+ (n−1)(n−2)) · · · (λ+4 ·3)(λ+ 3 ·2)(λ+2 ·1)(λ+1 ·0)

(n+1)!n!
.

Notice that

a1+a2 =
λ+2

2
=

1
∏

k=1

λ+ (k+1)k

(k+1) ·k
,

a1+a2+a3 =
λ+2

2
+
λ+2

2 ·3
· λ

2
=
λ+2

2

(

λ+2 ·3
2 ·3

)

=

2
∏

k=1

λ+ (k+1)k

(k+1)k
,

a1+a2+ · · ·+an =

n−1
∏

k=1

λ+ (k+1)k

(k+1)k
, n ≥ 2,

so that
∞
∑

n=1

an =

∞
∏

k=1

λ+ (k+1)k

(k+1)k
.

On the other hand,

|a1|+ |a2| =
|λ|+2

2

|a1+ |a2|+ |a3| ≤
(|λ|+1 ·2)(|λ|+2 ·3)

(1 ·2)(2 ·3)

|a1+ |a2|+ |a3|+ |a4| ≤
(|λ|+1 ·2)(|λ|+2 ·3)(|λ|+ 3 ·4)

3! 4!
,

n
∑

k=1

|ak| ≤
n−1
∏

k=1

|λ|+ (k+1)k

(k+1)k
,

and therefore
∞
∑

n=1

|an| ≤
∞
∏

n=1

|λ|+ (n+1)n

(n+1)n
.

Hence
∑∞

n=1 |an|
|
∑∞

n=1 an|
≤

∏∞
n=1
|λ|+(n+1)n

(n+1)n
∏∞

n=1
|λ+(n+1)n|

(n+1)n

≤C, (2.4)

where C is independent of λ. In fact, we observe that |φ(1)| ≤
∑∞

n=1 |an| converges. To show

this, we use the Raabe test. Let λ = x+ iy, so that

n

(

|
an

an+1

| −1

)

= n















n(n+1)−
√

(x+n(n−1))2 + y2

√

(x+n(n−1))2 + y2















= n
n(n+1)−n(n−1)

√

1+ 2x
n(n−1)

+
x2+y2

n2(n−1)2

n(n−1)

√

1+ 2x
n(n−1)

+
x2+y2

n2(n−1)2



4 A. Favini, G.R. Goldstein, J.A. Goldstein and S. Romanelli

∼ n
n(n+1)−n(n−1)− x− x2

+y2

2n(n−1)

n(n−1)

= n
2n− x− x2

+y2

2n(n−1)

n(n−1)
→ 2 > 1

as n→∞.

Next, we observe that ψ(x) = φ(1− x) is another solution to equation (2.2). Compute the

Wronskian W of φ and ψ:

W(x) =

∣

∣

∣

∣

∣

∣

φ(x) φ(1− x)

φ′(x) −φ′(1− x)

∣

∣

∣

∣

∣

∣

= −φ(x)φ′(1− x)−φ′(x)φ(1− x).

Since

W′(x) =

∣

∣

∣

∣

∣

∣

φ(x) φ(1− x)

φ′′(x) φ′′(1− x)

∣

∣

∣

∣

∣

∣

= 0,

for x ∈ (0,1), we conclude that

W(x) =W(
1

2
) = −2φ(

1

2
)φ′(

1

2
).

Now, if x ∈ (0,1), then φ(x) coincides with

x(1− x)F













3+
√

1−4λ

2
,
3−
√

1−4λ

2
,2; x













,

where F is the hypergeometric series

F(a,b,c; z) = 1+

∞
∑

n=1

(a)n(b)n

(1)n(c)n

zn,

with

(a)n := a(a+1) · · · (a+n−1),

(see e.g. [11, p.296]). On the other hand, from [11, p.305], we have

d

dz
F(a,b,c; z) =

ab

c
F(a+1,b+1,c+1; z),

so that

2φ(
1

2
)φ′(

1

2
) =

λ+2

16
F













3+
√

1−4λ

2
,
3−
√

1−4λ

2
,2;

1

2













·

F













5+
√

1−4λ

2
,
5−
√

1−4λ

2
,3;

1

2













. (2.5)

Let us compute F

(

3+
√

1−4λ
2 ,

3−
√

1−4λ
2 ,2; 1

2

)

and F

(

5+
√

1−4λ
2 ,

5−
√

1−4λ
2 ,3; 1

2

)

.

We have

F













3+
√

1−4λ

2
,
3−
√

1−4λ

2
,2;

1

2












= 1+

∞
∑

n=1

1

2n

(λ+2 ·1)(λ+3 ·2) · · · (λ+ (n+1)n)

(n+1)!n!
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and

F













5+
√

1−4λ

2
,
5−
√

1−4λ

2
,3;

1

2













= 1+

∞
∑

n=1

1

2n

(λ+2 ·3)(λ+3 ·4) · · · (λ+ (n+ 1)(n+2))

(n+2)!n!
.

Recall that
∞
∑

n=1

an =

∞
∏

n=1

λ+ (n+1)n

(n+1)n

and observe that
∑∞

n=1
1
2n = 1. Then (2.3) implies that

|W(
1

2
)| ∼ |λ+2| |

∞
∑

n=1

an|2. (2.6)

Notice that, if φ is positive, then [3, Lemma 3] applied to φ and ψ enables us to affirm that

I − A is surjective. Next we consider f ∈ C[0,1] and indicate a particular solution to the

inhomogeneous equation

x(1− x)u′′ −λu = f . (2.7)

Precisely, let

u f (x) = −
1

W(1
2
)

∫ 1

0

f (t)K(x, t)dt,

where

K(x, t) :=















φ(t)φ(1−x)

t(1−t)
, 0 < t < x,

φ(1−t)φ(x)

t(1−t)
, x < t < 1.

Then

u f (x) = −
1

W(1
2
)

∫ 1

x

f (t)φ(1− t)φ(x)

t(1− t)
dt−

1

W(1
2
)

∫ x

0

f (t)φ(t)φ(1− x)

t(1− t)
dt.

Notice that, for t ∈ [0,1]

|φ(t)| ≤
∞
∑

n=1

|an|t, |φ(1− t)| ≤
∞
∑

n=1

|an|(1− t).

Hence, for any x ∈ (0,1),

|
∫ 1

x

f (t)φ(1− t)φ(x)

t(1− t)
dt| ≤

∫ 1

x

| f (t)|
t

dt|φ(x)|
∞
∑

n=1

|an|

≤ ‖ f ‖∞
∫ 1

x

dt

t
|φ(x)|

∞
∑

n=1

|an|

≤ ‖ f ‖∞(x | log x|)(
∞
∑

n=1

|an|)2. (2.8)

This also shows that
∫ 1

x

f (t)φ(1− t)φ(x)

t(1− t)
dt→ 0
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as x→ 0+. In a similar way

|
∫ x

0

f (t)φ(t)φ(1− x)

t(1− t)
dt| ≤

∫ x

0

| f (t)|
1− t

dt|φ(1− x)|
∞
∑

n=1

|an|

≤ ‖ f ‖∞
∫ x

0

dt

1− t
|φ(1− x)|

∞
∑

n=1

|an|

≤ ‖ f ‖∞(1− x) | log(1− x)|(
∞

∑

n=1

|an|)2, (2.9)

implies that u f satisfies (2.7) and

u f (0) = 0 = u f (1).

Observe that these results can be compared with those by Clément and Timmermans [3],

since, according to Feller classification of the boundary points, 0 and 1 are exit points. For

Feller classification of the boundary points see e.g. [4, VI Section 4, p.396]. In addition, if

we set M := supx∈[0,1] x| log x|, as a consequence of (2.8), (2.9), (2.6) and (2.4), we obtain

‖u f ‖∞ ≤
M

W(1
2
)
‖ f ‖∞(

∞
∑

n=1

|an|)2 ≤
M

|λ+2|
‖ f ‖∞

(∑∞
n=1 |an|
|
∑∞

n=1 an|

)2

≤ MC2

|λ+2|
‖ f ‖∞ ≤

C′

|λ|
‖ f ‖∞, (2.10)

for Reλ > 0, |λ| large. Therefore, the mapping f → u f defines a linear bounded operator L f

acting on C[0,1] such that ‖L f ‖ ≤ C′

|λ| with C′ independent of λ. The results above imply

that the general solution u to (2.7) is expressed by

u(x) = c1φ(x)+ c2φ(1− x)+u f (x).

It follows that

x(1− x)[c1φ
′′(x)+ c2φ

′′(1− x)+u′′f (x)] = c1λφ(x)+ c2λφ(1− x)+λu f (x)+ f (x).

Now, u f (x) tends to 0 as x→ 0,1 and

φ(0) = 0, φ(1) =

∞
∑

n=1

an.

Therefore,

lim
x→0+

x(1− x)[c1φ
′′(x)+ c2φ

′′(1− x)+u′′f (x)] = λc2φ(1)+ f (0),

lim
x→1−

x(1− x)[c1φ
′′(x)+ c2φ

′′(1− x)+u′′f (x)] = λc1φ(1)+ f (1).
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This implies that necessarily

c1 =
− f (1)

λ
∑∞

n=1 an

, c2 =
− f (0)

λ
∑∞

n=1 an

. (2.11)

Let u f denote the solution of (2.7) corresponding to the coefficients c1,c2 as in (2.11). Then,

by (2.4) and (2.10) we have

‖u f ‖∞ ≤
| f (1)|

|λ| |
∑∞

n=1 an|
‖φ‖∞ +

| f (0)|
|λ| |

∑∞
n=1 an|

‖φ(1− ·)‖∞ + ‖u f ‖∞

≤
| f (1)|

∑∞
n=1 |an|

|λ| |
∑∞

n=1 an|
+
| f (0)|

∑∞
n=1 |an|

|λ| |
∑∞

n=1 an|
+

C′

|λ|
‖ f ‖∞

≤
C′′

|λ|
‖ f ‖∞,

where C′′ :=max{C′ ,2C}.
Hence we have proved the affirmation as follows.

Theorem 2.1. The operator A with domain

D(A) := {u ∈C[0,1]∩C2 (0,1) : lim
x→ j

Au(x) = 0, j = 0,1}

generates a Feller semigroup on C[0,1] which is analytic of angle π
2 .

We remark that for this theorem we have provided an alternative proof to a result due to

Metafune [12].

3 The semigroup generated by the operator A1u = x(1− x)u′′+
(x− x)u′ with Wentzell boundary conditions

Next aim is to show that our method can be useful also for more general degenerate second

order differential operators with Wentzell boundary conditions.

Let us fix x ∈ (0,1) and define the operator A1u := x(1− x)u′′+ (x− x)u′ with domain

D(A1) := {u ∈C[0,1]∩C2(0,1) : lim
x→ j

A1u(x) = 0, j = 0,1}.

Then the following result holds.

Proposition 3.1. (i) Every solution of the equation x(1− x)u+ (x− x)u′−λu = 0 is bounded

near 0 and 1. (ii) The operator (A1,D(A1)) generates a Feller semigroup on C[0,1] which

is analytic of angle π
2
.

Proof. For simplicity, let us consider x = 1
2

and evaluate

W1(x) := exp















−
∫ x

1
2

1
2 − s

s(1− s)
ds
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Q(x) :=
1

x(1− x)W1(x)

∫ x

1
2

W1(s)ds

R(x) :=W1(x)

∫ x

1
2

1

s(1− s)W1(s)
ds.

Then W1(x) = 1

2
√

x(1−x)
. Direct calculations show also that

Q ∈ L1(0,
1

2
), R ∈ L1(0,

1

2
)

thus 0 is regular. Moreover

Q ∈ L1(
1

2
,1), R ∈ L1(

1

2
,1)

hence 1 is regular too. Then, according to the results by Clément and Timmermans [3] (see

also [4] Theorem 4.14 p. 396), the assertion (i) follows. The assertion (ii) is a consequence

of [4] Theorem 4.18 p. 398 and [4] Theorem 4.21 p.401.

Example. Take x = 1
2
. By arguing as in the previous section, we deduce that, if φ1(x) =

∑∞
n=0 bnxn is a solution of

x(1− x)u′′ + (
1

2
− x)u′ −λu = 0, (3.1)

for Reλ > 0, |λ| large, then

bn+1 =
n2
+λ

(n+1)(n+ 1
2
)

bn n ≥ 1, (3.2)

provided that b0 =
1

2λ and b1 = 1.
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