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Abstract
We give an explicit and purely algebraic proof for the existence of noetherian dif-

ferential operators for primary ideals of polynomial algebras. The proof of this impor-
tant result in [1] uses complicated algebraic and analytic techniques. Later U.Oberst
gave an elementary and constructive proof in [6]. In this paper we propose a different
proof from the one in [6].
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1 Introduction

Let K be a field of characteristic zero. Denote by K[X] = K[x1, . . . , xn] the polynomial ring
in n variables and by An(K) the n-th Weyl algebra.
Let P be a prime ideal of K[X] and Q ⊂ P be a primary ideal so that

√
Q = P. Let

F(X,∂) =
∑

pα(X)∂α

be in An(K) such that F(Q) ⊂ P. Then we say that F is a Noetherian operator with respect
to Q. Denote by N(Q) the set of all Noetherian operators F ∈ An(K).

Main Theorem There exist F1, . . . ,Fl ∈ N(Q) such that if ϕ ∈ K[X] satisfies

Fv(ϕ) ∈ P, 1 ≤ v ≤ l

then ϕ ∈ Q.

The proof requires several steps. First we use Noether’s Normalization Theorem for prime
ideals and reduce the proof to the case when P is a maximal ideal. In this situation we
employ Kashiwara’s Decomposition Theorem to reduce the proof to the case n = 1. The 1-
dimensional case is treated in a separate section where certain facts about the 1-dimensional
Weyl algebra appear.
∗E-mail address: nonkane@math.su.se



60 I. Nonkané

1.1 A Special basic case

Let J be an ideal in K[X] and assume there exists an integer w≥ 1 such that (x1, . . . , xn)w+1 =

J (J is the w+1-th power of the maximalM = (x1, . . . , xn)). Consider differential operators
with constant coefficients

F(∂) =
∑

cα∂α,cα ∈ K,α = (α1, . . . ,αn) ∈ Nn.

Put Nc(J) = {F(∂) : F(J) ⊂M}, such F ∈ N(J).
Now we have the finite dimensional K-vector space V = K[X]/J. Each F ∈ Nc(J) gives
a K-linear map ϕF : V → K as follows. If a vector v ∈ V is image of p, p ∈ K[X], let
ϕF(v) = F(p)(0). Since for p ∈ J,F(p) has no constant term, ϕF is well-defined. Thus every
Noetherian operator F ∈ Nc(J) produces a ϕF ∈ V∗ = HomK(V,K). So we have constructed
a K-linear map Nc(J)→ V∗. With these notations we can announce the following duality
theorem.

Theorem 1.1. Nc(J) � V∗. In particular dimKNc(J) = dimK V∗ = dimK K[X]/J.

Proof. For α,β multi-indices we have∂α(xβ)(0) = 0 if α , β
∂α(xα)(0) = α!

where α! = α1! · · ·αn!.
We know that V = ⊕|α|≤wKxα, also for |β| ≤ w, ∂β(J) ⊂M and ϕ∂β(cαxα) = cββ!. Then

kerϕ∂β ⊕Kxβ = V and ∩|β|≤w kerϕ∂β = {0}, it follows that Hom(V,K) � ⊕|β|≤wK∂β � Nc(J).
�

In this case we thus see that Nc(J) =N(J)∩K[∂] is a finite dimensional vector space.
And by taking a basis F1, . . . ,Fk we have found Noetherian operators as in the main theo-
rem.

2 The 1-dimensional case

Notation: A1 = A1(K) = K〈t,∂t〉

Theorem 2.1. Let q(t) ∈ K[t] be an irreducible polynomial. Then A1q is a maximal left

ideal in A1, so that
A1

A1q
is simple as A1-module.

Proof. Without loss of generality, let us change the variable t to ∂t. For simplicity we
write ∂ for ∂t so q(∂) = ∂e + k1∂

e−1 + · · ·+ ke, k j ∈ K,e = deg(q) ≥ 2 (the case deg(q) = 1 is
immediate). We have

A1 = A1q⊕K[t]⊕K[t]∂⊕ · · ·⊕K[t]∂e−1

since K[∂] = (q)+K +K∂+ · · ·+K∂e−1. Let 0 , ξ ∈ K[t]⊕K[t]∂⊕ · · · ⊕K[t]∂e−1 and let us
show that A1ξ + A1q = A1. There exists m ∈ N and γ j(∂) ∈ K[∂], j = 0,1, . . . ,m such that
ξ =

∑m
j=0 t jγ j(∂) with degγ j ≤ e− 1. We proceed by induction on the degree of t in ξ ; if
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m = 0 then (ξ,q) = 1 (since q is irreducible) and A1ξ+A1q = A1. If m ≥ 1, suppose that the
statement is true when the degree of t is less than m. We have that (γm,q) = 1 and there
exists am and bm in A1 such that

amγm+bmq = 1

and amξ = tm − tmbmq+
∑m−1

j=0 amt jγ j(∂) ≡ tm +
∑m−1

j=0 amt jγ j(∂)( mod A1q) so qamξ = qtm +∑m−1
j=0 qamt jγ j(∂). Let η = qamξ, it is sufficient to show that A1η+ A1q = A1. But by [5,

Chapter 1] we know that

[∂ j, tk] =
∑
i≥1

k(k−1) · · · (k− i+1) j( j−1) · · · ( j− i+1)
i!

tk−i∂ j−i

and this yields that qtm = tmq+[q, tm] where [q, tm] ∈
∑

j≤m−1 t jK[∂]. Hence η ∈
∑

j≤m−1 t jK[∂]+
A1q and by the hypothesis of induction A1η+A1q = A1. Thus A1ξ+A1q = A1. This means
that A1q is a maximal left ideal, and finishes the proof. �

Theorem 2.2. If q(t) is an irreducible polynomial in K[t]. Then

(i) Ext1A1
(

A1

A1q
,

A1

A1q
) = 0

(ii) HomA1(
A1

A1q
,

A1

A1q
) =K =

K[t]
(q)

.

Proof. First we prove Ext1A1
(

A1

A1q
,

A1

A1q
) = 0.

Let us consider the following short exact sequence

0 −→ A1q
i
−→ A1 −→

A1

A1q
−→ 0.

We get the induced long exact sequence

0 −→ HomA1(
A1

A1q
,

A1

A1q
) −→ HomA1(A1,

A1

A1q
)

i∗
−→ HomA1(A1q,

A1

A1q
)

−→ Ext1A1
(

A1

A1q
,

A1

A1q
) −→ Ext1A1

(A1,
A1

A1q
) −→ Ext1A1

(A1q,
A1

A1q
) −→ ·· ·

Since Ext1A1
(A1,

A1

A1q
) = 0, it is sufficient to show that the map i∗ : HomA1(A1,

A1

A1q
) −→

HomA1(A1q,
A1

A1q
) is surjective.

Let ϕ : A1q −→
A1

A1q
be a left A1-linear map. Then ϕ belongs to the i∗-image if and only if

there exists ψ : A1 −→
A1

A1q
a left A1-linear map such that ψ|A1q = ϕ, hence ϕ(q) = ψ(q) =

q ·ψ(1).

Since HomA1(A1,
A1

A1q
)�

A1

A1q
, we conclude that the i∗-image is equal to

{
ϕ ∈HomA1(A1q,

A1

A1q
) :

ϕ(q) ∈ q ·
A1

A1q

}
. We claim that qA1+A1q = A1. From qA1+A1q = A1 we get q ·

A1

A1q
�

A1

A1q
.
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Then the i∗-image is HomA1(A1q,
A1

A1q
) and i∗ is surjective.

Let us prove our claim. If q(t) = te + k1te−1 + · · ·+ ke, k j ∈ K,e = deg(q) ≥ 2 then A1 =

A1q⊕K[∂]⊕K[∂]t⊕· · ·⊕K[∂]te−1 since K[t] = (q)+K+Kt+ · · ·+Kte−1. Put M = qA1+A1q
and it is sufficient to show that K[∂]t j ⊂ M, j = 0, . . . ,e−1. We have t jq′ = t j∂q−qt j∂ ∈ M.
Since q is irreducible there exist a,b ∈ K[t] such that aq + bq′ = 1, so 1 ∈ M and t j =

t jaq+ t jbq′ ∈ M for all j ∈ N, hence K[t] ⊂ M. Moreover 2∂q′t j = ∂2qt j−q∂2t j+q′′t j ∈ M
and ∂mq′t j ∈M for all m, j ∈N. Then ∂mt j = ∂mt jaq+∂mq′bt j ∈M for all m, j ∈N. Therefore
K[∂]t j ⊂ M, j = 0, . . . ,e−1.

Secondly, we prove that HomA1(
A1

A1q
,

A1

A1q
) =

K[t]
(q)

.

Let q(t) = te + k1te−1 + · · ·+ ke, k j ∈ K,e = deg(q) ≥ 2 then A1 = A1q⊕K[∂]⊕K[∂]t⊕ · · · ⊕
K[∂]te−1.

Let ψ :
A1

A1q
−→

A1

A1q
be a left A1-linear map. There exists p ∈ A1 such that ψ(1̄) = p̄ in

A1

A1q
.

So p =
e−1∑
v=0

ρv(∂)tv( mod A1q),ρv ∈ K[∂]. We claim that one may choose p ∈ K[t]. Note that

p has a very special property : q · p ∈ A1q. Let us rewrite

p =
m∑

j=0

∂ j · r j(t), r j(t) ∈ K +Kt+ · · ·+Kte−1.

Suppose m ≥ 1, then

q · p =
m∑

j=0

(q ·∂ j) · r j(t).

We know that

q ·∂ j =

j∑
k=0

(−1)k
(

j
k

)
∂ j−kq(k).

We get

q · p =
m∑

j=0

 j∑
k=0

(−1)k
(

j
k

)
∂ j−kq(k)

 · r j(t).

By the fact that q · p ∈ A1q we have found that there exist polynomials ϕ j ∈ K[t], j= 0, . . . ,n−
2 such that

−

(
m
1

)
∂m−1q′(t)rm(t)+

m−2∑
j=0

∂ jϕ j(t) ∈ A1q.

Since q is irreducible, q is relatively prime with both q′ and rm; q is relatively prime with
q′rm and by Euclidean division in K[t] we get

−mq′(t)rm = ρm−1(t)+γm−1(t)q(t), ρm−1 , 0 deg(ρm−1) ≤ e−1.

In the same way for j = 0,1, . . . ,n−2

ϕ j(t) = ρ j(t)+γ j(t)q(t), deg(ρ j) ≤ e−1.



The Weyl Algebra and Noetherian Operators 63

So we get

∂m−1ρm−1(t)+
m−2∑
j=0

∂ jρ j(t) ∈ A1q, deg(ρ j) ≤ e−1.

Because of the direct sum
⊕e−1

0 K[∂]t j ⊕ A1q = A1, this is absurd if m ≥ 1. We have
ρm−1(t) = 0, this is in contradiction to ρm−1(t) , 0 shown above, hence p = r0(t) ∈ K[t].
We have proved that ψ(1̄) = p(t) ∈ K[t], and ψ ≡ 0 if an only if p(t) ∈ (q). Therefore

HomA1(
A1

A1q
,

A1

A1q
) �K . �

2.1 Conclusion

Lemma 2.3. Let q(t) ∈ K[t] be an irreducible polynomial then

A1

A1qm �
⊕

m

A1

A1q
.

Proof. We proceed by induction on m. Let M =
A1

A1q2 . By right multiplication by q we get

the following exact sequence;

0 −→
A1q
A1q2 −→ M −→

A1

A1q
−→ 0.

Since q is a non-zerodivisor in A1 we have
A1q
A1q2 �

A1

A1q
. We then also have

0 −→
A1

A1q
−→ M −→

A1

A1q
−→ 0.

By [4, Chapter 3] we know that Ext1A1
(

A1

A1q
,

A1

A1q
) corresponds to extensions of this form.

Since by Theorem 2.2 Ext1A1
(

A1

A1q
,

A1

A1q
) = 0, and we get

M �
A1

A1q

⊕ A1

A1q
.

Now suppose by induction that
A1

A1qm−1 �
⊕
m−1

A1

A1q
for m ≥ 3, and let M =

A1

A1qm . By right

multiplication by q we get the following exact sequence

0 −→
A1

A1q
−→ M −→

A1

A1qm−1 −→ 0.

And

Ext1A1
(

A1

A1q
,

A1

A1qm−1 ) = Ext1A1
(

A1

A1q
,
⊕
m−1

A1

A1q
) =

⊕
m−1

Ext1A1
(

A1

A1q
,

A1

A1q
) = 0.

Then it follows that
M =

A1

A1q
⊕

A1

A1qm−1 = ⊕m
A1

A1q
.

�
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3 Facts from commutative algebra

Noether’s description of prime ideals Let us recall the description of prime ideals in
K[x1, . . . , xn] where K is a field of characteristic zero [1, Appendix 1]. Take n ≥ 3 and
1 ≤ k ≤ n−3. Up to K-linear transformation a prime ideal P for which K[x1, . . . , xn]/P has
dimension k is determined as follows. Put X′ = (x1, . . . xk) and let
(a) q(X′, xn) = xe

n+
∑e−1

0 %v(X′)xv
n be an irreducible polynomial in xn.

(b) q j = δq(X′)xk+ j−h j(X′, xn); 1 ≤ j ≤ n− k−1 where h j are polynomials in K[X′, xn] and
δq the discriminant of q.
To (q,h1, . . . ,hn−k−1) we associate the prime ideal
P = {ϕ ∈ K[X] : ∃γ(X′) ∈ K[X′],γ(X′) , 0 and γ(X′)ϕ(X) ∈ (q,q1, . . . ,qn−k−1)}.
Noether’s Theorem [8, Theorem 25 ] asserts that all prime ideals arise in this way .

3.1 Passage to maximal Ideals

Let P as above and put
P̃ = K(X′)⊗K[X′] P.

Then P̃ is a maximal ideal in K(X′)[xk+1, . . . , xn] ( where K(X′) is the fraction fields of
K[X′]) and P̃ is generated by q,q1, . . . ,qn−k−1.

In general consider a maximal ideal M in K[t1, . . . , tp] ( in our case p = n− k and K =
K(X′) ). Up to change of variables M is generated by q(tp) = te

p +
∑e−1

0 cvtv
p ∈ K[tp] and

q j = t j−h j(tp) (since we may invert the discriminant in the last equations above).
Let us make a change of variables u j = t j−h j(tp)

up = tp.

Now K[t] � K[u] and using the variables u1, . . . ,up it follows that

M = (u1, . . . ,up−1,q(up))

holds in the polynomial ring in K[u1, . . . ,up] =K[t1, . . . , tp].

4 Kashiwara’s Decomposition Theorem

We need the following version of Kashiwara’s embedding theorem.

Theorem 4.1. Let Ap(K) = K〈u1, . . . ,up,∂u1 , . . . ,∂up〉 be the p-th Weyl algebra, and M a
left Ap(K)-module such that every m ∈ M is annihilated by some power of u j for each
1 ≤ j ≤ p−1, i.e. there exists w j ∈ N (depending on m) such that uw j

j m = 0 in M. Then

M =
⊕

∂α1
u1
. . .∂

αp−1
up−1 M0

where M0 = {m ∈ M : u1m = · · · = up−1m = 0} is a finitely generated left A1 = K〈up,∂p〉-
module.
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Proof. By [1, Theorem 6.2] and [3, Chapter 17] �

As an application we can prove the following result.

Proposition 4.2. LetM be a maximal ideal in K[u1, . . . ,up] and Ap(K)=K〈u1, . . . ,up,∂u1 , . . . ,∂up〉,
s ∈ N. Then

Ap(K)
Ap(K)Ms �

⊕ Ap(K)
Ap(K)M

and
Ap(K)

Ap(K)M
is a simple Ap(K)-module .

Proof. The caseM= (u1, . . . ,up) is well known and we exclude it. The field K[u1, . . . ,up]/M
is a finite dimensional vector space over K. There exists a primitive element which we can
assume to be up and let q(up) be the minimal polynomial of up. There exist polynomials h j

such that u j = h j(up) : 1 ≤ j ≤ p. Now by change of variablest j = u j−h j(up)
tp = up,

we get an algebra isomorphism K[u] −→ K[t];u 7−→ t and under that isomorphism M =
(t1, . . . , tp−1,q(tp)). So all is reduced to the caseM = (t1, . . . , tp−1,q(tp)).
We may thus assume that M = (u1, . . . ,up−1,q(up)), with q(up) an irreducible polynomial.
Now put

M =
Ap(K)

Ap(K)Ms .

That m ∈ M means m = Q(u,∂)+Ap(K)Ms where Q(u,∂) =
∑
|α|≤w qα(u)∂α for some w ∈ N

and qα ∈ K[u1, . . . ,up]. For j = 1, . . . , p− 1 we have that uw+s+1
j ·Q ∈ Ap(K)us

j ⊂ Ap(K)Ms,
so uw+s+1

j m = 0. It follows from Kashiwara’s Decomposition Theorem above that

M =
⊕

∂α1
u1
. . .∂

αp−1
up−1 M0,

where M0 = {m ∈ M : u1m = · · · = up−1m = 0} is a finitely generated left A1 = K〈up,∂p〉-
module. Let M0 =

∑
v A1ζv, it is clear that some power of q(up) annihilates every element

ζv ∈ M0 i.e, there exist w ∈ N such that q(up)wζv = 0. It follows that there exists a surjective

map
A1

A1qw � A1ζv. By Lemma 2.3 and Theorem 2.1 we know that
A1

A1qw �
⊕

w

A1

A1q
is

semisimple and each
A1

A1q
is simple, so A1ζv � ⊕

A1

A1q
. We then get M0 � ⊕

A1

A1q
and M0 is

semisimple as A1-module. This gives by Theorem 4.1 that

M =
⊕( ⊕

α∈Np−1

∂α
A1

A1q

)
.

Now it is easily seen that ⊕
α∈Np−1

∂α
A1

A1q
�

Ap(K)
Ap(K)M

,
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and this implies that M′ =
Ap(K)

Ap(K)M
is simple, since otherwise, we may write M′ =M1+M2

with M1 , 0,M2 , 0. Then

M′0 =
A1

A1q
= (M1)0⊕ (M2)0

with (M1)0 , 0, (M2)0 , 0. This is however in contradiction to the simplicity of
A1

A1q
proved

in Theorem 2.1. �

Corollary 4.3. Suppose that J is an ideal in K[u1, . . . ,up] such thatMs ⊂ J for some s ≥ 2.
Then

Ap(K)
Ap(K)J

�
⊕ Ap(K)

Ap(K)M
(∗).

Moreover the number N of the copies
Ap(K)

Ap(K)M
in (*) is equal to the length of K[u1, . . . ,up]/J.

Proof. If J is an ideal in K[u1, . . . ,up] such that Ms ⊂ J for some s ≥ 2, then there exists

a surjective map
Ap(K)

Ap(K)Ms �
Ap(K)

Ap(K)J
. Since

Ap(K)
Ap(K)Ms is semisimple as Ap(K)-module

from Proposition 4.2,
Ap(K)

Ap(K)J
is also semisimple and

Ap(K)
Ap(K)J

�
⊕

N

Ap(K)
Ap(K)M

. Let us prove

that the number N of the copies
Ap(K)

Ap(K)M
in (*) is equal to the length of K[u1, . . . ,up]/J.

We proceed by induction on l, the length of K[u1, . . . ,up]/J. The statement is trivial when
l = 1, let us consider a maximal chain of ideals 0  J = J0  J1  . . .  Jn =M (

√
J0 =M)

and the following exact sequence

0 −→
Ap(K)J1

Ap(K)J0
−→

Ap(K)
Ap(K)J0

−→
Ap(K)

Ap(K)J1
−→ 0. (4.1)

Since
Ap(K)

Ap(K)J0
is semi-semiple the exact sequence (4.1) splits. We need to prove that

Ap(K)J1

Ap(K)J0
�

Ap(K)
Ap(K)M

, but J1/J0 �K[u1, . . . ,up]/M and J1 =K[u1, . . . ,up]η+ J0 for η ∈ J1\J0.

It follows that Ap(K)J1 = Ap(K)η+Ap(K)J0 and

Ap(K)J1

Ap(K)J0
=

Ap(K)η+Ap(K)J0

Ap(K)J0
�

Ap(K)η
Ap(K)η∩Ap(K)J0

.

SinceMη ⊂ J0,Mη̄ = 0,
Ap(K)η

Ap(K)η∩Ap(K)J0
�

Ap(K)
Ap(K)M

. Therefore

Ap(K)
Ap(K)J0

�
Ap(K)

Ap(K)J1
⊕

Ap(K)
Ap(K)M

.

Since by induction the statement is true for
Ap(K)

Ap(K)J1
, it is also true for

Ap(K)
Ap(K)J0

. �
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5 Final part of the proof

Let P⊂K[x1, . . . , xn] be a prime ideal, X′ = (x1, . . . , xk), X′′ = (xk+1, . . . , xn) and ∂′′ = (∂k+1, . . . ,∂n).
Suppose that K[X′]∩ P = {0} and K(X′)⊗K[X′] P = P̃ is a maximal ideal of K[X′′] where
K = K(X′). If Q is a primary ideal with

√
Q = P, then Q̃ = K(X′)⊗K[X′] Q is a primary ideal

in K[X′′].
Put p = n− k and Ap(K) =K〈xk+1, . . . , xn,∂xk+1 , . . . ,∂xn〉. From Corollary 4.3 we have

Ap(K)

Ap(K)Q̃
�

⊕
N

Ap(K)

Ap(K)P̃
.

Without loss of generality we from [3, Proposition 16.2.1] get

Ap(K)

Q̃Ap(K)
�

⊕
N

Ap(K)

P̃Ap(K)
. (5.1)

Then there exist right Ap(K)-linear surjections

ϕ j :
Ap(K)

Q̃Ap(K)
→

Ap(K)

P̃Ap(K)
, j = 1, . . . ,N. There also exist F j ∈ Ap(K) such that ϕ j(1̄) = F j, so

for all p ∈ K[X],ϕ j(p̄) = F j · p and F j · p ∈ P̃Ap(K) if p ∈ Q̃. Let F j =
∑
α qα(X)(∂′′)α. The

product F j · p is taken in the Weyl algebra Ap(K), and we may write

F j · p = ρ0(X)+
∑
|α|≥1

ρα(X)(∂′′)α.

Then
ρ0(X) =

∑
α

qα(X)(∂′′)α(p) = F j(p).

Here F j(p) is the result of the F j-action on p(X) ∈ K[X]. Furthermore we have

Ap(K) =
⊕
α∈Np

K[X′′](∂′′)α so P̃Ap(K) = P̃
⊕
|α|≥1

P̃ · (∂′′)α.

Now let p ∈ Q̃ since F j · p ∈ P̃
⊕
|α|≥1 P̃ · (∂′′)α and F j · p = F j(p)+

∑
|α|≥1 ρα(X)(∂′′)α, we

get F j(p) ∈ P̃. Conversely if p ∈ K[X] such that F j(p) ∈ P̃;1 ≤ j ≤ N. Since Q̃ is an ideal
F ∈ N(Q̃)⇒ F(X, (∂)′′)xα ∈ N(Q̃), by this we get that F ∈ N(Q̃)⇒ F(β) ∈ N(Q̃) where
F =

∑
qα(X)∂α and F(β) = qα(X)

(
α
β

)
∂α−β. The familyN(Q̃) is closed under derivations with

repect to ∂-monomials. By [2, Proposition 1.1.11] we have that: F(β)(p) ∈ P̃ for all β implies
that F · p ⊂ P̃Ap(K). Then F j · p ∈ P̃Ap(K);1 ≤ j ≤ N and ϕ j(p) = 0;1 ≤ j ≤ N. From the
isomorphism in (5.1) we get p ∈ Q̃Ap(K), and it follows that p ∈ Q̃. Therefore we have
found differential operators F1(X,∂′′), . . . ,FN(X,∂′′) such that

F j(Q̃) ⊂ P̃ : 1 ≤ j ≤ N. (5.2)

And if p ∈ K[X] such that

F j(p) ∈ P̃;1 ≤ j ≤ N then p ∈ Q̃. (5.3)
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Denote by γ(X′) ∈ K[X′] the common denominator of the F j. By multiplying the F j by
γ(X′) we get differential operators
F′1(X,∂), . . . ,F′N(X,∂) ∈ An(K) = K〈x1, . . . , xn,∂x1 , . . . ,∂xn〉 such that

F′j(Q) ⊂ P : 1 ≤ j ≤ N. (5.4)

Suppose that p ∈ K[X] such that F′j(p) ∈ P for 1 ≤ j ≤ N then p ∈ Q̃. We can find δ(X′) ∈
K[X′] such that δ(X′)p ∈ Q. Since Q is primary and K[X′]∩P = {0}, From [7, Lemma 4.14]
we have (Q : δ(X′)) = Q, so p ∈ Q. We conclude that (F′1, . . . ,F

′
N) gives the requested family

of Noetherian operators in our Main Theorem.

6 Some examples

(1) Let n = 2 and let us consider the primary ideal Q = (xk
1, x

k
2) in K[x1, x2] and P =

(x1, x2) =
√

Q. We know that

K[x1, x2] = Q⊕αi<k Kxα

then
K[x1, x2]/Q = ⊕αi<kKx̄α.

So dim K[x1, x2]/Q = k2 ,

N(Q) = K[X]{∂α : αi < k}.

(2) Let n = 3 and let Q be the ideal generated by the x2
2, x

2
3 and x2− x1x3 in C[x1, x2, x3].

It is easily seen that Q is a primary ideal and the affine variety V(Q) defined by Q−1(0)
is the subspace V(Q) = {(a,b,c)|b = c = 0} then the ideal I(V(Q)) of V(Q) is generated
by x2 and x3 ;

√
Q = (x2, x3). Moreover

C[x1, x2, x3] = C[x1]⊕C[x1]x3⊕Q

then
C[x1, x2, x3]/Q = C[x1]⊕C[x1]x̄3

and the rank of the C[x1]-module C[x1, x2, x3]/Q is 2. We have that

N(Q) = C[X]{1, x1∂2+∂3}.

(3) Let Q = (xk
1, . . . , x

k
n) a primary ideal in K[x1, . . . , xn],

√
Q = (x1, . . . , xn). As above we

get dim K[x1, x2]/Q = kn, and

N(Q) = K[X]{∂α : αi < k}.
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