The Weyl Algebra and Noetherian Operators

Ibrahim Nonkané*
Université de Ouagadougou, Unité de Formation et de Recherche, en Sciences Exactes et Appliquées
Départment de Mathématiques, B.P. 7021 Ouagadougou 03, Burkina Faso

Abstract

We give an explicit and purely algebraic proof for the existence of noetherian differential operators for primary ideals of polynomial algebras. The proof of this important result in [1] uses complicated algebraic and analytic techniques. Later U.Oberst gave an elementary and constructive proof in [6]. In this paper we propose a different proof from the one in [6].

AMS Subject Classification: 62G05; 62G20.
Keywords: ADJM, geometry, algebraic geometry.

1 Introduction

Let K be a field of characteristic zero. Denote by $K[X]=K\left[x_{1}, \ldots, x_{n}\right]$ the polynomial ring in n variables and by $A_{n}(K)$ the n-th Weyl algebra.
Let P be a prime ideal of $K[X]$ and $Q \subset P$ be a primary ideal so that $\sqrt{Q}=P$. Let

$$
F(X, \partial)=\sum p_{\alpha}(X) \partial^{\alpha}
$$

be in $A_{n}(K)$ such that $F(Q) \subset P$. Then we say that F is a Noetherian operator with respect to Q. Denote by $\mathcal{N}(Q)$ the set of all Noetherian operators $F \in A_{n}(K)$.

Main Theorem There exist $F_{1}, \ldots, F_{l} \in \mathcal{N}(Q)$ such that if $\varphi \in K[X]$ satisfies

$$
F_{v}(\varphi) \in P, \quad 1 \leq v \leq l
$$

then $\varphi \in Q$.
The proof requires several steps. First we use Noether's Normalization Theorem for prime ideals and reduce the proof to the case when P is a maximal ideal. In this situation we employ Kashiwara's Decomposition Theorem to reduce the proof to the case $n=1$. The 1dimensional case is treated in a separate section where certain facts about the 1-dimensional Weyl algebra appear.

[^0]
1.1 A Special basic case

Let J be an ideal in $K[X]$ and assume there exists an integer $w \geq 1$ such that $\left(x_{1}, \ldots, x_{n}\right)^{w+1}=$ $J\left(J\right.$ is the $w+1$-th power of the maximal $\left.\mathfrak{M}=\left(x_{1}, \ldots, x_{n}\right)\right)$. Consider differential operators with constant coefficients

$$
F(\partial)=\sum c_{\alpha} \partial^{\alpha}, c_{\alpha} \in K, \alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{N}^{n} .
$$

Put $\mathcal{N}_{c}(J)=\{F(\partial): F(J) \subset \mathfrak{M}\}$, such $F \in \mathcal{N}(J)$.
Now we have the finite dimensional K-vector space $V=K[X] / J$. Each $F \in \mathcal{N}_{c}(J)$ gives a K-linear map $\varphi_{F}: V \rightarrow K$ as follows. If a vector $v \in V$ is image of $p, p \in K[X]$, let $\varphi_{F}(v)=F(p)(0)$. Since for $p \in J, F(p)$ has no constant term, φ_{F} is well-defined. Thus every Noetherian operator $F \in \mathcal{N}_{c}(J)$ produces a $\varphi_{F} \in V^{*}=\operatorname{Hom}_{K}(V, K)$. So we have constructed a K-linear map $\mathcal{N}_{c}(J) \rightarrow V^{*}$. With these notations we can announce the following duality theorem.

Theorem 1.1. $\mathcal{N}_{c}(J) \cong V^{*}$. In particular $\operatorname{dim}_{K} \mathcal{N}_{c}(J)=\operatorname{dim}_{K} V^{*}=\operatorname{dim}_{K} K[X] / J$.
Proof. For α, β multi-indices we have

$$
\left\{\begin{array}{l}
\partial^{\alpha}\left(x^{\beta}\right)(0)=0 \text { if } \alpha \neq \beta \\
\partial^{\alpha}\left(x^{\alpha}\right)(0)=\alpha!
\end{array}\right.
$$

where $\alpha!=\alpha_{1}!\cdots \alpha_{n}!$.
We know that $V=\oplus_{|\alpha| \leq w} K x^{\alpha}$, also for $|\beta| \leq w, \partial^{\beta}(J) \subset \mathfrak{M}$ and $\varphi_{\partial^{\beta}}\left(\overline{c_{\alpha} x^{\alpha}}\right)=c_{\beta} \beta$!. Then $\operatorname{ker} \varphi_{\partial^{\beta}} \oplus K x^{\beta}=V$ and $\cap_{|\beta| \leq w} \operatorname{ker} \varphi_{\partial^{\beta}}=\{0\}$, it follows that $\operatorname{Hom}(V, K) \cong \oplus_{|\beta| \leq w} K \partial^{\beta} \cong \mathcal{N}_{c}(J)$.

In this case we thus see that $\mathcal{N}_{c}(J)=\mathcal{N}(J) \cap K[\partial]$ is a finite dimensional vector space. And by taking a basis F_{1}, \ldots, F_{k} we have found Noetherian operators as in the main theorem.

2 The 1-dimensional case

Notation: $A_{1}=A_{1}(K)=K\left\langle t, \partial_{t}\right\rangle$
Theorem 2.1. Let $q(t) \in K[t]$ be an irreducible polynomial. Then $A_{1} q$ is a maximal left ideal in A_{1}, so that $\frac{A_{1}}{A_{1} q}$ is simple as A_{1}-module.

Proof. Without loss of generality, let us change the variable t to ∂_{t}. For simplicity we write ∂ for ∂_{t} so $q(\partial)=\partial^{e}+k_{1} \partial^{e-1}+\cdots+k_{e}, k_{j} \in K, e=\operatorname{deg}(q) \geq 2$ (the case $\operatorname{deg}(q)=1$ is immediate). We have

$$
A_{1}=A_{1} q \oplus K[t] \oplus K[t] \partial \oplus \cdots \oplus K[t] \partial^{e-1}
$$

since $K[\partial]=(q)+K+K \partial+\cdots+K \partial^{e-1}$. Let $0 \neq \xi \in K[t] \oplus K[t] \partial \oplus \cdots \oplus K[t] \partial^{e-1}$ and let us show that $A_{1} \xi+A_{1} q=A_{1}$. There exists $m \in \mathbb{N}$ and $\gamma_{j}(\partial) \in K[\partial], j=0,1, \ldots, m$ such that $\xi=\sum_{j=0}^{m} t^{j} \gamma_{j}(\partial)$ with $\operatorname{deg} \gamma_{j} \leq e-1$. We proceed by induction on the degree of t in ξ; if
$m=0$ then $(\xi, q)=1$ (since q is irreducible) and $A_{1} \xi+A_{1} q=A_{1}$. If $m \geq 1$, suppose that the statement is true when the degree of t is less than m. We have that $\left(\gamma_{m}, q\right)=1$ and there exists a_{m} and b_{m} in A_{1} such that

$$
a_{m} \gamma_{m}+b_{m} q=1
$$

and $a_{m} \xi=t^{m}-t^{m} b_{m} q+\sum_{j=0}^{m-1} a_{m} t^{j} \gamma_{j}(\partial) \equiv t^{m}+\sum_{j=0}^{m-1} a_{m} t^{j} \gamma_{j}(\partial)\left(\bmod A_{1} q\right)$ so $q a_{m} \xi=q t^{m}+$ $\sum_{j=0}^{m-1} q a_{m} t^{j} \gamma_{j}(\partial)$. Let $\eta=q a_{m} \xi$, it is sufficient to show that $A_{1} \eta+A_{1} q=A_{1}$. But by [5, Chapter 1] we know that

$$
\left[\partial^{j}, t^{k}\right]=\sum_{i \geq 1} \frac{k(k-1) \cdots(k-i+1) j(j-1) \cdots(j-i+1)}{i!} t^{k-i} \partial^{j-i}
$$

and this yields that $q t^{m}=t^{m} q+\left[q, t^{m}\right]$ where $\left[q, t^{m}\right] \in \sum_{j \leq m-1} t^{j} K[\partial]$. Hence $\eta \in \sum_{j \leq m-1} t^{j} K[\partial]+$ $A_{1} q$ and by the hypothesis of induction $A_{1} \eta+A_{1} q=A_{1}$. Thus $A_{1} \xi+A_{1} q=A_{1}$. This means that $A_{1} q$ is a maximal left ideal, and finishes the proof.

Theorem 2.2. If $q(t)$ is an irreducible polynomial in $K[t]$. Then
(i) $\operatorname{Ext}_{A_{1}}^{1}\left(\frac{A_{1}}{A_{1} q}, \frac{A_{1}}{A_{1} q}\right)=0$
(ii) $\operatorname{Hom}_{A_{1}}\left(\frac{A_{1}}{A_{1} q}, \frac{A_{1}}{A_{1} q}\right)=\mathcal{K}=\frac{K[t]}{(q)}$.

Proof. First we prove $\operatorname{Ext}_{A_{1}}^{1}\left(\frac{A_{1}}{A_{1} q}, \frac{A_{1}}{A_{1} q}\right)=0$.
Let us consider the following short exact sequence

$$
0 \rightarrow A_{1} q \stackrel{i}{\rightarrow} A_{1} \rightarrow \frac{A_{1}}{A_{1} q} \rightarrow 0
$$

We get the induced long exact sequence

$$
\begin{aligned}
0 & \rightarrow \operatorname{Hom}_{A_{1}}\left(\frac{A_{1}}{A_{1} q}, \frac{A_{1}}{A_{1} q}\right) \rightarrow \operatorname{Hom}_{A_{1}}\left(A_{1}, \frac{A_{1}}{A_{1} q}\right) \xrightarrow{i_{*}} \operatorname{Hom}_{A_{1}}\left(A_{1} q, \frac{A_{1}}{A_{1} q}\right) \\
& \rightarrow \operatorname{Ext}_{A_{1}}^{1}\left(\frac{A_{1}}{A_{1} q}, \frac{A_{1}}{A_{1} q}\right) \rightarrow \operatorname{Ext}_{A_{1}}^{1}\left(A_{1}, \frac{A_{1}}{A_{1} q}\right) \rightarrow \operatorname{Ext}_{A_{1}}^{1}\left(A_{1} q, \frac{A_{1}}{A_{1} q}\right) \rightarrow \cdots
\end{aligned}
$$

Since $\operatorname{Ext}_{A_{1}}^{1}\left(A_{1}, \frac{A_{1}}{A_{1} q}\right)=0$, it is sufficient to show that the map $i_{*}: \operatorname{Hom}_{A_{1}}\left(A_{1}, \frac{A_{1}}{A_{1} q}\right) \longrightarrow$ $\operatorname{Hom}_{A_{1}}\left(A_{1} q, \frac{A_{1}}{A_{1} q}\right)$ is surjective.
Let $\varphi: A_{1} q \longrightarrow \frac{A_{1}}{A_{1} q}$ be a left A_{1}-linear map. Then φ belongs to the i_{*}-image if and only if there exists $\psi: A_{1} \longrightarrow \frac{A_{1}}{A_{1} q}$ a left A_{1}-linear map such that $\left.\psi\right|_{A_{1} q}=\varphi$, hence $\varphi(q)=\psi(q)=$ $q \cdot \psi(1)$.
Since $\operatorname{Hom}_{A_{1}}\left(A_{1}, \frac{A_{1}}{A_{1} q}\right) \cong \frac{A_{1}}{A_{1} q}$, we conclude that the i_{*}-image is equal to $\left\{\varphi \in \operatorname{Hom}_{A_{1}}\left(A_{1} q, \frac{A_{1}}{A_{1} q}\right)\right.$: $\left.\varphi(q) \in q \cdot \frac{A_{1}}{A_{1} q}\right\}$. We claim that $q A_{1}+A_{1} q=A_{1}$. From $q A_{1}+A_{1} q=A_{1}$ we get $q \cdot \frac{A_{1}}{A_{1} q} \cong \frac{A_{1}}{A_{1} q}$.

Then the i_{*}-image is $\operatorname{Hom}_{A_{1}}\left(A_{1} q, \frac{A_{1}}{A_{1} q}\right)$ and i_{*} is surjective.
Let us prove our claim. If $q(t)=t^{e}+k_{1} t^{e-1}+\cdots+k_{e}, \quad k_{j} \in K, e=\operatorname{deg}(q) \geq 2$ then $A_{1}=$ $A_{1} q \oplus K[\partial] \oplus K[\partial] t \oplus \cdots \oplus K[\partial] t^{e-1}$ since $K[t]=(q)+K+K t+\cdots+K t^{e-1}$. Put $M=q A_{1}+A_{1} q$ and it is sufficient to show that $K[\partial] t^{j} \subset M, j=0, \ldots, e-1$. We have $t^{j} q^{\prime}=t^{j} \partial q-q t^{j} \partial \in M$. Since q is irreducible there exist $a, b \in K[t]$ such that $a q+b q^{\prime}=1$, so $1 \in M$ and $t^{j}=$ $t^{j} a q+t^{j} b q^{\prime} \in M$ for all $j \in \mathbb{N}$, hence $K[t] \subset M$. Moreover $2 \partial q^{\prime} t^{j}=\partial^{2} q t^{j}-q \partial^{2} t^{j}+q^{\prime \prime} t^{j} \in M$ and $\partial^{m} q^{\prime} t^{j} \in M$ for all $m, j \in \mathbb{N}$. Then $\partial^{m} t^{j}=\partial^{m} t^{j} a q+\partial^{m} q^{\prime} b t^{j} \in M$ for all $m, j \in \mathbb{N}$. Therefore $K[\partial] t^{j} \subset M, j=0, \ldots, e-1$.
Secondly, we prove that $\operatorname{Hom}_{A_{1}}\left(\frac{A_{1}}{A_{1} q}, \frac{A_{1}}{A_{1} q}\right)=\frac{K[t]}{(q)}$.
Let $q(t)=t^{e}+k_{1} t^{e-1}+\cdots+k_{e}, \quad k_{j} \in K, e=\operatorname{deg}(q) \geq 2$ then $A_{1}=A_{1} q \oplus K[\partial] \oplus K[\partial] t \oplus \cdots \oplus$ $K[\partial] t^{e-1}$.
Let $\psi: \frac{\dot{A}_{1}}{A_{1} q} \longrightarrow \frac{A_{1}}{A_{1} q}$ be a left A_{1}-linear map. There exists $p \in A_{1}$ such that $\psi(\overline{1})=\bar{p}$ in $\frac{A_{1}}{A_{1} q}$. So $p=\sum_{\nu=0}^{e-1} \rho_{\nu}(\partial) t^{\nu}\left(\bmod A_{1} q\right), \rho_{v} \in K[\partial]$. We claim that one may choose $p \in K[t]$. Note that p has a very special property : $q \cdot p \in A_{1} q$. Let us rewrite

$$
p=\sum_{j=0}^{m} \partial^{j} \cdot r_{j}(t), \quad r_{j}(t) \in K+K t+\cdots+K t^{e-1} .
$$

Suppose $m \geq 1$, then

$$
q \cdot p=\sum_{j=0}^{m}\left(q \cdot \partial^{j}\right) \cdot r_{j}(t)
$$

We know that

$$
q \cdot \partial^{j}=\sum_{k=0}^{j}(-1)^{k}\binom{j}{k} \partial^{j-k} q^{(k)}
$$

We get

$$
q \cdot p=\sum_{j=0}^{m}\left(\sum_{k=0}^{j}(-1)^{k}\binom{j}{k} \partial^{j-k} q^{(k)}\right) \cdot r_{j}(t) .
$$

By the fact that $q \cdot p \in A_{1} q$ we have found that there exist polynomials $\varphi_{j} \in K[t], j=0, \ldots, n-$ 2 such that

$$
-\binom{m}{1} \partial^{m-1} q^{\prime}(t) r_{m}(t)+\sum_{j=0}^{m-2} \partial^{j} \varphi_{j}(t) \in A_{1} q .
$$

Since q is irreducible, q is relatively prime with both q^{\prime} and $r_{m} ; q$ is relatively prime with $q^{\prime} r_{m}$ and by Euclidean division in $K[t]$ we get

$$
-m q^{\prime}(t) r_{m}=\rho_{m-1}(t)+\gamma_{m-1}(t) q(t), \rho_{m-1} \neq 0 \quad \operatorname{deg}\left(\rho_{m-1}\right) \leq e-1 .
$$

In the same way for $j=0,1, \ldots, n-2$

$$
\varphi_{j}(t)=\rho_{j}(t)+\gamma_{j}(t) q(t), \quad \operatorname{deg}\left(\rho_{j}\right) \leq e-1 .
$$

So we get

$$
\partial^{m-1} \rho_{m-1}(t)+\sum_{j=0}^{m-2} \partial^{j} \rho_{j}(t) \in A_{1} q, \quad \operatorname{deg}\left(\rho_{j}\right) \leq e-1
$$

Because of the direct sum $\bigoplus_{0}^{e-1} K[\partial] t^{j} \oplus A_{1} q=A_{1}$, this is absurd if $m \geq 1$. We have $\rho_{m-1}(t)=0$, this is in contradiction to $\rho_{m-1}(t) \neq 0$ shown above, hence $p=r_{0}(t) \in K[t]$.
We have proved that $\psi(\overline{1})=p(t) \in K[t]$, and $\psi \equiv 0$ if an only if $p(t) \in(q)$. Therefore $\operatorname{Hom}_{A_{1}}\left(\frac{A_{1}}{A_{1} q}, \frac{A_{1}}{A_{1} q}\right) \cong \mathcal{K}$.

2.1 Conclusion

Lemma 2.3. Let $q(t) \in K[t]$ be an irreducible polynomial then

$$
\frac{A_{1}}{A_{1} q^{m}} \cong \bigoplus_{m} \frac{A_{1}}{A_{1} q} .
$$

Proof. We proceed by induction on m. Let $M=\frac{A_{1}}{A_{1} q^{2}}$. By right multiplication by q we get the following exact sequence;

$$
0 \rightarrow \frac{A_{1} q}{A_{1} q^{2}} \rightarrow M \rightarrow \frac{A_{1}}{A_{1} q} \rightarrow 0
$$

Since q is a non-zerodivisor in A_{1} we have $\frac{A_{1} q}{A_{1} q^{2}} \cong \frac{A_{1}}{A_{1} q}$. We then also have

$$
0 \rightarrow \frac{A_{1}}{A_{1} q} \rightarrow M \rightarrow \frac{A_{1}}{A_{1} q} \rightarrow 0
$$

By [4, Chapter 3] we know that $\operatorname{Ext}_{A_{1}}^{1}\left(\frac{A_{1}}{A_{1} q}, \frac{A_{1}}{A_{1} q}\right)$ corresponds to extensions of this form. Since by Theorem 2.2 $\operatorname{Ext}_{A_{1}}^{1}\left(\frac{A_{1}}{A_{1} q}, \frac{A_{1}}{A_{1} q}\right)=0$, and we get

$$
M \cong \frac{A_{1}}{A_{1} q} \bigoplus \frac{A_{1}}{A_{1} q} .
$$

Now suppose by induction that $\frac{A_{1}}{A_{1} q^{m-1}} \cong \bigoplus_{m-1} \frac{A_{1}}{A_{1} q}$ for $m \geq 3$, and let $M=\frac{A_{1}}{A_{1} q^{m}}$. By right multiplication by q we get the following exact sequence

$$
0 \rightarrow \frac{A_{1}}{A_{1} q} \rightarrow M \rightarrow \frac{A_{1}}{A_{1} q^{m-1}} \rightarrow 0 .
$$

And

$$
\operatorname{Ext}_{A_{1}}^{1}\left(\frac{A_{1}}{A_{1} q}, \frac{A_{1}}{A_{1} q^{m-1}}\right)=\operatorname{Ext}_{A_{1}}^{1}\left(\frac{A_{1}}{A_{1} q}, \bigoplus_{m-1} \frac{A_{1}}{A_{1} q}\right)=\bigoplus_{m-1} \operatorname{Ext}_{A_{1}}^{1}\left(\frac{A_{1}}{A_{1} q}, \frac{A_{1}}{A_{1} q}\right)=0
$$

Then it follows that

$$
M=\frac{A_{1}}{A_{1} q} \oplus \frac{A_{1}}{A_{1} q^{m-1}}=\oplus_{m} \frac{A_{1}}{A_{1} q} .
$$

3 Facts from commutative algebra

Noether's description of prime ideals Let us recall the description of prime ideals in $K\left[x_{1}, \ldots, x_{n}\right]$ where K is a field of characteristic zero [1, Appendix 1]. Take $n \geq 3$ and $1 \leq k \leq n-3$. Up to K-linear transformation a prime ideal P for which $K\left[x_{1}, \ldots, x_{n}\right] / P$ has dimension k is determined as follows. Put $X^{\prime}=\left(x_{1}, \ldots x_{k}\right)$ and let
(a) $q\left(X^{\prime}, x_{n}\right)=x_{n}^{e}+\sum_{0}^{e-1} \varrho_{v}\left(X^{\prime}\right) x_{n}^{v}$ be an irreducible polynomial in x_{n}.
(b) $q_{j}=\delta_{q}\left(X^{\prime}\right) x_{k+j}-h_{j}\left(X^{\prime}, x_{n}\right) ; 1 \leq j \leq n-k-1$ where h_{j} are polynomials in $K\left[X^{\prime}, x_{n}\right]$ and δ_{q} the discriminant of q.
To ($q, h_{1}, \ldots, h_{n-k-1}$) we associate the prime ideal
$P=\left\{\varphi \in K[X]: \exists \gamma\left(X^{\prime}\right) \in K\left[X^{\prime}\right], \gamma\left(X^{\prime}\right) \neq 0\right.$ and $\left.\gamma\left(X^{\prime}\right) \varphi(X) \in\left(q, q_{1}, \ldots, q_{n-k-1}\right)\right\}$.
Noether's Theorem [8, Theorem 25] asserts that all prime ideals arise in this way .

3.1 Passage to maximal Ideals

Let P as above and put

$$
\tilde{P}=K\left(X^{\prime}\right) \otimes_{K\left[X^{\prime}\right]} P .
$$

Then \tilde{P} is a maximal ideal in $K\left(X^{\prime}\right)\left[x_{k+1}, \ldots, x_{n}\right]$ (where $K\left(X^{\prime}\right)$ is the fraction fields of $\left.K\left[X^{\prime}\right]\right)$ and \tilde{P} is generated by $q, q_{1}, \ldots, q_{n-k-1}$.

In general consider a maximal ideal \mathfrak{M} in $\mathcal{K}\left[t_{1}, \ldots, t_{p}\right]$ (in our case $p=n-k$ and $\mathcal{K}=$ $\left.K\left(X^{\prime}\right)\right)$. Up to change of variables \mathfrak{M} is generated by $q\left(t_{p}\right)=t_{p}^{e}+\sum_{0}^{e-1} c_{v} t_{p}^{\nu} \in \mathcal{K}\left[t_{p}\right]$ and $q_{j}=t_{j}-h_{j}\left(t_{p}\right)$ (since we may invert the discriminant in the last equations above).
Let us make a change of variables

$$
\left\{\begin{array}{l}
u_{j}=t_{j}-h_{j}\left(t_{p}\right) \\
u_{p}=t_{p} .
\end{array}\right.
$$

Now $K[t] \cong K[u]$ and using the variables u_{1}, \ldots, u_{p} it follows that

$$
\mathfrak{M}=\left(u_{1}, \ldots, u_{p-1}, q\left(u_{p}\right)\right)
$$

holds in the polynomial ring in $\mathcal{K}\left[u_{1}, \ldots, u_{p}\right]=\mathcal{K}\left[t_{1}, \ldots, t_{p}\right]$.

4 Kashiwara's Decomposition Theorem

We need the following version of Kashiwara's embedding theorem.
Theorem 4.1. Let $A_{p}(K)=K\left\langle u_{1}, \ldots, u_{p}, \partial_{u_{1}}, \ldots, \partial_{u_{p}}\right\rangle$ be the $p-t h$ Weyl algebra, and M a left $A_{p}(K)$-module such that every $m \in M$ is annihilated by some power of u_{j} for each $1 \leq j \leq p-1$, i.e. there exists $w_{j} \in \mathbb{N}$ (depending on m) such that $u_{j}^{w_{j}} m=0$ in M. Then

$$
M=\bigoplus \partial_{u_{1}}^{\alpha_{1}} \ldots \partial_{u_{p-1}}^{\alpha_{p-1}} M_{0}
$$

where $M_{0}=\left\{m \in M: u_{1} m=\cdots=u_{p-1} m=0\right\}$ is a finitely generated left $A_{1}=K\left\langle u_{p}, \partial_{p}\right\rangle$ module.

Proof. By [1, Theorem 6.2] and [3, Chapter 17]
As an application we can prove the following result.
Proposition 4.2. Let \mathfrak{M} be a maximal ideal in $K\left[u_{1}, \ldots, u_{p}\right]$ and $A_{p}(K)=K\left\langle u_{1}, \ldots, u_{p}, \partial_{u_{1}}, \ldots, \partial_{u_{p}}\right\rangle$, $s \in \mathbb{N}$. Then

$$
\frac{A_{p}(K)}{A_{p}(K) \mathfrak{M}^{s}} \cong \bigoplus \frac{A_{p}(K)}{A_{p}(K) \mathfrak{M}}
$$

and $\frac{A_{p}(K)}{A_{p}(K) \mathfrak{M}}$ is a simple $A_{p}(K)$-module .
Proof. The case $\mathfrak{M}=\left(u_{1}, \ldots, u_{p}\right)$ is well known and we exclude it. The field $K\left[u_{1}, \ldots, u_{p}\right] / \mathfrak{M}$ is a finite dimensional vector space over K. There exists a primitive element which we can assume to be u_{p} and let $q\left(u_{p}\right)$ be the minimal polynomial of u_{p}. There exist polynomials h_{j} such that $u_{j}=h_{j}\left(u_{p}\right): 1 \leq j \leq p$. Now by change of variables

$$
\left\{\begin{array}{l}
t_{j}=u_{j}-h_{j}\left(u_{p}\right) \\
t_{p}=u_{p}
\end{array}\right.
$$

we get an algebra isomorphism $K[u] \longrightarrow K[t] ; u \longmapsto t$ and under that isomorphism $\mathfrak{M}=$ $\left(t_{1}, \ldots, t_{p-1}, q\left(t_{p}\right)\right)$. So all is reduced to the case $\mathfrak{M}=\left(t_{1}, \ldots, t_{p-1}, q\left(t_{p}\right)\right)$.
We may thus assume that $\mathfrak{M}=\left(u_{1}, \ldots, u_{p-1}, q\left(u_{p}\right)\right)$, with $q\left(u_{p}\right)$ an irreducible polynomial. Now put

$$
M=\frac{A_{p}(K)}{A_{p}(K) \mathfrak{M}^{s}} .
$$

That $m \in M$ means $m=Q(u, \partial)+A_{p}(K) \mathfrak{M}^{s}$ where $Q(u, \partial)=\sum_{|\alpha| \leq w} q_{\alpha}(u) \partial^{\alpha}$ for some $w \in \mathbb{N}$ and $q_{\alpha} \in K\left[u_{1}, \ldots, u_{p}\right]$. For $j=1, \ldots, p-1$ we have that $u_{j}^{w+s+1} \cdot Q \in A_{p}(K) u_{j}^{s} \subset A_{p}(K) \mathfrak{M}^{s}$, so $u_{j}^{w+s+1} m=0$. It follows from Kashiwara's Decomposition Theorem above that

$$
M=\bigoplus \partial_{u_{1}}^{\alpha_{1}} \ldots \partial_{u_{p-1}}^{\alpha_{p-1}} M_{0}
$$

where $M_{0}=\left\{m \in M: u_{1} m=\cdots=u_{p-1} m=0\right\}$ is a finitely generated left $A_{1}=K\left\langle u_{p}, \partial_{p}\right\rangle$ module. Let $M_{0}=\sum_{v} A_{1} \zeta_{v}$, it is clear that some power of $q\left(u_{p}\right)$ annihilates every element $\zeta_{v} \in M_{0}$ i.e, there exist $w \in \mathbb{N}$ such that $q\left(u_{p}\right)^{w} \zeta_{v}=0$. It follows that there exists a surjective map $\frac{A_{1}}{A_{1} q^{w}} \rightarrow A_{1} \zeta_{v}$. By Lemma 2.3 and Theorem 2.1 we know that $\frac{A_{1}}{A_{1} q^{w}} \cong \bigoplus_{w} \frac{A_{1}}{A_{1} q}$ is semisimple and each $\frac{A_{1}}{A_{1} q}$ is simple, so $A_{1} \zeta_{v} \cong \oplus \frac{A_{1}}{A_{1} q}$. We then get $M_{0} \cong \oplus \frac{A_{1}}{A_{1} q}$ and M_{0} is semisimple as A_{1}-module. This gives by Theorem 4.1 that

$$
M=\bigoplus\left(\bigoplus_{\alpha \in \mathbb{N}^{p-1}} \partial^{\alpha} \frac{A_{1}}{A_{1} q}\right) .
$$

Now it is easily seen that

$$
\bigoplus_{\alpha \in \mathbb{N}^{p-1}} \partial^{\alpha} \frac{A_{1}}{A_{1} q} \cong \frac{A_{p}(K)}{A_{p}(K) \mathfrak{M}},
$$

and this implies that $M^{\prime}=\frac{A_{p}(K)}{A_{p}(K) \mathfrak{M}}$ is simple, since otherwise, we may write $M^{\prime}=M_{1}+M_{2}$ with $M_{1} \neq 0, M_{2} \neq 0$. Then

$$
M_{0}^{\prime}=\frac{A_{1}}{A_{1} q}=\left(M_{1}\right)_{0} \oplus\left(M_{2}\right)_{0}
$$

with $\left(M_{1}\right)_{0} \neq 0,\left(M_{2}\right)_{0} \neq 0$. This is however in contradiction to the simplicity of $\frac{A_{1}}{A_{1} q}$ proved in Theorem 2.1.

Corollary 4.3. Suppose that J is an ideal in $K\left[u_{1}, \ldots, u_{p}\right]$ such that $\mathfrak{M}^{s} \subset J$ for some $s \geq 2$. Then

$$
\frac{A_{p}(K)}{A_{p}(K) J} \cong \bigoplus \frac{A_{p}(K)}{A_{p}(K) \mathfrak{M}}(*) .
$$

Moreover the number N of the copies $\frac{A_{p}(K)}{A_{p}(K) \mathfrak{M}}$ in $\left(^{*}\right)$ is equal to the length of $K\left[u_{1}, \ldots, u_{p}\right] / J$.
Proof. If J is an ideal in $K\left[u_{1}, \ldots, u_{p}\right]$ such that $\mathfrak{M}^{s} \subset J$ for some $s \geq 2$, then there exists a surjective map $\frac{A_{p}(K)}{A_{p}(K) \mathfrak{M}^{s}} \rightarrow \frac{A_{p}(K)}{A_{p}(K) J}$. Since $\frac{A_{p}(K)}{A_{p}(K) \mathfrak{M}^{s}}$ is semisimple as $A_{p}(K)$-module from Proposition 4.2, $\frac{A_{p}(K)}{A_{p}(K) J}$ is also semisimple and $\frac{A_{p}(K)}{A_{p}(K) J} \cong \bigoplus_{N} \frac{A_{p}(K)}{A_{p}(K) \mathfrak{M}}$. Let us prove that the number N of the copies $\frac{A_{p}(K)}{A_{p}(K) \mathfrak{M}}$ in $\left(^{*}\right)$ is equal to the length of $K\left[u_{1}, \ldots, u_{p}\right] / J$. We proceed by induction on l, the length of $K\left[u_{1}, \ldots, u_{p}\right] / J$. The statement is trivial when $l=1$, let us consider a maximal chain of ideals $0 \subsetneq J=J_{0} \subsetneq J_{1} \subsetneq \ldots \subsetneq J_{n}=\mathfrak{M}\left(\sqrt{J_{0}}=\mathfrak{M}\right)$ and the following exact sequence

$$
\begin{equation*}
0 \rightarrow \frac{A_{p}(K) J_{1}}{A_{p}(K) J_{0}} \rightarrow \frac{A_{p}(K)}{A_{p}(K) J_{0}} \rightarrow \frac{A_{p}(K)}{A_{p}(K) J_{1}} \rightarrow 0 . \tag{4.1}
\end{equation*}
$$

Since $\frac{A_{p}(K)}{A_{p}(K) J_{0}}$ is semi-semiple the exact sequence (4.1) splits. We need to prove that $\frac{A_{p}(K) J_{1}}{A_{p}(K) J_{0}} \cong \frac{A_{p}(K)}{A_{p}(K) \mathfrak{M}}$, but $J_{1} / J_{0} \cong K\left[u_{1}, \ldots, u_{p}\right] / \mathfrak{M}$ and $J_{1}=K\left[u_{1}, \ldots, u_{p}\right] \eta+J_{0}$ for $\eta \in J_{1} \backslash J_{0}$. It follows that $A_{p}(K) J_{1}=A_{p}(K) \eta+A_{p}(K) J_{0}$ and

$$
\frac{A_{p}(K) J_{1}}{A_{p}(K) J_{0}}=\frac{A_{p}(K) \eta+A_{p}(K) J_{0}}{A_{p}(K) J_{0}} \cong \frac{A_{p}(K) \eta}{A_{p}(K) \eta \cap A_{p}(K) J_{0}} .
$$

Since $\mathfrak{M}_{\eta} \subset J_{0}, \mathfrak{M}_{\bar{\eta}}=0, \frac{A_{p}(K) \eta}{A_{p}(K) \eta \cap A_{p}(K) J_{0}} \cong \frac{A_{p}(K)}{A_{p}(K) \mathfrak{M}}$. Therefore

$$
\frac{A_{p}(K)}{A_{p}(K) J_{0}} \cong \frac{A_{p}(K)}{A_{p}(K) J_{1}} \oplus \frac{A_{p}(K)}{A_{p}(K) \mathfrak{M}} .
$$

Since by induction the statement is true for $\frac{A_{p}(K)}{A_{p}(K) J_{1}}$, it is also true for $\frac{A_{p}(K)}{A_{p}(K) J_{0}}$.

5 Final part of the proof

Let $P \subset K\left[x_{1}, \ldots, x_{n}\right]$ be a prime ideal, $X^{\prime}=\left(x_{1}, \ldots, x_{k}\right), X^{\prime \prime}=\left(x_{k+1}, \ldots, x_{n}\right)$ and $\partial^{\prime \prime}=\left(\partial_{k+1}, \ldots, \partial_{n}\right)$. Suppose that $K\left[X^{\prime}\right] \cap P=\{0\}$ and $K\left(X^{\prime}\right) \otimes_{K\left[X^{\prime}\right]} P=\tilde{P}$ is a maximal ideal of $\mathcal{K}\left[X^{\prime \prime}\right]$ where $\mathcal{K}=K\left(X^{\prime}\right)$. If Q is a primary ideal with $\sqrt{Q}=P$, then $\tilde{Q}=K\left(X^{\prime}\right) \otimes_{K\left[X^{\prime}\right]} Q$ is a primary ideal in $\mathcal{K}\left[X^{\prime \prime}\right]$.
Put $p=n-k$ and $A_{p}(\mathcal{K})=\mathcal{K}\left\langle x_{k+1}, \ldots, x_{n}, \partial_{x_{k+1}}, \ldots, \partial_{x_{n}}\right\rangle$. From Corollary 4.3 we have

$$
\frac{A_{p}(\mathcal{K})}{A_{p}(\mathcal{K}) \tilde{Q}} \cong \bigoplus_{N} \frac{A_{p}(\mathcal{K})}{A_{p}(\mathcal{K}) \tilde{P}}
$$

Without loss of generality we from [3, Proposition 16.2.1] get

$$
\begin{equation*}
\frac{A_{p}(\mathcal{K})}{\tilde{Q} A_{p}(\mathcal{K})} \cong \bigoplus_{N} \frac{A_{p}(\mathcal{K})}{\tilde{P} A_{p}(\mathcal{K})} \tag{5.1}
\end{equation*}
$$

Then there exist right $A_{p}(\mathcal{K})$-linear surjections
$\varphi_{j}: \frac{A_{p}(\mathcal{K})}{\tilde{Q} A_{p}(\mathcal{K})} \rightarrow \frac{A_{p}(\mathcal{K})}{\tilde{P} A_{p}(\mathcal{K})}, j=1, \ldots, N$. There also exist $F_{j} \in A_{p}(\mathcal{K})$ such that $\varphi_{j}(\overline{1})=\overline{F_{j}}$, so for all $p \in K[X], \varphi_{j}(\bar{p})=\overline{F_{j} \cdot p}$ and $F_{j} \cdot p \in \tilde{P} A_{p}(\mathcal{K})$ if $p \in \tilde{Q}$. Let $F_{j}=\sum_{\alpha} q_{\alpha}(X)\left(\partial^{\prime \prime}\right)^{\alpha}$. The product $F_{j} \cdot p$ is taken in the Weyl algebra $A_{p}(\mathcal{K})$, and we may write

$$
F_{j} \cdot p=\rho_{0}(X)+\sum_{|\alpha| \geq 1} \rho_{\alpha}(X)\left(\partial^{\prime \prime}\right)^{\alpha} .
$$

Then

$$
\rho_{0}(X)=\sum_{\alpha} q_{\alpha}(X)\left(\partial^{\prime \prime}\right)^{\alpha}(p)=F_{j}(p) .
$$

Here $F_{j}(p)$ is the result of the F_{j}-action on $p(X) \in K[X]$. Furthermore we have

$$
A_{p}(\mathcal{K})=\bigoplus_{\alpha \in \mathbb{N}^{P}} \mathcal{K}\left[X^{\prime \prime}\right]\left(\partial^{\prime \prime}\right)^{\alpha} \text { so } \tilde{P} A_{p}(\mathcal{K})=\tilde{P} \bigoplus_{|\alpha| \geq 1} \tilde{P} \cdot\left(\partial^{\prime \prime}\right)^{\alpha} .
$$

Now let $p \in \tilde{Q}$ since $F_{j} \cdot p \in \tilde{P} \bigoplus_{|\alpha| \geq 1} \tilde{P} \cdot\left(\partial^{\prime \prime}\right)^{\alpha}$ and $F_{j} \cdot p=F_{j}(p)+\sum_{|\alpha| \geq 1} \rho_{\alpha}(X)\left(\partial^{\prime \prime}\right)^{\alpha}$, we get $F_{j}(p) \in \tilde{P}$. Conversely if $p \in K[X]$ such that $F_{j}(p) \in \tilde{P} ; 1 \leq j \leq N$. Since \tilde{Q} is an ideal $F \in \mathcal{N}(\tilde{Q}) \Rightarrow F\left(X,(\partial)^{\prime \prime}\right) x^{\alpha} \in \mathcal{N}(\tilde{Q})$, by this we get that $F \in \mathcal{N}(\tilde{Q}) \Rightarrow F^{(\beta)} \in \mathcal{N}(\tilde{Q})$ where $F=\sum q_{\alpha}(X) \partial^{\alpha}$ and $F^{(\beta)}=q_{\alpha}(X)\binom{\alpha}{\beta} \partial^{\alpha-\beta}$. The family $\mathcal{N}(\tilde{Q})$ is closed under derivations with repect to ∂-monomials. By [2, Proposition 1.1.11] we have that: $F^{(\beta)}(p) \in \tilde{P}$ for all β implies that $F \cdot p \subset \tilde{P} A_{p}(\mathcal{K})$. Then $F_{j} \cdot p \in \tilde{P} A_{p}(\mathcal{K}) ; 1 \leq j \leq N$ and $\varphi_{j}(p)=0 ; 1 \leq j \leq N$. From the isomorphism in (5.1) we get $p \in \tilde{Q} A_{p}(\mathcal{K})$, and it follows that $p \in \tilde{Q}$. Therefore we have found differential operators $F_{1}\left(X, \partial^{\prime \prime}\right), \ldots, F_{N}\left(X, \partial^{\prime \prime}\right)$ such that

$$
\begin{equation*}
F_{j}(\tilde{Q}) \subset \tilde{P}: 1 \leq j \leq N \tag{5.2}
\end{equation*}
$$

And if $p \in K[X]$ such that

$$
\begin{equation*}
F_{j}(p) \in \tilde{P} ; 1 \leq j \leq N \text { then } p \in \tilde{Q} . \tag{5.3}
\end{equation*}
$$

Denote by $\gamma\left(X^{\prime}\right) \in K\left[X^{\prime}\right]$ the common denominator of the F_{j}. By multiplying the F_{j} by $\gamma\left(X^{\prime}\right)$ we get differential operators
$F_{1}^{\prime}(X, \partial), \ldots, F_{N}^{\prime}(X, \partial) \in A_{n}(K)=K\left\langle x_{1}, \ldots, x_{n}, \partial_{x_{1}}, \ldots, \partial_{x_{n}}\right\rangle$ such that

$$
\begin{equation*}
F_{j}^{\prime}(Q) \subset P: 1 \leq j \leq N . \tag{5.4}
\end{equation*}
$$

Suppose that $p \in K[X]$ such that $F_{j}^{\prime}(p) \in P$ for $1 \leq j \leq N$ then $p \in \tilde{Q}$. We can find $\delta\left(X^{\prime}\right) \in$ $K\left[X^{\prime}\right]$ such that $\delta\left(X^{\prime}\right) p \in Q$. Since Q is primary and $K\left[X^{\prime}\right] \cap P=\{0\}$, From [7, Lemma 4.14] we have $\left(Q: \delta\left(X^{\prime}\right)\right)=Q$, so $p \in Q$. We conclude that $\left(F_{1}^{\prime}, \ldots, F_{N}^{\prime}\right)$ gives the requested family of Noetherian operators in our Main Theorem.

6 Some examples

(1) Let $n=2$ and let us consider the primary ideal $Q=\left(x_{1}^{k}, x_{2}^{k}\right)$ in $K\left[x_{1}, x_{2}\right]$ and $P=$ $\left(x_{1}, x_{2}\right)=\sqrt{Q}$. We know that

$$
K\left[x_{1}, x_{2}\right]=Q \oplus_{\alpha_{i}<k} K x^{\alpha}
$$

then

$$
K\left[x_{1}, x_{2}\right] / Q=\oplus_{\alpha_{i}<k} K \bar{x}^{\alpha} .
$$

So $\operatorname{dim} K\left[x_{1}, x_{2}\right] / Q=k^{2}$,

$$
\mathcal{N}(Q)=K[X]\left\{\partial^{\alpha}: \alpha_{i}<k\right\} .
$$

(2) Let $n=3$ and let Q be the ideal generated by the x_{2}^{2}, x_{3}^{2} and $x_{2}-x_{1} x_{3}$ in $\mathbb{C}\left[x_{1}, x_{2}, x_{3}\right]$. It is easily seen that Q is a primary ideal and the affine variety $V(Q)$ defined by $Q^{-1}(0)$ is the subspace $V(Q)=\{(a, b, c) \mid b=c=0\}$ then the ideal $I(V(Q))$ of $V(Q)$ is generated by x_{2} and $x_{3} ; \sqrt{Q}=\left(x_{2}, x_{3}\right)$. Moreover

$$
\mathbb{C}\left[x_{1}, x_{2}, x_{3}\right]=\mathbb{C}\left[x_{1}\right] \oplus \mathbb{C}\left[x_{1}\right] x_{3} \oplus Q
$$

then

$$
\mathbb{C}\left[x_{1}, x_{2}, x_{3}\right] / Q=\mathbb{C}\left[x_{1}\right] \oplus \mathbb{C}\left[x_{1}\right] \bar{x}_{3}
$$

and the rank of the $\mathbb{C}\left[x_{1}\right]$-module $\mathbb{C}\left[x_{1}, x_{2}, x_{3}\right] / Q$ is 2 . We have that

$$
\mathcal{N}(Q)=\mathbb{C}[X]\left\{1, x_{1} \partial_{2}+\partial_{3}\right\} .
$$

(3) Let $Q=\left(x_{1}^{k}, \ldots, x_{n}^{k}\right)$ a primary ideal in $K\left[x_{1}, \ldots, x_{n}\right], \sqrt{Q}=\left(x_{1}, \ldots, x_{n}\right)$. As above we get $\operatorname{dim} K\left[x_{1}, x_{2}\right] / Q=k^{n}$, and

$$
\mathcal{N}(Q)=K[X]\left\{\partial^{\alpha}: \alpha_{i}<k\right\} .
$$

Acknowledgements

I am deeply thankful to professor J-E Björk for instructive comments during the writing of this paper. This paper is financially supported by the International Science Program (ISP).

References

[1] Björk. J-E., Rings of differential operators, North-Holland Publishing Co., Amsterdam, 1979.
[2] Björk. J-E., Analytic D-modules and applications, 247, Kluwer Academic Publishers Group, Dordrecht, 1993.
[3] Coutinho. S. C.,A primer of algebraic D-modules. London Mathematical Society Student Texts, 33. Cambridge University Press, Cambridge, 1995.
[4] Hilton. P.- Stammbach. U., A Course in Homological Algebra, New York: SpringerVerlag, 1997.
[5] Maisonobe.P.-Sabbah.C.,Éléments de la théorie des systèmes différentiels. D-modules cohérents et holonomes, Travaux en Cours, 45, Hermann, Paris, 1993.
[6] Oberst.U.,The Construction of Noetherian Operators. J. of Algebra 222 (1999), 595620.
[7] Sharp. R.Y., Steps in Commutative algebra, Second edition. London Mathematical Society Student Texts, 51. Cambridge University Press, Cambridge, 2000.
[8] Zariski, O.-Samuel, P., Commutative algebra. Vol. II. The University Series in Higher Mathematics.D. Van Nostrand Co., Inc., Princeton, N. J.-Toronto-London-New York 1960.

[^0]: *E-mail address: nonkane@math.su.se

