Brackets in the Free Loop Space Homology of Some Homogeneous Spaces.

Jean Baptiste Gatsinzi*
Department of Mathematics, University of Namibia, Private Bag 13301, Windhoek, Namibia.

Abstract

Let X be a simply connected homogeneous space of which $\pi_{*}(X) \otimes \mathbb{Q}$ is finite dimensional. We consider the homology of the free loop space $\operatorname{map}\left(S^{1}, X\right)$ with the bracket defined by Chas and Sullivan. We show that the Lie algebra $s \mathbb{H}_{*}\left(\operatorname{map}\left(S^{1}, X\right), \mathbb{Q}\right)$ is not nilpotent.

AMS Subject Classification: Primary 55P62; Secondary 55M35.
Keywords: Derivations, Hochschild cohomology, Free loop space homology.

1 Introduction

In this paper we study the Lie bracket in the homology of the free loop space of a homogeneous space. We make extensive use of the theory of Sullivan algebras of which details can be found in [2, 12, 13].

Let (A, d) be a commutative cochain algebra over a field \mathbb{k}. A derivation θ of degree i is a linear mapping $A^{n} \rightarrow A^{n-i}$ such that $\theta(a b)=\theta(a) b+(-1)^{i|a|} a \theta(b)$. Denote by $\operatorname{Der}_{i} A$ the vector space of all derivations of degree i and let $\operatorname{Der} A=\oplus_{i \in \mathbb{Z}} \operatorname{Der}_{i} A$. With the commutator bracket $\operatorname{Der} A$ becomes a graded Lie algebra. There is a differential $\delta: \operatorname{Der}_{i} A \rightarrow \operatorname{Der}_{i-1} A$ defined by $\delta \theta=[d, \theta]$. Hence $(\operatorname{Der} A, \delta)$ is a differential graded Lie algebra. Using the grading convention $A^{n}=A_{-n}$, we may view a derivation of degree i as increasing the lower degree by i.

Moreover $\operatorname{Der} A$ is a differential graded A-module with the action $(a \theta)(x)=a \theta(x)$. If $A=(\wedge V, d)$ is a Sullivan algebra of which V is finite dimensional, we show that $\operatorname{Der} A \cong$ $A \otimes V^{\#}$, where $V^{\#}$ is the graded dual of V (Lemma 4.1). With the above grading convention $V^{\#}=\oplus_{i \geq 1}\left(V^{\#}\right)_{i}$ is positively graded.

On $s^{-1} \operatorname{Der} A$, we define a bracket of degree 1 by $\{\alpha, \beta\}=s^{-1}[s \alpha, s \beta]$ and a differential $\delta^{\prime}(\alpha)=-s^{-1} \delta(s \alpha)=-\left\{d^{\prime}, \alpha\right\}$, where $d^{\prime}=s^{-1} d$ is of degree -2 .
Let \bar{A} be the kernel of the augmentation $\epsilon: A \rightarrow \mathbb{K}$. We denote by $C^{*}(A ; A)=\operatorname{Hom}(T(s \bar{A}), A)$

[^0](resp. $\left.H H^{*}(A ; A)\right)$ the Hochschild complex (resp. cohomology) of the cochain algebra A with coefficients in A [9]. Moreover
$$
H H^{*}(A ; A) \cong \operatorname{Ext}_{A \otimes A}(A, A),
$$
where A is considered as an $A \otimes A$-module by the action $(a \otimes b) c=a b c$. Therefore, in order to compute the Hochschild cohomology of a commutative differential graded algebra A, it is sufficient to find a free resolution of A as an $A \otimes A$-module. In particular, for the minimal Sullivan algebra ($\wedge V, d)$, one can consider a relative Sullivan model of the multiplication $m: \wedge V \otimes \wedge V \rightarrow \wedge V$. Such a model is given by

where $\bar{V}^{n}=V^{n+1}, D(1 \otimes 1 \otimes \bar{v})=v \otimes 1 \otimes 1-1 \otimes v \otimes 1+\alpha$ with $\alpha \in(\wedge V \otimes \wedge V)^{>0} \otimes \bar{V} \quad$ [2]. Therefore
$$
H H(\wedge V ; \wedge V) \cong H_{*}\left(\operatorname{Hom}_{\wedge V \otimes \wedge V}(\wedge V \otimes \wedge V \otimes \wedge \bar{V}, \wedge V), D\right)
$$

Define

$$
\psi:\left(s^{-1} \operatorname{Der} \wedge V, \delta^{\prime}\right) \rightarrow\left(\operatorname{Hom}_{\wedge V \otimes \wedge V}(\wedge V \otimes \wedge V \otimes \wedge \bar{V}, \wedge V), D\right)
$$

by

$$
\begin{equation*}
\psi\left(s^{-1} \theta\right)(\bar{v})=(-1)^{|\theta|} \theta(v), \quad \psi\left(s^{-1} \theta\right)\left(\wedge^{\geq 2} \bar{V}\right)=\psi\left(s^{-1} \theta\right)(1 \otimes 1 \otimes 1)=0 . \tag{1.1}
\end{equation*}
$$

Then $\psi\left(s^{-1} \theta\right)$ is extended to $\wedge V \otimes \wedge V \otimes \wedge \bar{V}$ as a morphism of $\wedge V \otimes \wedge V$-modules. Moreover ψ commutes with differentials.

Our main result states.
Theorem 1.1. The inclusion

$$
\psi:\left(s^{-1} \operatorname{Der} \wedge V, \delta^{\prime}\right) \hookrightarrow\left(\operatorname{Hom}_{\wedge V \otimes \wedge V}(\wedge V \otimes \wedge V \otimes \wedge \bar{V}, \wedge V), D\right)
$$

induces an injective graded Lie algebra morphism

$$
H_{*}\left(s^{-1} \operatorname{Der} \wedge V, \delta^{\prime}\right) \hookrightarrow H H(\wedge V ; \wedge V)
$$

We do not know if the result holds for any graded commutative differential algebra (A, d) as stated [8, Theorem 1] as some gaps in the proof were later found.

Let X be a closed oriented manifold of dimension m and $L X=\operatorname{map}\left(S^{1}, X\right)$ the space of free loops on X. The loop homology of X is the homology of $L X$ with a shift of degrees, that is, $\mathbb{H}_{*}(L X)=H_{*+m}(L X)$. In [1], Chas and Sullivan define a product, called loop product and a Lie bracket (called loop bracket) on $\mathbb{H}_{*}(L X)$ turning $\mathbb{H}_{*}(L X)$ into a Gerstenhaber algebra. We use the above result to show that the free loop space homology of a homogeneous space contains Gerstenhaber brackets of arbitrary length.

Theorem 1.2. Let X be a 1-connected homogeneous space of which $\pi_{*}(X) \otimes \mathbb{Q}$ is finite dimensional, then the graded Lie algebra $s H_{*}(L X, \mathbb{Q})$ is not nilpotent.

2 Hochschild cohomology

We define here the Hochschild cohomology through the bar construction of an augmented differential graded algebra (A, d), not necessarily commutative. The bar construction $\mathbb{B}(A ; A ; A)$ provides a free resolution of A as an $A \otimes A^{o p}$-module. It is defined by

$$
\mathbb{B}_{k}(A ; A ; A)=A \otimes T^{k}(s \bar{A}) \otimes A
$$

An element $a\left[a_{1}\left|a_{2}\right| \cdots a_{k}\right] b \in A \otimes T^{k}(s \bar{A}) \otimes A$ is of degree $|a|+|b|+\sum_{i=1}^{k}\left|s a_{i}\right|$. The differential $d=d_{0}+d_{1}$ is defined as follows (see for instance [3]).

$$
\begin{aligned}
d_{0}: \mathbb{B}_{k}(A ; A ; A) \rightarrow & \mathbb{B}_{k}(A ; A ; A), \quad d_{1}: \mathbb{B}_{k}(A ; A ; A) \rightarrow \mathbb{B}_{k-1}(A ; A ; A), \\
d_{0}\left(a\left[a_{1}\left|a_{2}\right| \cdots a_{k}\right] b\right)= & (d a)\left[a_{1}\left|a_{2}\right| \cdots a_{k}\right] b-\sum_{i=1}^{k}(-1)^{\epsilon(i)} a\left[a_{1}|\cdots| d a_{i}|\cdots| a_{k}\right] b \\
& \left.+(-1)^{\epsilon(k+1)} a\left[a_{1}\left|a_{2}\right| \cdots a_{k}\right] d b\right), \\
d_{1}\left(a\left[a_{1}\left|a_{2}\right| \cdots a_{k}\right] b\right)= & \left(a a_{1}\right)\left[a_{2} \mid \cdots a_{k}\right] b-\sum_{i=2}^{k}(-1)^{\epsilon(i)} a\left[a_{1}|\cdots| a_{i-1} a_{i}|\cdots| a_{k}\right] b \\
& -(-1)^{\epsilon(k)} a\left[a_{1}\left|a_{2}\right| \cdots a_{k-1}\right]\left(a_{k} b\right),
\end{aligned}
$$

where $\epsilon(i)=|a|+\sum_{j=1}^{i-1}\left|s a_{j}\right|$. Therefore the Hochschild cochain complex is given by

$$
\left(C^{*}(A ; A), D\right)=\operatorname{Hom}_{A \otimes A^{o p}}(\mathbb{B}(A ; A ; A), A) \cong\left(\operatorname{Hom}(T(s \bar{A}), A), D_{0}+D_{1}\right),
$$

where the differential is expressed as follows [7].

$$
\begin{aligned}
\left(D_{0} f\right)\left(\left[a_{1}\left|a_{2}\right| \ldots \mid a_{k}\right]\right)= & d\left(f\left(\left[a_{1}\left|a_{2}\right| \ldots \mid a_{k}\right]\right)\right) \\
& +\sum_{i=1}^{k}(-1)^{\bar{\epsilon}(i)} f\left(\left[a_{1}|\ldots| d a_{i}|\ldots| a_{k}\right]\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\left(D_{1} f\right)\left(\left[a_{1}\left|a_{2}\right| \ldots \mid a_{k}\right]\right)= & -(-1)^{\left|s a_{1}\right||f|} a_{1} f\left(\left[a_{2}|\ldots| a_{k}\right]\right) \\
& +(-1)^{\bar{\epsilon}(k)} f\left(\left[a_{1}|\ldots| a_{k-1}\right]\right) a_{k} \\
& +\sum_{i=2}^{k}(-1)^{\bar{\epsilon}(i)} f\left(\left[a_{1}|\ldots| a_{i-1} a_{i}|\ldots| a_{k}\right]\right),
\end{aligned}
$$

where $\bar{\epsilon}(i)=|f|+\left|s a_{1}\right|+\cdots+\left|s a_{i-1}\right|$.
Moreover, there is a bracket on $C^{*}(A ; A)$, inducing a Gerstenhaber algebra structure on $H H^{*}(A, A)$ [9]. The Lie bracket is defined by the formula

$$
\begin{equation*}
\{f, g\}=f \bar{\circ} g-(-1)^{(|f|+1)(g g \mid+1)} g \bar{\circ} f, \tag{2.1}
\end{equation*}
$$

where

$$
(f \bar{\circ} g)\left(\left[a_{1}\left|a_{2}\right| \ldots \mid a_{k}\right]\right)=\sum_{0 \leq i \leq j \leq k}(-1)^{\eta(i)} f\left(\left[a_{1}|\ldots| a_{i}\left|g\left(\left[a_{i+1}|\ldots| a_{j}\right]\right)\right| a_{j+1} \ldots \mid a_{k}\right]\right),
$$

and $\eta(i)=|g|\left(\left|s a_{1}\right|+\cdots\left|s a_{i}\right|\right)$. If $f \in C^{p}(A ; A)$ and $g \in C^{q}(A ; A)$, then $\{f, g\} \in C^{p+q-1}(A ; A)$. As $C^{1}(A ; A)$ is closed under this bracket, $s H H^{1}(A ; A)$ is a sub Lie algebra of $s H H^{*}(A ; A)$. The differential $d: A \rightarrow A$ corresponds to an element $\tilde{d} \in C^{1}(A ; A)$ of total degree -2 defined
by $\tilde{d}([a])=-d a$. It is easily verified that $D_{0} f=-\{\tilde{d}, f\}$. Moreover, if $\mu \in C^{2}(A ; A)$ is defined by $\mu([a \mid b])=a b$, then $D_{1} f=-\{\mu, f\}[11]$.

Define

$$
F_{1} C^{1}(A ; A)=\left\{f \in C^{*}(A ; A) \mid f\left(T^{>1}(s A)\right)=0\right\} .
$$

Consider the composition mapping

$$
\varphi: s^{-1} \operatorname{Der} A \hookrightarrow F_{1} C^{1}(A ; A) \xrightarrow{p} C^{1}(A ; A) \subset C^{*}(A ; A),
$$

where p is the canonical projection.
Lemma 2.1. The inclusion $\varphi: s^{-1} \operatorname{Der} A \rightarrow C^{*}(A ; A)$ respects the brackets.
Proof. Note that if $\theta \in \operatorname{Der} A$, then $\left(\varphi\left(s^{-1} \theta\right)\right)([a])=(-1)^{|\theta|} \theta(a)$. Given $\theta_{1}, \theta_{2} \in \operatorname{Der} A$, it is easily checked that

$$
\varphi\left(\left\{s^{-1} \theta_{1}, s^{-1} \theta_{2}\right\}\right)([a])=\left\{\varphi\left(s^{-1} \theta_{1}\right), \varphi\left(s^{-1} \theta_{2}\right)\right\}([a]) .
$$

Lemma 2.2. The inclusion $\varphi:\left(s^{-1} \operatorname{Der} A, \delta^{\prime}\right) \rightarrow\left(C^{*}(A ; A), D_{0}+D_{1}\right)$ commutes with differentials.

Proof. As $\delta^{\prime}(\theta)=-\left\{d^{\prime}, \theta\right\}, D_{0} f=-\{\tilde{d}, f\}=-\left\{\varphi\left(d^{\prime}\right), f\right\}$, therefore

$$
\varphi\left(\left\{-d^{\prime}, \theta\right\}\right)=-\left\{\varphi\left(d^{\prime}\right), \varphi(\theta)\right\}=-\{\tilde{d}, \varphi(\theta)\}=D_{0}(\varphi(\theta))=\left(D_{0}+D_{1}\right)(\varphi(\theta)),
$$

as $D_{1}(\varphi(\theta))=0$, since $s \theta$ is a derivation.

3 Proof of Theorem 1.1

We recall that

$$
\psi:\left(s^{-1} \operatorname{Der} \wedge V, \delta^{\prime}\right) \rightarrow\left(\operatorname{Hom}_{\wedge V \otimes \wedge V}(\wedge V \otimes \wedge V \otimes \wedge \bar{V}, \wedge V), D\right)
$$

is defined

$$
\psi\left(s^{-1} \theta\right)(\bar{v})=(-1)^{|\theta|} \theta(v), \quad \psi\left(s^{-1} \theta\right)\left(\wedge^{\geq 2} \bar{V}\right)=\psi\left(s^{-1} \theta\right)(1 \otimes 1 \otimes 1)=0 .
$$

Clearly ψ is injective and its range is isomorphic to $\operatorname{Hom}_{\wedge V \otimes \wedge V}(\wedge V \otimes \wedge V \otimes \bar{V}, \wedge V)$. To show that ψ commutes with differentials, we first observe that

$$
\left(\operatorname{Hom}_{\wedge V \otimes \wedge V}(\wedge V \otimes \wedge V \otimes \wedge \bar{V}, \wedge V), D\right) \cong\left(\operatorname{Hom}_{\wedge V}(\wedge V \otimes \wedge \bar{V}, \wedge V), D^{\prime}\right),
$$

where the differential on $\wedge V \otimes \wedge \bar{V}$ is defined by $d \bar{v}=v-s(d v)$ and s is the derivation of $\wedge V \otimes \wedge \bar{V}$ which satisfies $s(v)=\bar{v}$ and $s(\bar{v})=0$ [2]. Hence we can view ψ as a map

$$
\psi:\left(s^{-1} \operatorname{Der} \wedge V, \delta^{\prime}\right) \rightarrow\left(\operatorname{Hom}_{\wedge V}(\wedge V \otimes \wedge \bar{V}, \wedge V), D^{\prime}\right)
$$

Therefore

$$
\begin{aligned}
\psi\left(\delta^{\prime}\left(s^{-1} \theta\right)\right)(\bar{v}) & =\psi\left(-s^{-1}[d, \theta]\right)(\bar{v})=(-1)^{|\theta|}[d, \theta](v) \\
& =(-1)^{|\theta|}\left(d \theta(v)-(-1)^{|\theta|} \theta(d v)\right) .
\end{aligned}
$$

Moreover

$$
\begin{aligned}
\left(D^{\prime}\left(\psi\left(s^{-1} \theta\right)\right)(\bar{v})\right. & =d\left(\psi\left(s^{-1} \theta\right)(\bar{v})-(-1)^{|\theta|+1}\left(\psi\left(s^{-1} \theta\right)\right)(d \bar{v})\right. \\
& =(-1)^{|\theta|} d \theta(v)-(-1)^{\theta \mid+1} \psi\left(s^{-1} \theta\right)(v \otimes 1-s d v) \\
& =(-1)^{|\theta|} d \theta(v)-(-1)^{|\theta|} \psi\left(s^{-1} \theta\right)(s d v) \\
& =(-1)^{|\theta|}\left(d \theta(v)-(-1)^{|\theta|} \theta(d v)\right) .
\end{aligned}
$$

Hence ψ commutes with differentials.
Moreover $\left(\wedge V \otimes \wedge^{n} \bar{V}, d\right)$ is a sub complex of $(\wedge V \otimes \wedge \bar{V}, d)$. Hence there is a decomposition (see also [4])

$$
H_{*}\left(\operatorname{Hom}_{\wedge V}\left(\wedge V \otimes \wedge^{n} \bar{V}, \wedge V\right), D^{\prime}\right)=\oplus_{n \geq 0} H_{*}\left(\operatorname{Hom}_{\wedge V}\left(\wedge V \otimes \wedge^{n} \bar{V}, \wedge V\right), D^{\prime}\right) .
$$

Therefore ψ restricts to a differential isomorphism

$$
\left(s^{-1} \operatorname{Der} \wedge V, \delta^{\prime}\right) \xrightarrow{\approx}\left(\operatorname{Hom}_{\wedge V}(\wedge V \otimes \bar{V}, \wedge V), D^{\prime}\right) .
$$

Hence

$$
H_{*}(\psi): H_{*}\left(s^{-1} \operatorname{Der} \wedge V, \delta^{\prime}\right) \rightarrow H H(\wedge V ; \wedge V)
$$

is injective.
As $(\wedge V \otimes \wedge V \otimes \wedge \bar{V}, D)$ and $\mathbb{B}(\wedge V ; \wedge V ; \wedge V)$ are free resolutions of $\wedge V$ as $\wedge V \otimes \wedge V$ modules, then there is a quasi-isomorphism

$$
(\wedge V \otimes \wedge V \otimes \wedge \bar{V}, D) \rightarrow \mathbb{B}(\wedge V ; \wedge V ; \wedge V) .
$$

An explicit quasi-isomorphism $J:(\wedge V \otimes \wedge V \otimes \wedge \bar{V}, D) \rightarrow \mathbb{B}(\wedge V ; \wedge V ; \wedge V)$ is defined as follows. If $d v=0$ then $J(\bar{v})=1 \otimes[v] \otimes 1$. Otherwise $J(\bar{v})=1 \otimes[v] \otimes 1+\alpha, \alpha \in 1 \otimes T^{\geq 2}\left(s\left(\wedge^{+} V\right)\right) \otimes$ 1. One extends J to $\wedge^{\geq 2} \bar{V}$ by

$$
J\left(\bar{v}_{1} \wedge \ldots \wedge \bar{v}_{n}\right)=\frac{1}{n!} \sum_{\sigma \in S_{n}} \epsilon(\sigma)\left[J\left(v_{\sigma(1)}\right)|\ldots| J\left(v_{\sigma(n)}\right)\right],
$$

where $v_{i} \in V$. As the following diagram commutes,

we deduce that J is quasi-isomorphism.
We consider the following commutative diagram.

As $H_{*}(\psi)$ is injective and $H_{*}(\operatorname{Hom}(j))$ is an isomorphism, we conclude that $H_{*}(\varphi)$ is injective.

4 Spectral sequence for an n-stage Postnikov tower

We first show the following Lemma.
Lemma 4.1. Let $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be a homogeneous linear basis of V and, for $1 \leq i \leq n$, let θ_{i} be the derivation of $\wedge V$ uniquely determined by

$$
\theta_{i}\left(v_{j}\right)=\left\{\begin{array}{cc}
0 & \text { if } i \neq j, \\
1 & \text { if } i=j .
\end{array}\right.
$$

The graded $\wedge V$-module $\operatorname{Der} \wedge V$ is freely generated by the derivations $\theta_{i}(1 \leq i \leq n)$.
Proof. We denote by $V^{\#}$ the graded dual of V. By restriction to V, we have isomorphisms of graded $\wedge V$-modules

$$
\operatorname{Der} \wedge V \cong \operatorname{Hom}(V, \wedge V) \cong(\wedge V) \otimes V^{\#} .
$$

If X is an n-stage Postnikov tower, then X admits a Sullivan algebra of the form $\left(\wedge\left(V_{1} \oplus\right.\right.$ $\left.\cdots \oplus V_{n}\right), d$, where $d V_{1}=0$ and $d V_{i} \subset \wedge\left(V_{1} \oplus \cdots \oplus V_{i-1}\right)$. We will assume that each V_{i} is finite dimensional. Define a filtration on the Lie algebra of derivations $L=\operatorname{Der} \wedge\left(V_{1} \oplus \cdots V_{n}\right)$ as follows.

$$
F_{p} L=\left\{\theta \in \operatorname{Der} \wedge V: \theta\left(V_{1} \oplus \cdots \oplus V_{n-p-1}\right)=0\right\} .
$$

We get a filtration $0 \subset F_{0} L \subset F_{1} L \subset \cdots \subset F_{n-1} L=L$. Moreover $F_{0} L=(\wedge V) \otimes Z^{0}$ where $Z^{0}=$ $V_{n}^{\#}$. In general, $F_{k} L / F_{k-1} L=(\wedge V) \otimes Z^{k}$ where $Z^{k}=V_{n-k}^{\#}$ and $\delta Z^{k} \subset(\wedge V) \otimes\left(Z^{0} \oplus \cdots \oplus Z^{k-1}\right)$. This defines a semifree filtration of L, hence (L, δ) is a semifree differential module over ($\wedge V, d$).

It comes from the definition that $\left[F_{p} L, F_{q} L\right] \subset F_{r} L$, where $r=\max \{p, q\}$. Hence $\left[F_{p} L, F_{q} L\right] \subset$ $F_{p+q} L$. The filtration induces a spectral sequence of differential graded Lie algebras such that $E_{k, *}^{0}=F_{k} L / F_{k-1} L \cong A \otimes Z^{k, *}$ and $d_{0}=d \otimes 1$. Hence $E_{k, *}^{1} \cong H(A) \otimes Z^{k}$. The E^{1}-term, together with differentials, yields

In particular if X is a homogeneous space, then its minimal Sullivan model is of the form $(\wedge V, d)=\left(\wedge\left(V_{1} \oplus V_{2}\right), d\right)$ with $d V_{1}=0$ and $d V_{2} \subset \wedge V_{1}$, then the above spectral sequence collapses at E^{2}-level.

5 Computations for homogeneous spaces

Let X be a closed oriented manifold of dimension m. The loop homology $\mathbb{H}_{*}(L X)=$ $H_{*+m}(L X)$ is endowed with a loop product and a loop bracket turning it into a graded Gerstenhaber algebra [1]. When coefficients are taken in a field there is an isomorphism of graded vector spaces [10]

$$
H H_{*}\left(C^{*} X ; C^{*} X\right) \cong H^{*}(L X)
$$

which dualizes in

$$
H H^{*}\left(C^{*} X ; C_{*} X\right) \cong H_{*}(L X) .
$$

If \mathbb{k} is of characteristic 0 and X is simply connected, there is an isomorphism of Gerstenhaber algebras [6, 7, 5]

$$
\mathbb{H}_{*}(L X) \cong H H^{*}\left(C^{*} X ; C^{*} X\right) .
$$

Moreover if X is simply connected and $A=(\wedge V, d)$ is a Sullivan model of X, one has an isomorphism of Gerstenhaber algebras [3, Proposition 3.3]

$$
H H^{*}(A ; A) \cong H H^{*}\left(C^{*} X ; C^{*} X\right) .
$$

Therefore $H_{*}\left(s^{-1} \operatorname{Der} \wedge V, \delta^{\prime}\right)$ is a sub Lie algebra of $\mathbb{H}_{*}(L X)$. We note that if $\theta, \theta^{\prime} \in \operatorname{Der} \wedge V$, where $|\theta|=k$ and $a \in(\wedge V)^{i}$, then $a \theta \in(\operatorname{Der} \wedge V)_{k-i}$. Moreover

$$
\begin{aligned}
{\left[\theta, a \theta^{\prime}\right](x) } & =\theta\left(a \theta^{\prime}(x)\right)+(-1)^{|\theta|\left|a \theta^{\prime}\right|}\left(a \theta^{\prime}\right)(\theta(x)) \\
& =\theta(a) \theta^{\prime}(x)+(-1)^{|\theta||a|} a\left(\theta \theta^{\prime}\right)(x)+(-1)^{|\theta|\left|a \theta^{\prime}\right|} a\left(\theta^{\prime} \theta\right)(x) \\
& =\theta(a) \theta^{\prime}(x)+(-1)^{|\theta| a|a|} a\left[\theta, \theta^{\prime}\right](x) .
\end{aligned}
$$

Hence

$$
\begin{equation*}
\left[\theta, a \theta^{\prime}\right]=\theta(a) \theta^{\prime}+(-1)^{|\theta| a \mid} a\left[\theta, \theta^{\prime}\right] . \tag{5.1}
\end{equation*}
$$

We can now compute brackets in the E^{2}-term of the spectral sequence of $s^{-1} \operatorname{Der} \wedge V$, when ($\wedge V, d)$ is the minimal Sullivan model of a homogeneous space. We simply denote by d the differential d_{1} of the E^{1}-term of the spectral sequence.
Example 5.1. Consider $X=\mathbb{C} P(n)$ of which the minimal Sullivan model is $(\wedge(x, y), d)$, $|x|=2,|y|=2 n+1, d x=0, d y=x^{n+1}$. The E^{1}-term is given by $\left(\wedge x /\left(x^{n+1}\right) \otimes \mathbb{Q}<z_{1}, z_{2 n}>, d\right)$, where $z_{1}=s^{-1} x^{\#}$ and $z_{2 n}=s^{-1} y^{\#}$. The differential is given by $d z_{2 n}=0, d z_{1}=(n+1) x^{n} z_{2 n}$. Here subscripts indicate degrees. Non zero homology classes are $\left\{x^{j} z_{2 n}, x^{i} z_{1}, \quad 0 \leq j \leq\right.$ $n-1, \quad 1 \leq i \leq n\}$. In particular $\left\{x z_{1}, x^{j} z_{2 n}\right\}=j x^{j} z_{2 n}$, hence $\operatorname{ad}^{k}\left(x z_{1}\right) \neq 0$, for $k \geq 1$.

Example 5.2. We consider the minimal Sullivan model of $X=S p(5) / S U(5)$ which is given by ($\wedge\left(x_{6}, x_{10}, y_{11}, y_{15}, y_{19}, d\right)$ with $d x_{i}=0, d y_{11}=x_{6}^{2}, d y_{15}=x_{6} x_{10}, d y_{19}=x_{10}^{2}$, where subscripts indicate degrees. The rational cohomology $H^{*}(X, \mathbb{Q})$ is given by classes of $\left\{1, x_{6}, x_{10}, x_{6} y_{15}-x_{10} y_{11}, x_{10} y_{15}-x_{6} y_{19}, x_{6}\left(x_{10} y_{15}-x_{6} y_{19}\right)\right\}$. Hence the E^{1}-term is $\left(H^{*}(X, \mathbb{Q}) \otimes\right.$ $Z, d)$, where Z is spanned by $\left\{z_{10}, z_{14}, z_{18}, w_{5}, w_{9}\right\}, z_{i}=s^{-1} y_{i+1}^{\#}, w_{i}=s^{-1} x_{i+1}^{\#}$ and $d z_{i}=0, d w_{5}=$ $2 x_{6} z_{10}+x_{10} z_{14}, d w_{9}=x_{6} z_{14}+2 x_{10} z_{18}$. It is easily checked that $x_{6} w_{5}, x_{6} z_{i}^{k}, x_{6} w_{9}, x_{10} z_{i}^{k}$ are non zero homology classes. Moreover $\left\{x_{6} w_{5}, x_{6} z_{i}^{k}\right\}=x_{6} z_{i}^{k},\left\{x_{10} w_{9}, x_{10} z_{i}^{k}\right\}=x_{10} z_{i}^{k}$. Hence for $\alpha=x_{6} w_{5}, \operatorname{ad}^{k} \alpha \neq 0, k \geq 1$. It is the same for $\beta=x_{10} w_{9}$.

We have the more general result.
Theorem 5.3. Let X be a homogeneous space of which the minimal Sullivan model is $(A, d)=\left(\wedge\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right), d\right)$, where $\left|x_{i}\right|$ is even, $\left|y_{i}\right|$ is odd and $d x_{i}=0, f_{i}=d y_{i} \in$ $\wedge\left(x_{1}, \ldots, x_{n}\right)$. Then the graded Lie algebra $s H_{*}(L X, \mathbb{Q})$ is not nilpotent.

Proof. It is sufficient to show that $H_{*}\left(s^{-1} \operatorname{Der} A, \delta^{\prime}\right) \subset H H_{*}(A ; A)$ is not nilpotent. Like in the previous examples, we consider the spectral sequence for $s^{-1} \operatorname{Der} A$. The E^{1}-term is given by

$$
\left(H^{*}(A, d) \otimes \mathbb{Q}<z_{1}, \ldots, z_{m}, w_{1}, \ldots, w_{n}>, d\right),
$$

where $z_{j}=s^{-1} y_{j}^{\#}, w_{i}=s^{-1} x_{i}^{\#}, d z_{j}=0$ and $d w_{i}=\sum_{j} \frac{\partial f_{j}}{\partial x_{i}} z_{j}$. We are looking for coefficients $q_{i} \in \mathbb{Q}$ such that $\alpha=\sum_{i} q_{i} x_{i} w_{i}$ is a d-cocycle.

$$
\begin{aligned}
d\left(\sum_{i} q_{i} x_{i} w_{i}\right) & =\sum_{i} \sum_{j} q_{i} x_{i} \frac{\partial f_{j}}{\partial x_{i}} z_{j} \\
& =\sum_{j}\left(\sum_{i} q_{i} x_{i} \frac{\partial f_{j}}{\partial x_{i}}\right) z_{j} .
\end{aligned}
$$

In particular $d \alpha=0$ if $\sum_{i} q_{i} x_{i} \frac{\partial f_{j}}{\partial x_{i}}=c_{j} f_{j}$, for $j=1,2, \ldots, m$ and the c_{j} 's are rational numbers. It is the case if one takes $q_{i}=\left|x_{i}\right|$ and $c_{j}=\left|f_{j}\right|$. This is the Euler Theorem for homogeneous functions in the graded case.

If we denote by Z^{0} and Z^{1} the respective spans of $\left\{z_{j}\right\}$ and $\left\{w_{i}\right\}$ and $H=H^{*}(X, \mathbb{Q})$, then $d Z^{0}=0$ and $d Z^{1} \subset H \otimes Z^{0}$. As $\alpha \in H \otimes Z^{1}$, then α cannot be a d-boundary. Moreover $\left\{\alpha, x_{i} z_{i}\right\}=\left|x_{i}\right| x_{i} z_{i}$, hence $s \mathbb{H}_{*}(L X, \mathbb{Q})$ is not nilpotent.

References

[1] M. Chas and D. Sullivan, String topology, preprint math GT/9911159, 1999.
[2] Y. Félix, S. Halperin, and J.-C. Thomas, Rational homotopy theory, Graduate Texts in Mathematics, no. 205, Springer-Verlag, New-York, 2001.
[3] Y. Félix, L. Menichi, and J.-C. Thomas, Gerstenhaber duality in Hochschild cohomology, J. of Pure and Applied Algebra 199 (2005), 43-59.
[4] Y. Félix and J.-C. Thomas, Monoid of self equivalences and free loop spaces, Proc. Amer. Math. Soc. 132 (2004), 305-312.
[5] Y. Félix and J.-C. Thomas, Rational BV-algebra in string topology, Bull. Soc. Math. France 136 (2008), 311-327.
[6] Y. Félix, J.-C. Thomas, and M. Vigué, The Hochschild cohomology of a closed manifold, Publ. Math. IHES. 99 (2004), 235-252.
[7] Y. Félix, J.-C. Thomas, and M. Vigué, Rational string topology, J. Eur. Math. Soc. (JEMS) 9 (2008), 123-156.
[8] J.-B. Gatsinzi, Derivations, Hochschild cohomology and the Gottlieb group, Homotopy Theory of Function Spaces and Related Topics (Y. Félix, G. Lupton, and S. Smith, eds.), Contemporary Mathematics, vol. 519, American Mathematical Society, Providence, 2010, pp. 93-104.
[9] M. Gerstenhaber, The cohomology structure of an associative ring, Annals of Math. 78 (1963), 267-288.
[10] J. D. S. Jones, Cyclic homology and equivariant homology, Inv. Math. 87 (1987), 403-423.
[11] J.-L. Loday, Cyclic Homology, Grundlehren der mathematischen Wissenschaften, Springer-Verlag, Berlin, Heidelberg, New York, 1992, 1998.
[12] D. Sullivan, Infinitesimal computations in topology, Publ. I.H.E.S. 47 (1977), 269331.
[13] D. Tanré, Homotopie Rationnelle: Modèles de Chern, Quillen, Sullivan, Lecture Notes in Mathematics, no. 1025, Springer, Berlin, 1983.

[^0]: *E-mail address: jgatsinzi@unam.na

