BRACKETS IN THE FREE LOOP SPACE HOMOLOGY OF SOME HOMOGENEOUS SPACES.

JEAN BAPTISTE GATSINZI* Department of Mathematics, University of Namibia, Private Bag 13301, Windhoek, Namibia.

Abstract

Let *X* be a simply connected homogeneous space of which $\pi_*(X) \otimes \mathbb{Q}$ is finite dimensional. We consider the homology of the free loop space map(S^1, X) with the bracket defined by Chas and Sullivan. We show that the Lie algebra $s\mathbb{H}_*(\operatorname{map}(S^1, X), \mathbb{Q})$ is not nilpotent.

AMS Subject Classification: Primary 55P62; Secondary 55M35.

Keywords: Derivations, Hochschild cohomology, Free loop space homology.

1 Introduction

In this paper we study the Lie bracket in the homology of the free loop space of a homogeneous space. We make extensive use of the theory of Sullivan algebras of which details can be found in [2, 12, 13].

Let (A,d) be a commutative cochain algebra over a field k. A derivation θ of degree *i* is a linear mapping $A^n \to A^{n-i}$ such that $\theta(ab) = \theta(a)b + (-1)^{i|a|}a\theta(b)$. Denote by $\text{Der}_i A$ the vector space of all derivations of degree *i* and let $\text{Der} A = \bigoplus_{i \in \mathbb{Z}} \text{Der}_i A$. With the commutator bracket Der A becomes a graded Lie algebra. There is a differential δ : $\text{Der}_i A \to \text{Der}_{i-1} A$ defined by $\delta \theta = [d, \theta]$. Hence $(\text{Der} A, \delta)$ is a differential graded Lie algebra. Using the grading convention $A^n = A_{-n}$, we may view a derivation of degree *i* as increasing the lower degree by *i*.

Moreover Der *A* is a differential graded *A*-module with the action $(a\theta)(x) = a\theta(x)$. If $A = (\land V, d)$ is a Sullivan algebra of which *V* is finite dimensional, we show that Der $A \cong A \otimes V^{\#}$, where $V^{\#}$ is the graded dual of *V* (Lemma 4.1). With the above grading convention $V^{\#} = \bigoplus_{i \ge 1} (V^{\#})_i$ is positively graded.

On s^{-1} Der *A*, we define a bracket of degree 1 by $\{\alpha, \beta\} = s^{-1}[s\alpha, s\beta]$ and a differential $\delta'(\alpha) = -s^{-1}\delta(s\alpha) = -\{d', \alpha\}$, where $d' = s^{-1}d$ is of degree -2. Let \bar{A} be the kernel of the augmentation $\epsilon : A \to \Bbbk$. We denote by $C^*(A; A) = \text{Hom}(T(s\bar{A}), A)$

^{*}E-mail address: jgatsinzi@unam.na

(resp. $HH^*(A;A)$) the Hochschild complex (resp. cohomology) of the cochain algebra A with coefficients in A [9]. Moreover

$$HH^*(A;A) \cong \operatorname{Ext}_{A\otimes A}(A,A),$$

where *A* is considered as an $A \otimes A$ -module by the action $(a \otimes b)c = abc$. Therefore, in order to compute the Hochschild cohomology of a commutative differential graded algebra *A*, it is sufficient to find a free resolution of *A* as an $A \otimes A$ -module. In particular, for the minimal Sullivan algebra $(\wedge V, d)$, one can consider a relative Sullivan model of the multiplication $m : \wedge V \otimes \wedge V \rightarrow \wedge V$. Such a model is given by

where $\bar{V}^n = V^{n+1}$, $D(1 \otimes 1 \otimes \bar{v}) = v \otimes 1 \otimes 1 - 1 \otimes v \otimes 1 + \alpha$ with $\alpha \in (\wedge V \otimes \wedge V)^{>0} \otimes \bar{V}$ [2]. Therefore

$$HH(\wedge V; \wedge V) \cong H_*(\operatorname{Hom}_{\wedge V \otimes \wedge V}(\wedge V \otimes \wedge V \otimes \wedge \overline{V}, \wedge V), D)$$

Define

$$\psi: (s^{-1}\operatorname{Der} \wedge V, \delta') \to (\operatorname{Hom}_{\wedge V \otimes \wedge V}(\wedge V \otimes \wedge V \otimes \wedge \overline{V}, \wedge V), D)$$

by

$$\psi(s^{-1}\theta)(\bar{v}) = (-1)^{|\theta|}\theta(v), \quad \psi(s^{-1}\theta)(\wedge^{\geq 2}\bar{V}) = \psi(s^{-1}\theta)(1\otimes 1\otimes 1) = 0.$$
(1.1)

Then $\psi(s^{-1}\theta)$ is extended to $\wedge V \otimes \wedge V \otimes \wedge \overline{V}$ as a morphism of $\wedge V \otimes \wedge V$ -modules. Moreover ψ commutes with differentials.

Our main result states.

Theorem 1.1. The inclusion

$$\psi: (s^{-1}\operatorname{Der} \wedge V, \delta') \hookrightarrow (\operatorname{Hom}_{\wedge V \otimes \wedge V}(\wedge V \otimes \wedge V \otimes \wedge \overline{V}, \wedge V), D)$$

induces an injective graded Lie algebra morphism

$$H_*(s^{-1}\operatorname{Der} \wedge V, \delta') \hookrightarrow HH(\wedge V; \wedge V)$$

We do not know if the result holds for any graded commutative differential algebra (A, d) as stated [8, Theorem 1] as some gaps in the proof were later found.

Let *X* be a closed oriented manifold of dimension *m* and $LX = \max(S^1, X)$ the space of free loops on *X*. The loop homology of *X* is the homology of *LX* with a shift of degrees, that is, $\mathbb{H}_*(LX) = H_{*+m}(LX)$. In [1], Chas and Sullivan define a product, called loop product and a Lie bracket (called loop bracket) on $\mathbb{H}_*(LX)$ turning $\mathbb{H}_*(LX)$ into a Gerstenhaber algebra. We use the above result to show that the free loop space homology of a homogeneous space contains Gerstenhaber brackets of arbitrary length.

Theorem 1.2. Let X be a 1-connected homogeneous space of which $\pi_*(X) \otimes \mathbb{Q}$ is finite dimensional, then the graded Lie algebra $s\mathbb{H}_*(LX,\mathbb{Q})$ is not nilpotent.

2 Hochschild cohomology

We define here the Hochschild cohomology through the bar construction of an augmented differential graded algebra (A, d), not necessarily commutative. The bar construction $\mathbb{B}(A; A; A)$ provides a free resolution of A as an $A \otimes A^{op}$ -module. It is defined by

$$\mathbb{B}_k(A;A;A) = A \otimes T^k(s\bar{A}) \otimes A.$$

An element $a[a_1|a_2|\cdots a_k]b \in A \otimes T^k(s\overline{A}) \otimes A$ is of degree $|a| + |b| + \sum_{i=1}^k |sa_i|$. The differential $d = d_0 + d_1$ is defined as follows (see for instance [3]).

$$d_0: \mathbb{B}_k(A;A;A) \to \mathbb{B}_k(A;A;A), \quad d_1: \mathbb{B}_k(A;A;A) \to \mathbb{B}_{k-1}(A;A;A),$$

$$d_0(a[a_1|a_2|\cdots a_k]b) = (da)[a_1|a_2|\cdots a_k]b - \sum_{i=1}^k (-1)^{\epsilon(i)} a[a_1|\cdots |da_i|\cdots |a_k]b + (-1)^{\epsilon(k+1)} a[a_1|a_2|\cdots a_k](db),$$

$$d_1(a[a_1|a_2|\cdots a_k]b) = (aa_1)[a_2|\cdots a_k]b - \sum_{i=2}^k (-1)^{\epsilon(i)} a[a_1|\cdots |a_{i-1}a_i|\cdots |a_k]b - (-1)^{\epsilon(k)} a[a_1|a_2|\cdots a_{k-1}](a_kb),$$

where $\epsilon(i) = |a| + \sum_{j=1}^{i-1} |sa_j|$. Therefore the Hochschild cochain complex is given by

$$(C^*(A;A),D) = \operatorname{Hom}_{A \otimes A^{op}}(\mathbb{B}(A;A;A),A) \cong (\operatorname{Hom}(T(s\bar{A}),A), D_0 + D_1),$$

where the differential is expressed as follows [7].

$$(D_0 f)([a_1|a_2|\dots|a_k]) = d(f([a_1|a_2|\dots|a_k])) + \sum_{i=1}^k (-1)^{\overline{\epsilon}(i)} f([a_1|\dots|da_i|\dots|a_k])$$

and

$$(D_1 f)([a_1|a_2|\dots|a_k]) = -(-1)^{|sa_1||f|} a_1 f([a_2|\dots|a_k]) +(-1)^{\overline{\epsilon}(k)} f([a_1|\dots|a_{k-1}]) a_k +\sum_{i=2}^k (-1)^{\overline{\epsilon}(i)} f([a_1|\dots|a_{i-1}a_i|\dots|a_k]),$$

where $\bar{\epsilon}(i) = |f| + |sa_1| + \dots + |sa_{i-1}|$.

Moreover, there is a bracket on $C^*(A;A)$, inducing a Gerstenhaber algebra structure on $HH^*(A,A)$ [9]. The Lie bracket is defined by the formula

$$\{f,g\} = f\bar{\circ}g - (-1)^{(|f|+1)(|g|+1)}g\bar{\circ}f,$$
(2.1)

where

$$(f\bar{\circ}g)([a_1|a_2|\dots|a_k]) = \sum_{0 \le i \le j \le k} (-1)^{\eta(i)} f([a_1|\dots|a_i|g([a_{i+1}|\dots|a_j])|a_{j+1}\dots|a_k]),$$

and $\eta(i) = |g|(|sa_1| + \cdots |sa_i|)$. If $f \in C^p(A; A)$ and $g \in C^q(A; A)$, then $\{f, g\} \in C^{p+q-1}(A; A)$. As $C^1(A; A)$ is closed under this bracket, $sHH^1(A; A)$ is a sub Lie algebra of $sHH^*(A; A)$. The differential $d : A \to A$ corresponds to an element $\tilde{d} \in C^1(A; A)$ of total degree -2 defined

30

by $\tilde{d}([a]) = -da$. It is easily verified that $D_0 f = -\{\tilde{d}, f\}$. Moreover, if $\mu \in C^2(A; A)$ is defined by $\mu([a|b]) = ab$, then $D_1 f = -\{\mu, f\}$ [11].

Define

$$F_1C^1(A;A) = \{ f \in C^*(A;A) | f(T^{>1}(sA)) = 0 \}$$

Consider the composition mapping

$$\varphi: s^{-1} \operatorname{Der} A \hookrightarrow F_1 C^1(A; A) \xrightarrow{p} C^1(A; A) \subset C^*(A; A),$$

where p is the canonical projection.

Lemma 2.1. The inclusion $\varphi : s^{-1} \operatorname{Der} A \to C^*(A; A)$ respects the brackets.

Proof. Note that if $\theta \in \text{Der}A$, then $(\varphi(s^{-1}\theta))([a]) = (-1)^{|\theta|}\theta(a)$. Given $\theta_1, \theta_2 \in \text{Der}A$, it is easily checked that

$$\varphi(\{s^{-1}\theta_1, s^{-1}\theta_2\})([a]) = \{\varphi(s^{-1}\theta_1), \varphi(s^{-1}\theta_2)\}([a]). \quad \Box$$

Lemma 2.2. The inclusion $\varphi : (s^{-1} \operatorname{Der} A, \delta') \to (C^*(A; A), D_0 + D_1)$ commutes with differentials.

Proof. As $\delta'(\theta) = -\{d', \theta\}, D_0 f = -\{\tilde{d}, f\} = -\{\varphi(d'), f\}$, therefore

$$\varphi(\{-d',\theta\}) = -\{\varphi(d'),\varphi(\theta)\} = -\{\tilde{d},\varphi(\theta)\} = D_0(\varphi(\theta)) = (D_0 + D_1)(\varphi(\theta)),$$

as $D_1(\varphi(\theta)) = 0$, since $s\theta$ is a derivation.

3 Proof of Theorem 1.1

We recall that

$$\psi: (s^{-1}\operatorname{Der} \wedge V, \delta') \to (\operatorname{Hom}_{\wedge V \otimes \wedge V}(\wedge V \otimes \wedge V \otimes \wedge \overline{V}, \wedge V), D)$$

is defined

$$\psi(s^{-1}\theta)(\bar{v}) = (-1)^{|\theta|}\theta(v), \quad \psi(s^{-1}\theta)(\wedge^{\geq 2}\bar{V}) = \psi(s^{-1}\theta)(1\otimes 1\otimes 1) = 0.$$

Clearly ψ is injective and its range is isomorphic to $\operatorname{Hom}_{\wedge V \otimes \wedge V}(\wedge V \otimes \wedge V \otimes \overline{V}, \wedge V)$. To show that ψ commutes with differentials, we first observe that

$$(\operatorname{Hom}_{\wedge V \otimes \wedge V}(\wedge V \otimes \wedge V \otimes \wedge \overline{V}, \wedge V), D) \cong (\operatorname{Hom}_{\wedge V}(\wedge V \otimes \wedge \overline{V}, \wedge V), D'),$$

where the differential on $\wedge V \otimes \wedge \overline{V}$ is defined by $d\overline{v} = v - s(dv)$ and *s* is the derivation of $\wedge V \otimes \wedge \overline{V}$ which satisfies $s(v) = \overline{v}$ and $s(\overline{v}) = 0$ [2]. Hence we can view ψ as a map

$$\psi: (s^{-1}\operatorname{Der} \wedge V, \delta') \to (\operatorname{Hom}_{\wedge V}(\wedge V \otimes \wedge \overline{V}, \wedge V), D')$$

Therefore

$$\psi(\delta'(s^{-1}\theta))(\bar{v}) = \psi(-s^{-1}[d,\theta])(\bar{v}) = (-1)^{|\theta|}[d,\theta](v)$$

= $(-1)^{|\theta|}(d\theta(v) - (-1)^{|\theta|}\theta(dv)).$

Moreover

$$\begin{aligned} (D'(\psi(s^{-1}\theta))(\bar{v}) &= d(\psi(s^{-1}\theta)(\bar{v}) - (-1)^{|\theta|+1}(\psi(s^{-1}\theta))(d\bar{v}) \\ &= (-1)^{|\theta|} d\theta(v) - (-1)^{|\theta|+1} \psi(s^{-1}\theta)(v \otimes 1 - sdv) \\ &= (-1)^{|\theta|} d\theta(v) - (-1)^{|\theta|} \psi(s^{-1}\theta)(sdv) \\ &= (-1)^{|\theta|} (d\theta(v) - (-1)^{|\theta|} \theta(dv)). \end{aligned}$$

Hence ψ commutes with differentials.

Moreover $(\wedge V \otimes \wedge^n \overline{V}, d)$ is a sub complex of $(\wedge V \otimes \wedge \overline{V}, d)$. Hence there is a decomposition (see also [4])

$$H_*(\operatorname{Hom}_{\wedge V}(\wedge V \otimes \wedge^n \bar{V}, \wedge V), D') = \bigoplus_{n \geq 0} H_*(\operatorname{Hom}_{\wedge V}(\wedge V \otimes \wedge^n \bar{V}, \wedge V), D').$$

Therefore ψ restricts to a differential isomorphism

 $(s^{-1}\operatorname{Der} \wedge V, \delta') \xrightarrow{\cong} (\operatorname{Hom}_{\wedge V}(\wedge V \otimes \overline{V}, \wedge V), D').$

Hence

$$H_*(\psi): H_*(s^{-1} \operatorname{Der} \wedge V, \delta') \to HH(\wedge V; \wedge V)$$

is injective.

As $(\land V \otimes \land V \otimes \land \overline{V}, D)$ and $\mathbb{B}(\land V; \land V; \land V)$ are free resolutions of $\land V$ as $\land V \otimes \land V$ -modules, then there is a quasi-isomorphism

$$(\wedge V \otimes \wedge V \otimes \wedge \bar{V}, D) \to \mathbb{B}(\wedge V; \wedge V; \wedge V).$$

An explicit quasi-isomorphism $j: (\land V \otimes \land V \otimes \land \overline{V}, D) \to \mathbb{B}(\land V; \land V; \land V)$ is defined as follows. If dv = 0 then $j(\overline{v}) = 1 \otimes [v] \otimes 1$. Otherwise $j(\overline{v}) = 1 \otimes [v] \otimes 1 + \alpha$, $\alpha \in 1 \otimes T^{\geq 2}(s(\land^+ V)) \otimes 1$. One extends j to $\land^{\geq 2}\overline{V}$ by

$$J(\bar{v}_1 \wedge \ldots \wedge \bar{v}_n) = \frac{1}{n!} \sum_{\sigma \in S_n} \epsilon(\sigma) [J(v_{\sigma(1)})| \ldots |J(v_{\sigma(n)})],$$

where $v_i \in V$. As the following diagram commutes,

$$(\wedge V \otimes \wedge V \otimes \wedge \overline{V}, D) \xrightarrow{J} \mathbb{B}(\wedge V; \wedge V; \wedge V)$$
$$\downarrow^{\simeq} \qquad \simeq \downarrow$$
$$(\wedge V, d) = (\wedge V, d)$$

we deduce that *j* is quasi-isomorphism.

We consider the following commutative diagram.

$$(s^{-1}\operatorname{Der} \wedge V, \delta') \xrightarrow{\psi} \operatorname{Hom}_{\wedge V \otimes \wedge V} (\wedge V \otimes \wedge V \otimes \wedge \overline{V}, \wedge V)$$

$$\downarrow^{\varphi} \simeq \uparrow^{\operatorname{Hom}(j)}$$

$$C^{*}(\wedge V; \wedge V) = C^{*}(\wedge V; \wedge V)$$

As $H_*(\psi)$ is injective and $H_*(\text{Hom}(j))$ is an isomorphism, we conclude that $H_*(\varphi)$ is injective.

4 Spectral sequence for an *n*-stage Postnikov tower

We first show the following Lemma.

Lemma 4.1. Let $\{v_1, v_2, ..., v_n\}$ be a homogeneous linear basis of V and, for $1 \le i \le n$, let θ_i be the derivation of $\land V$ uniquely determined by

$$\theta_i(v_j) = \begin{cases} 0 & \text{if } i \neq j, \\ 1 & \text{if } i = j. \end{cases}$$

The graded $\wedge V$ -module Der $\wedge V$ is freely generated by the derivations θ_i $(1 \le i \le n)$.

Proof. We denote by $V^{\#}$ the graded dual of V. By restriction to V, we have isomorphisms of graded $\wedge V$ -modules

$$\operatorname{Der} \wedge V \cong \operatorname{Hom}(V, \wedge V) \cong (\wedge V) \otimes V^{\#}. \quad \Box$$

If *X* is an *n*-stage Postnikov tower, then *X* admits a Sullivan algebra of the form $(\land (V_1 \oplus \cdots \oplus V_n), d)$, where $dV_1 = 0$ and $dV_i \subset \land (V_1 \oplus \cdots \oplus V_{i-1})$. We will assume that each V_i is finite dimensional. Define a filtration on the Lie algebra of derivations $L = \text{Der} \land (V_1 \oplus \cdots \lor V_n)$ as follows.

$$F_pL = \{\theta \in \text{Der} \land V : \theta(V_1 \oplus \cdots \oplus V_{n-p-1}) = 0\}.$$

We get a filtration $0 \subset F_0L \subset F_1L \subset \cdots \subset F_{n-1}L = L$. Moreover $F_0L = (\wedge V) \otimes Z^0$ where $Z^0 = V_n^{\#}$. In general, $F_kL/F_{k-1}L = (\wedge V) \otimes Z^k$ where $Z^k = V_{n-k}^{\#}$ and $\delta Z^k \subset (\wedge V) \otimes (Z^0 \oplus \cdots \oplus Z^{k-1})$. This defines a semifree filtration of *L*, hence (L, δ) is a semifree differential module over $(\wedge V, d)$.

It comes from the definition that $[F_pL, F_qL] \subset F_rL$, where $r = \max\{p, q\}$. Hence $[F_pL, F_qL] \subset F_{p+q}L$. The filtration induces a spectral sequence of differential graded Lie algebras such that $E_{k,*}^0 = F_kL/F_{k-1}L \cong A \otimes Z^{k,*}$ and $d_0 = d \otimes 1$. Hence $E_{k,*}^1 \cong H(A) \otimes Z^k$. The E^1 -term, together with differentials, yields

In particular if X is a homogeneous space, then its minimal Sullivan model is of the form $(\wedge V, d) = (\wedge (V_1 \oplus V_2), d)$ with $dV_1 = 0$ and $dV_2 \subset \wedge V_1$, then the above spectral sequence collapses at E^2 -level.

5 Computations for homogeneous spaces

Let X be a closed oriented manifold of dimension m. The loop homology $\mathbb{H}_*(LX) = H_{*+m}(LX)$ is endowed with a loop product and a loop bracket turning it into a graded Gerstenhaber algebra [1]. When coefficients are taken in a field there is an isomorphism of graded vector spaces [10]

$$HH_*(C^*X;C^*X) \cong H^*(LX)$$

which dualizes in

$$HH^*(C^*X;C_*X) \cong H_*(LX).$$

If k is of characteristic 0 and X is simply connected, there is an isomorphism of Gerstenhaber algebras [6, 7, 5]

$$\mathbb{H}_*(LX) \cong HH^*(C^*X; C^*X).$$

Moreover if *X* is simply connected and $A = (\land V, d)$ is a Sullivan model of *X*, one has an isomorphism of Gerstenhaber algebras [3, Proposition 3.3]

$$HH^*(A;A) \cong HH^*(C^*X;C^*X).$$

Therefore $H_*(s^{-1} \operatorname{Der} \wedge V, \delta')$ is a sub Lie algebra of $\mathbb{H}_*(LX)$. We note that if $\theta, \theta' \in \operatorname{Der} \wedge V$, where $|\theta| = k$ and $a \in (\wedge V)^i$, then $a\theta \in (\operatorname{Der} \wedge V)_{k-i}$. Moreover

$$\begin{aligned} [\theta, a\theta'](x) &= \theta(a\theta'(x)) + (-1)^{|\theta||a\theta'|}(a\theta')(\theta(x)) \\ &= \theta(a)\theta'(x) + (-1)^{|\theta||a|}a(\theta\theta')(x) + (-1)^{|\theta||a\theta'|}a(\theta'\theta)(x) \\ &= \theta(a)\theta'(x) + (-1)^{|\theta||a|}a[\theta, \theta'](x). \end{aligned}$$

Hence

$$[\theta, a\theta'] = \theta(a)\theta' + (-1)^{|\theta||a|} a[\theta, \theta'].$$
(5.1)

We can now compute brackets in the E^2 -term of the spectral sequence of s^{-1} Der $\wedge V$, when $(\wedge V, d)$ is the minimal Sullivan model of a homogeneous space. We simply denote by d the differential d_1 of the E^1 -term of the spectral sequence.

Example 5.1. Consider $X = \mathbb{C}P(n)$ of which the minimal Sullivan model is $(\wedge(x,y),d)$, $|x| = 2, |y| = 2n + 1, dx = 0, dy = x^{n+1}$. The E^1 -term is given by $(\wedge x/(x^{n+1}) \otimes \mathbb{Q} < z_1, z_{2n} >, d)$, where $z_1 = s^{-1}x^{\#}$ and $z_{2n} = s^{-1}y^{\#}$. The differential is given by $dz_{2n} = 0, dz_1 = (n+1)x^n z_{2n}$. Here subscripts indicate degrees. Non zero homology classes are $\{x^j z_{2n}, x^i z_1, 0 \le j \le n-1, 1 \le i \le n\}$. In particular $\{xz_1, x^j z_{2n}\} = jx^j z_{2n}$, hence $ad^k(xz_1) \ne 0$, for $k \ge 1$.

Example 5.2. We consider the minimal Sullivan model of X = S p(5)/S U(5) which is given by $(\wedge (x_6, x_{10}, y_{11}, y_{15}, y_{19}, d)$ with $dx_i = 0$, $dy_{11} = x_6^2$, $dy_{15} = x_6x_{10}$, $dy_{19} = x_{10}^2$, where subscripts indicate degrees. The rational cohomology $H^*(X, \mathbb{Q})$ is given by classes of $\{1, x_6, x_{10}, x_6y_{15} - x_{10}y_{11}, x_{10}y_{15} - x_6y_{19}, x_6(x_{10}y_{15} - x_6y_{19})\}$. Hence the E^1 -term is $(H^*(X, \mathbb{Q}) \otimes Z, d)$, where Z is spanned by $\{z_{10}, z_{14}, z_{18}, w_5, w_9\}, z_i = s^{-1}y_{i+1}^{\#}, w_i = s^{-1}x_{i+1}^{\#}$ and $dz_i = 0, dw_5 = 2x_6z_{10} + x_{10}z_{14}, dw_9 = x_6z_{14} + 2x_{10}z_{18}$. It is easily checked that $x_6w_5, x_6z_i^k, x_6w_9, x_{10}z_i^k$ are non zero homology classes. Moreover $\{x_6w_5, x_6z_i^k\} = x_6z_i^k, \{x_{10}w_9, x_{10}z_i^k\} = x_{10}z_i^k$. Hence for $\alpha = x_6w_5$, ad^k $\alpha \neq 0$, $k \ge 1$. It is the same for $\beta = x_{10}w_9$.

We have the more general result.

Theorem 5.3. Let X be a homogeneous space of which the minimal Sullivan model is $(A,d) = (\wedge(x_1,\ldots,x_n,y_1,\ldots,y_m),d)$, where $|x_i|$ is even, $|y_i|$ is odd and $dx_i = 0$, $f_i = dy_i \in \wedge(x_1,\ldots,x_n)$. Then the graded Lie algebra $s\mathbb{H}_*(LX,\mathbb{Q})$ is not nilpotent.

Proof. It is sufficient to show that $H_*(s^{-1}\text{Der}A, \delta') \subset HH_*(A; A)$ is not nilpotent. Like in the previous examples, we consider the spectral sequence for $s^{-1}\text{Der}A$. The E^1 -term is given by

 $(H^*(A,d)\otimes \mathbb{Q} < z_1,\ldots,z_m,w_1,\ldots,w_n >,d),$

where $z_j = s^{-1} y_j^{\#}$, $w_i = s^{-1} x_i^{\#}$, $dz_j = 0$ and $dw_i = \sum_j \frac{\partial f_j}{\partial x_i} z_j$. We are looking for coefficients $q_i \in \mathbb{Q}$ such that $\alpha = \sum_i q_i x_i w_i$ is a *d*-cocycle.

$$d(\sum_{i} q_{i} x_{i} w_{i}) = \sum_{i} \sum_{j} q_{i} x_{i} \frac{\partial f_{j}}{\partial x_{i}} z_{j}$$
$$= \sum_{j} (\sum_{i} q_{i} x_{i} \frac{\partial f_{j}}{\partial x_{i}}) z_{j}.$$

In particular $d\alpha = 0$ if $\sum_{i} q_i x_i \frac{\partial f_j}{\partial x_i} = c_j f_j$, for j = 1, 2, ..., m and the c_j 's are rational numbers. It is the case if one takes $q_i = |x_i|$ and $c_j = |f_j|$. This is the Euler Theorem for homogeneous functions in the graded case.

If we denote by Z^0 and Z^1 the respective spans of $\{z_j\}$ and $\{w_i\}$ and $H = H^*(X, \mathbb{Q})$, then $dZ^0 = 0$ and $dZ^1 \subset H \otimes Z^0$. As $\alpha \in H \otimes Z^1$, then α cannot be a *d*-boundary. Moreover $\{\alpha, x_i z_i\} = |x_i| x_i z_i$, hence $s \mathbb{H}_*(LX, \mathbb{Q})$ is not nilpotent.

References

- [1] M. Chas and D. Sullivan, String topology, preprint math GT/9911159, 1999.
- [2] Y. Félix, S. Halperin, and J.-C. Thomas, *Rational homotopy theory*, Graduate Texts in Mathematics, no. 205, Springer-Verlag, New-York, 2001.
- [3] Y. Félix, L. Menichi, and J.-C. Thomas, *Gerstenhaber duality in Hochschild cohomology*, J. of Pure and Applied Algebra 199 (2005), 43–59.
- [4] Y. Félix and J.-C. Thomas, *Monoid of self equivalences and free loop spaces*, Proc. Amer. Math. Soc. 132 (2004), 305–312.
- [5] Y. Félix and J.-C. Thomas, *Rational BV-algebra in string topology*, Bull. Soc. Math. France **136** (2008), 311–327.
- [6] Y. Félix, J.-C. Thomas, and M. Vigué, *The Hochschild cohomology of a closed mani-fold*, Publ. Math. IHES. **99** (2004), 235–252.
- [7] Y. Félix, J.-C. Thomas, and M. Vigué, *Rational string topology*, J. Eur. Math. Soc. (JEMS) 9 (2008), 123–156.
- [8] J.-B. Gatsinzi, *Derivations, Hochschild cohomology and the Gottlieb group*, Homotopy Theory of Function Spaces and Related Topics (Y. Félix, G. Lupton, and S. Smith, eds.), Contemporary Mathematics, vol. 519, American Mathematical Society, Providence, 2010, pp. 93–104.
- [9] M. Gerstenhaber, *The cohomology structure of an associative ring*, Annals of Math. **78** (1963), 267–288.
- [10] J. D. S. Jones, Cyclic homology and equivariant homology, Inv. Math. 87 (1987), 403–423.
- [11] J.-L. Loday, Cyclic Homology, Grundlehren der mathematischen Wissenschaften, Springer-Verlag, Berlin, Heidelberg, New York, 1992, 1998.

- [12] D. Sullivan, *Infinitesimal computations in topology*, Publ. I.H.E.S. 47 (1977), 269– 331.
- [13] D. Tanré, *Homotopie Rationnelle: Modèles de Chern, Quillen, Sullivan*, Lecture Notes in Mathematics, no. 1025, Springer, Berlin, 1983.