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Abstract

Here we consider an infinite sub-family of the generalized Petersen graphs P(n,k)
for n = 2k + 1 ≥ 3, and using the two algorithms that A. Behzad et al presented in
[1], we determine an upper bound and a lower bound for the independent domination
numbers of these graphs.
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1 Introduction

For a graph G = (V,E), with vertex set V and edge set E, a subset S⊆V is said to dominates
V if each vertex of V −S is adjacent to some vertex of S. The set V itself has this property
and, for a finite graph G, the minimum cardinality of subsets S that dominate V is called
the domination number of G, and is denoted by γ(G). Domination numbers for graphs and
associated concepts have been studied for many years and there is an extensive literature
on the subject, see [3]. In general, determining the domination number is an NP-complete
problem. In fact, the book [3] contains a chapter, entitled Domination, complexity and
algorithms, devoted to this broad subject. Also a subset S ⊆V is said to be an independent
dominating set if S is both a dominating set and an independent set, that is, S is a dominating
set which its no two vertices are adjacent. Also the minimum cardinality of independent
dominating sets S of V is called the independent domination number of G, and is denoted
by i(G).

The open neighborhood of a vertex v ∈ V is NG(v) = {u | uv ∈ E} and its closed
neighborhood is NG[v] = NG(v)∪{v}. Let S ⊆ V , and v ∈ S. Vertex u is called a private
neighbour of v with respect to S (denoted by u is an S-pn of v) if u ∈ NG(v)−NG[S− v].
The set pn(v;S) = NG(v)−NG[S−v] of all S-pn’s of v is called the private neighbourhood
set of v with respect to S (see [2, 3]).

In [5], Watkins introduced the notion of generalized Petersen graph (GPG for short) as
follows: for any integer n ≥ 3 let Zn be additive group on {1,2, ...,n} and k ∈ Zn−{0}, the
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graph P(n,k) is defined on the set {Oi, Ii | i ∈ Zn} of 2n vertices, and with the adjacencies
given by OiOi+1, OiIi, IiIi+k for all i. If k = n/2, then every vertex Ii has degree 2 and
every vertex Oi has degree 3, otherwise P(n,k) is 3-regular. Here the subscripts are reduced
modulo n. In this notation, the classical Petersen graph is P(5,2). A. Behzad et al in
[1] considered an infinite sub-family of the generalized Petersen graphs P(2k + 1,k), for
k ≥ 1, and they presented two algorithms which between them lead to the determination
of upper and lower bounds on the domination number of these graphs and then proved
that for each odd integer n = 2k + 1 ≥ 3, γ(P(n,k)) ≤ d3n/5e, and moreover γ(P(n,k)) ≤
γ(P(n+2,k +1))≤ γ(P(n,k))+2.

Let here n = 2k +1 ≥ 3, G(n) := P(n,k), and V (G(n)) = Op∪ Ip, where Op = {Oi|1 ≤
i≤ n} and Ip = {Ii|1≤ i≤ n}. We note that G(n) is obtained by the union of two cycles with
length n, CI : I1, Ik+1, In, Ik, I2k, Ik−1, I2k−1, Ik−2, ..., I3, Ik+3, I2, Ik+2, and CO : O1,O2,O3, ...,On

which every vertex Ii of CI is adjacent to vertex Oi of CO.
Here similar to [1] we show for each odd integer n ≥ 5, i(G(n)) ≤ i(G(n + 2)) ≤

i(G(n))+2.

2 Algorithms

In this section, we give two algorithms of [1] which state how we can obtain G(n) from
G(n+2) or G(n+2) from G(n).

2.1 Integration algorithm

INPUT: the graph G(n) = (Op∪ Ip,E1∪E2∪E3) with n = 2k +1 ≥ 7.
OUTPUT: a graph G′′ with 2(n−2) vertices.

STEP 1.
Choose i such that 1 ≤ i ≤ k, remove the four pairs of vertices
{Oi,Oi+1}, {Ii, Ii+1}, {Oi+k,Oi+k+1} and {Ii+k, Ii+k+1},
along with their 15 incident edges, and denote the resulting graph by G′.
STEP 2.
Add four new vertices O′

i, I′i ,O
′
i+k−1, I′i+k−1,

and define the graph G′′ to have vertex set
V (G′′) = V (G′)∪{O′

i, I
′
i ,O

′
i+k−1, I

′
i+k−1}

and edge set
E(G′′) = E(G′)∪ {Oi−1O′

i,O
′
iOi+2,O′

iI
′
i , I

′
i I
′
i+k−1, I

′
i Ii+k+2,

Ii−1I′i+k−1,Oi+k+2O′
i+k−1,O

′>
i+k−1Oi+k−1,O′

i+k−1I′i+k−1}.
Return G′′.

Lemma 2.2 of [1] says that the above graph G′′ is isomorphic to G(n−2).

2.2 Disintegration algorithm

INPUT: the graph G(n) = (Op∪ Ip,E1∪E2∪E3) with n = 2k +1 ≥ 5.
OUTPUT: a graph G′′ with 2(n+2) vertices.

STEP 1.
Choose i such that 2 ≤ i ≤ k +1, remove the four pairs of vertices
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Oi, Ii, Oi+k, and Ii+k,
along with their 9 incident edges, and denote the resulting graph by G′ .
STEP 2.
Add eight new vertices
V ′′ = {O′

i−1,O
′
i, I

′
i−1, I

′
i ,O

′
i+k,O

′
i+k+1, I

′
i+k, I

′
i+k+1},

and define the graph G′′ to have vertex set V (G′′) = V (G′)∪V ′′

and edge set E(G′′) = E(G′)∪
{Oi−1O′

i−1,O
′
i−1O′

i,O
′
iOi+1,O′

i−1I′i−1,O
′
iI
′
i ,

Oi+k−1O′
i+k,O

′
i+kO′

i+k+1,O
′
i+k+1Oi+k+1,O′

i+kI′i+k,

O′
i+k+1I′i+k+1, I

′
i−1I′i+k, I

′
i+kIi−1, I′i+k+1I′i−1, I

′
i+k+1I′i , I

′
iIi+k+1}.

Return G′′.
Lemma 2.4 [1] says that the above graph G′′ is isomorphic to G(n+2).

3 Main Result

Lemma 3.1. Let n be an odd integer such that n = 2k +1 ≥ 5. Then

i(G(n))≤ i(G(n+2)).

Proof. To keep the notation in line with that of algorithm 2.1, we assume that n ≥ 7, and
prove that i(G(n− 2)) ≤ i(G(n)). Let G = G(n), and let S ⊆ V (G) be an independent
dominating set for V (G) of minimum cardinality. Trivially at least one element of Ip, say I1,
must lie in S. Let G′′ be the graph returned by algorithm 2.1 with the index i = 1. By Lemma
2.2 of [1], G′′ ∼= G(n−2). We will identify V (G(n−2)) with V (G′′) so that V (G(n−2)) =
(Op∪Ip\T )∪T ′, where T ′ = {O′

1, I
′
1,O

′
k, I

′
k} and T = {O1,O2, I1, I2,Ok+1,Ok+2, Ik+1, Ik+2}.

Let G′ be the subgraph of G spanned by V (G)\T , so that G′ is also a subgraph of G(n−2).
Then the independent subset S′ := S∩V (G′) dominates all vertices in V (G′), except possibly
vertices in R := {O3,On,Ok,Ok+3, In, Ik+3}. Since I1 ∈ S it follows that {O1, Ik+1, Ik+2}∩
S = /0. So 1≤| S∩T |≤ 3. If | S∩T |= 2, then S∩T is one of the four sets {I1, I2}, {I1,Ok+1},
{I1,Ok+2}, {I1,O2}. For | S∩ T |= 3, S∩ T is also one of the four sets {I1, I2,Ok+1},
{I1, I2,Ok+2}, {I1,O2,Ok+1}, {I1,O2,Ok+2}.

In the follow, for each of the eight cases, we present an independent dominating set S′′

with cardinality at most | S | such that dominates V (G′′).
Case 1. S∩T = {I1, I2}.
Hence Ik+3 /∈ S, and so S′ dominates all V (G′) except possibly {Ik+3}. If {Ok,Ok+3}∩S = /0,
then we choose S′′ = (S− (S∩T ))∪{I′1,O

′
k}, and on the otherwise S′′ = S′∪{I′1}.

Case 2. S∩T = {I1,Ok+1}.
Hence Ik+3,O3 ∈ S, and Ok+3,Ok /∈ S. So S′ dominates all V (G′) except possibly {Ok}.
Now we choose S′′ = S′∪{O′

k}.
Case 3. S∩T = {I1,Ok+2}.
Then, since {O2, I2}∩S = /0, must O3 and Ik+3 lie in S. Hence Ok+3 /∈ S and so S′ dominates
all V (G′). We choose S′′ = S′ ∪{O′

k}, S′′ = S′, and S′′ = S′ ∪{I′k}, respectively, for three
cases Ok /∈ S; Ok, In ∈ S; and Ok ∈ S, In /∈ S.
Case 4. S∩T = {I1,O2}.
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Hence Ok+3,Ok ∈ S. Because {Ok+1,Ok+2, Ik+1, Ik+2}∩S = /0. We also know S′ dominates
all V (G′) except possibly {O3}. Since O3 6= Ok, then k ≥ 4. For k = 4, since Ok is O4 and
dominates O3, let S′′ = S′. Therefore let k ≥ 5. If O3 is dominated by S′, then we choose
S′′ = S′∪{I′1}, and if no, we choose S′′ = S′∪{I′1,O3}.
Case 5. S∩T = {I1, I2,Ok+1}.
Hence Ik+3,Ok /∈ S and S′ dominates all V (G′) except possibly {Ik+3,Ok}. Choose S′′ =
S′∪{I′1,O

′
k}, S′′ = S′∪{I′1}, and S′′ = S′∪{I′1,Ok}, respectively, for three cases Ok+3 /∈ S;

Ok+3,Ok−1 ∈ S; and Ok+3 ∈ S, Ok−1 /∈ S.
Case 6. S∩T = {I1, I2,Ok+2}.
Hence Ik+3,Ok+3 /∈ S and S′ dominates all V (G′) except possibly {Ok+3, Ik+3}. If Ok /∈ S,
then choose S′′ = S′∪{I′1,O

′
k}. Let Ok ∈ S. If S′ dominates Ok+3, then let S′′ = S′∪{I′1},

and if S′ does not dominate Ok+3, then set S′′ = S′∪{I′1,Ok+3}.
Case 7. S∩T = {I1,O2,Ok+1}.
Hence Ok,O3 /∈ S and S′ dominates all V (G′) except possibly {Ok,O3}. Let Ok+3 /∈ S. Then
S′ ∪{I′1,O

′
k} dominates all vertices except possibly the vertex O3. So in this case, we add

O3 to it. But if Ok+3 ∈ S, the set S′∪{I′1} dominates all vertices except possibly the vertices
O3 and Ok. Then we add those vertex or vertices to S′∪{I′1} which are not dominated by it.
Case 8. S∩T = {I1,O2,Ok+2}.
Hence Ok+3,O3 /∈ S and S′ dominates all V (G′) except possibly {Ok+3,O3}. Let Ok /∈ S.
Then S′∪{I′1,O

′
k} dominates all vertices except possibly the vertex O3 that in this case we

add O3 to S′∪{I′1,O
′
k}. For the case Ok ∈ S, the set S′∪{I′1} dominates all vertices except

possibly the vertices O3 and Ok+3. Then we add those vertex or the vertices to S′ ∪{I′1},
which are not dominated by it.

In the all cases, the subset S′′ has size at most | S |, and so i(G(n))≤ i(G(n+2)), where
n ≥ 5 and is odd.

Lemma 3.2. Let n be an odd integer such that n = 2k +1 ≥ 3. Then

i(G(n+2))≤ i(G(n))+2.

Proof. Let G = G(n), and S ⊆ V (G) be an independent dominating set with minimum
cardinality of G. Here we may assume I2 ∈ S. By Lemma 2.4 of [1], G(n + 2) is isomor-
phic to the graph G′′ returned by algorithm 2.2 with the index i = 2 at STEP 1. More-
over, we may assume that the graph G′ constructed in STEP 1 of algorithm 2.2 is the
subgraph of G spanned by V (G)\T , where T = {O2, I2,Ok+2, Ik+2}. The subset S′ :=
S∩V (G′) is independent and dominates all vertices in V (G′), except possibly vertices in
R := {O1,O3,Ok+1,Ok+3, I1, Ik+3}.

We will show that V (G′′) contains an independent subset S′′ such that S′ ⊆ S′′, S′′ dom-
inates V (G′′), and | S′′ |≤| S | +2. Then i(G(n + 2)) = i(G′′) ≤| S | +2 = i(G(n))+ 2, and
this completes the proof. To produce such a set S′′, we add to the set S′ the appropriate
number of vertices of V (G′′) so that the set T ′ := {O′

1,O
′
2, I

′
1, I

′
2,O

′
k+2,O

′
k+3, I

′
k+2, I

′
k+3}∪R

is dominated. Note that I2 ∈ T ∩S and 1≤| S∩T |≤ 2. To continuing the proof, we consider
two following cases.
Case 1. | S∩T |= 1.
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Then O2, Ik+2, Ik+3 /∈ S. We first see S∩{Ok+1,Ok+3} 6= /0. Since otherwise, for dominating
vertex Ok+2 by S, must Ik+2 ∈ S. But it is a contradiction to independence of S . In the
three cases Ok+1,Ok+3 ∈ S; Ok+1 ∈ S, and Ok+3 /∈ S; Ok+3 ∈ S, and Ok+1 /∈ S each of the
three respective sets S′′ = S′∪{I′1, I

′
2}, S′′ = S′∪{I′1, I

′
2,O

′
k+3}, and S′′ = S′∪{I′1, I

′
2,O

′
k+2}

dominates V (G′′).
Case 2. | S∩T |= 2.
Then S∩T = {I2,Ok+2}, and so {Ok+1,Ok+3, Ik+2, Ik+3}∩S = /0. In the three cases Ok ∈ S;
Ok+4 ∈ S, and Ok+4,Ok /∈ S, each of the three respective sets S′′ = S′∪{I′1, I

′
2,O

′
k+3}, S′′ =

S′∪{I′1, I
′
2,O

′
k+2}, and S′′ = S′∪{I′1, I

′
2,O

′
k+2,Ok+3} dominates V (G′′).

In the all cases, S′′ has size at most | S | +2, and so i(G(n + 2)) ≤ i(G(n))+ 2, where
n ≥ 3, and is odd.

Thus far we have proved that:

Theorem 3.3. For each odd integer n ≥ 5,

i(G(n))≤ i(G(n+2))≤ i(G(n))+2.
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