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Abstract
We study the large time asymptotic behavior of solutions to the Cauchy problem for the frac-
tional nonlinear Schrodinger equation

i0u — é [0 u = A|u|*u, t >0, x R,
u(0,x) = up(x), x €R,

where A > 0, the fractional derivative |0, = F~'|£* F, a > % This paper is a sequel to our
previous papers [17] for 2 < a < % and [36] for a = % We show that solutions decay in time at

_1 . . . . .
the rate = (log )~ @, namely that the nonlinearity acts as a dissipative term, when A > 0. This
phenomena does not occur for the cubic problem

0 — 110,/ u=Aluu, t>0, xR,
u(0,x) =ug(x), x €R,

with 0 < @ < 2.

1. Introduction

We study the large time asymptotic behavior of solutions to the Cauchy problem for the
fractional nonlinear Schrédinger equation in one space dimension

(L1) ié,u—élaxlauzﬂlulau, t>0, xeR,
' u(0,x) =uy(x), x €R,

where a > % and A > 0, which corresponds to the defocusing nonlinearity. The fractional

derivative |0, = F~! |¢|* F, here and below F stands for the Fourier transformation @(5) =
‘/Lz_” fR e ™ p(x)dx, and F~! is the inverse Fourier transformation F~!¢ = ‘/Lz_” fR eEp(&E)dE .

Fractional nonlinear Schrodinger equations (1.1) appeared in [32], [33] with applica-
tions in quantum mechanics. Later it was derived in various areas such as plasma physics,
optimization, finance, free boundary obstacle problems, population dynamics and mini-
mal surfaces. The case of fractional derivative |8x|% has a particular relevance to the two-
dimensional water waves with surface tension (see [27], [28]). Recently fractional nonlinear
Schrédinger equations attracted much attention of many authors, (see [2], [5], [6], [9], [10],
[11], [13], [29], [30], [31] and references cited therein).

The present paper is a sequel to our previous papers [17] for2 < a < % and [36] fora = 2

E.
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_1
Our purpose is to show that L™ - norm of solutions decays in time at the rate o (logr)~ @,
namely that the nonlinearity acts as a dissipative term, when 4 > 0. As we know, this
phenomena does not occur for the cubic problem

. 1 _ 2
(12) 0 — 5 10,"u=Alul"u, t e R, x € R,
u@Q,x)=up(x), xeR

in the case of 0 < @ < 2 and 4 € R. The cubic nonlinear problem (1.2) was studied in

the previous works [21], [22], [23], [26], [35], [34], where it was shown that the asymptotic

behavior of solutions is represented in the form of a solution to the linear problem modified

by the logarithmically oscillating term if 4 € R\ {0}, so that the L™ - norm of solutions

decays in time at the rate 2. The large time asymptotics for solutions of the fractional
1

nonlinear Schrodinger equation (1.2) with @ = 5 was obtained in papers [21], [26], where

the derivative of order ?—1 of solutions to the linear problem

02107 u=0

was used. More precisely, we have the following estimate for the case of @ = %

. 1
(1.3) Q202 4y

<Cr?

3 _1
) 0.1 wo]| < ¥ xduolis + ol -

Estimate (1.3) is valid for @ € (0, 1), and the result was extended to @ € (0, 1) by the second
author in [35]. For a general «, in [19], it was shown that we have

||8x|_'6 MO”LI >

+it 110,

(1.4)

e

_ L
Lt0| <Ct =
LOO

where 0 < 8 < “T_z This estimate helps us to avoid the use of the estimate of ||.7 ul|y- itself,
when proving the L™ - time decay of small solutions in the case of small @. Indeed, in
[21] the key estimate was that of ”I@xl% Ju
P = x0, + 2t0, works well for the problem, since the right-hand side of (1.3) corresponds
to ||Pully2 + ||lullg - The case of @ = 2 (the cubic nonlinear Schrédinger equation itself) was
studied previously extensively (see, e.g. [4], [18] and cited therein ). Also we note that in
the case of @ = 1 (the so-called half-wave equation) the asymptotics of solutions is unknown
up to now.

In the previous paper [15], by using estimate (1.4) we showed a global existence of small
solutions to the fractional nonlinear Schrédinger equation

‘LZ’ also it was used the fact that the operator

1
O+ — 0% u = AulP ' u
a

for a super critical nonlinearity p > 3 and @ € (0, 1). Therefore the problem with higher-
order @ < 2, which is close to 2 is more difficult than that with @ € (0, 1). In the case of
3

a € (1,2), we need somewhat involved estimates of || Ju||;2. The cases of a € (1, %), =3

and a € (%, 2) were studied in papers [22], [34] and [23], respectively.

From the works [14] for @ = 3 and [16] for @ = 4, we find a sharp contrast between the
cases of @ > 2 and 0 < @ < 2. In these papers, the asymptotic behavior of solutions was
obtained for the defocusing case A > 0 and it was shown that the nonlinearity of the order ' +
1 is critical from the point of view of the large time asymptotic behavior of solutions. More
precisely, it was proved that the solutions decay in time as e (log t)_%. This phenomena
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tells us that the nonlinearity acts as a dissipative term. These works were extended to the
fractional nonlinear Schrodinger equation (1.1) in [17] for a € (2, %) and in [36] for @ = %
respectively. So, as we stated before, the aim of the present paper is to fill the gap @ € (%, oo) .
Our result here is closely related to the previous work [17], where we have used the function

space X7 based on the norm
lullg, = sup ([l + W @@ 7@ + P OoF0),).
te[1,T]

where

o (1) FU (=Du(), W) = (1+&"log <t>)‘i U (1) = el
P() = ti +&tumW (1), 5= Ce,& = ti€,

and € > 0,y > 0 are small enough. In order to get the desired a-priori estimate of the norm
H@g@ (t)”LZ’ which requires us to estimate the following norm of the nonlinearity

e (107l 27)

we have to assume the condition 2 < a < % (see Lemma 3.2 in [17]), where Q and its adjoint
Q" are defined in Section 2 below. Comparing with the previous work [17], in the case of
a > g we encounter the difficulty of the derivative loss, when proving an optimal estimates
for the derivatives of the operators Q*, Q. From Lemma 3.2 in [17], it seems difficult to get
a-priori estimate of “(’)g@ (t)”Lz in fT for a > % Therefore we introduce a different function

space X7 with the norm
)

— - Y~ - B~

swp ([l +w 0@ 2 0]+ r 0@ g
te[l,

with 8 € (O, %) . An additional term <E>ﬁ corresponds to the regularity of solutions. Therefore

we need to change the requirement H*' nH*~!* for the initial data used in [17] to H""' nH*°.

The main ingredient of the present paper is to show that the contraction mapping principle
works well in the function space Xr. Our new point in obtaining the estimate of the norm

“(E)ﬁ 6550)”” is the L? - estimate of the operator y (a)tiax) <wt$6x>'8 6;]73, where P =

atd; + 0x, B € (0, %), w > 0 is small, and the cut off function y; € C' (R) is such that
y1(x) = 1 for |x| > 2 and y; (x) = O for [x] < 1. We also use known results on the L? -
boundedness of the pseudodifferential operators to avoid some complicated computations.

We introduce some notations. Denote by L? = {¢ € §';||¢|l,,» < oo} the usual Lebesgue

L2’

1
spaces, where the norm is given by ||¢|l, = (fR | (x)|P dx)” for 1 < p < oo and ||¢|lj~ =
sup,.g |¢ (x)|. The weighted Sobolev space is defined as follows

= {p € 83l = [0 0" 9|, < oo}

where m, s € R, 1 < p < o0, (x) = V1 + x2, (id,) = /1 — 92. We also use the short notations
H"™ = H)', H" = H"°. By C(I; B), we denote the space of continuous functions from an
interval I to a Banach space B. By C we denote different positive constants.
= L ix¢-Lige
Define G (x) = o fR e dé¢ and a constant
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1
=— | IGW|*G(x)dx.
mle " G (x) dx

Observe that Imb < 0 (see Lemma 3.1 below).
We now present our main result.

Then there exists €y > 0 such that the Cauchy problem (1.1) has a unique solution u €
1

C ([0, c0);HY N H""O) satisfying the time decay estimate ||u (¢)||p~ < C e (logt)~@ for any

e € (0, &) . Moreover the asymptotics

Theorem 1.1. Let uy € H"!' n Ha’O,HM()”Hl,l < 100 and il’lf|{:|51 |IZ)(§)' > 2e.

(1.5) u(t,x) = i (0) G (x177)
exp (—i22L log (1 — adImb|izg (0)|" log ) +i0 (2))
X

1
tv (1 - adImb i (0)|" log)"
+0 (t‘i (log t)_ﬁ)
is valid for t — oo uniformly with respect to x € R.

In order to explain our strategy more clearly, we state the plan of the proof of Theorem
1.1 shortly. From (1.4), we have the smoothing property of solutions for @ > 2 and if
c')éitf) (0) =0,/ =0,1,..., then the time decay of solutions to the linear problem will be 3
for large a. Therefore the order of the nonlinearity a+1 is reduced to 3. This fact was used in
papers [19], [38]. In [38], the fourth order Schrodinger equation with the cubic nonlinearity

1
i0,u + I 0. u = Auu, 2 € R

was considered and the modified wave operator was constructed by using the method of [37]
under the the final data condition such that

||14+||H40 + Z ”|§|k 14 a.5:M+||H40

Results of [38] was improved in [19] and the modified wave operator for equation
i0u + l 0% u = A|ulu
a
was constructed under the vanishing condition for the final data such that
- a2 __ a-4 -
el + (e |+ [er oez,

However due to the vanishing condition, asymptotic behavior of solutions to the initial value
problem with cubic nonlinearities is an open problem up to now.

In our result, the non vanishing condition g (0) # 0 implies that the solutions decay
with the rate 7+, and the leading term of the asymptotics of the solutions is represented as
U () F~'p(t,0) since

u(t)

< 00,

UOU(Hu=U@t)F" 1FU( Hu=U@)F 1(,a(t &)
UVOF 90+ U OF " (@16 -9(t,0)
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and the second term is the remainder. We let m (r) = ¢ (¢,0), then we have
U OF 'S0 =m@)F ek

which means that the asymptotics of solutions is determined by the behavior of m (¢) . From
(2.1) below we have the equation

07 (1,6) = a7 Q" (

09" 9%) (1.6).
We put & = 0, then
10,5 (t,0) = 120" (
Thus we arrive to the equation for m (¢)
i0m (1) = A% |m (D" m (1) Q" (1Q1]* Q1) (1, 0),

where the operators Q and Q* will be defined in the next section. Taking into account their
definitions and the direct calculation, we find that

Q" (1011 Q1) (1,0) = 127 'p,

where b is defined in the theorem (see Section 3). Hence we have

Q7" 0%) (1,0).

i0,m (1) = Abr  m O m (7).

From this equation we have the asymptotic behavior of the solutions. Our main task is to get
the estimates of the remainder terms in our function space. We note that our result works
well for the case of ImAb < 0.

We organize the rest of the paper as follows. In Section 2 we state the factorization
techniques for (1.1), and prove L™ and L? - estimates for the defect operators Q and Q.
Section 3 is devoted to the asymptotics of the nonlinearity. In Section 4 we prove a-priori
estimates of local solutions u of the Cauchy problem (1.1). Finally we prove Theorem 1.1
in Section 5.

2. Preliminaries

2.1. Factorization techniques. Denote the symbol A (¢) = é &, a > % The linear

evolution group is written as U (f) = F~le"™&F_ The stationary point y (x) = x ||+ is
a root of the equation A’ (1) = x. Define the dilation operator D;¢ = t‘%¢ (f) , the scaling
operator (3¢) (x) = ¢ (u(x)), and the defect operator

1
12 »
00e== [ 0wz
m JR
where the phase function

S&m

AE-Am-NmE-mn
1
— (" = nl") - m*2nE-n).

Then the linear evolution group can be factorized as follows: U’ (r) Fl¢ = D,BMQ¢,
where the multiplication factor M = ¢ "AMW=1N®) Also, we define the inverse dilation
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operator D;'¢p = t%¢(xt), the inverse scaling operator B~'¢ = ¢ (A’ (1)) and the adjoint
defect operator

Q' (¢ = \/% fR ¢SED G () A” () .

Then, the inverse evolution group U (—f) is factorized as follows: FU (-f)¢ =
Q*MB~'D; .

We define a new dependent variable ¢ = FU (1) u(¢). Since FU" (-1t) L = id,FU (-t)
with £ = i0, — A (—id,), applying the operator FU" () to equation (1.1), and substituting
u= UV (t)F~ "¢ = D,BMv, where v = Qp, we get

(2.1) i0;p = AQ*MB ' D (lu|* u) = AQ*"MB™'D;! (|D,BMv|* D, BMv)
= A 2Q*MB™ (|BMu|® BMv) = Ar 209" (jv|” v).
This is our target equation.

We have the identities . A1Q = Qi¢ and i£Q* = Q* A, where A; = M.AOM, and Ay =

man. We mention that the operator J = U (1) xU" (—t) = x — tA' (=id,), A (¢) = i |£1*

plays an important role in the large time asymptotic estimates. Note that J commutes with
L,ie. [J,L] = 0. The symbol A (¢) = %lfl“ satisfies the identity £9;A = aA. Hence

[75, e‘”A(f)] =0 with P = atd; — £0¢. So we define the operator P = atd; + d,x. Using the
identity U (1) F~ ' = F~le7 ™%, we get Pu = U () T"li)\a Also we have the identity
P = —iatL + 0, J and the commutator [L, P] = aL.

2.2. Estimates for the operator O in the uniform metrics. We consider the preliminary
estimates for the integrals in the following lemma. Denote 77 = to n.

Lemma 2.1. Let a > % Then the following estimates
f’? (& —n)dé
E L+t @ -n)?)

2+2j ;
f €177 dé -~ < Ct_¥ <—7~7—>3+2j—20z
(14 gl (I + i)

_3a
2 SCIUP@ : ’

and

Id i )
f |§| f: 1 < Ct—% ®]+17Q10g@
w1+ el (1" + i)

are true forallne R, t>1,j=0,1.
Proof. Changing the variable of integration ¢ = nz, we find
f" (& -n)’d¢
2
Eo(L+ el E-n)?)

3 2 2 2

(I-2)dz 2dz _

<cuf | ceomp [ S comtar .
F (1t (-2)?) 21+ z
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Changing ¢ = nz and .fti = Ewe have

f |1 d¢
= (1401l (g + )’
| 242 00 242
&2idg £2idg
<C f — 4 C -
0 (1+t§|77|“‘1)2 (1 + 12)

1 242
; |Z| JdZ __ 242 2(1 —~
< Clpf* f . H K
o (1+M"z

< C|n|2j+3<~7~7-> 20 Ct_3T ®3+2J 20 Ct‘T <’7‘7'>3+2] 2(1’

and similarly

€ d¢ gy dé ¢ d¢
<C ———+C =
fR1+tI§I(I§I“‘1+In|“‘1)< fo e L L+
[ Izl-fdz e,
scp [ ver [ R @)

<Clgi*' @) log M +Cr v <ﬁ>“f "<CrE @ log (7).

Lemma is proved. O

We prove the estimates for the operator Q in the L™ - norm. Denote E = ftﬁ.

Lemma 2.2. Let a > % Then the following estimate

&%) < 5 @5 100 G (O + (@) o+

is true for all t > 1, where j =0,1,p > 0.

a‘i“QSHLZ)

Proof. Define the cut off function x1 () € C*(R), such that x1(x) =1 for % <x<2and

Y1 (x)=0forx >3 orx< z,also y2 (x) =1 — y; (x). Define the kernel

_3,

A (t,n) = \/7‘[ —ztS(f'i) (f)deg
21 Jtpi<ig<aml

for n # 0. Changing ¢ = ny, we get

. t e :
Aj(tm = Inln’\| 3~ f e MG yly, (y) dy,
T Ji<lyl<3

where G (y,1) = A (y)—A (1)-A’ (1) (y — 1) . We find the asymptotics of the kernels A (¢, 77)
by applying the stationary phase method (see [12], p. 110)

. ; 2
(22) felrg(y)f (y) dy — elrg(yo)f (.’/O) 4 e i7sgng” (yo) +0 (r 2)
R rlg” (o)l

for r — +o00, where the stationary point y is defined by the equation ¢’ (yy) = 0. Then we
find
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oy o
A./(t,n) m(1+0(@ ))’

as [n] — oo. In particular we get the estimate |Aj (t, 17)| <crn i+t (ﬁ)_% . Next we define

the operators
Qz¢=,/zi f e_its(f’n)¢(§))(l(§)d§
T IR n

for/ = 1,2. Then we write
Q- A0 =[5 fR e ED (&) = o) € (%)df-

. . -1
We use the identity e~ = H,0; (£ — ) e SE€D) with Hy = (1 - it (£ =) 0:S &, m))
and integrate by parts

0110 — A = crh fRe—itS(f,n) (¢ (&) — () (E—n) o (H1§J)(1 (6)) d¢
Lo ‘[Re—itS(f,n) E-nxi (%) Hlfjdg(ﬁ (&) dé.
Since aé/\ & = 0(|§|a_1) Jforl1=10,1,2,and 0gS (£, m) = A’ (§) — A’ (1), we have
C

A (¢
S\ H, & H.&hv |2
Mn) | ( “f’“(n)) 1+t 2 —n)?

in the domain % Inl < €| < 3|n|. Applying the Hardy and the Cauchy-Schwarz inequalities,
we find

IA

|01&7¢ — A g

[ I (&) — @l & —nldé
ctw [ (0 )
i m<iél<am \ 1€ =1l 0 €) 1+tpl* 2 (€ -n)*

< crt ol o] 17

where

2
—-n)?d. _3g
h= CDE <ot
Inl<Ié1<3in| (1 +tpl* " (€ - n) )

by Lemma 2.1. Thus by estimate 'A i (t, 77)| <cr |77|jJrl (1‘7)_% we get

Qi€7g| < |Ajg|+ Cr i Gy ||8s¢||Lz
< it it (Tf |¢|+Crz "3 @5 [0,
< C @t ¢|| L el
< ot (|( (H A |3§¢||L2)-

In the term Q,&/¢, we use the identity e ™¢7 = H,0; (fe‘”s(»g’”)) with H, =



FrACTIONAL NONLINEAR SCHRODINGER EQuUATION 171

(1 — 1t€0:S (€, r]))_l , and integrate by parts
Q2§j¢ — Ct% fe—iIS(s‘fan)Mgaf (fj)(2 (§)H2) dé
R & n
+Cr f N gD (%) Hé0e (€) dé
R
+Cp(0) 13 f e SEN LD, (gf)(z (%) Hz) dé.
R

Observing that LA (¢) = O (j¢[*”), for [ = 0,1,2, and 8:S (£,7) = A’ (€) = A (37) , we have
the estimates

2a (e (€ gl
EO0e|Ex2| = | Ha|| £ C 1 -
Y 1+ el (16" + i)

in the domains |£] < %Inl or [£|] > 2n|. Then applying the Cauchy-Schwarz and Hardy
inequalities, we find

+

Exa (%) Hy¢

67 d ]
(1+ 21 (" + ™))
: ¢ d¢
rere) fR L+l (e + o)

Thus, by estimates of Lemma 2.1 we get

064 < ool [ [

3+2j

[@:67g] < 5 G2 |oegl | + € G log 1 (O)]
< - @ tog @y (10O + 1 |o:9)],.)

Hence the estimate of the lemma follows. Lemma 2.2 is proved. |

2.3. Estimates for Q"¢ in the uniform norm. Define the kernel
* ! i —a— ’”
A" (1,6) = 4 /2_ fefs(fm [P N () d,
T Jr
where p € [0, 1). Changing 7 = tin, £= tif, and then 77 = &z, we get
111 () 2
AT (&) =1 — f ST P A7 @) diy
V2 Jr
1_1mlp 1 f i€"S(1,2) | 12~a—p A7
=t 2|l — | e TP AN (2) dz.
3 V2r Jr

By virtue of the formula (2.2) with r = |aa, g@ =51,2,f@ =""A" @),z =1,
we get

Ao =0T ia- D+ o(zi—% |g|1-p—%w)

for |E] — oo, Hence the estimate |A* (¢, &)| < Cta~3 <g>1_7_p follows.
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In the next lemma, we find the asymptotics of Q*¢.
Lemma 2.3. The estimate
o ®we-4" ol

Al/

a-2+p

2@ .
4 H\/A_ Ik

< Ct‘iﬂp‘r(

o)

is true for allt > 1, where p € [0, 1).

Proof. We write

Q" W:\/i f eSED g (my A (17) dny
R

- | f SHIAD-£x-G()
2w R

where ¥ (17) = [7]7**** ¢ (1) and the operator

¢ .
V' By = /ﬂ f HAE-Ex-G()
R

(B (1) = 0 (4 () = \/% fR TG () dy = v (3).

1 2-a—p
| B (0 dx.

We substitute

to the above identity to obtain the representation

P . 2—a—
’_ f ezt(A(‘f)—fx_G(x)) [ilu (x)| . g (X) dx
2 R
¢ f —~ t it(AE)~(E-mx-G(x)
| g, (m)\/— e’( -
\/_

f HNE-NET A (1. £ — 1), (1) dny,

/L f iH(AE)~£x-G(x)
, f itS(¢, r]) 2 N (77) d’?

Y& =y (N (©) = \,% fR ™ My (1) dn,

V* By

2—a—p

1
17 (x)

Ner:

where the kernel

tny (%) dx

’2—&—/)

A (1,€)

Since

so we obtain
V*Bl// -AT (L&Y

- L f (MAONEM A (1, £ — ) = TNOA” (1,8)) 1 (i)

tpof w0 dx = V' By,

dx
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FNONEM AT (1 ¢ — ) — MNOA (1,6)) ) () d

\/_ ( it(AE)-NE-n) _ eitnA’(‘f))A* (t,&-1) ’lﬁ\l (m)dn
[nl<é

- imA'(€) (A* LE-—n) — A" (1, U (tmdn =1, + I I,
+@Lsae (A7 (1.6 =)~ A" (.E) 0 (mdn = I + L + I

where 6 = 7. |
By the estimate |A* (1, £)| < Cta~2 <a > we get

<t f| Ol D[ o)
7|=

< Ctit f |1 ()| dp < cri “%“qumz&)
[n1=6

<Criz ||77_l “qung,) “'7"[1HL2(|77|250
1-l+20-2 oot || 7
< Cta"27at e (01)2 “’7‘/’1”L2(|n|26t)

< Cruts (”WIU_ + HWIUIM

o)

since

”U"ﬁ\l (77)||L2

1

= 0. Bylly: = ( f |axw<u<x>>|2dx)2 = ( f 10,0 (O 1’ (0 d/«t)z

2 1 :
([ s o )

bt ], -+t
<crtiE (Va7 Inl‘”p¢(77)HL2+HW it dug ) ,).

Next by the Taylor formula we find

AO-AE-n) —nN @) = f; E-n-2N (2dz = O(r%‘ln2 I?ﬂ“_z)
c—n
in domain || < 1. Hence

| AO-NE) _ N (@) Cte In| |a%_1

1—2_
for [7] < 1. Then since |A* (t,&)| < Cte™z <g?> e , we obtain
IL| < Ct f | NONED — INO AT (1, & — ) [ (o] dn
Inl<6

<cd @@ [ mfonlan

[nl<o
<Cra? |01 (77)||L1(|,7|S5,) <Cri'or ”77://\1“L2(\77|s6t)
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<crbi| L[V

AII

o)

Finally by the estimate |A* (t,& —n) — A* (1, )| < Craz | @)_Tp we get

] < Ct f| B A (1,6 =) — A" (1, )| |1 ()| dy
ni<

<cEL @ [ il el

<Ct5_7 ~> g pLK& Il |w1 (77)|d77

<Crit _> (&) ||7W1“L2(|,7\<5z) Crolo? ||’7¢1”L2(|;7|<5z)
<cr i (VAT g an)| + [VAT I, o))
Lemma 2.3 is proved. O

2.4. Estimates for pseudodifferential operators. An extensive literature is devoted to
the theory of pseudodifferential operators and to their L? - bounds (see, e.g. [3], [7], [8],
[25]). We consider the following time dependent pseudodifferential operator

a(t,xD)g= fR ¢a (1, x,6) § (&) de

defined by the symbol a(z, x,&). We will use the following result (see papers [1], [35]).
Denote (x) = V1 + 22, {x} = &.

Lemma 2.4. Letv € (0, 1), and assume that the symbol a(t, x, &) satisfies

sup {7 () (8 a(t, x, )| < C,
x,£eRr>1

for k =0,1,2. Then there exists a positive constant C, such that ||a (¢, x, D) ¢|IL% <C, ||¢5||L2
forallt > 1.

We use Lemma 2.4 to estimate the L - norm of the following weighted defect operator

12 .
Vi == [ e gmsede
V2 IR
Lemma 2.5. Letv € (0, 1) and h(t,&,n) satisfy the estimate

@ @y (n0,) h(t.ém)

sup <C,

EneR 121

_~ 1 . . .
fork =0,1,2, where = tan. Then there exists a positive constant C,, such that the inequal-

ity | VA" V19)| , < €, Igll» holds.

In the same manner, we get the L? - estimate for the adjoint weighted defect operator

2
Vig =
h \/ﬂ

f ESEDR (. E,m) ¢ () A (17) dn.
R
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Lemma 2.6. Let v € (0, 1) and h(t,&,n) satisfy the estimate

@ @ (n0,) h(t.ém)

sup
EneR,r>1

<C,

fork =0,1,2, wheren = tén. Then there exists a positive constant C,, such that the inequal-
ity [Vi 9|, < C, [ VA9 |L2 holds.
2.5. Estimates for the derivatives of Q. In order to get the desired estimate of

v -v . . 0 5
“VA” " BanbHLZ , we first estimate the term V,1, with g (£,7) = 0¢ ( aﬁig) .

Lemma 2.7. The estimate HVA”VqluLz < Ctm is valid for all t > 1.

Proof. Define the cut of function y; € C*(R) such that y; (x) = 1 for % < x < 2and
x1 (x)=0forx < % or x > 3, also y» (x) = 1 — 1 (x). Then we represent

12
C Var Je

In the first term /; we use the identity e ¢ = H,9; ((5 -1n) e""S(-f’”)) with H, =

V1 e Mg &y (%)dé + \/% fR e Mg (&) x2 (%)df =1 + .

(1 — it (€ —1) 0¢S (€, 77))_1 , and integrate by parts

1
12

I = =itSEM g (&, (é)d
= ¢ q (& mxi , &
— & —itSED (£ — 1) § (H (g))d .
Nor Re (E—m0:(Hiq (€, n)x1 " 3
Since
0,8 (&,n) A" (1)
q&n =0 (”—)= ]
NosEm) "\ [Tarer ey de

I L N R U Ut _0(1)
- 2
(A7 €+ 20~ 0 d2)

in the domain % < = < 3, then we have

—m0e\HigEmxi| > )]l = O|E=moe|HiO| ~ 1|~ ] <
‘(f ) g( 19 Wl(n R S v A v e W e

=

in the domain % < % < 3. Thus, changing ¢ = ny, we obtain

1
12

V2r Jr

L d
< Ctt Iy 1f aj ;
<t 1+t " " (E—n)

377y

dy 1 _a
Wt
ﬁsm L+m" (- 1)

3

|| =

e €N (£ — ) o, (H 19 & mx (%)) %

[SIE

<Ct
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Therefore, we get

1 a2 _a
|[Varn| , < cit |n= ans

1
00 3
2scfﬁ(f 'ﬁ“—z(m“’dﬁ) < Ct.

0

L

In the second integral I, we use the identity e ¢ = H,0, (fe‘i’s(f’">) with H, =
-1
(1 — 1tE0:S (€, )7)) , integrating by parts, we find

P s §) _ f ~itS(Em) ( (i))
Nor Re Q(f,ﬂ)/\(z(n dé Nor Re €0 | Haq (§,1) x2 . dé.

We have

14}

SEM=-N"E-n=—(@-DI">E-n

and

S EM =N (© N0 =2 ml* 2,

8,8 (£,1) n*2 (& - n) )) ( 1 )
, - 6 ni = 0 a = 0
6.1 =0 (afs @ n)) ( f(w-zs T &+

> 2. Hence

then

EaY

for = <

Wit

, or

ESH
= I

o cermt _ cE(Erm)
e en) @ (e )

Thus, changing E =7y, we obtain

(|a + r'])_l dg -1
|12| < Ct% f 77_1 < Ct% f <yz dy — < Cl‘% {’ﬁ’}—u @y—a
[ (- Wl) = 1+ [yl (y)

with small ¢ > 0. Therefore, we get

’gaf (qu Enx: (%))

[VA7E| , < ot ||m=* G+ Gy

1
o0 2
=€ = ( f ] A () S dﬁ) < Cr%,
0
Lemma 2.7 is proved. -

We estimate the derivative of Q.

Lemma 2.8. The estimate
| VA7 i - a0

is valid for all t > 1, where 0 < v < 1.

L <C ol + Ct3 |¢ (0))
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Proof. We integrate by parts

1

.12 it
0,00 = -it-= fR ISENG, S (&, ) b (€) dé

2w

e —irsien IS ETD o L
Ve asSentO%

_ _,~,S<§,n)¢<f>—¢<0>( ’ (&75@, n))) p
Vo =€ e \“*\asen)®
a,,s<f,n>) ’

s |
——— (0 —ltS(f,n)a ( d
o )fRe \oes@n

1
12

V2

i _ise @ &) — 9 (0) .
+\/§j1;e & q2 (t,&,m) d¢

6O @ @«/tT_n fR ¢ISED 5 (¢, ) di,

$© -6 (0)
'3

Hence

oy @y~ 0,90 = fR e SEN g (1,&,1) Ogp (&) dE

=V, 0:0 +V,, +¢(0)V,,,

where
_, 0,8 (& n)
0:S (&)’
0,5 (&,
% (t,é,n)=—{7ﬂv<ﬁ>‘v(§0"g( kG ”))),

9¢S (£,1m)
0,8 (&, 77))
9:S (&)

qi (&) = -} )

q3 (L‘f’ 77) = 8{(
Since
0eS(Em) = N (€)= N (),0,S &) = N () (7 - £),0]A &) = 0(1¢1"™),
we find

LN -6

G R A

q1 (€ = -y
and

A’/ _
Q@ (t,&,n) = _{77-},, @*".,;:af (m@m-9 _

wo-wo O

Thus, we have the estimates
™ m" (nan)k q1 (1,€, n)‘ + ‘{Tﬂ_v m” (nan)k a2 (1,€, n)‘
= o™ @' (noy) @ @) <.
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NV, 0, " <C ||6§¢HL2 and by the Hardy inequal-
ity
vy, 2 —¢(0) - ¢(0)
[vamy, OO 2O 2O) cjg,..
é: L2 é: L2
Also by Lemma 2.7 we obtain ||VA”vq31 |L2 < Ct%. Lemma 2.8 is proved. m|

2.6. Estimates for the derivative of Q* We now estimate the derivative of the adjoint
defect operator in the domain |_] < N = =, with w > 0 (we will choose sufficiently small
w > 0 below in the proof of Lemma 4. 1)

Lemma 2.9. The estimate

”as”Q*‘f’”L;(@gN) <C ”W )" 0y

31
v O Wl
nUni=

c V&7 @ <o

, +
L2(7122N)
is true for all t > 1, where 0 < v < 1.

Proof. Define the cut-off function y3 € C'(R) such that x3(x) = 1 for |x] < 2N and
X3 (x) = 0for |x| > 3N, also y4 (x) = 1 — y3 (x). We write

0:Q ¢ = 0:Q " dx3 (1) + 0:Q" dyxa (17)

We estimate the first summand by using the inequality ||Q*@||;» = ”\/A”¢ L We get

[0 0xs D) = ClliEr™™ o3 (Dl ey
+Cr[lQ ™ ¢y (ﬁ)”ﬁ(lﬂszv)
< Cre 1Q*dxs @i + Ct 1 s (ﬁ)”LZ
< Crv |[VA”g + Ct”\/ﬁhﬂ”‘1 P

3_1
< Ct2 72 ||l sy -

L2(fl<3N) L2([71<3N)

In the second one we integrate by parts

X3 (2€) 0:Q" pa ()

s (2)
_ % L eSED 0. (€, m) xa @) ¢ () A” (7) dny

= _i ltS(f 77) f (f TI) V A d

= s (28) g DD 08 A ()

_ i i) " xs (2~) P (3_55 Em A () ) ¢(n) AU S

\/E Re A//(n) n aT]S(é:’n) m <~> ( ) n

= ViE@DD o+ VD@ L
where
0:S
s (t8m) = —s (28) @ 2o e .

9,5 En"
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™ (&gS & mA” ()
A ) S (&1

and y (x) = 0 for |x| < 2N, y (x) = 1 for |x| > 2N.
Note that Ay (,&,1) , k = 3, 4 satisfy the estimates

@™ @ (n,) hs 2,2,

X3 (2€) 0:8 (£,m) -
9,5En

a—1
ofin ()<

ha (t,£,1) = —x3 (2~) X4 (ﬁ))

= @~ @ (o) @

and
@™ @ (1,) s 2,8,

y " x3 (2) . (ags En A" ()
A (1) "\ 9,8¢En

<@ @ (no,

X4 (ﬁ))‘

a—1
= 0(:’7:a X3 (ZE))M (77)) <C,

forallé,neR,t>1, j=0,1,2, where v € (0, 1). Then by Lemma 2.6 we get

i —~ 4 7" : v
XD @ 0l < [N TD@ 00| <[] @ o
L2 L2([722N)
and
‘v;jz(ﬁ) 7 <CH|A” 201G <CH|A” Rogadl .
n l2gs=an)
Lemma 2.9 is proved. |

3. Asymptotics of the nonlinearity

Define the norm

I, = sup (Il +w @70,

L2)’
0 = FU (=Hu), W) = (1+3 log () # , P(f) = 1 + %1% W (1),

1
0,
)

B(t,¢&) =120 (101" Q1),

where Q1 = \/; [ e SEDag, b= B(1,0). Changing Z = &4, 77 = et we get

where

e=Cge> 0,E=§zi,y >0,8¢€

Denote
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Ol =r+ Le—i(l—i)ﬁﬂ” f M TGN g
V2 R
and changing 77 = (%), T = xt'"+ we get

= [ eFlo@l ca

B(1.6)=B(¢) =

= L [ T g i
where G (x) = o fR e“* k1 d¢ is an even function. Hence we have

B(E) = —ew|~| f cos §x |G(x)|"G(x)dx

As in [17], we estimate B in the next lemma. For convenience of the reader we give the
proof.

Lemma 3.1. The estimate ||B|l;~ < C holds and numeric computations say that if we let
b=>b(a), then

Imb (@) <0 forany a > 2, lim Imb(a) =

Reb (@) > 0 for any a > 2, lim Re b (a) =
are true.

Proof. By Lemma 2.3 with p = we get

|Q (lQllaQ1)| < C[E_E |_l Q1|a+l
+ O (27 Q1" QD +[[mi* = 6, (@11 QU )

< Crai~2 ”@%—1 |Q1|a+1”Lm
[ﬁ]%—%% |Q1|a+1 L

2_1_ .1
+Cte 272

vor ||| VAT mE @

<Cro [ Q.
" Ct%_%_i <—]~7—>5—l+— |Q1|(1+1 ||{77”}%_2+% (ﬁ)_l
ead (ORI I ”W{’ﬁﬁ @ o,

By Lemma 2.2 with j = 0 we have |Q1] < Cris (ﬁ)l_% and by virtue of Lemma 2.8
||W{7ﬂ% N a,,Q1||L2 < Cr.
Hence
Q" (1Q1* QD) < Cr'*5

which implies ||B|l;~ < C.
Next we consider

B(¢) = 2
\2n

el f " cos (€x)1G W17 G (x) .
0
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We see that the integral B (E) is a continuous function. Therefore it is sufficient to estimate

= b(a) = B(0) = \/% fooo |G (x)|* G (x)dx. For 0 < x < 10 we rotate the contour of

integration & = ye ™', then
1 iy 0 iﬂ—iai il—Lﬂi 1
G(x)~G(x)= —e_’%f (ex-"e Py emwer 2 )6_5” dy,
V2r 0

10 we substitute the

where =~ denotes an approximation with some remainder. For x >

asymptotics G (x) = G (x) = %ei M= Hence we find

100

10
b(a) ~ \/%f() IG1 (0" G (X)dX+—f G2 (I G2 () dx.

It is easy to compute Imb (2) = 0 and Reb (2) > 0.25 > 0. By numeric computations we
obtain Lemma 3.1. O
In the next lemma we prove the asymptotics of the nonlinearity in the equation (2.1).
Lemma 3.2. Suppose that ||u|lx, < Ce. Then the estimates
10" [o]” o] < C15~' e+ et
and
|(Q* 0% ) (0) = 1571 B(0) [m|® m’ < 131 gatltvppativy

are true for all t € [1,T], where v = Qp, m = ¢(t,0), W) = (1 +&%log (t))_é , and

3
0<v<16

Proof. It follows from Lemma 2.3 with ¢ = [v|* v,p = i that
Q" 1ol ol < Cra~2 ||y ol
@%*lJr}—‘ |U|a/+1 ||{’;]'}%*2+% @*1
LDO

@t VAT @ o

FCti

1
+Ct

L2

By Lemma 2.8 we have
[Va™ i @ o], = VAT @t apto

G0)|<C ||(.§f)ﬁ a§ﬂ|u +Cr
< CeP(t) + CtigW < CtasW,

< C|loggl|, + cr®

20|

where P (f) = 13 + &% Wt (#) . We again use Lemma 2.2 with j = 0y > 0 small, to get

<~>2 1+5 |v|oz+1 _<~>— 1+1 | A“Y‘"l

afAHU)

which implies
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and similarly

@

@_ o_1_1
||<‘7‘7'>2 1|U|Q+l||Lm SCIZ b 28(1+1w(1/+l,

@ ol

. Cr27'eowe.

We also have

a o4l -1 L
|@i2es | <t
Therefore

|Q* |v|ar Ul < Ct%—186+lw(l+l.

Thus the first estimate of the lemma is true.
Next, by Lemma 2.3 with ¢ = |v|* v — |Qm|* Qm, since ¢ (0) = 0, we get

|(Q" [v" v) (0) = 27 B (0) |m|" m| = [(Q" (jv]” v — |Qm|* Qm)) (0)]
< Crm @ ol o = 1@l Qmll, .l 67
@ (ol + 1Qm|")|| o [[VA” G @)™ 0y (v — Qm)
@ (=" + 1oml)| ™ @ - @m|,.

1
+Ct =

1.2

1
+Ct 2

x| VA @y @n oy 0+ Q| = lek.

Since

ol = [ aclp@ -l de <l + i e ol
we find
@ -l <.+~ (e Joel, )

By Lemma 2.2 we have the estimate

Qe o] < = @ (jp o) + (&) o], et

is true for all # > 1, where j = 0, 1, p > 0. Then taking j = 0, ¢ = (¢ — m) we get
Ly~ [ R - 1
@ Q@ -m| < cit=t @'t (@) @-m .+ o)
By (3.1) and
LZ)’

lull, = sup (B0l + W 0@ 70| + P 0]E oz
20 =FU (=Hu@), W) = (1 +3 log () * , P(f) =t + &% W (1),

1
07_ b
2)

_L
+1 .

where

e=Cge> O,Ezfti,y >0,p€
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we have with p = §

@ @-m| = cllelh.«ml @ e ol

IA

< CeW'™ @_% 613 (137 + e Wt (1)
< CeW'™ @}_% |'g-:|2 i (tﬁ + g2 WOt (t))v
< CeW'™ (fﬁ + gt Wwet! (t))y
Then
(@7 Q@ —m)| < Cerr™n (W + e WO W!™) < Crimngl oy
since

3 < C(log() @ < CE (& log(t)) = <Ce™(1+&log(t)) = < Ce™W**
for large ¢. Therefore
(3.2) [ 0 - Qm)||,.. = | Q@-m)|,. <Crize+w!e.
We have

IA

Los oo @ Qo - 1Qme Qm)| .
et [ @E ol + 1m0 - om]..

By Lemma 2.2 with j = 0, p small and (3.2), we find the above is

IA

Iy < Ce" W || 32 (ol + 1Qml)||,.
@%—1+2v+(1—%+p)a/

— @
< C81+a/+ozvt 1+5 W1+a+av

L
— 4
< Ct 1+2 1+(Y+(ZV‘171+(I+Q’V

ifO<v< % (% - 1) (@ — 1) — ap. We consider I,. By Lemma 2.8

Va7 G @ 0y 0 - om)|| , < oy, < crerwe!
and
H\/A_ @y @ o, + Qm)”L2 < CroeW,
Applying Lemma 2.2 with o~ = 0, we have
@ (ol +1QmI")||, . < Ct2'e"we
and

_ _ e 1 3 _
||<;7->2v(|v|a/ 1+ |Qm|af 1)||L < Ct2+" 28(1 IWa/ 1'
Hence we get
12 < Ct—1+582aW2a+1 < Ct_1+781+a+VW1+a+v

Similarly,
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13 < Ct—l+%81+a+avW1+a+av

Thus, we get the second estimate of the lemma. Lemma 3.2 is proved.

We now prove the asymptotics for the solutions.
Lemma 3.3. Suppose that ||lullx . < Ce. Then the asymptotics
u(t,x)=m(l)G (xt_i)
exp (—iaﬁfnbb log (1 — adImb|m(1)|* log t))

X

(1 —adImb|m (D" log 1)
+0 (t_ﬁ (log t)_l_i)
is valid for large t uniformly with respect to x € R.
Proof. By Lemma 2.2 we find
|D:BMQ (@~ m)||,.. < Cr % ||0¢]|,. < Cr#e(log (i)™ 7 .
Therefore, we have
u(t) = mD,BMQ1 + o(sfi (log <t>)‘1‘i)

for r — oco. We see that

D.BMOI = 1+ \/12_ fei?f—élfl"dg = G (E ) = G ()
T JR

where G (x) = % fR e"fx‘ﬂf'”df. By Lemma 3.2, we get from equation (2.1) at £ =0
im’ = A" bm|® m + O(t—18a+l+vWa+l+v).
Thus
8, Im|™® = —aAr 'Imb + O (fls”vW”V).
Observe that Imb < 0. Integrating with respect to time we find
m ([ = m (1) — aAlmblog + O (g”v (log (t))]_%)

from which it follows that
Im (1)|*

(1 = aAlmb [m (1)|* log 1) (1 - o(gm (log <r>)‘%)).

Im (D" =

Namely we have
Im (1)]

m ()] = .
(1 — aAlmb |m (1)|* log t)«

(1 t o(g“v (log <z>)‘%)).

Also
dyargm = —Ar'm|*Reb + O (fls(”VW“")
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|m (1)|* Reb
(1 = aATmb [m ()| log 7) (1 L0 (gm (log <t>)—%))

= —ar!

+0 (t—18¢1/+vWa+v)
Integration with respect to the time yields

Reb

argm (f) = argm (1) — log (1 = aAmb [m (1)|* log1) + O (£'*").

almb

Therefore, we get

u(t) =mD,BMQI + O(fi (log (t))‘l—(':)

(G (x) exp (~iziy log (1 — adlmbm (DI log 1) +i0 (&)
=m Xt |
ti (1 — aAlmb |m (1)|* log Z)E

+0 (f% (log <z>)‘%)

for large . Lemma 3.3 is proved. m|

4. A priori estimates

First, we state the local existence of solutions to the Cauchy problem (1.1) in the func-
tional space H""! N H*? (see [17]).

Theorem 4.1. We assume that the initial data uy € H' 0 H*® are such that ||uollg. <
Ce, and |I;6 (0)| > 2&. Then there exists a time T such that the estimates ||ullx, < Ce and
infyefo.7] ‘E(t, 0)‘ > & are true. Furthermore if € is small, then we can take T > 1.

In order to prove the global result, we need to obtain a priori estimates of solutions uni-
formly with respect to 7 > 1 in the norm ||ullx, .

Lemma 4.1. There exist &y > 0, and a constant C > 0 such that if the initial data
uo € H'' N H* are such that lugllg. < Ce and infig<; | (0)| > 2& with & € (0, &) , then
the estimate ||ullx, < Ce is true for all T > 1.

Proof. We proceed by a contradiction. By continuity of the norm ||u|x, with respectto T,
we can find the maximal time 7" > 1 such that [ju||x, = Ce. Let us estimate the norm

H@ﬁ 3550)““ - H<tgax>ﬁ Tu

Define y; € C!'(R) such that y;(x) = 1 for |x] > 2 and y; (x) = 0 for x| < 1, also
Xxo(x) = 1 — x1(x). Then we consider the operators Q; = y; (wtiax) <wt$6x>'8. By the
identity P = —iatL + 0,J, where P = atd; + 0,x, we have

12

“.1) ‘ (tiaxf Ju

LS Q0T ull> + [1€21 T ully2
< IQoJullp> + at | @107 Lul|, + ||Q107 Pul| , -

Let us estimate the first summand
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1207l = o (w8) () 962, < ()" 0], .-

Differentiating (2.1) with respect to &, multiplying both sides of (2.1) by xg (wg) <w§>ﬁ, we
get

i0, (XO (wa <w—§>ﬁ (9@:{5) =i (85{5) 0; ()(0 (a):f_) <w§>ﬁ) +A 2y (wg) <w§>ﬁ 0:Q" (Iv]" v).
By Lemma 2.9 we have

(42) [0:Q" (e1" 0 ny < € H\/A_ @’ ol 8,p

L2([71=2N)

1
+ CH\/A_ ay’ = oo+t
n

3 1
+Ct2 2 ||Jo]
L2([7=2N)

(HIHL‘X’(WQN) :

Using Lemma 2.2 we get

a_q1_ 1_a
@l < o

@7, +

We take 0 < v < min(% -1, 1) to find that

0c7,.) < Crttew

(4.3) @ bl < Ct2 5 W,
and by Lemma 2.8
H‘VA” Y ™ 8,7U||L2 < Cet= W,

Hence
4.4 H A V@ a+1 ‘H'lt%_l"'i.
4.4) VA" ()" ol* v R < Ce*'w
We now consider the second term of (4.2) to have
1 a
NN v =+l _ -2 v ga+l
() H . U . LN = ”L%<ﬁﬂ22N)
n =
S Ct_%-'—%_ﬁ (ﬁ)%—z+v |U|(1/+1||Lg
n

1,2,(1_1 1
< Cl‘_5+5+(5_3)(a+1)_580+1Wa+]

|® 2 24v+(1-2+2y)(a+1)

LZ
i

— Ct—l+%+i80+lwa+l

|<—ﬁ> 2-2+v+(1-%+2y)(a+1)

L2
n
< Cga+1Wa+1t%—l+i
since
1
%—2+v+(1—%+2y)(0/+1)<—§
for v < 1. We have from (4.3)

1
< Cl‘%_HEsaHW(Hl.

(4.6) i |||v|a/+l ”Lw(rﬁ]gm =

We apply (4.4)-(4.6) to (4.2) to get
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a 1
“agQ* (lv]* v)”LZ(Fﬁ‘:ISl) < Ce¥t ot 5145

Therefore we find

o (B 0], = cor | o

N
< C8a+1Wa+1t 1+2a’

1
+ C8a/+l“ra+lt—1+ﬂ
L2

where we used the fact that w > 0 is sufficiently small. Integrating in time we obtain

20T ullz = |jxo (wE) (wE) 03]

i3
< Ce+ Ce™! f 72 lypet! (r)dr
0

1.2

\/E !
< Ce + Ce™*! f 3 dr + Ce™ Wt (z%)f gy
0 Vi
1

< Ce + Ce® i 4 Cem W (1) < CsP (1),

for all t € [1,T], if € > 0O is sufficiently small.
Next by (2.1) we have

t| @107 Lul| , < Cr]|Q467" 1ul ul,,
< CtHXl (wra) (wrta,) o7 il u
}Xl (wt%g) <wt%§>ﬁ EYP U u o

1 1
< Cr el ully: = Co 7 |FU (=) |l ully2

"AN |U|(l+1

where we have used FU (=) [ul|® u = At~ 2Q* (ju|* v). By Lemma 2.2 with o = 0 we have
the estimate |v| < Ceti n (77')1_%” W. Also (1 - %) (@+D+%2 < —% for a > % Therefore

2
VA7 [l *!

LZ
Nz @(1—%+7)(a+1)
|77]0_52 @(1—%+y)(a+l)

1.2

=Ct

1 @ . 1_a
=Ct" e 1QF (U o)l < TR

1.2

1_a
a2

< C80+1Wa+ll%

L2
1
< Cgar+1 Wa+ll2“

L
< Ce™ ' Wetlm < CeP (1),

which implies

4.7) |07 cull, < CEF ul® ull: < CeP(1).

Next we estimate the third term ||Q 16;1 73u||L2 . Using the commutator LP = (o + P) L,
we get from (1.1)

L9 Pu=Q,0" (a+ P) Lu+i(0,2)0,' Pu

= aﬂgla;l [u|® u + 10, ()(1 (a)tiax) <wtﬁﬁx>ﬁ) (3;17%!)
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+AQ,0.' P [u|” u.

As above we have ||910;1 |u|® u”Lz < Cet™'P(¢) and

.1 (wrv0.) (wrt o)) (67 Pu)

Consider the third term

< Cwet 'P(1).

L2

Q0P lul u

= CQ,0;" (ul” Pu) + €107 (jul* u”Pu)

= €3, (Jul” xo (wt+8,) Pu) + €137 (1ul ulyo (wt78) Pu)

+ €07 (lul” 1 (wr70,) Pu) + C T (11~ Pyt (wrd,) Pu)
Then we use the identity P = atL + 0,J and
o(oria) 7, = B rernaul, < oo, < coro

to get with (4.7)

”916;1 (Iula)(o (wtﬁax) PM)HLZ <Cts |

1
IXO (wﬁax) |u|” u
1 1
< C e (7 s + o (r0.) T

1+1
< Cllulffe (£ Ml ull2 + 2P (1))

lul” xo (wtiax) Pu”L2

)

1
< Cte |lullf (t

" + HXO (a)tiéx) 0, Ju

)

By Lemma 2.2 we have
s = € IDBMuly < C172 [BMull < Cr% ol
Then we get
ull¢ < CE2 |8 < CEle™We,

and in the same way as in the proof of (4.7) we find

5 lul® ulle < Ctoe® ' W < CreeW™'P.
Therefore

205 (1 xo (wr? 02) Pu)|| , < Co™' wep .
In the same manner we find
“918;1 (lula_2 u>xo (wtiax) 7)_14)HL2 < Ce WP ().
We represent

916;1 (Iul“)(l (wtﬁax) Pu)

= 916;1 (lul“ a};ﬁXI (a)té(')x) 8‘;_17%1)

= 913;’8 (Iul")(l (wtéax) 85_17%:)
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— 1+ 1 -1
=107 (|03l | 1 (wrv0y) 8 Pu),
where the commutator

[1/39/)]]” Cf¢(x) ¢(x— y)f(x W dy.

Then in the same way as in the proof of (4.7) we obtain

Hszlagﬁ (1t x1 (wr0.) &' P

1.2

Ln (a)téax) af“ 73u||L2
s (wrta) (wrt0.) 0, Pu

Next we have for the commutator

|[o, _CHfau(x» |||u<x D £ e iy

8
< Cta |lullf o

< Cllullf < Ce™ WP (r).

1.2

L2

(e (O = |u (x = I*)
sC’f l N -yl dy
lyl<re Iyl L2
(e (I = Ju (x = I*)
vl [ D e yidy| =140y
ylzr@ ly| L?
with f = y) (a)tﬁax) 65_17%1. The first summand
— — 1A
I, < C sup sup (Iu(x)l(’_H'B‘ u) - ux -y )
l<rs
< [, -t
X = >
isib Iyl g
where 0 < 8; < B < % By the estimate of Lemma 2.2 we have
+0 1 -
'agu (x)| < CeWrt e <ti |xlﬁ> 7 2+y.
Hence
Lo, |4 ) —u(x = )| | ! o
Jue ()| 1P | ———= < Clu(~"* f ux (X —yz)dz
0
-, e (1=5+7)(@=1+B1)
<Ccr've “W"< “x “>
1 1\ 2-5+y 1-p1
1-L _ 1-1 a-1 1= 04
X ‘t ax—t eyz dz <Ct e g"Wh
0
Also

1
——— | f(x—-y)|d
jl;lsnlr ly|' v wldy 12

1
2 BB
Sl [ oy < CEE

189
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Therefore

1 B
Cr'-ag"Woa

flog)
IA

l,yl (wt%c')x) (95_17314 "
}Xl (a)t%(')x) <wt%8x>ﬁ 8;17314

< Cs™rlRWeP ().

d
f \ |f (X - .l/)| zy_ﬁ

lyl=t@ Iyl

Cri=agawe

IA

1.2

For the second summand we get

14}

IA

(03
C el

L2

IA

d end} o
C el 11l f = <Ol Il
izt [yl
1 _
l,\/l (wta(?x)(?gx 'Pu .
'/yl (wt%r(')x) <wti6x>ﬁ (9;17914

Ce® = WP (r).

Bl
1'% ull.

IA

Cri-egawe

IA

1.2

IN

Hence

< Ce* ' 'WOP ().

l16;" ([0, 1t |1 (wr 0.) ' Pu)

|

Thus we obtain
d
7 “Q]@)‘CIPMHLZ < Cet ot 145

Integrating in time, we get ||916;173u||L2 < CeP(t)forall t € [1,T], if € > O is sufficiently

small. Hence ||<§>B 6§'1,5(t)”L2 < CeP(1).
Next taking equation (2.1) at £ = 0 and applying Lemma 3.2, we get for m (t) = ¢ (¢,0)

im = /ll_lb |m|af m+ 0 (t—lga+1+VWa+l+v) )

Hence 8, [m|™® = —aAt ' Imb+ 0O (t"s”"W”") . Using Imb < 0 and integrating with respect
to time, we obtain

Im (O™ = [m (D™ (1 — aAlmb |m (1)|* logt + C |m (1)|* (log <;>)1—%)
which implies that
_1
[m(2)| = |m(1)] (l —aAlmb|m (1)|*logt + C |m (1)|* (log (;))1—%) -
We may assume that |m (1)| > ¢ if
inf [¢(0,8)| = inf |u > 2e.
inf [£(0,8)] = inf uo (&)

Therefore we obtain eW (¢) < [m (t)| = |§5(t, O)| < CeW (1), if € > 0 is sufficiently small. By
(3.1) it follows that

(GM0

L®
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< CsW (1) + C (sW (1))~ 112" @_y 9zl
< CeW (1) + C(eW @)™ %" (eP (1)) < CeW (1),

if we take y > 1v. Using Lemma 3.2 we have |Q* [o|* v] < Ct2~1e®* ' W*! . Then, by (2.1) we
get |§5,| < Ct'e®*'Wwet! forall t € [1, T] . Integrating in time we deduce that

”a(t)”m <&+ Ce! f[ dr
1

(1 +&log (‘1'))“i -

Thus, we obtain ||§E(t)||Lw < Ce. Therefore, |lullx, < Ce, which contradicts the assumption
llullx, = Ce. Lemma 4.1 is proved. |

5. Proof of Theorem 1.1

The global existence of solution u € C ([0, c0); HM' N HO"O) to the Cauchy problem (1.1)
satisfying a priori estimate [ullx < Ce follows from Lemma 4.1 and the local existence
Theorem 4.1 by a standard continuation argument. Finally the asymptotics (1.5) follows
from Lemma 3.3. Thus the proof of Theorem 1.1 is complete.
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