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Abstract
We give a method to construct a critical Schrödinger form from the subcritical Schrödinger

form by subtracting a suitable positive potential. The method enables us to obtain optimal
Hardy-type inequalities.
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1. Introduction

1. Introduction
In [6], Devyver, Fraas and Pinchover give a method for obtaining optimal Hardy weights

for second-order non-negative elliptic operators on non-compact Riemannian manifolds, in
particular, they show that the criticality of Schrödinger forms is related to the critical Hardy
weights. In [20] we give a method to construct a critical Schrödinger form from a tran-
sient Dirichlet form by subtracting a suitable positive potential. In other words, we give a
method to construct critical Hardy weights for a transient Dirichlet form by applying the
idea in [6]. In this paper, we will consider subcritical Schrödinger forms instead of transient
Dirichlet forms, and extend the method for subcritical Schrödinger forms. As an application,
we obtain a method to construct critical Hardy weights for Schrödinger forms. Moreover,
we discuss the optimality of Hardy weights in the sense of [6], a stronger notion than the
criticality, and give a condition for the critical Hardy weights being optimal ones.

Let E be a locally compact separable metric space and m a positive Radon measure on
E with full topological support. Let X = (Px, Xt, ζ) be an m-symmetric Hunt process. We
assume that X is irreducible and resolvent doubly Feller, in addition, that X generates a
regular Dirichlet form ( ,()) on L2(E; m).

Denote by loc(X) the totality of local Kato measures (Definition 3.1 (1)). For a singed
local Kato measure such that the positive (resp. negative) part μ+ (resp. μ−) of μ belongs to
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loc(X) (μ ∈ loc(X) −loc(X) in notation), we define a symmetric form by


μ(u, u) = (u, u) +

∫
E

u2dμ, u ∈ () ∩C0(E).

The regularity of ( ,()) implies that a measure in loc(X) is Radon (Remark 3.2) and
the form (μ,() ∩ C0(E)) is well-defined. In the sequel, for a symmetric bilinear form
(a,(a)) we simply write a(u) for a(u, u).

We suppose that (μ,() ∩C0(E)) is positive semi-definite:

(1) 
μ(u) ≥ 0

(
⇐⇒

∫
E

u2dμ− ≤ 
μ+(u)

)
, u ∈ () ∩C0(E).

Applying results in [1], we prove in [20] that (μ,() ∩ C0(E)) is closable in L2(E; m).
We denote the closure (μ,(μ)) and call it Schrödinger form with potential μ. By the
Radonness of μ+, we see that () ∩ L2(E; μ+) ⊂ (μ) and


μ(u) = (u) +

∫
E

ũ2dμ, u ∈ () ∩ L2(E; μ+).

Here ũ is a quasi-continuous version of u. In this paper, we always assume that every func-
tion u is represented by its quasi-continuous version if it admits.

The L2-semigroup T μ
t generated by (μ,(μ)) is expressed by Feynman-Kac semigroup

([20, Theorem 4.2]): For a bounded Borel function f in L2(E; m)

(2) T μ
t f (x) = pμt f (x)

(
:= Ex

(
e−Aμt f (Xt)

))
, m-a.e. x.

Here Aμ
t = Aμ+

t − Aμ−
t and Aμ+

t (resp. Aμ−
t ) is the positive continuous additive functional with

Revuz measure μ+ (resp. μ−). We suppose that (μ,(μ)) is subcritical, that is, there exists
the Green function Rμ(x, y) such that for a positive Borel function f∫ ∞

0
pμt f (x)dt =

∫
E

Rμ(x, y) f (y)dm(y), ∀x ∈ E.

Let μ
loc(X) be the set of local Kato measures such that for any compact set K ⊂ E

(3) Rμ(1Kν)u(x) =
∫

E
Rμ(x, y)1K(y)dν(y) ∈ L∞(E; m).

For a non-trivial measure ν in 
μ
loc(X) define measures νμ and μν by

(4) νμ =
ν

Rμν

and

(5) μν = μ − νμ.
We will show in Corollary 4.2 and Lemma 4.3 below that μν belongs to loc(X) − loc(X)
and (μ

ν

,() ∩C0(E)) is still positive semi-definite

(6) 
μν(u) = 

μ(u) −
∫

E
u2dνμ ≥ 0, u ∈ () ∩C0(E).

In other words, the measure νμ is a Hardy weight for (μ,(μ)). As remarked above,
(μ

ν

,()∩C0(E)) is closable and its closure defines a new Schrödinger form (μ
ν

,(μ
ν

)).



Optimal Hardy-Type Inequality 763

Let  be the totality of compact sets of E. We then obtain the following main result in
this paper: If a non-trivial positive measure ν in 

μ
loc(X) satisfies that

(7) sup
K∈

�
K×Kc

Rμ(x, y) ν(dx)ν(dy) < ∞,

then (μ
ν

,(μ
ν

)) turns out to be a critical Schrödinger form. Here Kc is the complement of
K. More precisely, the function Rμν is a ground state of (μ

ν

,(μ
ν

)), that is, Rμν belongs
to the extended Schrödinger space e(μ

ν

) of (μ
ν

,(μ
ν

)) (see Section 2 for the definition
of the extended Schrödinger space) and 

μν(Rμν) = 0. As a corollary, we see that νμ is a
critical Hardy weight for (μ,(μ)) in the sense that there exists no non-trivial positive
function ψ such that

(8)
∫

E
u2d (νμ + ψm) ≤ 

μ(u), u ∈ () ∩C0(E).

In particular, if ( ,()) is transient and μ ≡ 0, then every ν ∈ loc(X) satisfies (3) by
replacing Rμ(x, y) with the 0-resolvent R(x, y) of X. Indeed, since 1Kν is Green-tight, 1Kν ∈
∞(X) (Definition 3.1 (2)), the condition (3) is derived from [3, Proposition 2.2]. As a
result, for any ν ∈ loc the next Hardy-type inequality follows:

(9)
∫

E
u2 dν

Rν
≤ (u), u ∈ () ∩C0(E).

The inequality (9) is proved in Fitzsimmons [7] (see also [2]). Moreover, we see that if the
measure ν/Rμ is a critical Hardy weight for the Dirichlet form ( ,()) if ν satisfies (7)
obtained by replacing Rμ(x, y) with R(x, y).

As stated above, the function Rμν belongs to e(μ
ν

) under the condition (7). Lemma
4.3 below tells us that e(μ) is included in e(μ

ν

) and Rμν does not belong to e(μ) in
general. If ν satisfies the stronger condition than (7),�

E×E
Rμ(x, y)ν(dx)ν(dy) < ∞,

i.e., ν is of finite energy with respect to Rμ, then Rμν belongs to L2(E; νμ) because∫
E

(Rμν)2dνμ =
∫

E
Rμνdν =

�
E×E

Rμ(x, y)ν(dx)ν(dy) < ∞.

Moreover, Rμν belongs to e(μ) by Lemma 4.8 below. Hence, μ(Rμν) is finite and thus


μν(Rμν) = 0⇐⇒ 

μ(Rμν)∫
E(Rμν)2dνμ

= 1.

Noting that by (6)

(10) inf
u∈e(μ)


μ(u)∫

E u2dνμ
≥ 1,

we see Rμν is a minimizer for the left hand side of (10). In this case, the Schrödinger form
(μ

ν

,(μ
ν

)) is said to be positive-critical ([6, Definition 4.8]).
On the other hand, if ν is not of finite energy,
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(11)
�

E×E
Rμ(x, y)ν(dx)ν(dy) = ∞,

then Rμν does not belong to L2(E; νμ) and (μ
ν

,(μ
ν

)) is null-critical in the sense of [6].

The measure νμ is called optimal at infinity if for any K ∈ 

λ

∫
E

u2dνμ ≤ 
μ(u), u ∈ () ∩C0(Kc),

then λ ≤ 1. We see from [12, Corollary 3.4] (or [14, Theorem 3]) that if for any K ∈ �
K×E

Rμ(x, y)ν(dx)ν(dy) < ∞,

i.e., Rμν is locally integrable, then the null-criticality implies the optimality at infinity. In
generally, if for any K ∈ 

(12)
�

Kc×E
Rμ(x, y)ν(dx)ν(dy) = ∞,

then the optimality at infinity holds. Devyver, Fraas and Pinchover [6], where they call
a Hardy-type inequality optimal if a Hardy weight is critical, null-critical and optimal at
infinity. Noting that (12) implies (11), we can conclude that if a measure ν satisfies (3), (7)
and (12), then the measure νμ is an optimal Hardy-weight for (μ,(μ)) in the sense of [6].

2. Extended Schrödinger spaces

2. Extended Schrödinger spaces
Let E be a locally compact separable metric space and m a positive Radon measure on

E with full topological support. Let ( ,()) be a regular Dirichlet form on L2(E; m) (c.f.
[9, p.6]). We denote by u ∈ loc() if for any relatively compact open set D there exists a
function v ∈ () such that u = v m-a.e. on D. We assume that ( ,()) is irreducible (c.f.
[9, p.40, p.55]).

We call a positive Borel measure μ on E smooth if it satisfies

(i) μ charges no set of zero capacity,
(ii) there exists an increasing sequence {Fn} of closed sets such that

a) μ(Fn) < ∞, n = 1, 2, . . . ,
b) limn→∞ Cap(K \ Fn) = 0 for any compact set K.

We denote by  the totality of smooth measures.
For a signed smooth Radon measure μ = μ+ − μ− ∈  −  define a symmetric form on

L2(E; m) by

(13) 
μ(u, v) = (u, v) +

∫
E

uvdμ, u, v ∈ () ∩C0(E).

We assume that (μ,() ∩C0(E)) is positive semi-definite:

(14) 
μ(u) ≥ 0

(
⇐⇒

∫
E

u2dμ− ≤ 
μ+(u)

)
, u ∈ () ∩C0(E).

When (μ,() ∩ C0(E)) is closable, we denote by (μ,(μ)) its closure and call it
Schrödinger form with potential μ.
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A densely defined, closed, positive semi-definite symmetric bilinear form (a,(a)) is said
to be positive preserving if for u ∈ (a), |u| belongs to (a) and a(|u|) ≤ a(u). It follow from
[5, Lemma 1.3.4] that the form (μ,(μ)) is positive preserving because 

μ(|u|) ≤ 
μ(u)

for u ∈ () ∩ C0(E). As a result, we see from [17, Proposition 2] that (μ,(μ)) has the
Fatou property, i.e., if {un} ⊂ (μ) satisfies supn 

μ(un) < ∞ and un → u ∈ (μ) m-a.e.,
then lim infn→∞ 

μ(un) ≥ 
μ(u). Hence, following [16], we can define a space e(μ) in

the way similar to the extended Dirichlet space: An m-measurable function u with |u| < ∞
m-a.e. is said to be in e(μ) if there exists an 

μ-Cauchy sequence {un} ⊂ (μ) such that
limn→∞ un = u m-a.e. We call e(μ) the extended Schrödinger space of (μ,(μ)) and
the sequence {un} an approximating sequence of u. For u ∈ e(μ) and an approximating
sequence {un} of u, we define

(15) 
μ(u) = lim

n→∞ 
μ(un).

We define the criticality and subcriticality of Schrödinger forms in the way similar to the
recurrence and transience of Dirichlet forms.

Definition 2.1. Let (μ,(μ)) be a positive semi-definite Schrödinger form.

(1) (μ,(μ)) is said to be subcritical if there exists a bounded function g in L1(E; m)
strictly positive m-a.e. such that

(16)
∫

E
|u|gdm ≤ √

μ(u), u ∈ e(μ).

(2) (μ,(μ)) is said to be critical if there exists a function φ in e(μ) strictly positive
m-a.e. such that μ(φ) = 0. The function φ is said to be the ground state.

Define the operator Gμ by

Gμ f (x) =
∫ ∞

0
T μ

t f (x)dt (≤ +∞)

for a positive function f . Here T μ
t is the L2-semigroup on L2(E; m) generated by (μ,(μ)).

Lemma 2.2 ([20, Lemma 2.3]). Let g be the function in Definition 2.1 (1). Then Gμg

belongs to e(μ).

Remark 2.3. It is recently proved in [15, Theorem A.3] that if the semigroup T μ
t is ex-

pressed using a density pμt (x, y), T μ
t f (x) =

∫
E pμt (x, y) f (y)dm(y), then (μ,(μ)) is subcrit-

ical or critical.

Remark 2.4. We see from the inequality (16) that if (μ,(μ)) is subcritical, then
((μ), μ(·, ·)) is a Hilbert space.

3. Probabilistic representation of Schrödinger semigroups

3. Probabilistic representation of Schrödinger semigroups
Let X = (Ω,F, {Ft}t≥0, {Px}x∈E , {Xt}t≥0, ζ) be the symmetric Hunt process generated by

( ,()), where {Ft}t≥0 is the augmented filtration and ζ is the lifetime of X. Denote by
{pt}t≥0 and {Rα}α≥0 the semigroup and resolvent of X:
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pt f (x) = Ex( f (Xt)), Rα f (x) =
∫ ∞

0
e−αt pt f (x)dt.

Then pt f (x) = Tt f (x) m-a.e., Rα f (x) =
∫ ∞

0 Tt f (x)dt m-a.e., where Tt is the L2-semigroup
on L2(E; m) generated by ( ,()). In the sequel, we assume that X satisfies, in addition,
the next condition:

Feller Property (F). For each t > 0, pt(C∞(E)) ⊂ C∞(E) and for each f ∈ C∞(E)
and x ∈ E, limt→0 pt f (x) = f (x), where C∞(E) is the space of continuous functions on E
vanishing at infinity.

Resolvent Strong Feller Property (RSF). For each α > 0, Rα(Bb(E)) ⊂ Cb(E), where
Bb(E)(resp. Cb(E)) is the space of bounded Borel (resp. continuous) functions on E.

Following [11], a Hunt process is said to be resolvent doubly Feller if it enjoys both the
Feller property and resolvent strong Feller property. We see from (RSF) that the resolvent
kernel Rα(x, dy) of X has a non-negative jointly measurable density Rα(x, y) with respect to
m: For x ∈ E and f ∈ Bb(E)

Rα f (x) =
∫

E
Rα(x, y) f (y)m(dy).

Moreover, Rα(x, y) is α-excessive in x and in y ([9, Lemma 4.2.4]). We simply write R(x, y)
for R0(x, y)(:= limα→0 Rα(x, y)). For a measure μ, we define the α-potential of μ by

Rαμ(x) =
∫

E
Rα(x, y)μ(dy), α ≥ 0.

Let S00 be the set of positive Borel measures μ such that μ(E) < ∞ and R1μ is bounded.
We call a Borel measure μ on E smooth measure in the strict sense if there exists a sequence
{En} of Borel sets increasing to E such that for each n, 1Enμ ∈ 00 and for any x ∈ E

Px( lim
n→∞σE\En ≥ ζ) = 1,

where σE\En is the first hitting time of E \ En. We denote by 
1 the set of smooth measures

in the strict sense.

Definition 3.1. Let μ ∈ 1.

(1) μ is said to be in the Kato class of X ((X) in abbreviation) if

lim
α→∞ ‖Rαμ‖∞ = 0.

μ is said to be in the local Kato class (loc(X) in abbreviation) if for any compact set K,
1K ·μ belongs to (X). (2) Suppose that X is transient. A measure μ is said to be in the class
∞(X) if for any ε > 0, there exists a compact set K = K(ε)

sup
x∈E

∫
Kc

R(x, y)μ(dy) < ε.

μ in ∞(X) is called Green-tight.
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Remark 3.2. It is known in [19, Theorem 3.1] that for a measure μ in (X) and α > 0

(17)
∫

E
u2dμ ≤ ‖Rαμ‖∞ α(u), u ∈ ().

By the regularity of ( ,()) and the inequality (17), a measure μ in (X) is Radon, and so
is a measure μ in loc(X). As a result, () ∩ L2(E; μ+) ⊂ (μ) and


μ(u) = (u) +

∫
E

u2dμ, u ∈ () ∩ L2(E; μ+).

If μ ∈ ∞(X), then ‖Rμ‖∞ < ∞ by [3, Proposition 2.2] and [11, Lemma 4.1], and the
equation (17) is meaningful for α = 0:

(18)
∫

E
u2dμ ≤ ‖Rμ‖∞ (u), u ∈ e().

We denote by Aμ
t the PCAF corresponding to μ ∈ 1.

Theorem 3.3 ([20, Theorem 4.2]). Let μ = μ+ − μ− ∈ loc(X) −loc(X). If (μ,() ∩
C0(E)) is positive semi-definite, then it is closable. Moreover, the semigroup T μ

t generated
by the closure (μ,(μ)) is expressed as

T μ
t f (x) = pμt f (x) = Ex

(
e−Aμt f (Xt)

)
m-a.e.

Remark 3.4. By [9, Theorem 4.2.4], the transition semigroup pt of X is expressed using
transition probability density pt(x, y), as a result, T μ

t is also expressed by a kernel pμt (x, y) by
Theorem 3.3. Hence, as discussed in Remark 2.3, (μ,(μ)) is either critical or subcritical.

4. Criticality and Hardy-type inequalities

4. Criticality and Hardy-type inequalities
We maintain the setting in Section 3 and fix a measure μ ∈ loc(X) − loc(X). Though

this section, we assume that (μ,(μ)) is positive semi-definite and subcritical. By the
subcriticality of (μ,(μ)), (e(μ), μ(·, ·)) becomes a Hilbert space. The α-order re-
solvent kernel {Rμ

α(x, y)}α>0 of (μ,(μ)) can be constructed in the same manner as [9,
Lemma 4.2.4] and the Green kernel, i.e., 0-order resolvent kernel Rμ(x, y) is defined by
Rμ(x, y) = limα→0 Rμ

α(x, y). The potential of a positive measure ν is defined by

Rμν(x) =
∫

E
Rμ(x, y)ν(dy).

Lemma 4.1. Let ν be a non-trivial positive measure in loc(X). Then for any compact
set K

inf
x∈K Rμν(x) > 0.

Proof. For any compact set K, take a relatively compact domain G such that K ⊂ G and
ν(G) > 0. Consider the subprocess Xμ+ = ({Pμ+

x }x∈E , {Xt}t≥0, ζ) defined by

Pμ+

x (B; t < ζ) =
∫

B∩{t<ζ}
e−Aμ

+

t dPx, B ∈ Ft.

Then Xμ+ has Properties (F) and (RSF) by [13, Corollary 6.1], and so the part process Xμ+,G

of Xμ+ on G has Property (RSF) by [13, Theorem 3.1]. Furthermore, Xμ+,G is irreducible
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because G is a domain.
Since the measure νG, the restriction of ν to G, is in the Green-tight Kato class of Xμ+,G,

νG ∈ ∞(Xμ+,G), Rμ+,Gν(= Rμ+,GνG) is bounded by [3, Proposition 2.4] on G. Moreover
it is continuous on G. Indeed, by Property (RSF) of Xμ+,G, Rμ+,G

α (Rμ+,Gν) ∈ Cb(G) and
‖Rμ+,G

α ν‖∞ → 0 as α → ∞ because of νG ∈ (Xμ,G). Hence, Rμ+,Gν ∈ Cb(G) because the
resolvent equation implies

‖Rμ+,Gν − αRμ+,G
α (Rμ+,Gν)‖∞ = ‖Rμ+,G

α ν‖∞ → 0, α→ ∞.
By the irreducibility and ν(G) > 0, Rμ+,Gν(x) > 0 for each x ∈ E, and thus infx∈K Rμ+,Gν(x) >
0. On account of Rμν(x) ≥ Rμ+,Gν(x), we have this lemma. �

By Lemma 4.1, we have the next corollary.

Corollary 4.2. For a non-trivial positive measure ν ∈ loc(X), the measure ν/Rμν be-
longs to loc(X).

We define the subclass μ
loc(X) of loc(X) by


μ
loc(X) = {ν ∈ loc(X) | For any K ⊂ , ‖Rμ(1Kν)‖∞ < ∞.},

where  is the totality of compact sets of E. If μ = 0, then 
μ
loc(X) equals loc(X) because

1Kν ∈ ∞(X) and ‖R(1Kν)‖∞ < ∞.

Lemma 4.3. Let ν be a non-trivial measure in 
μ
loc(X). Then∫

E
φ2 dν

Rμν
≤ 

μ(φ), φ ∈ () ∩C0(E).

Proof. Let {Kn} be a increasing sequence of compact sets such that Kn ⊂ K̊n+1 and Kn ↑ E.
We fix the sequence {Kn}. For 0 < ε < 1, define μεn = μ

+ − εμ−n , where μ−n (·) := μ−(Kn ∩ ·).
The positive semi-definiteness of (μ,() ∩C0(E)) implies that

ε

∫
E
φ2dμ−n ≤ ε μ

+

(φ),

and

(19) (1 − ε) μ+(φ) ≤ 
μ+(φ) − ε

∫
E
φ2dμ−n = 

μεn(φ) ≤ 
μ+(φ),

which implies

(20) e(μ
ε
n) = e(μ

+

)(⊂ e()).

Let νm = ν(· ∩ Km). We may suppose that ν1 is non-trivial and Rμεnν1(x) is bounded below
by a positive constant on each compact set K ⊂ E. Noting νm ∈ ∞(X), we see from (18)
and (19) that ∫

E
|φ|dνm ≤ ν(Km)1/2

(∫
E
φ2dνm

)1/2

≤ ν(Km)1/2‖Rνm‖1/2∞ · (φ)1/2

≤ C
μ+(φ)1/2 ≤ C′μ

ε
n(φ)1/2.

Hence Rμεnνm belongs to e(μ
ε
n) and
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μεn(Rμεnνm, φ) =

∫
E
φ dνm =

∫
E

Rμεnνm · φ dνm

Rμεnνm
,

which implies


μεn−νm/Rμ

ε
nνm(Rμεnνm, φ) = 0, φ ∈ (E) ∩C0(E).

Note that Rμεnνm is in e() by (20) and in L∞(E,m) by Rμεnνm ≤ Rμνm. Moreover, it is
bounded below by a positive constant on each compact set by Lemma 4.1. We then see from
Lemma 4.5 and Lemma 4.6 below that


μεn−νm/Rμ

ε
nνm(φ) ≥ 0, φ ∈ () ∩C0(E),

and


μεn(φ) −

∫
E
φ2 dνm

Rμν
≥ 

μεn(φ) −
∫

E
φ2 dνm

Rμεnνm
= 

μεn−νm/Rμ
ε
nνm(φ) ≥ 0.

Since


μεn(φ) −

∫
E
φ2 dνm

Rμν

m→∞−−−−→ 
μεn(φ) −

∫
E
φ2 dν

Rμν

ε→ 1−−−−→ 
μ1

n(φ) −
∫

E
φ2 dν

Rμν

n→∞−−−−→ 
μ(φ) −

∫
E
φ2 dν

Rμν
,

we have this lemma. �

Lemma 4.3 leads us to an extension of the inequality (17).

Corollary 4.4. It holds that∫
E
φ2dν ≤ ‖Rμν‖∞ 

μ(φ), φ ∈ () ∩C0(E).

Lemma 4.5. Let u ∈ e() ∩ L∞(E; m) is bounded below by a positive constant on each
compact set. Then ϕ/u belongs to () for any ϕ ∈ () ∩C0(E).

Proof. Let ϕ ∈ () ∩ C0(E) and s suppose that u ≥ c > 0 on supp[ϕ]. Let {un} ⊂
() ∩ C0(E) be an approximating sequence of u. We may suppose supn ‖un‖∞ ≤ ‖u‖∞
Then since by [9, Theorem 1.4.2 (ii)]

(unϕ)1/2 ≤ ‖un‖∞(ϕ)1/2 + ‖ϕ‖∞(un)1/2,

we have supn (unϕ) < ∞. On account of [18, 1.6.1’], uϕ is in e() and so in () because
e() ∩ L2(E; m) = ().

Since for (x, y) ∈ supp[ϕ] × supp[ϕ]∣∣∣∣∣ϕ(x)
u(x)

∣∣∣∣∣ ≤ c−1|ϕ(x)|∣∣∣∣∣ϕ(x)
u(x)

− ϕ(y)
u(y)

∣∣∣∣∣ ≤ 2c−1|ϕ(x) − ϕ(y)| + c−2|u(x)ϕ(x) − u(y)ϕ(y)|,

we have this lemma by the same argument as in the proof of [9, Theorem 6.3.2]. �
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[8, Theorem 10.2] yields the next lemma.

Lemma 4.6. Let μ = μ+ − μ− ∈ loc(X) −(X) and u ∈ e() ∩ L∞(E; m) be a function
bounded below by a positive constant on each compact. If u satisfies μ(u, ϕ) = 0 for any
ϕ ∈ () ∩C0(E), then (μ,(μ)) is positive semi-definite.

Proof. The function u is a generalized eigenfunction corresponding to the generalized
eigenvalue 0 in [8, Definition 9.1]. Note that by Lemma 4.5, ϕ/u is a bounded function in
(μ) with compact support. Then, applying [8, Theorem 10.2], we have


μ(ϕ) = 

μ(u(ϕ/u)) =
∫

E×E
u(x)u(y)dΓ(ϕ/u) ≥ 0,

where Γ(ϕ/u) is the positive measure on E × E defined in [8, Subsection 3.2]. �

Lemma 4.7. Let ν ∈ μ
loc(X) and νm = ν(· ∩ Km). Then Rμνm belongs to e(μ) for any

m.

Proof. Since for φ ∈ () ∩C0(E)∫
E
|φ|dνm ≤ ν(Km)1/2

(∫
E
φ2dνm

)1/2

≤ μ(Km)1/2‖Rμνm‖1/2∞ 
μ(φ)1/2

by Corollary 4.4 and ‖Rμνm‖∞ < ∞ by ν ∈ μ
loc(X), we have this lemma. �

Lemma 4.8. If ν ∈ μ
loc(X) is of finite energy with respect to Rμ(x, y),

(21)
�

E×E
Rμ(x, y)ν(dx)ν(dy) < ∞,

then Rμν belongs to e(μ).

Proof. Since Rμνm ∈ e(μ) ↑ Rμν(x) for any x ∈ E as m→ ∞ and

sup
m


μ(Rμνm) = sup

m

∫
E

Rμνmdνm = sup
m

�
Km×Km

Rμ(x, y)ν(dx)ν(dy)

≤
�

E×E
Rμ(x, y)ν(dx)ν(dy) < ∞.

By Banach-Saks Theorem (cf.[4, Theorem A.4.1]) there exists a subsequence {Kml} ⊂ {Km}
such that

Rμνm1 + Rμνm2 + · · · + Rμνml

l
= Rμ

( (1Km1
+ 1Km2

· · · + 1Kml
)

l
ν

)
−→ Rμν

with 
μ-strongly, and thus Lemma 4.7 implies this lemma. �

For μ ∈ loc(X) −loc(X) and ν ∈ μ
loc(X), define

(22) νμ =
ν

Rμν
, μν = μ − νμ.

Then μν is in loc(X) −loc(X) by Corollary 4.2 and (μ
ν

,() ∩ C0(E)) is positive semi-
definite by Lemma 4.3. Hence by [20, Theorem 4.2] we can define the Schrödinger form
with potential μν, the closure (μ

ν

,(μ
ν

)) of (μ
ν

,() ∩ C0(E)) and its extended
Schrödinger space e(μ

ν

).
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Lemma 4.9. If u ∈ e(μ
+

), then


μν(u) = 

μ(u) −
∫

E
u2dνμ.

Proof. Noting u ∈ e(), there exists an 
μ+-Cauchy sequence {un} ⊂ () ∩ C0(E)

such that un → u q.e. Since 
μν(u) ≤ 

μ(u) ≤ 
μ+(u), u ∈ () ∩ C0(E), {un} is also an

approximating sequence of u in e(μ) and e(μ
ν

). In particular, u is in e(μ) ⊂ e(μ
ν

),
and thus u ∈ L2(E; νμ) by Lemma 4.3. Hence we have


μν(u) = lim

n→∞ 
μν(un) = lim

n→∞

(

μ(un) −

∫
E

u2
ndνμ

)
= 

μ(u) −
∫

E
u2dνμ. �

Lemma 4.10. It holds that


μν(Rμνm) = 

μ(Rμνm) −
∫

E
(Rμνm)2dνμ.

Proof. Let {εn} be a positive sequence such that εn ↑ 1 as n → ∞ and denote by μ′n the
measure μεn

n defined in Lemma 4.3. Put un = Rμ′nνm. Then un is in e(μ
+

) as shown in the
proof of Lemma 4.3. Since


μ(un) ≤ 

μ′n(un) =
∫

E
undνm ≤

∫
E

Rμνmdνm < ∞,

There exists a subsequence {unk } of {un} such that

vk :=
un1 + un2 + · · · + unk

k
∈ e(μ

+

)

is an approximating sequence of Rμνm in e(μ) and vk(x) ↑ Rμνm(x) for any x ∈ E.
Noting that {vk} is also an approximating sequence of Rμνm in e(μ

ν

), we have by Lemma
4.9


μν(Rμνm) = lim

k→∞

μν(vk) = lim

k→∞

(

μ(vk) −

∫
E
v2

kdνμ
)
= 

μ(Rμνm) −
∫

E
(Rμνm)2dνμ. �

Let μ
C be the set of measures in 

μ
loc(X) satisfying (7). For ν ∈ μ

C there exists a sequence
{Km}∞m=1 ⊂  such that Km ↑ E and

(23) sup
m

�
E×E

Rμ(x, y)νm(dx)νc
m(dy) < ∞,

where νc
m(A) = ν(Kc

m∩A). If a measures ν ∈ μ
loc(X) of finite energy with respect to Rμ, then

it satisfies (23).

Lemma 4.11. If ν ∈ μ
C, then Rμν is in e(μ

ν

).

Proof. For ν ∈ μ
C ∫

E
Rμνmdν =

∫
E

Rμνmdνm +

∫
E

Rμνmdνc
m < ∞

because
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E

Rμνmdνm = 
μ(Rμνm) < ∞

by Lemma 4.7.
By Lemma 4.10 we have


μν(Rμνm) = 

μ(Rμνm) −
∫

E
(Rμνm)2dνμ

=

∫
E

Rμνmdνm −
∫

E
(Rμνm)2dνμ

=

∫
E

Rμνmdν −
∫

E
Rμνmdνc

m −
∫

E

(Rμνm)2

Rμνm + Rμνc
m

dν.

The right hand side equals∫
E

(
Rμνm(Rμνm + Rμνc

m) − (Rμνm)2

Rμνm + Rμνc
m

)
dν −

∫
E

Rμνmdνc
m

=

∫
E

RμνmRμνc
m

Rμνm + Rμνc
m

dν −
∫

E
Rμνmdνc

m(24)

=

∫
E

RμνmRμνc
m

Rμνm + Rμνc
m

dνm +

∫
E

(
RμνmRμνc

m

Rμνm + Rμνc
m
− Rμνm

)
dνc

m.

Since
RμνmRμνc

m

Rμνm + Rμνc
m
≤ Rμνc

m,
RμνmRμνc

m

Rμνm + Rμνc
m
≤ Rμνm,

the right hand side of (24) is less than or equal to
∫

E Rμνc
mdνm. Therefore, we see from (23)

that

sup
m


μν(Rμνm) ≤ sup

m

∫
E

Rμνc
mdνm < ∞.

Since Rμνm → Rμν, this lemma follows from Lemma 4.7. �

The next lemma is obtained in the same argument as in [20, Lemma 5.3].

Lemma 4.12. For ν ∈ μ
C


μν(Rμν, ϕ) = 0, ϕ ∈ () ∩C0(E).

Proof. Since supm 
μν(Rμνm) < ∞, there exists a subsequence {Kml} ⊂ {Km} such that

Rμ

( (1Km1
+ 1Km2

· · · + 1Kml
)

l
ν

)
−→ Rμν


μν-strongly.
Let φl := (1Km1

+ 1Km2
· · · + 1Kml

)/l. For a fixed ϕ ∈ () ∩ C0(E) we can assume
supp[ϕ] ⊂ Km1 . By the same argument as in Lemma 4.10, we have


μν(Rμ(φlν) + ϕ) = 

μ(Rμ(φlν) + ϕ) −
∫

E
(Rμ(φlν) + ϕ)2dνμ,

and thus
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μν(Rμ(φlν), ϕ) = 

μ(Rμ(φlν), ϕ) −
∫

E
Rμ(φlν)ϕdνμ.

Hence


μν(Rμν, ϕ) = lim

l→∞

μν(Rμ(φlν), ϕ)

= lim
l→∞

(

μ(Rμ(φlν), ϕ) −

∫
E

Rμ(φlν)ϕdνμ
)
.

Note that Rμ(φlν) ∈ e(μ) by Lemma 4.7. Then since

lim
l→∞


μ(Rμ(φlν), ϕ) = lim

l→∞

∫
E
ϕφldν =

∫
E
ϕdν

and by the monotone convergence theorem

lim
l→∞

∫
E

Rμ(φlν)ϕdνμ =
∫

E
Rμν · ϕ dν

Rμν
=

∫
E
ϕdν,

we have this lemma. �

The next theorem is an extension of [20, Theorem 5.4].

Theorem 4.13. If ν ∈ 
μ
C, then Rμν is a ground state of (μ

ν

,(μ
ν

)), consequently,
(μ

ν

,(μ
ν

)) is critical.

Proof. Since Rμν belongs to e(μ
ν

), there exists a sequence {ϕn} ⊂ () ∩ C0(E) such
that ϕn converges μ

ν

-strongly to Rμν. Hence


μν(Rμν) = lim

n→∞ 
μν(Rμν, ϕn) = 0

by Lamma 4.12. �

Corollary 4.14. There exists no non-trivial positive function ψ such that

(25)
∫

E
u2d (νμ + ψm) ≤ 

μ(u, u), u ∈ () ∩C0(E).

Proof. If (25) holds, then∫
E

u2ψdm ≤ 
μν(u) = 0, u ∈ () ∩C0(E).

Since Rμν is in e(μ
ν

), there exists an approximating sequence {un} ⊂ () ∩ C0(E). We
then have ∫

E
(Rμν)2ψdm ≤ lim

n→∞

∫
E

u2
nψdm ≤ lim

n→∞

μν(un) = 

μν(Rμν) = 0,

and so ψ = 0 m-a.e. because Rμν > 0 by the irreducibility of X. �

Corollary 4.14 tells us that νμ is a critical Hardy weight for (μ,(μ)) ([6], [10]).

A Hardy weight νμ is called optimal at infinity if for any K ∈ 

λ

∫
E

u2dνμ ≤ 
μ(u), u ∈ () ∩C0(Kc),
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then λ ≤ 1.

Lemma 4.15. If ν ∈ μ
C satisfies that

(26)
�

Kc×E
Rμ(x, y)ν(dx)ν(dy) = ∞ for any K ∈ ,

then νμ is optimal at infinity.

Proof. Denote h = Rμν. Since h is a ground state of (μ
ν

,(μ
ν

)) by Theorem 4.13, h is
pμ

ν

t -invariant, pμ
ν

t h = h, where pμ
ν

t is the semigroup associated with (μ
ν

,(μ
ν

)). Denote
by (h,(h)) the Dirichlet form generated by h-transform of (μ

ν

,(μ
ν

)):


h(u) = 

μν(uh), u ∈ (h) = {u | uh ∈ (μ
ν

)}.
Since h is in e(μ

ν

), there exists a sequence {hn} ⊂ () ∩C0(E) such that 0 ≤ hn ↑ h and

μν(h − hn)→ 0 as n→ ∞. Then {gn := hn/h} is an approximating sequence of 1 ∈ e(h).
Suppose that there exist F ∈  and ε > 0 such that for any u ∈ () ∩C0(Fc)

(27) 
μ(u) ≥ (1 + ε)

∫
Fc

u2dνμ, u ∈ () ∩C0(Fc).

Let G1, G2 be relatively compact open set such that F ⊂ G1 ⊂ G1 ⊂ G2 ⊂ G2 ⊂ E. Let ϕ be
a function in () ∩ C0(E) such that 0 ≤ ϕ ≤ 1, ϕ(x) = 1 on x ∈ G1 and supp[ϕ] ⊂ G2. Put
ψ = (1 − ϕ). Then hnψ ∈ () ∩C0(Fc), and so by (27)

(28) ε

∫
E

(hnψ)2 dν
h
≤ 

μν(hnψ).

Then we have by [9, Theorem 1.4.2 (ii)]


μν(hnψ) = 

h(
hn

h
ψ) ≤ 2

(


h(hn/h) + h(ψ)
)
,

and so

sup
n

∫
E

(hnψ)2 dν
h
≤ 2
ε

(
sup

n


h(hn/h) + h(ψ)
)
< ∞

on account of (28). Hence∫
G

c
2

hdν =
∫

G
c
2

lim
n→∞(hnψ)2 dν

h
≤ lim

n→∞

∫
E

(hnψ)2 dν
h
< ∞,

and thus �
G

c
2×E

Rμ(x, y)dν(x)dν(y) =
∫

G
c
2

hdν < ∞,

which is contradictory to (26). �

If ν ∈ μ
C satisfies the inequality (26), then the ground state Rμν of (μ

ν

,(μ
ν

)) does not
belong to L2(E; μν) and so νμ is a null-critical Hardy weight for (μ,(μ)). Therefore, we
have
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Theorem 4.16. If ν ∈ μ
C satisfies�

Kc×E
Rμ(x, y)ν(dx)ν(dy) = ∞ for any K ∈ ,

then the measure νμ defined in (22) is a optimal Hardy weight for (μ,(μ)).

Remark 4.17. The measure ν(dx) := |x|−(d+α)/2dx satisfies (26) with respect to the Green
kernel |x − y|α−d, α < d, the 0-resolvent of the symmetric α-stable process because (|y|α−d ∗
|y|−(d+α)/2)(x) = C|x|(α−d)/2 and |x|(α−d)/2 · |x|−(d+α)/2 = |x|−d; however ν satisfies (23) ([20,
Example 5.6]). Hence ν is an optimal Hardy weight for the Dirichlet form of symmetric
α-stable process.

Acknowledgements. The author would like to thank the referee for a useful comment on
Lemma 4.15.
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