OPTIMAL HARDY-TYPE INEQUALITIES FOR SCHRÖDINGER FORMS

Masayoshi TAKEDA

(Received April 14, 2022, revised August 31, 2022)

Abstract

We give a method to construct a critical Schrödinger form from the subcritical Schrödinger form by subtracting a suitable positive potential. The method enables us to obtain optimal Hardy-type inequalities.

Contents

1. Introduction

1. Introduction In [6], Devyver, Fraas and Pinchover give a method for obtaining *optimal* Hardy weights for second-order non-negative elliptic operators on non-compact Riemannian manifolds, in particular, they show that the criticality of Schrödinger forms is related to the *critical* Hardy weights. In $[20]$ we give a method to construct a critical Schrödinger form from a transient Dirichlet form by subtracting a suitable positive potential. In other words, we give a method to construct critical Hardy weights for a transient Dirichlet form by applying the idea in [6]. In this paper, we will consider subcritical Schrödinger forms instead of transient Dirichlet forms, and extend the method for subcritical Schrödinger forms. As an application, we obtain a method to construct critical Hardy weights for Schrödinger forms. Moreover, we discuss the optimality of Hardy weights in the sense of [6], a stronger notion than the criticality, and give a condition for the critical Hardy weights being optimal ones.

Let *E* be a locally compact separable metric space and *m* a positive Radon measure on *E* with full topological support. Let $X = (P_x, X_t, \zeta)$ be an *m*-symmetric Hunt process. We assume that *X* is irreducible and resolvent doubly Feller, in addition, that *X* generates a regular Dirichlet form $(\mathcal{E}, \mathcal{D}(\mathcal{E}))$ on $L^2(E; m)$.

Denote by $\mathcal{K}_{loc}(X)$ the totality of local Kato measures (Definition 3.1 (1)). For a singed local Kato measure such that the positive (resp. negative) part μ^+ (resp. μ^-) of μ belongs to

²⁰²⁰ Mathematics Subject Classification. Primary 31C25; Secondary 26D15, 31C05.

 $\mathcal{K}_{loc}(X)$ ($\mu \in \mathcal{K}_{loc}(X) - \mathcal{K}_{loc}(X)$ in notation), we define a symmetric form by

$$
\mathcal{E}^{\mu}(u,u)=\mathcal{E}(u,u)+\int_{E}u^2d\mu,\ \ u\in\mathcal{D}(\mathcal{E})\cap C_0(E).
$$

The regularity of $(\mathcal{E}, D(\mathcal{E}))$ implies that a measure in $\mathcal{K}_{loc}(X)$ is Radon (Remark 3.2) and the form $(\mathcal{E}^{\mu}, \mathcal{D}(\mathcal{E}) \cap C_0(E))$ is well-defined. In the sequel, for a symmetric bilinear form $(a, D(a))$ we simply write $a(u)$ for $a(u, u)$.

We suppose that $(\mathcal{E}^{\mu}, D(\mathcal{E}) \cap C_0(E))$ is positive semi-definite:

(1)
$$
\mathcal{E}^{\mu}(u) \ge 0 \left(\Longleftrightarrow \int_{E} u^{2} d\mu^{-} \le \mathcal{E}^{\mu^{+}}(u) \right), u \in \mathcal{D}(\mathcal{E}) \cap C_{0}(E).
$$

Applying results in [1], we prove in [20] that $(\mathcal{E}^{\mu}, \mathcal{D}(\mathcal{E}) \cap C_0(E))$ is closable in $L^2(E; m)$. We denote the closure $({\mathcal{E}}^{\mu}, {\mathcal{D}}({\mathcal{E}}^{\mu}))$ and call it *Schrödinger form* with potential μ . By the Radonness of μ^+ , we see that $\mathcal{D}(\mathcal{E}) \cap L^2(E; \mu^+) \subset \mathcal{D}(\mathcal{E}^{\mu})$ and

$$
\mathcal{E}^{\mu}(u) = \mathcal{E}(u) + \int_{E} \widetilde{u}^{2} d\mu, \ \ u \in \mathcal{D}(\mathcal{E}) \cap L^{2}(E; \mu^{+}).
$$

Here \tilde{u} is a quasi-continuous version of u . In this paper, we always assume that every function *u* is represented by its quasi-continuous version if it admits.

The *L*²-semigroup T_t^{μ} generated by $({\mathcal{E}}^{\mu}, D({\mathcal{E}}^{\mu}))$ is expressed by Feynman-Kac semigroup 0. Theorem 4.21): For a bounded Borel function f in $L^2(F; m)$ ([20, Theorem 4.2]): For a bounded Borel function f in $L^2(E; m)$

(2)
$$
T_t^{\mu} f(x) = p_t^{\mu} f(x) \left(:= E_x \left(e^{-A_t^{\mu}} f(X_t) \right) \right), \text{ m-a.e. } x.
$$

Here $A_t^{\mu} = A_t^{\mu^+} - A_t^{\mu^-}$ and $A_t^{\mu^+}$ (resp. $A_t^{\mu^-}$) is the positive continuous additive functional with Revuz measure μ^+ (resp. μ^-). We suppose that $(\mathcal{E}^{\mu}, \mathcal{D}(\mathcal{E}^{\mu}))$ is *subcritical*, that is, there exists the Green function $R^{\mu}(x, y)$ such that for a positive Borel function *f*

$$
\int_0^\infty p_t^\mu f(x)dt = \int_E R^\mu(x,y)f(y)dm(y), \ \forall x \in E.
$$

Let $\mathcal{K}^{\mu}_{loc}(X)$ be the set of local Kato measures such that for any compact set $K \subset E$

(3)
$$
R^{\mu}(1_K\nu)u(x) = \int_E R^{\mu}(x,y)1_K(y)dv(y) \in L^{\infty}(E;m).
$$

For a non-trivial measure ν in $\mathcal{K}^{\mu}_{loc}(X)$ define measures ν^{μ} and μ^{ν} by

$$
v^{\mu} = \frac{v}{R^{\mu}v}
$$

and

$$
\mu^{\nu} = \mu - \nu^{\mu}.
$$

We will show in Corollary 4.2 and Lemma 4.3 below that μ^{ν} belongs to $\mathcal{K}_{loc}(X) - \mathcal{K}_{loc}(X)$ and $(\mathcal{E}^{\mu\nu}, \mathcal{D}(\mathcal{E}) \cap C_0(E))$ is still positive semi-definite

(6)
$$
\mathcal{E}^{\mu^{\nu}}(u) = \mathcal{E}^{\mu}(u) - \int_{E} u^2 dv^{\mu} \ge 0, \ u \in \mathcal{D}(\mathcal{E}) \cap C_0(E).
$$

In other words, the measure v^{μ} is a *Hardy weight* for $(E^{\mu}, D(E^{\mu}))$. As remarked above, $(\mathcal{E}^{\mu\nu}, \mathcal{D}(\mathcal{E}) \cap C_0(E))$ is closable and its closure defines a new Schrödinger form $(\mathcal{E}^{\mu\nu}, \mathcal{D}(\mathcal{E}^{\mu\nu}))$.

Let C be the totality of compact sets of E . We then obtain the following main result in this paper: If a non-trivial positive measure ν in $\mathcal{K}^{\mu}_{loc}(X)$ satisfies that

(7)
$$
\sup_{K\in\mathcal{C}}\iint_{K\times K^c}R^{\mu}(x,y)\,\nu(dx)\nu(dy)<\infty,
$$

then $(\mathcal{E}^{\mu^{\nu}}, D(\mathcal{E}^{\mu^{\nu}}))$ turns out to be a *critical* Schrödinger form. Here K^c is the complement of K . More precisely the function $R^{\mu\nu}$ is a ground state of $(\mathcal{E}^{\mu^{\nu}} - D(\mathcal{E}^{\mu^{\nu}}))$, that is *K*. More precisely, the function $R^{\mu} \nu$ is a ground state of $(\mathcal{E}^{\mu^{\nu}}, D(\mathcal{E}^{\mu^{\nu}}))$, that is, $R^{\mu} \nu$ belongs to the *extended Schrödinger space* $D(\mathcal{E}^{\mu^{\nu}})$ of $(\mathcal{E}^{\mu^{\nu}})$ (see Section 2 for the to the *extended Schrödinger space* $D_e(\mathcal{E}^{\mu^{\nu}})$ of $(\mathcal{E}^{\mu^{\nu}}, D(\mathcal{E}^{\mu^{\nu}}))$ (see Section 2 for the definition
of the extended Schrödinger space) and $\mathcal{E}^{\mu^{\nu}}(P^{\mu\nu}) = 0$. As a corollary, we see that $x^$ of the extended Schrödinger space) and $\mathcal{E}^{\mu\nu}(R^{\mu}\nu) = 0$. As a corollary, we see that ν^{μ} is a critical Hardy weight for $(\mathcal{E}^{\mu}, \mathcal{D}(\mathcal{E}^{\mu}))$ in the sense that there exists no non trivial positive *critical* Hardy weight for $(E^{\mu}, D(E^{\mu}))$ in the sense that there exists no non-trivial positive function ψ such that

(8)
$$
\int_E u^2 d(\nu^{\mu} + \psi m) \leq \mathcal{E}^{\mu}(u), \ u \in \mathcal{D}(\mathcal{E}) \cap C_0(E).
$$

In particular, if $(\mathcal{E}, \mathcal{D}(\mathcal{E}))$ is transient and $\mu \equiv 0$, then every $\nu \in \mathcal{K}_{loc}(X)$ satisfies (3) by replacing $R^{\mu}(x, y)$ with the 0-resolvent $R(x, y)$ of *X*. Indeed, since $1_K v$ is Green-tight, $1_K v \in$ $\mathcal{K}_{\infty}(X)$ (Definition 3.1 (2)), the condition (3) is derived from [3, Proposition 2.2]. As a result, for any $v \in \mathcal{K}_{loc}$ the next Hardy-type inequality follows:

(9)
$$
\int_{E} u^{2} \frac{dv}{Rv} \leq \mathcal{E}(u), u \in \mathcal{D}(\mathcal{E}) \cap C_{0}(E).
$$

The inequality (9) is proved in Fitzsimmons [7] (see also [2]). Moreover, we see that if the measure $\nu/R\mu$ is a critical Hardy weight for the Dirichlet form $(\mathcal{E}, \mathcal{D}(\mathcal{E}))$ if ν satisfies (7) obtained by replacing $R^{\mu}(x, y)$ with $R(x, y)$.

As stated above, the function $R^{\mu} \nu$ belongs to $\mathcal{D}_e(\mathcal{E}^{\mu^{\nu}})$ under the condition (7). Lemma

below tells us that $\mathcal{D}_e(\mathcal{E}^{\mu})$ is included in $\mathcal{D}_e(\mathcal{E}^{\mu^{\nu}})$ and $P^{\mu} \nu$ does not belong to $\$ 4.3 below tells us that $D_e(\mathcal{E}^{\mu})$ is included in $D_e(\mathcal{E}^{\mu^{\nu}})$ and $R^{\mu\nu}$ does not belong to $D_e(\mathcal{E}^{\mu})$ in general. If *y* satisfies the stronger condition than (7) general. If ν satisfies the stronger condition than (7),

$$
\iint_{E\times E} R^{\mu}(x,y)\nu(dx)\nu(dy)<\infty,
$$

i.e., *v* is of finite energy with respect to R^{μ} , then R^{μ} ν belongs to $L^2(E; v^{\mu})$ because

$$
\int_E (R^\mu v)^2 dv^\mu = \int_E R^\mu v dv = \iint_{E \times E} R^\mu(x, y) v(dx) v(dy) < \infty.
$$

Moreover, R^{μ} _V belongs to $D_e(\mathcal{E}^{\mu})$ by Lemma 4.8 below. Hence, $\mathcal{E}^{\mu}(R^{\mu}v)$ is finite and thus

$$
\mathcal{E}^{\mu^{\nu}}(R^{\mu}\nu) = 0 \Longleftrightarrow \frac{\mathcal{E}^{\mu}(R^{\mu}\nu)}{\int_{E}(R^{\mu}\nu)^{2}d\nu^{\mu}} = 1.
$$

Noting that by (6)

(10)
$$
\inf_{u \in \mathcal{D}_e(\mathcal{E}^\mu)} \frac{\mathcal{E}^\mu(u)}{\int_E u^2 d\nu^\mu} \ge 1,
$$

we see R^{μ} is a minimizer for the left hand side of (10). In this case, the Schrödinger form $(\mathcal{E}^{\mu\nu}, D(\mathcal{E}^{\mu\nu}))$ is said to be *positive-critical* ([6, Definition 4.8]).

On the other hand, if ν is not of finite energy,

764 M. Takeda

(11)
$$
\iint_{E\times E} R^{\mu}(x,y)\nu(dx)\nu(dy) = \infty,
$$

then $R^{\mu} \nu$ does not belong to $L^2(E; \nu^{\mu})$ and $(\mathcal{E}^{\mu^{\nu}}, \mathcal{D}(\mathcal{E}^{\mu^{\nu}}))$ is *null-critical* in the sense of [6].

The measure v^{μ} is called *optimal at infinity* if for any $K \in \mathcal{C}$

$$
\lambda \int_E u^2 dv^{\mu} \le \mathcal{E}^{\mu}(u), \ \ u \in \mathcal{D}(\mathcal{E}) \cap C_0(K^c),
$$

then $\lambda \leq 1$. We see from [12, Corollary 3.4] (or [14, Theorem 3]) that if for any $K \in \mathcal{C}$

$$
\iint_{K\times E} R^{\mu}(x,y)\nu(dx)\nu(dy)<\infty,
$$

i.e., $R^{\mu}v$ is locally integrable, then the null-criticality implies the optimality at infinity. In generally, if for any $K \in \mathcal{C}$

(12)
$$
\iint_{K^c \times E} R^{\mu}(x, y) \nu(dx) \nu(dy) = \infty,
$$

then the optimality at infinity holds. Devyver, Fraas and Pinchover [6], where they call a Hardy-type inequality *optimal* if a Hardy weight is critical, null-critical and optimal at infinity. Noting that (12) implies (11), we can conclude that if a measure ν satisfies (3), (7) and (12), then the measure v^{μ} is an optimal Hardy-weight for $({\mathcal E}^{\mu}, D({\mathcal E}^{\mu}))$ in the sense of [6].

2. Extended Schrödinger spaces

Let *E* be a locally compact separable metric space and *m* a positive Radon measure on *E* with full topological support. Let $(\mathcal{E}, \mathcal{D}(\mathcal{E}))$ be a regular Dirichlet form on $L^2(E; m)$ (c.f. [9, p.6]). We denote by $u \in D_{loc}(\mathcal{E})$ if for any relatively compact open set *D* there exists a function $v \in \mathcal{D}(\mathcal{E})$ such that $u = v$ *m*-a.e. on *D*. We assume that $(\mathcal{E}, \mathcal{D}(\mathcal{E}))$ is irreducible (c.f. [9, p.40, p.55]).

We call a positive Borel measure μ on *E* smooth if it satisfies

(i) μ charges no set of zero capacity,

(ii) there exists an increasing sequence ${F_n}$ of closed sets such that

a) $\mu(F_n) < \infty$, $n = 1, 2, \ldots$

b) $\lim_{n\to\infty} \text{Cap}(K \setminus F_n) = 0$ for any compact set *K*.

We denote by S the totality of smooth measures.

For a signed smooth Radon measure $\mu = \mu^+ - \mu^- \in S - S$ define a symmetric form on $L^2(E; m)$ by

(13)
$$
\mathcal{E}^{\mu}(u,v) = \mathcal{E}(u,v) + \int_{E} uv d\mu, \ \ u,v \in \mathcal{D}(\mathcal{E}) \cap C_{0}(E).
$$

We assume that $(\mathcal{E}^{\mu}, \mathcal{D}(\mathcal{E}) \cap C_0(E))$ is positive semi-definite:

(14)
$$
\mathcal{E}^{\mu}(u) \ge 0 \left(\Longleftrightarrow \int_{E} u^{2} d\mu^{-} \le \mathcal{E}^{\mu^{+}}(u) \right), u \in \mathcal{D}(\mathcal{E}) \cap C_{0}(E).
$$

When $(\mathcal{E}^{\mu}, \mathcal{D}(\mathcal{E}) \cap C_0(E))$ is closable, we denote by $(\mathcal{E}^{\mu}, \mathcal{D}(\mathcal{E}^{\mu}))$ its closure and call it *Schrödinger form* with potential μ .

A densely defined, closed, positive semi-definite symmetric bilinear form $(a, D(a))$ is said to be *positive preserving* if for $u \in D(a)$, |*u*| belongs to $D(a)$ and $a(|u|) \le a(u)$. It follow from [5, Lemma 1.3.4] that the form $({\mathcal E}^{\mu}, {\mathcal D}({\mathcal E}^{\mu}))$ is positive preserving because ${\mathcal E}^{\mu}(|u|) \leq {\mathcal E}^{\mu}(u)$ for $u \in \mathcal{D}(\mathcal{E}) \cap C_0(E)$. As a result, we see from [17, Proposition 2] that $(\mathcal{E}^{\mu}, \mathcal{D}(\mathcal{E}^{\mu}))$ has the *Fatou property*, i.e., if $\{u_n\} \subset D(\mathcal{E}^{\mu})$ satisfies sup_{*n*} $\mathcal{E}^{\mu}(u_n) < \infty$ and $u_n \to u \in D(\mathcal{E}^{\mu})$ *m*-a.e., then $\liminf_{n\to\infty} E^{\mu}(u_n) \geq \mathcal{E}^{\mu}(u)$. Hence, following [16], we can define a space $\mathcal{D}_{e}(\mathcal{E}^{\mu})$ in the way similar to the extended Dirichlet space: An *m*-measurable function *u* with $|u| < \infty$ *m*-a.e. is said to be in $D_e(\mathcal{E}^{\mu})$ if there exists an \mathcal{E}^{μ} -Cauchy sequence $\{u_n\} \subset \mathcal{D}(\mathcal{E}^{\mu})$ such that $\lim_{n\to\infty} u_n = u$ *m*-a.e. We call $D_e(\mathcal{E}^\mu)$ the *extended Schrödinger space* of $(\mathcal{E}^\mu, D(\mathcal{E}^\mu))$ and the sequence $\{u_n\}$ an *approximating sequence* of *u*. For $u \in \mathcal{D}_e(\mathcal{E}^\mu)$ and an approximating sequence $\{u_n\}$ of *u*, we define

(15)
$$
\mathcal{E}^{\mu}(u) = \lim_{n \to \infty} \mathcal{E}^{\mu}(u_n).
$$

We define the criticality and subcriticality of Schrödinger forms in the way similar to the recurrence and transience of Dirichlet forms.

DEFINITION 2.1. Let $(\mathcal{E}^{\mu}, D(\mathcal{E}^{\mu}))$ be a positive semi-definite Schrödinger form.

(1) $(\mathcal{E}^{\mu}, \mathcal{D}(\mathcal{E}^{\mu}))$ is said to be *subcritical* if there exists a bounded function g in $L^{1}(E; m)$ strictly positive *m*-a.e. such that

(16)
$$
\int_{E} |u|g dm \leq \sqrt{\mathcal{E}^{\mu}(u)}, \ \ u \in \mathcal{D}_{e}(\mathcal{E}^{\mu}).
$$

(2) $(\mathcal{E}^{\mu}, \mathcal{D}(\mathcal{E}^{\mu}))$ is said to be *critical* if there exists a function ϕ in $\mathcal{D}_{e}(\mathcal{E}^{\mu})$ strictly positive *m*-a.e. such that $\mathcal{E}^{\mu}(\phi) = 0$. The function ϕ is said to be the *ground state*.

Define the operator G^{μ} by

$$
G^{\mu}f(x) = \int_0^{\infty} T_t^{\mu} f(x)dt \ (\leq +\infty)
$$

for a positive function *f*. Here T_t^{μ} is the L^2 -semigroup on $L^2(E; m)$ generated by $(\mathcal{E}^{\mu}, \mathcal{D}(\mathcal{E}^{\mu}))$.

Lemma 2.2 ([20, Lemma 2.3]). *Let* ^g *be the function in* Definition 2.1 (1)*. Then G*μg *belongs to* $D_e(E^{\mu})$ *.*

REMARK 2.3. It is recently proved in [15, Theorem A.3] that if the semigroup T_t^{μ} is expressed using a density $p_t^{\mu}(x, y)$, $T_t^{\mu} f(x) = \int_E p_t^{\mu}(x, y) f(y) dm(y)$, then $(\mathcal{E}^{\mu}, D(\mathcal{E}^{\mu}))$ is subcritical or critical.

REMARK 2.4. We see from the inequality (16) that if $({\mathcal E}^{\mu}, D({\mathcal E}^{\mu}))$ is subcritical, then $(D(\mathcal{E}^{\mu}), \mathcal{E}^{\mu}(\cdot, \cdot))$ is a Hilbert space.

3. Probabilistic representation of Schrödinger semigroups

Let $X = (\Omega, \mathcal{F}, \{\mathcal{F}_t\}_{t\geq 0}, \{P_x\}_{x\in E}, \{X_t\}_{t\geq 0}, \zeta)$ be the symmetric Hunt process generated by $(\mathcal{E}, \mathcal{D}(\mathcal{E}))$, where $\{\mathcal{F}_t\}_{t>0}$ is the augmented filtration and ζ is the lifetime of *X*. Denote by ${p_t}_{t\geq0}$ and ${R_\alpha}_{\alpha\geq0}$ the semigroup and resolvent of *X*:

$$
p_t f(x) = E_x(f(X_t)), \quad R_\alpha f(x) = \int_0^\infty e^{-\alpha t} p_t f(x) dt.
$$

Then $p_t f(x) = T_t f(x)$ *m*-a.e., $R_\alpha f(x) = \int_0^\infty T_t f(x) dt$ *m*-a.e., where T_t is the L^2 -semigroup on $L^2(E; m)$ generated by $(\mathcal{E}, D(\mathcal{E}))$. In the sequel, we assume that *X* satisfies, in addition, the next condition:

Feller Property (F). For each $t > 0$, $p_t(C_\infty(E)) \subset C_\infty(E)$ and for each $f \in C_\infty(E)$ and $x \in E$, $\lim_{t \to 0} p_t f(x) = f(x)$, where $C_\infty(E)$ is the space of continuous functions on *E* vanishing at infinity.

Resolvent Strong Feller Property (RSF). For each $\alpha > 0$, $R_{\alpha}(B_b(E)) \subset C_b(E)$, where $B_b(E)$ (resp. $C_b(E)$) is the space of bounded Borel (resp. continuous) functions on *E*.

Following [11], a Hunt process is said to be *resolvent doubly Feller* if it enjoys both the Feller property and resolvent strong Feller property. We see from (RSF) that the resolvent kernel $R_{\alpha}(x, dy)$ of *X* has a non-negative jointly measurable density $R_{\alpha}(x, y)$ with respect to *m*: For $x \in E$ and $f \in \mathcal{B}_b(E)$

$$
R_{\alpha}f(x) = \int_{E} R_{\alpha}(x, y) f(y) m(dy).
$$

Moreover, $R_{\alpha}(x, y)$ is α -excessive in x and in y ([9, Lemma 4.2.4]). We simply write $R(x, y)$ for $R_0(x, y) := \lim_{\alpha \to 0} R_\alpha(x, y)$. For a measure μ , we define the α -potential of μ by

$$
R_{\alpha}\mu(x) = \int_{E} R_{\alpha}(x, y)\mu(dy), \ \alpha \ge 0.
$$

Let S_{00} be the set of positive Borel measures μ such that $\mu(E) < \infty$ and $R_1\mu$ is bounded. We call a Borel measure μ on *E smooth measure in the strict sense* if there exists a sequence ${E_n}$ of Borel sets increasing to *E* such that for each *n*, $1_{E_n}\mu \in S_{00}$ and for any $x \in E$

$$
P_{x}(\lim_{n\to\infty}\sigma_{E\setminus E_n}\geq\zeta)=1,
$$

where $\sigma_{E\setminus E_n}$ is the first hitting time of $E \setminus E_n$. We denote by S^1 the set of smooth measures in the strict sense.

DEFINITION 3.1. Let $\mu \in S^1$.

(1) μ is said to be in the *Kato class* of *X* ($\mathcal{K}(X)$) in abbreviation) if

$$
\lim_{\alpha\to\infty}||R_{\alpha}\mu||_{\infty}=0.
$$

 μ is said to be in the *local Kato class* ($\mathcal{K}_{loc}(X)$ in abbreviation) if for any compact set *K*, $1_K \cdot \mu$ belongs to $\mathcal{K}(X)$. (2) Suppose that *X* is transient. A measure μ is said to be in the class $\mathcal{K}_{\infty}(X)$ if for any $\epsilon > 0$, there exists a compact set $K = K(\epsilon)$

$$
\sup_{x\in E}\int_{K^c}R(x,y)\mu(dy)<\epsilon.
$$

 μ in $\mathcal{K}_{\infty}(X)$ is called *Green-tight*.

REMARK 3.2. It is known in [19, Theorem 3.1] that for a measure μ in $\mathcal{K}(X)$ and $\alpha > 0$

(17)
$$
\int_{E} u^2 d\mu \leq ||R_{\alpha}\mu||_{\infty} \mathcal{E}_{\alpha}(u), \ \ u \in \mathcal{D}(\mathcal{E}).
$$

By the regularity of $(\mathcal{E}, \mathcal{D}(\mathcal{E}))$ and the inequality (17), a measure μ in $\mathcal{K}(X)$ is Radon, and so is a measure μ in $\mathcal{K}_{loc}(X)$. As a result, $\mathcal{D}(\mathcal{E}) \cap L^2(E; \mu^+) \subset \mathcal{D}(\mathcal{E}^{\mu})$ and

$$
\mathcal{E}^{\mu}(u) = \mathcal{E}(u) + \int_{E} u^2 d\mu, \ \ u \in \mathcal{D}(\mathcal{E}) \cap L^2(E; \mu^+).
$$

If $\mu \in \mathcal{K}_{\infty}(X)$, then $\|\mathcal{R}\mu\|_{\infty} < \infty$ by [3, Proposition 2.2] and [11, Lemma 4.1], and the equation (17) is meaningful for $\alpha = 0$:

(18)
$$
\int_{E} u^2 d\mu \leq ||R\mu||_{\infty} \mathcal{E}(u), \ \ u \in \mathcal{D}_e(\mathcal{E}).
$$

We denote by A_t^{μ} the PCAF corresponding to $\mu \in S^1$.

Theorem 3.3 ([20, Theorem 4.2]). *Let* $\mu = \mu^+ - \mu^- \in \mathcal{K}_{loc}(X) - \mathcal{K}_{loc}(X)$. If $(\mathcal{E}^{\mu}, \mathcal{D}(\mathcal{E}) \cap$ $C_0(E)$) *is positive semi-definite, then it is closable. Moreover, the semigroup* T_t^{μ} generated *by the closure* $(E^{\mu}, D(E^{\mu}))$ *is expressed as*

$$
T_t^{\mu} f(x) = p_t^{\mu} f(x) = E_x \left(e^{-A_t^{\mu}} f(X_t) \right) \ \ m\text{-}a.e.
$$

REMARK 3.4. By [9, Theorem 4.2.4], the transition semigroup p_t of X is expressed using transition probability density $p_t(x, y)$, as a result, T_t^{μ} is also expressed by a kernel $p_t^{\mu}(x, y)$ by
Theorem 3.3. Hence, as discussed in Pemark 2.3. $(\mathcal{L}^{\mu}, \mathcal{D}(\mathcal{L}^{\mu}))$ is either critical or subcritical Theorem 3.3. Hence, as discussed in Remark 2.3, $(\mathcal{E}^{\mu}, \mathcal{D}(\mathcal{E}^{\mu}))$ is either critical or subcritical.

4. Criticality and Hardy-type inequalities

We maintain the setting in Section 3 and fix a measure $\mu \in \mathcal{K}_{loc}(X) - \mathcal{K}_{loc}(X)$. Though this section, we assume that $({\mathcal E}^{\mu}, {\mathcal D}({\mathcal E}^{\mu}))$ is positive semi-definite and subcritical. By the subcriticality of $({\mathcal{E}}^{\mu},D({\mathcal{E}}^{\mu}), (D_e({\mathcal{E}}^{\mu}), {\mathcal{E}}^{\mu}(\cdot, \cdot))$ becomes a Hilbert space. The α -order resolvent kernel ${R}^{\mu}_{\alpha}(x, y)_{\alpha>0}$ of $({\mathcal{E}}^{\mu}, {\mathcal{D}}({\mathcal{E}}^{\mu}))$ can be constructed in the same manner as [9,
Lamma 4.2.41 and the Green kernel, i.e., 0 order resolvent kernel $R^{\mu}(x, u)$ is defined by Lemma 4.2.4] and the Green kernel, i.e., 0-order resolvent kernel $R^{\mu}(x, y)$ is defined by $R^{\mu}(x, y) = \lim_{\alpha \to 0} R^{\mu}_{\alpha}(x, y)$. The potential of a positive measure *v* is defined by

$$
R^{\mu}v(x) = \int_E R^{\mu}(x, y)v(dy).
$$

Lemma 4.1. Let v be a non-trivial positive measure in $\mathcal{K}_{loc}(X)$. Then for any compact *set K*

$$
\inf_{x\in K} R^{\mu} \nu(x) > 0.
$$

Proof. For any compact set K, take a relatively compact domain G such that $K \subset G$ and $\nu(G) > 0$. Consider the subprocess $X^{\mu^+} = (\lbrace P_x^{\mu^+} \rbrace_{x \in E}, \lbrace X_t \rbrace_{t \ge 0}, \zeta)$ defined by

$$
P_x^{\mu^+}(B; t < \zeta) = \int_{B \cap \{t < \zeta\}} e^{-A_t^{\mu^+}} dP_x, \quad B \in \mathcal{F}_t.
$$

Then X^{μ^+} has Properties (F) and (RSF) by [13, Corollary 6.1], and so the part process $X^{\mu^+,G}$ of X^{μ^+} on *G* has Property (**RSF**) by [13, Theorem 3.1]. Furthermore, $X^{\mu^+,G}$ is irreducible because *G* is a domain.

Since the measure v^G , the restriction of v to G, is in the Green-tight Kato class of $X^{\mu^+,G}$, $v^G \in \mathcal{K}_{\infty}(X^{\mu^+,G})$, $R^{\mu^+,G}v (= R^{\mu^+,G}v^G)$ is bounded by [3, Proposition 2.4] on *G*. Moreover it is continuous on *G*. Indeed, by Property (RSF) of $X^{\mu^+,G}, R^{\mu^+,G}_\alpha(R^{\mu^+,G}_\alpha\gamma) \in C_b(G)$ and $||R_{\alpha}^{\mu^+,G}v||_{\infty} \to 0$ as $\alpha \to \infty$ because of $v^G \in \mathcal{K}(X^{\mu,G})$. Hence, $R^{\mu^+,G}v \in C_b(G)$ because the resolvent equation implies

$$
\|R^{\mu^+,G}\nu-\alpha R^{\mu^+,G}_\alpha(R^{\mu^+,G}\nu)\|_\infty=\|R^{\mu^+,G}_\alpha\nu\|_\infty\to 0,\ \alpha\to\infty.
$$

By the irreducibility and $v(G) > 0$, $R^{\mu^+,G}v(x) > 0$ for each $x \in E$, and thus inf_{$x \in K} R^{\mu^+,G}v(x) > 0$. On account of $R^{\mu^+,G}v(x) > R^{\mu^+,G}v(x)$ we have this lemma} 0. On account of $R^{\mu\nu}(x) \ge R^{\mu^+,G}(\nu)}(x)$, we have this lemma.

By Lemma 4.1, we have the next corollary.

Corollary 4.2. *For a non-trivial positive measure* $v \in \mathcal{K}_{loc}(X)$ *, the measure* $v/R^{\mu}v$ *belongs to* $\mathcal{K}_{loc}(X)$ *.*

We define the subclass $\mathcal{K}^{\mu}_{loc}(X)$ of $\mathcal{K}_{loc}(X)$ by

$$
\mathcal{K}^{\mu}_{loc}(X) = \{ \nu \in \mathcal{K}_{loc}(X) \mid \text{For any } K \subset \mathcal{C}, \ ||R^{\mu}(1_K \nu)\|_{\infty} < \infty. \},
$$

where *C* is the totality of compact sets of *E*. If $\mu = 0$, then $\mathcal{K}_{loc}^{\mu}(X)$ equals $\mathcal{K}_{loc}(X)$ because $1_K v \in \mathcal{K}_\infty(X)$ and $||R(1_K v)||_{\infty} < \infty$.

Lemma 4.3. Let *v* be a non-trivial measure in $\mathcal{K}^{\mu}_{loc}(X)$. Then

$$
\int_{E} \phi^2 \frac{d\nu}{R^{\mu}\nu} \le \mathcal{E}^{\mu}(\phi), \ \ \phi \in \mathcal{D}(\mathcal{E}) \cap C_0(E).
$$

Proof. Let $\{K_n\}$ be a increasing sequence of compact sets such that $K_n \subset \mathring{K}_{n+1}$ and $K_n \uparrow E$. We fix the sequence $\{K_n\}$. For $0 < \epsilon < 1$, define $\mu_n^{\epsilon} = \mu^+ - \epsilon \mu_n^-$, where $\mu_n^-(\cdot) := \mu^-(K_n \cap \cdot)$.
The positive semi-definitences of $(\epsilon \mu, \mathcal{D}(\epsilon) \cap C_1(F))$ implies that The positive semi-definiteness of $(\mathcal{E}^{\mu}, \mathcal{D}(\mathcal{E}) \cap C_0(E))$ implies that

$$
\epsilon \int_E \phi^2 d\mu_n^- \leq \epsilon \,\mathcal{E}^{\mu^+}(\phi),
$$

and

(19)
$$
(1 - \epsilon) \mathcal{E}^{\mu^+}(\phi) \le \mathcal{E}^{\mu^+}(\phi) - \epsilon \int_E \phi^2 d\mu_n^- = \mathcal{E}^{\mu_n^{\epsilon}}(\phi) \le \mathcal{E}^{\mu^+}(\phi),
$$

which implies

(20)
$$
\mathcal{D}_{e}(\mathcal{E}^{\mu_{n}^{\epsilon}})=\mathcal{D}_{e}(\mathcal{E}^{\mu^{+}})(\subset\mathcal{D}_{e}(\mathcal{E})).
$$

Let $v_m = v(\cdot \cap K_m)$. We may suppose that v_1 is non-trivial and $R^{\mu_n^k}v_1(x)$ is bounded below
a positive constant on each compact set $K \subset F$. Noting $v \in K$. (*X*) we see from (18) by a positive constant on each compact set $K \subset E$. Noting $v_m \in \mathcal{K}_{\infty}(X)$, we see from (18) and (19) that

$$
\int_{E} |\phi| dv_{m} \leq v(K_{m})^{1/2} \left(\int_{E} \phi^{2} dv_{m} \right)^{1/2} \leq v(K_{m})^{1/2} ||Rv_{m}||_{\infty}^{1/2} \cdot \mathcal{E}(\phi)^{1/2}
$$

$$
\leq C \mathcal{E}^{\mu^{+}}(\phi)^{1/2} \leq C' \mathcal{E}^{\mu_{n}^{+}}(\phi)^{1/2}.
$$

Hence $R^{\mu_n^{\epsilon}} v_m$ belongs to $\mathcal{D}_e(\mathcal{E}^{\mu_n^{\epsilon}})$ and

$$
\mathcal{E}^{\mu_n^{\epsilon}}(R^{\mu_n^{\epsilon}}\nu_m,\phi)=\int_E\phi\,d\nu_m=\int_E R^{\mu_n^{\epsilon}}\nu_m\cdot\phi\frac{d\nu_m}{R^{\mu_n^{\epsilon}}\nu_m},
$$

which implies

$$
\mathcal{E}^{\mu_n^{\epsilon}-\nu_m/R^{\mu_n^{\epsilon}}\nu_m}(R^{\mu_n^{\epsilon}}\nu_m,\phi)=0, \ \ \phi\in\mathcal{D}(E)\cap C_0(E).
$$

Note that $R^{\mu_n^{\epsilon}} v_m$ is in $D_e(\mathcal{E})$ by (20) and in $L^{\infty}(E,m)$ by $R^{\mu_n^{\epsilon}} v_m \leq R^{\mu} v_m$. Moreover, it is unded below by a positive constant on each compact set by Lemma 4.1. We then see from bounded below by a positive constant on each compact set by Lemma 4.1. We then see from Lemma 4.5 and Lemma 4.6 below that

$$
\mathcal{E}^{\mu_n^{\epsilon}-\nu_m/R^{\mu_n^{\epsilon}}\nu_m}(\phi)\geq 0, \ \ \phi\in\mathcal{D}(\mathcal{E})\cap C_0(E),
$$

and

$$
\mathcal{E}^{\mu_n^{\epsilon}}(\phi) - \int_E \phi^2 \frac{dv_m}{R^{\mu} \nu} \geq \mathcal{E}^{\mu_n^{\epsilon}}(\phi) - \int_E \phi^2 \frac{dv_m}{R^{\mu_n^{\epsilon}} \nu_m} = \mathcal{E}^{\mu_n^{\epsilon} - \nu_m / R^{\mu_n^{\epsilon}} \nu_m}(\phi) \geq 0.
$$

Since

$$
\mathcal{E}^{\mu_n^{\epsilon}}(\phi) - \int_E \phi^2 \frac{dv_m}{R^{\mu} \nu} \xrightarrow{m \to \infty} \mathcal{E}^{\mu_n^{\epsilon}}(\phi) - \int_E \phi^2 \frac{dv}{R^{\mu} \nu} \xrightarrow{\epsilon \to 1} \mathcal{E}^{\mu_n^{\iota}}(\phi) - \int_E \phi^2 \frac{dv}{R^{\mu} \nu} \xrightarrow{n \to \infty} \mathcal{E}^{\mu}(\phi) - \int_E \phi^2 \frac{dv}{R^{\mu} \nu},
$$

we have this lemma. \Box

Lemma 4.3 leads us to an extension of the inequality (17).

Corollary 4.4. *It holds that*

$$
\int_{E} \phi^2 d\nu \leq ||R^{\mu} \nu||_{\infty} \mathcal{E}^{\mu}(\phi), \ \ \phi \in \mathcal{D}(\mathcal{E}) \cap C_0(E).
$$

Lemma 4.5. *Let* $u \in D_e(\mathcal{E}) \cap L^\infty(E; m)$ *is bounded below by a positive constant on each compact set. Then* φ /*u belongs to* $D(\mathcal{E})$ *for any* $\varphi \in D(\mathcal{E}) \cap C_0(E)$ *.*

Proof. Let $\varphi \in D(\mathcal{E}) \cap C_0(E)$ and s suppose that $u \geq c > 0$ on supp[φ]. Let $\{u_n\} \subset$ $\mathcal{D}(\mathcal{E}) \cap C_0(E)$ be an approximating sequence of *u*. We may suppose sup_n $||u_n||_{\infty} \le ||u||_{\infty}$ Then since by [9, Theorem 1.4.2 (ii)]

$$
\mathcal{E}(u_n\varphi)^{1/2} \leq ||u_n||_{\infty} \mathcal{E}(\varphi)^{1/2} + ||\varphi||_{\infty} \mathcal{E}(u_n)^{1/2},
$$

we have $\sup_n \mathcal{E}(u_n\varphi) < \infty$. On account of [18, 1.6.1'], $u\varphi$ is in $\mathcal{D}_e(\mathcal{E})$ and so in $\mathcal{D}(\mathcal{E})$ because $D_e(\mathcal{E}) \cap L^2(E; m) = D(\mathcal{E}).$

Since for $(x, y) \in \text{supp}[\varphi] \times \text{supp}[\varphi]$

$$
\left|\frac{\varphi(x)}{u(x)}\right| \le c^{-1}|\varphi(x)|
$$

$$
\left|\frac{\varphi(x)}{u(x)} - \frac{\varphi(y)}{u(y)}\right| \le 2c^{-1}|\varphi(x) - \varphi(y)| + c^{-2}|u(x)\varphi(x) - u(y)\varphi(y)|,
$$

we have this lemma by the same argument as in the proof of [9, Theorem 6.3.2]. \Box

[8, Theorem 10.2] yields the next lemma.

Lemma 4.6. *Let* $\mu = \mu^+ - \mu^- \in \mathcal{K}_{loc}(X) - \mathcal{K}(X)$ and $\mu \in \mathcal{D}_e(\mathcal{E}) \cap L^\infty(E; m)$ be a function *bounded below by a positive constant on each compact. If u satisfies* $\mathcal{E}^{\mu}(u, \varphi) = 0$ *for any* $\varphi \in D(\mathcal{E}) \cap C_0(E)$, then $(\mathcal{E}^{\mu}, D(\mathcal{E}^{\mu}))$ is positive semi-definite.

Proof. The function *u* is a *generalized eigenfunction* corresponding to the *generalized eigenvalue 0* in [8, Definition 9.1]. Note that by Lemma 4.5, φ/u is a bounded function in $D(E^{\mu})$ with compact support. Then, applying [8, Theorem 10.2], we have

$$
\mathcal{E}^{\mu}(\varphi) = \mathcal{E}^{\mu}(u(\varphi/u)) = \int_{E \times E} u(x)u(y)d\Gamma(\varphi/u) \ge 0,
$$

where $\Gamma(\varphi/u)$ is the positive measure on $E \times E$ defined in [8, Subsection 3.2].

Lemma 4.7. *Let* $v \in \mathcal{K}_{loc}^{\mu}(X)$ *and* $v_m = v(\cdot \cap K_m)$ *. Then* $R^{\mu}v_m$ *belongs to* $D_e(\mathcal{E}^{\mu})$ *for any m.*

Proof. Since for $\phi \in \mathcal{D}(\mathcal{E}) \cap C_0(E)$

$$
\int_{E} |\phi| dv_{m} \leq v(K_{m})^{1/2} \left(\int_{E} \phi^{2} dv_{m} \right)^{1/2} \leq \mu(K_{m})^{1/2} ||R^{\mu} v_{m}||_{\infty}^{1/2} \mathcal{E}^{\mu}(\phi)^{1/2}
$$

by Corollary 4.4 and $||R^{\mu}v_m||_{\infty} < \infty$ by $v \in \mathcal{K}^{\mu}_{loc}(X)$, we have this lemma. \square

Lemma 4.8. *If* $v \in \mathcal{K}^{\mu}_{loc}(X)$ *is of finite energy with respect to* $R^{\mu}(x, y)$ *,*

(21)
$$
\iint_{E\times E} R^{\mu}(x,y)\nu(dx)\nu(dy) < \infty,
$$

then R^{μ} *v belongs to* $D_e(E^{\mu})$ *.*

Proof. Since $R^{\mu}v_m \in D_e(\mathcal{E}^{\mu}) \uparrow R^{\mu}v(x)$ for any $x \in E$ as $m \to \infty$ and

$$
\sup_{m} \mathcal{E}^{\mu}(R^{\mu} \nu_{m}) = \sup_{m} \int_{E} R^{\mu} \nu_{m} d\nu_{m} = \sup_{m} \iint_{K_{m} \times K_{m}} R^{\mu}(x, y) \nu(dx) \nu(dy)
$$

$$
\leq \iint_{E \times E} R^{\mu}(x, y) \nu(dx) \nu(dy) < \infty.
$$

By Banach-Saks Theorem (cf.[4, Theorem A.4.1]) there exists a subsequence $\{K_{m_l}\}\subset \{K_m\}$ such that

$$
\frac{R^{\mu}v_{m_1}+R^{\mu}v_{m_2}+\cdots+R^{\mu}v_{m_l}}{l}=R^{\mu}\left(\frac{(1_{K_{m_1}}+1_{K_{m_2}}\cdots+1_{K_{m_l}})}{l}\nu\right)\longrightarrow R^{\mu}\nu
$$

with \mathcal{E}^{μ} -strongly, and thus Lemma 4.7 implies this lemma.

For
$$
\mu \in \mathcal{K}_{loc}(X) - \mathcal{K}_{loc}(X)
$$
 and $\nu \in \mathcal{K}_{loc}^{\mu}(X)$, define
\n(22)
$$
v^{\mu} = \frac{\nu}{R^{\mu}v}, \qquad \mu^{\nu} = \mu - v^{\mu}.
$$

Then μ^{ν} is in $\mathcal{K}_{loc}(X) - \mathcal{K}_{loc}(X)$ by Corollary 4.2 and $(\mathcal{E}^{\mu^{\nu}}, \mathcal{D}(\mathcal{E}) \cap C_0(E))$ is positive semi-
definite by Lamma 4.3. Hence by [20] Theorem 4.21 we can define the Schrödinger form definite by Lemma 4.3. Hence by $[20,$ Theorem 4.2] we can define the Schrödinger form with potential μ^{ν} , the closure $(\mathcal{E}^{\mu^{\nu}}, \mathcal{D}(\mathcal{E}^{\mu^{\nu}}))$ of $(\mathcal{E}^{\mu^{\nu}}, \mathcal{D}(\mathcal{E}) \cap C_0(E))$ and its extended Sobrödinger space $\mathcal{D}(\mathcal{L}^{\mu^{\nu}})$ Schrödinger space $\mathcal{D}_e(\mathcal{E}^{\mu^\nu})$.

 \Box

 \Box

Lemma 4.9. *If* $u \in \mathcal{D}_e(\mathcal{E}^{\mu^+})$, then

$$
\mathcal{E}^{\mu^{\nu}}(u) = \mathcal{E}^{\mu}(u) - \int_{E} u^{2} dv^{\mu}.
$$

Proof. Noting $u \in \mathcal{D}_e(\mathcal{E})$, there exists an \mathcal{E}^{μ^+} -Cauchy sequence $\{u_n\} \subset \mathcal{D}(\mathcal{E}) \cap C_0(E)$ such that $u_n \to u$ q.e. Since $\mathcal{E}^{\mu^v}(u) \leq \mathcal{E}^{\mu^v}(u) \leq \mathcal{E}^{\mu^v}(u)$, $u \in \mathcal{D}(\mathcal{E}) \cap C_0(E)$, $\{u_n\}$ is also an approximating sequence of u in $\mathcal{D}(\mathcal{E}^{\mu^v})$ and $\mathcal{D}(\mathcal{E}^{\mu^v})$. In particular, approximating sequence of *u* in $D_e(\mathcal{E}^\mu)$ and $D_e(\mathcal{E}^{\mu^\nu})$. In particular, *u* is in $D_e(\mathcal{E}^\mu) \subset D_e(\mathcal{E}^{\mu^\nu})$, and thus $u \in L^2(E; v^\mu)$ by Lemma 4.3. Hence we have

$$
\mathcal{E}^{\mu^{\nu}}(u) = \lim_{n \to \infty} \mathcal{E}^{\mu^{\nu}}(u_n) = \lim_{n \to \infty} \left(\mathcal{E}^{\mu}(u_n) - \int_{E} u_n^2 dv^{\mu} \right) = \mathcal{E}^{\mu}(u) - \int_{E} u^2 dv^{\mu}.
$$

Lemma 4.10. *It holds that*

$$
\mathcal{E}^{\mu^{\nu}}(R^{\mu}\nu_m)=\mathcal{E}^{\mu}(R^{\mu}\nu_m)-\int_E(R^{\mu}\nu_m)^2d\nu^{\mu}.
$$

Proof. Let $\{\epsilon_n\}$ be a positive sequence such that $\epsilon_n \uparrow 1$ as $n \to \infty$ and denote by μ'_n the measure $\mu_n^{\epsilon_n}$ defined in Lemma 4.3. Put $u_n = R^{\mu'_n} v_m$. Then u_n is in $\mathcal{D}_e(\mathcal{E}^{\mu^+})$ as shown in the proof of Lemma 4.3. Since

$$
\mathcal{E}^{\mu}(u_n) \leq \mathcal{E}^{\mu'_n}(u_n) = \int_E u_n dv_m \leq \int_E R^{\mu} \nu_m dv_m < \infty,
$$

There exists a subsequence $\{u_{n_k}\}$ of $\{u_n\}$ such that

$$
v_k:=\frac{u_{n_1}+u_{n_2}+\cdots+u_{n_k}}{k}\in D_e(\mathcal{E}^{\mu^+})
$$

is an approximating sequence of $R^{\mu}v_m$ in $D_e(\mathcal{E}^{\mu})$ and $v_k(x) \uparrow R^{\mu}v_m(x)$ for any $x \in E$.

Noting that $\{v_k\}$ is also an approximating sequence of $R^{\mu}v_m$ in $\mathcal{D}_e(\mathcal{E}^{\mu^{\nu}})$, we have by Lemma 4.9

$$
\mathcal{E}^{\mu^{\nu}}(R^{\mu}\nu_m) = \lim_{k \to \infty} \mathcal{E}^{\mu^{\nu}}(v_k) = \lim_{k \to \infty} \left(\mathcal{E}^{\mu}(v_k) - \int_E v_k^2 dv^{\mu}\right) = \mathcal{E}^{\mu}(R^{\mu}\nu_m) - \int_E (R^{\mu}\nu_m)^2 dv^{\mu}.
$$

Let \mathcal{K}_C^{μ} be the set of measures in $\mathcal{K}_{loc}^{\mu}(X)$ satisfying (7). For $\nu \in \mathcal{K}_C^{\mu}$ there exists a sequence ${K_m}_{m=1}^{\infty} \subset C$ such that $K_m \uparrow E$ and

(23)
$$
\sup_{m} \iint_{E\times E} R^{\mu}(x, y) \nu_{m}(dx) \nu_{m}^{c}(dy) < \infty,
$$

where $v_m^c(A) = v(K_m^c \cap A)$. If a measures $v \in \mathcal{K}_{loc}^{\mu}(X)$ of finite energy with respect to R^{μ} , then it estisfies (23) it satisfies (23).

Lemma 4.11. *If* $v \in \mathcal{K}_C^{\mu}$, then $R^{\mu}v$ *is in* $D_e(\mathcal{E}^{\mu^{\nu}})$.

Proof. For $v \in \mathcal{K}_C^{\mu}$

$$
\int_E R^{\mu} \nu_m d\nu = \int_E R^{\mu} \nu_m d\nu_m + \int_E R^{\mu} \nu_m d\nu_m^c < \infty
$$

because

$$
\int_E R^{\mu} \nu_m d\nu_m = \mathcal{E}^{\mu}(R^{\mu} \nu_m) < \infty
$$

by Lemma 4.7.

By Lemma 4.10 we have

$$
\mathcal{E}^{\mu^{\nu}}(R^{\mu}\nu_m) = \mathcal{E}^{\mu}(R^{\mu}\nu_m) - \int_E (R^{\mu}\nu_m)^2 d\nu^{\mu}
$$

=
$$
\int_E R^{\mu}\nu_m d\nu_m - \int_E (R^{\mu}\nu_m)^2 d\nu^{\mu}
$$

=
$$
\int_E R^{\mu}\nu_m d\nu - \int_E R^{\mu}\nu_m d\nu_m^c - \int_E \frac{(R^{\mu}\nu_m)^2}{R^{\mu}\nu_m + R^{\mu}\nu_m^c} d\nu.
$$

The right hand side equals

(24)
\n
$$
\int_{E} \left(\frac{R^{\mu} v_{m} (R^{\mu} v_{m} + R^{\mu} v_{m}^{c}) - (R^{\mu} v_{m})^{2}}{R^{\mu} v_{m} + R^{\mu} v_{m}^{c}} \right) dv - \int_{E} R^{\mu} v_{m} dv_{m}^{c}
$$
\n
$$
= \int_{E} \frac{R^{\mu} v_{m} R^{\mu} v_{m}^{c}}{R^{\mu} v_{m} + R^{\mu} v_{m}^{c}} dv - \int_{E} R^{\mu} v_{m} dv_{m}^{c}
$$
\n
$$
= \int_{E} \frac{R^{\mu} v_{m} R^{\mu} v_{m}^{c}}{R^{\mu} v_{m} + R^{\mu} v_{m}^{c}} dv_{m} + \int_{E} \left(\frac{R^{\mu} v_{m} R^{\mu} v_{m}^{c}}{R^{\mu} v_{m} + R^{\mu} v_{m}^{c}} - R^{\mu} v_{m} \right) dv_{m}^{c}.
$$

Since

$$
\frac{R^{\mu}v_m R^{\mu}v_m^c}{R^{\mu}v_m + R^{\mu}v_m^c} \leq R^{\mu}v_m^c, \quad \frac{R^{\mu}v_m R^{\mu}v_m^c}{R^{\mu}v_m + R^{\mu}v_m^c} \leq R^{\mu}v_m,
$$

the right hand side of (24) is less than or equal to $\int_E R^{\mu} v_m^c dv_m$. Therefore, we see from (23) that

$$
\sup_{m} \mathcal{E}^{\mu^{\nu}}(R^{\mu} \nu_{m}) \leq \sup_{m} \int_{E} R^{\mu} \nu_{m}^{c} d\nu_{m} < \infty.
$$

 \Box

Since $R^{\mu}v_m \to R^{\mu}v$, this lemma follows from Lemma 4.7.

The next lemma is obtained in the same argument as in [20, Lemma 5.3].

Lemma 4.12. *For* $v \in \mathcal{K}_C^{\mu}$

$$
\mathcal{E}^{\mu^{\nu}}(R^{\mu}\nu,\varphi)=0,\ \ \varphi\in\mathcal{D}(\mathcal{E})\cap C_0(E).
$$

Proof. Since $\sup_m \mathcal{E}^{\mu^\nu}(R^\mu v_m) < \infty$, there exists a subsequence $\{K_{m_l}\} \subset \{K_m\}$ such that

$$
R^{\mu}\left(\frac{(1_{K_{m_1}}+1_{K_{m_2}}\cdots+1_{K_{m_l}})}{l}\nu\right)\longrightarrow R^{\mu}\nu
$$

 $\mathcal{E}^{\mu^{\nu}}$ -strongly.

Let $\phi_l := (1_{K_{m_1}} + 1_{K_{m_2}} \cdots + 1_{K_{m_l}})/l$. For a fixed $\varphi \in \mathcal{D}(\mathcal{E}) \cap C_0(E)$ we can assume supp $[\varphi] \subset K_{m_1}$. By the same argument as in Lemma 4.10, we have

$$
\mathcal{E}^{\mu^{\nu}}(R^{\mu}(\phi_{l}\nu)+\varphi)=\mathcal{E}^{\mu}(R^{\mu}(\phi_{l}\nu)+\varphi)-\int_{E}(R^{\mu}(\phi_{l}\nu)+\varphi)^{2}d\nu^{\mu},
$$

and thus

$$
\mathcal{E}^{\mu^{\nu}}(R^{\mu}(\phi_{l}\nu),\varphi)=\mathcal{E}^{\mu}(R^{\mu}(\phi_{l}\nu),\varphi)-\int_{E}R^{\mu}(\phi_{l}\nu)\varphi d\nu^{\mu}.
$$

Hence

$$
\mathcal{E}^{\mu^{\nu}}(R^{\mu}\nu,\varphi) = \lim_{l \to \infty} \mathcal{E}^{\mu^{\nu}}(R^{\mu}(\phi_{l}\nu),\varphi)
$$

=
$$
\lim_{l \to \infty} \left(\mathcal{E}^{\mu}(R^{\mu}(\phi_{l}\nu),\varphi) - \int_{E} R^{\mu}(\phi_{l}\nu)\varphi d\nu^{\mu} \right).
$$

Note that $R^{\mu}(\phi_{l}v) \in \mathcal{D}_{e}(\mathcal{E}^{\mu})$ by Lemma 4.7. Then since

$$
\lim_{l\to\infty}\mathcal{E}^{\mu}(R^{\mu}(\phi_{l}\nu),\varphi)=\lim_{l\to\infty}\int_{E}\varphi\phi_{l}d\nu=\int_{E}\varphi d\nu
$$

and by the monotone convergence theorem

$$
\lim_{l\to\infty}\int_{E}R^{\mu}(\phi_{l}\nu)\varphi d\nu^{\mu}=\int_{E}R^{\mu}\nu\cdot\varphi\frac{d\nu}{R^{\mu}\nu}=\int_{E}\varphi d\nu,
$$

we have this lemma. \Box

The next theorem is an extension of [20, Theorem 5.4].

Theorem 4.13. If $v \in \mathcal{K}_C^{\mu}$, then $R^{\mu}v$ is a ground state of $(\mathcal{E}^{\mu^{\nu}}, D(\mathcal{E}^{\mu^{\nu}}))$, consequently, μ^{ν} $D(\mathcal{E}^{\mu^{\nu}})$ is critical $(\mathcal{E}^{\mu^{\nu}}, D(\mathcal{E}^{\mu^{\nu}}))$ is critical.

Proof. Since $R^{\mu} \nu$ belongs to $D_e(\mathcal{E}^{\mu^{\nu}})$, there exists a sequence $\{\varphi_n\} \subset \mathcal{D}(\mathcal{E}) \cap C_0(E)$ such the converges $\mathcal{E}^{\mu^{\nu}}$ strongly to $R^{\mu} \nu$. Hence that φ_n converges \mathcal{E}^{μ^ν} -strongly to $R^{\mu} \nu$. Hence

$$
\mathcal{E}^{\mu^{\nu}}(R^{\mu}\nu)=\lim_{n\to\infty}\mathcal{E}^{\mu^{\nu}}(R^{\mu}\nu,\varphi_n)=0
$$

by Lamma 4.12. \Box

Corollary 4.14. *There exists no non-trivial positive function* ψ *such that*

(25)
$$
\int_{E} u^2 d(\nu^{\mu} + \psi m) \leq \mathcal{E}^{\mu}(u, u), \ u \in \mathcal{D}(\mathcal{E}) \cap C_0(E).
$$

Proof. If (25) holds, then

$$
\int_E u^2 \psi dm \le \mathcal{E}^{\mu^{\nu}}(u) = 0, \ u \in \mathcal{D}(\mathcal{E}) \cap C_0(E).
$$

Since $R^{\mu} \nu$ is in $\mathcal{D}_e(\mathcal{E}^{\mu^{\nu}})$, there exists an approximating sequence $\{u_n\} \subset \mathcal{D}(\mathcal{E}) \cap C_0(E)$. We then have then have

$$
\int_{E} (R^{\mu} \nu)^2 \psi dm \le \lim_{n \to \infty} \int_{E} u_n^2 \psi dm \le \lim_{n \to \infty} \mathcal{E}^{\mu^{\nu}}(u_n) = \mathcal{E}^{\mu^{\nu}}(R^{\mu} \nu) = 0,
$$

and so $\psi = 0$ *m*-a.e. because $R^{\mu} \nu > 0$ by the irreducibility of *X*.

Corollary 4.14 tells us that v^{μ} is a *critical* Hardy weight for $({\mathcal{E}}^{\mu}, D({\mathcal{E}}^{\mu}))$ ([6], [10]).

A Hardy weight v^{μ} is called *optimal at infinity* if for any $K \in \mathcal{C}$

$$
\lambda \int_E u^2 d\nu^\mu \le \mathcal{E}^\mu(u), \ \ u \in \mathcal{D}(\mathcal{E}) \cap C_0(K^c),
$$

then $\lambda \leq 1$.

Lemma 4.15. *If* $v \in \mathcal{K}_C^{\mu}$ *satisfies that*

(26)
$$
\iint_{K^c \times E} R^{\mu}(x, y) \nu(dx) \nu(dy) = \infty \text{ for any } K \in \mathcal{C},
$$

then v^{μ} *is optimal at infinity.*

Proof. Denote $h = R^{\mu} \nu$. Since *h* is a ground state of $(\mathcal{E}^{\mu^{\nu}}, D(\mathcal{E}^{\mu^{\nu}}))$ by Theorem 4.13, *h* is invariant $r^{\mu^{\nu}} h = h$ where $r^{\mu^{\nu}}$ is the semigroup associated with $(\mathcal{E}^{\mu^{\nu}} D(\mathcal{E}^{\mu^{\nu}}))$. De $p_t^{\mu^v}$ -invariant, $p_t^{\mu^v} h = h$, where $p_t^{\mu^v}$ is the semigroup associated with $(\mathcal{E}^{\mu^v}, \mathcal{D}(\mathcal{E}^{\mu^v}))$. Denote by $(\mathcal{E}^h, \mathcal{D}(\mathcal{E}^h))$ the Dirichlet form generated by *h*-transform of $(\mathcal{E}^{\mu\nu}, \mathcal{D}(\mathcal{E}^{\mu\nu}))$:

$$
\mathcal{E}^h(u)=\mathcal{E}^{\mu^{\nu}}(uh), u\in \mathcal{D}(\mathcal{E}^h)=\{u\mid uh\in \mathcal{D}(\mathcal{E}^{\mu^{\nu}})\}.
$$

Since *h* is in $D_e(\mathcal{E}^{\mu^{\nu}})$, there exists a sequence $\{h_n\} \subset \mathcal{D}(\mathcal{E}) \cap C_0(E)$ such that $0 \le h_n \uparrow h$ and $\mathcal{E}^{\mu^{\nu}}(h - h_n) \to 0$ as $n \to \infty$. Then { $g_n := h_n/h$ } is an approximating sequence of $1 \in \mathcal{D}_e(\mathcal{E}^h)$.
Suppose that there exist $F \in \mathcal{C}$ and $\epsilon > 0$ such that for any $\mu \in \mathcal{D}(\mathcal{E}) \cap C_e(F^c)$.

Suppose that there exist *F* ∈ *C* and $\epsilon > 0$ such that for any *u* ∈ $D(\mathcal{E}) \cap C_0(F^c)$

(27)
$$
\mathcal{E}^{\mu}(u) \ge (1+\epsilon) \int_{F^c} u^2 dv^{\mu}, \ \ u \in \mathcal{D}(\mathcal{E}) \cap C_0(F^c).
$$

Let G_1 , G_2 be relatively compact open set such that $F \subset G_1 \subset \overline{G}_1 \subset G_2 \subset \overline{G}_2 \subset E$. Let φ be a function in $D(\mathcal{E}) \cap C_0(E)$ such that $0 \le \varphi \le 1$, $\varphi(x) = 1$ on $x \in \overline{G}_1$ and supp[φ] $\subset G_2$. Put $\psi = (1 - \varphi)$. Then $h_n \psi \in \mathcal{D}(\mathcal{E}) \cap C_0(F^c)$, and so by (27)

(28)
$$
\epsilon \int_E (h_n \psi)^2 \frac{d\nu}{h} \leq \mathcal{E}^{\mu^{\nu}}(h_n \psi).
$$

Then we have by $[9,$ Theorem 1.4.2 (ii)]

$$
\mathcal{E}^{\mu^{\nu}}(h_n\psi)=\mathcal{E}^h(\frac{h_n}{h}\psi)\leq 2\Big(\mathcal{E}^h(h_n/h)+\mathcal{E}^h(\psi)\Big),
$$

and so

$$
\sup_{n} \int_{E} (h_n \psi)^2 \frac{dv}{h} \le \frac{2}{\epsilon} \left(\sup_{n} \mathcal{E}^h(h_n/h) + \mathcal{E}^h(\psi) \right) < \infty
$$

on account of (28). Hence

$$
\int_{\overline{G}_2^c} h dv = \int_{\overline{G}_2^c} \lim_{n \to \infty} (h_n \psi)^2 \frac{dv}{h} \le \lim_{n \to \infty} \int_E (h_n \psi)^2 \frac{dv}{h} < \infty,
$$

and thus

$$
\iint_{\overline{G}_2^c \times E} R^{\mu}(x, y) d\nu(x) d\nu(y) = \int_{\overline{G}_2^c} h d\nu < \infty,
$$

which is contradictory to (26) .

If $v \in \mathcal{K}_C^{\mu}$ satisfies the inequality (26), then the ground state $R^{\mu}v$ of $(\mathcal{E}^{\mu^{\nu}}, D(\mathcal{E}^{\mu^{\nu}}))$ does not belong to $\hat{L}^2(E; \mu^{\nu})$ and so ν^{μ} is a null-critical Hardy weight for $(\mathcal{E}^{\mu}, \mathcal{D}(\mathcal{E}^{\mu}))$. Therefore, we have

Theorem 4.16. *If* $v \in \mathcal{K}_C^{\mu}$ *satisfies*

$$
\iint_{K^c \times E} R^{\mu}(x, y)\nu(dx)\nu(dy) = \infty \text{ for any } K \in \mathcal{C},
$$

then the measure v^{μ} *defined in (22) is a optimal Hardy weight for* $(E^{\mu}, D(E^{\mu}))$ *.*

REMARK 4.17. The measure $v(dx) := |x|^{-(d+\alpha)/2} dx$ satisfies (26) with respect to the Green
real $|x - u|^{a-d}$, $\alpha \le d$ the 0 resolvent of the symmetric α stable process because $(|u|^{a-d}$. kernel $|x - y|^{\alpha - d}$, $\alpha < d$, the 0-resolvent of the symmetric α -stable process because $(|y|^{\alpha - d} *$
 $|y|^{-(d+\alpha)/2} \leq C|x|^{(\alpha - d)/2}$ and $|x|^{(\alpha - d)/2} = |x|^{-(d+\alpha)/2} = |x|^{-(d+\alpha)/2}$ boyever y satisfies (23) (120) $|y|^{-(d+\alpha)/2}$)(*x*) = *C*|*x*|^{(α -*d*)/2 and $|x|^{(\alpha-d)/2} \cdot |x|^{-(d+\alpha)/2} = |x|^{-d}$; however *v* satisfies (23) ([20, Example 5.61). Honce *y* is an optimal Hardy weight for the Dirichlet form of symmetric} Example 5.6]). Hence ν is an optimal Hardy weight for the Dirichlet form of symmetric α -stable process.

Acknowledgements. The author would like to thank the referee for a useful comment on Lemma 4.15.

References

- [1] S. Albeverio and Z-M. Ma: *Perturbation of Dirichlet forms-lower semiboundedness, closability, and form cores*, J. Funct. Anal. 99 (1991), 332–356.
- [2] J. Cao, A. Grigor'yan and L. Liu: *Hardy's inequality and Green function on metric measure spaces*, J. Funct. Anal. 281 (2021), Paper No. 109020, 78 pp.
- [3] Z.-Q. Chen: *Gaugeability and conditional gaugeability*, Trans. Amer. Math. Soc. 354 (2002), 4639–4679.
- [4] Z.-Q. Chen and M. Fukushima: Symmetric Markov Processes, Time Change, and Boundary Theory, London Math. Soc. Monographs Series 35, Princeton University Press, Princeton, 2012.
- [5] E.B. Davies: Heat Kernels and Spectral Theory, Cambridge Univ. Press, Cambridge, 1989.
- [6] B. Devyver, M. Fraas and Y. Pinchover: *Optimal Hardy weight for second-order elliptic operator: an answer to a problem of Agmon*, J. Funct. Anal. 266 (2014), 4422–4489.
- [7] P.J. Fitzsimmons: *Hardy's inequality for Dirichlet forms*, J. Math. Anal. Appl. 250 (2000), 548–560.
- [8] R.L. Frank, D. Lenz and D. Wingert: *Intrinsic metrics for non-local symmetric Dirichlet forms and applications to spectral theory*, J. Funct. Anal. 266 (2014), 4765–4808.
- [9] M. Fukushima, Y. Oshima and M. Takeda: Dirichlet Forms and Symmetric Markov Processes, 2nd ed., Walter de Gruyter, Berlin, 2011.
- [10] M. Keller, Y. Pinchover and F. Pogorzelski: *Criticality theory for Schrödinger operators on graphs*, J. Spectr. Theory 10 (2020), 73–114.
- [11] D. Kim and K. Kuwae: *Analytic characterizations of gaugeability for generalized Feynman-Kac functionals*, Trans. Amer. Math. Soc. 369 (2017), 4545–4596.
- [12] H. Kovarik and Y. Pinchover: *On minimal decay at infinity of Hardy-weights*, Commun. Contemp. Math. 22 (2020), Paper No. 1950046, 18 pp.
- [13] M. Kurniawaty, K. Kuwae and K. Tsuchida: *On the doubly Feller property of resolvent*, Kyoto J. Math. 57 (2017), 637–654.
- [14] Y. Miura: *Optimal Hardy inequalities for Schrödinger operators based on symmetric stable processes*, J. Theoret. Probab. 36 (2023), 134–166.
- [15] M. Schmidt: *(Weak) Hardy and Poincaré inequalities and criticality theory*, Dirichlet forms and related topics, Springer Proc. Math. Stat. 394 Springer, Singapore, 2022, 421–460.
- [16] B. Schmuland: *Extended Dirichlet spaces*, C. R. Math. Acad. Sci. Soc. R. Can. 21 (1999), 146–152.
- [17] B. Schmuland: *Positivity preserving forms have the Fatou property*, Potential Anal. 10 (1999), 373–378.
- [18] M. Silverstein: Symmetric Markov processes, Lecture Notes in Mathematics 426, Springer-Verlag, Berlin-New York, 1974.
- [19] P. Stollmann and J. Voigt: *Perturbation of Dirichlet forms by measures*, Potential Anal. 5 (1996), 109–138.

[20] M. Takeda and T. Uemura: *Criticality of Schrödinger forms and recurrence of Dirichlet forms*, Trans. Amer. Math. Soc. 376 (2023), 4145–4171.

> Department of Mathematics Kansai University Yamatecho, Suita, 564–8680 Japan e-mail: mtakeda@kansai-u.ac.jp