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Abstract
We study the relationship between the central ideals and the Jacobson radicals of blocks of

group algebras. In particular, we characterize the blocks with the property that the square of the
radical is a non-zero central ideal. Moreover, we also consider the blocks with the property that
the cube of the radical becomes a non-zero central ideal. These are improvements of a result by
Külshammer in 2020.

1. Introduction

1. Introduction
Throughout this paper we let G be a finite group and k an algebraically closed field of

characteristic p > 0. One of the important problems in modular representation theory is to
clarify the Loewy structure of a block B of the group algebra kG. Several papers have tried
to classify the blocks with the property that the n th power of the Jacobson radical J(B) of B
becomes a zero ideal for n = 1, 2, 3, 4 (see [10] and [4]). On the other hand, B has full defect
and is isomorphic to the principal block of kG if B has a non-zero central ideal, that is, a
non-zero ideal contained in the center of B (see [7, Proposition 4.1]), and it is well-known
that the structure of the principal block correlates strongly with the property of G. In [7],
Külshammer has proved the following theorem:

J(B) is central, but not a zero ideal if and only if B has a 1-dimensional
module and G is a p-nilpotent group with non-trivial abelian Sylow p-
subgroups.

The main purpose of this paper is to improve this result. More precisely, we characterize
the blocks with the property that the square of the radical is a non-zero central ideal. More-
over, we determine the blocks with the property that the cube of the radical becomes central
when p is odd.

2. Lemmas

2. Lemmas
In this section, let A be an arbitrary finite-dimensional k-algebra with center Z(A) and

Jacobson radical J(A). We denote by L(A) the Loewy length of A and we define the com-
mutator subspace of A by

[A, A] := {xy − yx | x, y ∈ A}.
Then the following holds.
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Lemma 2.1 ([7, Remark 2.2]). A[A, A] is an ideal of A.

Here, we moreover assume that A is a symmetric algebra with symmetrizing linear form
λ : A→ k. For a subspace X of A,

X⊥ := {a ∈ A | λ(aX) = 0}
is a subspace of A, (X⊥)⊥ = X and dim X + dim X⊥ = dim A. If I is an ideal of A, then so is
I⊥. Moreover, it is known that [A, A]⊥ = Z(A) and the socle S(A) of A equals J(A)⊥.

We now prove a lemma about the central ideals of A and the dimensions of A-modules.(In
this paper, an A-module always means a finitely generated right A-module.) A part of this
lemma is due to Külshammer [7, Remark 2.2 (ii)].

Lemma 2.2. Let A be a finite-dimensional symmetric k-algebra. Then the following are
equivalent:

(1) A has a non-zero central ideal, that is, a non-zero ideal contained in Z(A);
(2) A has a 1-dimensional module;
(3) A � A[A, A].

Proof. By [7, Remark 2.2 (ii)], (1) implies (2). Suppose (2) holds. Then there exists an
algebra homomorphism ρ : A → k afforded by the 1-dimensional module. Since the kernel
ker ρ of ρ is a proper ideal of A which contains [A, A], we have A[A, A] ⊆ ker ρ � A and (3)
holds. If (3) holds, then [A, A] ⊆ A[A, A] � A. Hence 0 = A⊥ � (A[A, A])⊥ ⊆ [A, A]⊥ = Z(A)
and we are in (1) by Lemma 2.1. �

In the following, we consider the central ideals in group algebras. As mentioned in the
previous section, let kG be the group algebra of a finite group G over an algebraically closed
field k of characteristic p > 0. Then kG and its blocks are symmetric algebras. In the next
lemma, we denote by G′ the commutator subgroup of G and by X+ the sum of all elements
in a subset X of G.

Lemma 2.3 ([11, Lemma 2.4]). For an ideal I in a block B of kG, the following are
equivalent:

(1) I is central;
(2) xg = x for all x ∈ I and g ∈ G′;
(3) I ⊆ B · (G′)+.

Proof. This follows from [2, Chapter III, Lemma 13.2]. �

By Külshammer [7, Proposition 4.1], a block B of kG has full defect and is isomorphic to
the principal block of kG whenever B has a non-zero central ideal. In this case, the properties
of G as a group are affected by the structure of B as an algebra. In the proposition below, we
see the relationship among the Jacobson radical J(B) of B, a Sylow p-subgroup P of G and
the focal subgroup P∗ := P ∩G′.

Proposition 2.4. Let n be a positive integer, B a block of kG, P a Sylow p-subgroup
of G, and set P∗ = P ∩ G′. If |P∗| � 1 and J(B)n is a non-zero central ideal in B, then
L(k(P/P∗)) ≤ n.
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Proof. Put I := kG[kG, kG]. Then kG/I 
 k(G/G′) (see [7, Section 4]). Let A be a
block of kG and assume A � A[A, A]. Then, by Lemma 2.2, A and B are isomorphic to the
principal block of kG and J(A)n is a non-zero central ideal of A. Hence J(A)n is contained
in A · (G′)+ (see Lemma 2.3). Since the augmentation of (G′)+ is |G′| = 0 in k, J(A)n ⊆ I
(see [7, Section 4]) and thus J(kG)n ⊆ I. Since kG/I has Jacobson radical J(kG) + I/I, this
implies L(k(G/G′)) ≤ n. Since G/G′ is an abelian group with Sylow p-subgroup P/P∗, the
claim follows. �

The Loewy length of k(P/P∗) is completely determined by the type of P/P∗. In particular,
if P/P∗ has order pr, then r(p − 1) + 1 ≤ L(k(P/P∗)) with equality if and only if P/P∗ is
elementary abelian.

We next consider the covering of blocks.

Lemma 2.5. Let n be a positive integer, B a block of kG and b a block of kH covered by
B, where H is a normal subgroup of G.

(1) If J(B)n is a central ideal of B, then J(b)n is a central ideal of b.
(2) [5, (4.1) Lemma] If |G : H| is not divisible by p, then L(B) = L(b).

Proof. Remark that J(kH) ⊆ J(kG) since H is normal in G. Let f be a primitive
idempotent in b. Then f b is a principal indecomposable b-module. Since B covers b, f b
is isomorphic to a direct summand of eB ↓H for some primitive idempotent e in B and
eBJ(kH)n ⊆ eBJ(kG)n ⊆ J(B)n. Since we can identify f J(b)n = f bJ(kH)n with a kH-
submodule of eBJ(kH)n, G′ ∩ H acts trivially on f J(b)n by Lemma 2.3. Hence we have
J(b)n =

⊕
f J(b)n ⊆ Z(b) as H′ ⊆ G′ ∩ H. �

We next consider the Loewy structures of principal indecomposable modules. For a B-
module U, we denote by L(U) the Loewy length of U.

Proposition 2.6. Let B be a block of kG and b a block of kG′ covered by B. Moreover, let
U0 be the principal indecomposable kG′-module corresponding to the trivial module and U
be an arbitrary principal indecomposable b-module. If J(B)n is a non-zero central ideal of
B for some positive integer n, then

L(U) ≤
⎧
⎪⎪⎨
⎪⎪⎩

n + 1 (U 
 U0),

n (U � U0).

In particular, if |G : G′| is not divisible by p, then L(U0) = n + 1.

Proof. Set J = J(b). Let f be a primitive idempotent in b such that f b 
 U. By the proof
of Lemma 2.5, G′ acts trivially on f Jn. This implies f Jn = 0, or f Jn is isomorphic to the
trivial kG′-module. Hence the first claim follows. The second claim is due to Lemma 2.5
(2) and n < L(B). �

At the end of this section, we consider the case that G is a direct product of two groups.

Lemma 2.7. Assume G = H × Q, where H is a subgroup of G and Q is a p-subgroup of
G. Let B be a block of kG and b a block of kH covered by B. Moreover, n and r are positive
integers such that n ≥ r. If J(B)n is a non-zero central ideal of B and J(kQ)r is not a zero
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ideal, then J(b)n−r is central in b.

Proof. The block idempotents of B and b are the same since Q is a p-group. By [8] or
[9], J(kG)n =

∑n
i=0 J(kH)n−iJ(kQ)i ⊇ J(kH)n−r J(kQ)r ⊇ J(kH)n−r · kQ+ since S(kQ) = kQ+.

Hence we obtain J(b)n−r · kQ+ ⊆ J(B)n ⊆ Z(B). Let x ∈ J(b)n−r and y ∈ b. Then xyQ+ =
xQ+y = yxQ+ and (xy − yx)Q+ = 0. Since G = H × Q, this implies xy − yx = 0. Therefore
we deduce J(b)n−r ⊆ Z(b) as claimed. �

3. Main results

3. Main results
We prove two main theorems of this paper. In the first theorem below, we remark that it

is known that J(B)2 is a zero ideal if and only if |D| ≤ 2, where D is a defect group of B.

Theorem 3.1. Let B be a block of kG. Then J(B)2 is a non-zero central ideal of B if and
only if B has a 1-dimensional module and one of the following holds:

(1) G/Op′(G) is an abelian p-group of order greater than 2;
(2) p = 2 and G/O2′(G) is isomorphic to the alternating group of degree 4;
(3) p = 3 and G/O3′(G) is isomorphic to the symmetric group of degree 3.

Proof. Set Ḡ = G/Op′(G). If (1), (2) or (3) occurs, then B 
 kḠ. In (1), 0 � J(B)2 ⊆ B =
Z(B). In (2) and (3), L(B) = 3 and all the irreducible B-modules have k-dimensions 1. Since
dim S(B) ∩ Z(B) equals the number of irreducible B-modules and dim S(B) equals the sum
of the k-dimensions of irreducible B-modules, we have 0 � J(B)2 ⊆ S(B) ⊆ Z(B).

In the following, put J = J(B) and S = S(B), and let P be a Sylow p-subgroup of G to
prove the converse. We may assume that B is the principal block of kG by [7, Proposition
4.1] and that G = Ḡ since the canonical map G → Ḡ induces an isomorphism between
the principal blocks of kG and kḠ. If p does not divide |G′|, then G is an abelian p-group
and (1) holds. Thus we suppose p divides |G′|. Let e be a primitive idempotent of B. If
eJ2 = 0, then eB is irreducible or eB/eJ 
 eS = eJ since B is symmetric. Hence we have
|P| ≤ 2, a contradiction. Thus eJ2 � 0 and eS ⊆ eJ2 ⊆ Z(B). From [7, Remark 2.2 (ii)], this
implies the k-dimension of eB/eJ 
 eS is 1. Therefore all the irreducible B-modules are 1-
dimensional and G′ ⊆ P�G (see the first half of the proof of [7, Theorem 4.2]). In particular,
G is p-solvable and B = kG. Since p divides |G′| and P �G, J(kP)4 ⊆ J4 ⊆ (B · (G′)+)2 = 0
and this yields that P is abelian (see [4, Proposition 3.1 and Corollary 3.8]) and that G � P.
Hence we can write P = G′ × CP(H) and G = PH = G′H × CP(H) for some non-trivial
p′-subgroup H of G by the Schur-Zassenhaus theorem. We now suppose G′ � P. Then
J(kCP(H)) � 0 and it follows from Lemma 2.7 that J(k(G′H)) is a non-zero central ideal in
k(G′H). Hence G′H is a p-group by [7, Corollary 4.5], but this is a contradiction. Therefore
we deduce G′ = P and this means L(kP) = 3 by Proposition 2.6. Hence P is a Klein four
group and (2) holds, or P is cyclic of order 3 and (3) holds. �

The following is a corollary of Külshammer [7, Theorem 4.3] and Theorem 3.1.

Corollary 3.2. Let B be a block of kG.

(1) ([11, Lemma 2.2]) If J(B) is commutative, then J(B)2 is central.
(2) J(B)2 is central, but J(B) is not commutative if and only if B has a 1-dimensional

module and one of the following holds:
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(a) p = 2 and G/O2′(G) is isomorphic to the alternating group of degree 4;
(b) p = 3 and G/O3′(G) is isomorphic to the symmetric group of degree 3.

In the last theorem below, we consider the blocks with the property that the cube of the
Jacobson radical becomes a central ideal when p is odd. Remark that the blocks with radical
cube zero were classified in Okuyama [10] (see also [4, Proposition 3.1]).

Theorem 3.3. Assume p ≥ 3 and let B be a block of kG.Then J(B)3 is a non-zero central
ideal of B if and only if B has a 1-dimensional module and G is a p-nilpotent group with an
abelian Sylow p-subgroup of order greater than 4.

Proof. We may assume that B is the principal block of kG by Lemma 2.2 and [7, Proposi-
tion 4.1]. Moreover, we may assume Op′(G) = 1 as mentioned in the proof of Theorem 3.1.
If G is an abelian p-group of order greater that 4, then B = kG and 0 � J(B)3 ⊆ B = Z(B).
In order to prove the converse, assume 0 � J(B)3 ⊆ Z(B). In the following, we suppose p
divides |G′| and deduce a contradiction. By [3, Theorem 1.2] and Proposition 2.6, |G : G′| is
divisible by p. Hence we have from Proposition 2.4 that p = 3 and |G : G′|3 = 3. Moreover,
|G′|3 = 3 by [10] (see again [3, Theorem 1.2] and Proposition 2.6). Hence G has an abelian
Sylow 3-subgroup P of order 9. Let b be the principal block of kO3′(G). From Lemma
2.5, J(b)3 is a non-zero central ideal in b. By Fong [1] (see [6, Proposition 4.3]), we can
write O3′(G) = L × Q, where L is a direct product of some simple groups such that L = L′

and Q is a 3-group. By [3, Theorem 1.2] and Proposition 2.6, we have |Q| � 1. Hence
J(kQ)2 � 0 and this implies |L| = 1 by Lemma 2.7 and [7, Corollary 4.5]. Therefore P is
normal in G and B = kG. By the Schur-Zassenhaus theorem, we can write P = P∗ × CP(H)
and G = PH = P∗H ×CP(H) for some p′-subgroup H of G, where P∗ := P ∩G′.As proved
above, P∗ � P. Hence J(kCP(H))2 � 0 and it follows from Lemma 2.7 that J(k(P∗H)) is
a non-zero central ideal. Thus |H| = 1 by [7, Corollary 4.5], but this is a contradiction.
Therefore we deduce that |G′| is not divisible by p, G is an abelian p-group and the claim
follows. �

If p = 2 and J(B)3 is a non-zero central ideal, then we can give an upper bound of the
order of a Sylow 2-subgroup of G by the same way above, but can not determine the structure
of G. We don’t know if G is 2-solvable.
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