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Abstract
Given a categorical dynamical system, i.e. a triangulated category together with an endofunc-

tor, one can try to understand the complexity of the system by computing the entropy of the
endofunctor. Computing the entropy of the composition of two endofunctors is hard, and in
general the result doesn’t have to be related to the entropy of the single pieces.

In this paper we compute the entropy of the composition of two spherical twists around
spherical objects, showing that it depends on the dimension of the graded vector space of mor-
phisms between them. As a consequence of these computations we produce new counterexam-
ples to Kikuta–Takahashi’s conjecture. In particular, we describe the first counterexamples in
odd dimension and examples for the d-Calabi–Yau Ginzburg dg algebra associated to the A2
quiver.
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1. Introduction

1. Introduction
In [5] the authors introduced the notion of a categorical dynamical system: a couple (T ,

Φ) of a triangulated category together with an endofunctor Φ : T → T , and that of the
entropy of an endofunctor: a function ht(Φ) : R→ [−∞,+∞).

Since their introduction, these ideas have received a lot of attention and many people
have made contributions to the subject. However, computing explicit examples of entropies
of endofunctors is a highly non-trivial task which has been accomplished only in a few cases,
e.g. tensor product with lines bundles [5], spherical twists around spherical objects [21], and
P-twist around P-objects [9].

Recently, in [17] the second author proved a theorem that relates the entropy of the twist
around a spherical functor with that of (a shift of) the cotwist. Such result potentially allows
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one to estimate the entropy of any autoequivalence as it is known that any autoequivalence
is the spherical twist around a spherical functor, see [22]. Moreover, as a fixed autoequiv-
alence can be realised as a spherical twist in many different ways, one can try to make the
computations easier by choosing a good representation as a spherical twist.

In [3] the first author described how to realise the composition of the twists around two
spherical functors as a single twist, and therefore there is a natural candidate to which Kim’s
result can be applied in order to compute the entropy of the composition of two autoequiva-
lences.

Even though these ideas seem to be profitable the general case is out of reach for the
moment. For this reason we concentrate on the case of the composition of two spherical
twists around spherical objects, which already shows interesting features.

A detailed statement would require us to consider various different cases and it goes
beyond the scope of this introduction. Hence, we will content ourselves with an imprecise
formulation.

Theorem 1.0.1. If E1 and E2 are two d-spherical objects in a k-linear, proper, dg en-
hanced, triangulated category T with a split-generator and a Serre functor, and V :=
Hom•T (E2, E1) satisfies HomDb(k)(V,V[d]) = 0, then, we can explicitly compute or “pre-
cisely” bound ht(TE2 ◦ TE1 ) when dim V = 0, 1, 2.

In contrast to the theory of entropy for dynamical systems from which it draws inspiration,
the entropy of endofunctors naturally incorporates the dependence on a real variable t ∈ R.
When evaluating the entropy at 0, h0(Φ), we speak of the categorical entropy of Φ.

Even though we are not able to compute the entropy of TE2 ◦ TE1 for all values of t ∈ R,
we are able to compute its categorical entropy. More precisely, we have

Theorem 1.0.2. With the same notation and assumptions as in Theorem 1.0.1, we have

h0(TE2 ◦ TE1 ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 dim V = 0, 1, 2

log

⎛⎜⎜⎜⎜⎜⎝ (dim V)2 − 2 +
√

(dim V)4 − 4(dim V)2

2

⎞⎟⎟⎟⎟⎟⎠ > 0 dim V ≥ 3
.

The content of the above two theorems is summed up in Theorem 4.0.1 and Theo-
rem 4.0.4.

In [16] the authors proposed a conjecture that relates the categorical entropy of an autoe-
quivalence with the spectral radius of the induced linear isomorphism on Knum(T ). More
precisely, if Φ : T → T is an autoequivalence and Knum(T ) is the numerical Grothendieck
group of T , then the conjecture says

h0(Φ) = log ρ([Φ]),

where [Φ] : Knum(T ) → Knum(T ) is the induced map and ρ([Φ]) = max{|λ| : λ eigenvalue
of [Φ]}. In [15] the authors proved the lower bound ≥, but since then counterexamples have
been found, [8], [21], [19].

Using Theorem 1.0.2 we are able to give a numerical condition that ensures when Kikuta–
Takahashi’s conjecture holds for the composition of two spherical twists, see Corollary 5.0.1.
In particular, we are able to produce the first counterexamples to Kikuta–Takahashi in odd
dimension (as hypersurfaces in Pn × Pm), see Example 5.0.2, and examples in the subgroup
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〈TS1 , TS2〉 of Aut(D(Γd
2)), where Γd

2 is the d-Calabi-Yau Ginzburg dg algebra and Si’s are the
two spherical objects supported at the vertices, see Corollary 5.1.1.

The motivation of Fan’s first counterexample to Kikuta–Takahashi’s conjecture was to
find a mirror counterpart of Thurston’s construction of a map on a surface with positive
topological entropy acting trivially on homology, [8]. The existence of a 4-dimensional
example of such a map was shown recently in [14]. In Corollary 5.1.3, we give an interpre-
tation of the A2 Ginzburg dg algebra example in terms of symplectic geometry and see that
certain compositions of Dehn twists give examples of such a map in even dimensions, see
Remark 5.1.4.

2. Entropy of the spherical twist around a spherical functor

2. Entropy of the spherical twist around a spherical functor
Let T be a k-linear triangulated category. In this paper, we study categorical dynam-

ical systems, i.e. couples (T ,Φ) where Φ : T → T is an exact endofunctor. To study
the complexity of a categorical dynamical system, [5] introduced the notion of categorical
entropy.

Definition 2.0.1. For E, F ∈ T , the categorical complexity of F with respect to E is the
function δt(E, F) : R→ [0,∞] given by

if F � 0, and δt(E, F) = 0 if F � 0. Here the infimum is taken over all possible cone
decompositions of objects of the form F ⊕ F′ into E[ni]’s.

An object G ∈ T is called a split-generator if the smallest full triangulated subcategory
containing G and closed under taking direct summands coincides with T itself.

Definition 2.0.2. Let G be a split-generator of T . The categorical entropy of an exact
endofunctor Φ : T → T is the function ht(Φ) : R→ [−∞,∞) given by

ht(Φ) = lim
n→∞

1
n

log δt(G,Φn(G)).

Remark 2.0.3. The categorical entropy is well-defined, i.e. the limit exists in [−∞,∞)
and does not depend on the choice of a split-generator [5]. Moreover it can be also written
as

ht(Φ) = lim
n→∞

1
n

log δt(G,Φn(G′))

for any choice of split-generators G,G′ of T , see [13].

Let D ,T be k-linear triangulated categories with dg enhancements.

Definition 2.0.4. An exact functor f : D → T with right and left adjoint functors f R, f L

is called a spherical functor if it satisfies the following conditions:

(1) The twist functor T f = cone( f f R ε→ IdT ) is an exact autoequivalence of T , where
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ε : f f R → IdT is the counit of the adjoint pair f � f R.
(2) The cotwist functor C f = cone(IdD

η→ f R f )[−1] is an exact autoequivalence of D ,
where η : IdD → f R f is the unit of the adjoint pair f � f R.

(3) f R � f LT f [−1].
(4) f R � C f f L[1].

Remark 2.0.5. The original definition of a spherical functor [2] requires that the isomor-
phisms in (3), (4) should come from some canonical natural transformations. However, in
[1, §1.1], the author proved that, if there is any isomorphism, then the canonical one is also
an isomorphism under the assumption that the cotwist functor is an autoequivalence.

In [17, Theorem 1.6, 1.7], the second author proved the following theorem which relates
the entropy of the twist with that of the cotwist.

Theorem 2.0.6. Let f : D → T be a spherical functor with right adjoint functor f R.

(1) Assume that the essential image of f R contains a split-generator of D . Then

ht(C f [2]) ≤ ht(T f ) ≤
⎧⎪⎪⎨⎪⎪⎩0 for every t such that ht(C f [2]) ≤ 0,

ht(C f [2]) for every t such that ht(C f [2]) ≥ 0.

(2) Assume that Ker f f R � 0. Then

ht(T f ) ≥ 0.

Example 2.0.7. This theorem can be considered as a generalisation of the computations
of the entropy of the spherical twist around a spherical object [21], and the P-twist around a
P-object [9].

Indeed, if E is a d-spherical object (d ≥ 1) in T , the functor f = − ⊗k E : Db(k)→ T is
spherical and

T f � TE , C f � [−1 − d]

where TE denotes the spherical twist around E. Since by [5, Theorem 2.6] in Db(k) we have
ht([m]) = mt for any m ∈ Z , Theorem 2.0.6 implies that

(1 − d)t ≤ ht(TE) ≤
⎧⎪⎪⎨⎪⎪⎩0 t ≥ 0

(1 − d)t t ≤ 0
.

Moreover, it also implies that if E⊥ := {F ∈ T |Hom•T (E, F) = 0} � 0, then ht(TE) = 0 for
all t ≥ 0. This is exactly the main result of [21].

The main result of [9] can be obtained similarly using a presentation of the P-twist around
a P-object as a spherical twist [22].

In general, it is not easy to verify the technical conditions of the above theorem. However,
the following lemma from [17] provides a useful sufficient condition for the assumption of
part (1) of Theorem 2.0.6.

Lemma 2.0.8. Let f : D → T be a spherical functor with a right adjoint functor
f R and G be a split-generator of D . Assume that there is an integer n > 0 such that
HomD (Cn

f (G),G) = 0. Then f R f (G ⊕C f (G) ⊕ · · · ⊕Cn−1
f (G)) is a split-generator of D .
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Proof. Set X1 = f R f (G). It sits in the distinguished triangle

(1) G
ηG−−→ f R f (G)

φ1−→ C f (G)[1]→ G[1]

defining the cotwist functor C f . Then, we inductively define a sequence {Xn}∞n=1 of objects
of D by the commutative diagram

obtained by applying the octahedral axiom.
The assumption implies that the exact triangle

G → Xn → Cn
f (G)[1]→ G[1]

splits, and therefore Xn � G ⊕ Cn
f (G)[1]. The lemma follows since Xn is split-generated by

f R f (G ⊕C f (G) ⊕ · · · ⊕Cn−1
f (G)) by construction. �

Corollary 2.0.9. Let f : D → T be a spherical functor with a right adjoint functor f R.
If there exists a split-generator G of D and an integer n > 0 such that HomD (Cn

f (G),G) = 0,
then the essential image of f R f contains a split-generator of D .

In general, computing the entropy of an endofunctor is a very hard task, and we will try
to tackle this question using Theorem 2.0.6. However, there is a case in which we can bound
the entropy using its value at zero and some asymptotic behaviour.

Proposition 2.0.10 ([10, Theorem 2.1.7], [7, Proposition 6.13, 6.14]). For any non-
nilpotent endofunctor F of T = D(T )c, T a smooth and proper dg algebra, the limits

lim
t→±∞

ht(F)
t
= τ±(F)

are finite and we have the inequalities

τ+(F)t ≤ ht(F) ≤ h0(F) + τ+(F)t t ≥ 0,

τ−(F)t ≤ ht(F) ≤ h0(F) + τ−(F)t t ≤ 0.

3. Upper triangular dg algebras and gluing

3. Upper triangular dg algebras and gluing
Let us consider two dg algebras A, B and an A-B bimodule V . From this data we can

construct a new dg algebra R := B⊕A⊕V , where the grading and the differential are defined
componentwise, and the multiplication is (b, a, v) · (b′, a′, v′) = (bb′, aa′, vb′ + av′).

This new dg algebra is sometimes denoted
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R =
(

A V
0 B

)
,

and is called an upper triangular dg algebra.
In [3] the first author used such a dg algebra to represent the composition of two spherical

twists around two spherical objects as the spherical twist around a single spherical functor.
Let us briefly recall this construction. Consider T a k-linear, proper, dg enhanced tri-

angulated category with a split-generator and a Serre functor ST . Take E1 and E2 two
d-spherical objects in T , i.e. they satisfy

ST Ei � Ei[d], Hom•T (Ei, Ei) :=
⊕
n∈Z

HomT (Ei, Ei[n])[−n] � k[t]
/
t2 , deg(t) = d,

where the second isomorphism is of graded algebras.
Then, we can construct the autoequivalence

Ti(F) := cone
(
Hom•T (Ei, F) ⊗ Ei → F

)
called the spherical twist around Ei, see [23].

Consider dg lifts E′1, E′2 of the Ei’s in a dg enhancement  of T ; then, the dg k-
module Hom(E′2, E

′
1) has associated graded module H•(Hom(E′2, E

′
1)) isomorphic to V :=

Hom•T (E2, E1). Define the upper triangular dg algebra R′ = k ⊕ k ⊕Hom(E′2, E
′
1) and con-

sider E′2 ⊕ E′1 as a left dg module over R′. Here the first (resp. second) copy of k acts on the
right (resp. left) Hom(E′2, E

′
1) via the identity of E′2 (resp. E′1). Notice however that such

an upper triangular dg algebra is formal because we can write an explicit quasi isomorphism
H•(R′) → R′ by choosing representatives of the cohomology classes of Hom(E′2, E

′
1). In

particular, the dg enhancement of T doesn’t matter in this particular construction, and we
directly consider the graded algebra R := k ⊕ k ⊕ V .

With these remarks in mind, [3, Theorem 3.2.1] can be stated as follows1

Theorem 3.0.1. The left R-module E2 ⊕ E1 defines a spherical functor

D(R)c f :=− L⊗R(E2⊕E1)−−−−−−−−−−−→ T

whose twist is given by T f � T2 ◦ T1 and whose cotwist is given by C f � − L⊗R R∗[−1 − d].

Remark 3.0.2. In [3] the cotwist was described for the dg algebra and not for its associ-
ated graded algebra. The description of the cotwist in the above formulation follows from
the fact that if A → B is a quasi isomorphism of dg algebras, then the dual map B∗ → A∗ is
quasi isomorphism of A-A dg bimodules.

In particular, as R is smooth and proper, we see that the cotwist gives Serre duality on
D(R)c up to a shift, see [24].

3.1. A distinguished triangle.
3.1. A distinguished triangle. Our aim is now to give sufficient conditions under which

the assumption of part (1) of Theorem 2.0.6 is verified for the case of the composition of
two spherical twists around spherical objects.

1Here, for a triangulated category T with arbitrary direct sums we denote T c the subcategory of compact
objects.
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As a consequence of Theorem 3.0.1, we get the distinguished triangle of right R dg mod-
ules

R→ RHomT (E2 ⊕ E1, E2 ⊕ E1)→ R∗[−d]→ R[1],

where RHomT (E2 ⊕ E1, E2 ⊕ E1) denotes the dg endomorphism algebra of (a dg lift of)
E2 ⊕ E1 in some dg enhancement of T . This is triangle (1) for the spherical functor of
Theorem 3.0.1.

By Lemma 2.0.8 we know that to satisfy the technical condition of Theorem 2.0.6 is
enough to prove

0 = HomD(R)(R∗[−d],R[1]) � H1+d(R!), R! = RHomR-R(R,R ⊗k R).

Recall that V = Hom•T (E2, E1). We have

Lemma 3.1.1. If

V1+d = (V∗)d = (V ⊗k V∗)d = (V∗ ⊗k V ⊗k V)d = 0,

then H1+d(R!) = 0.

Proof. For clarity let us denote k1 the copy of k acting on R via idE1 and k2 the one acting
via idE2 . Then, by the definition of R we have the distinguished triangle of R-R bimodules
(see e.g. the proof of [18, Proposition 3.11])

R ⊗k1 V ⊗k2 R→ R ⊗k1 R ⊕ R ⊗k2 R→ R→ R ⊗k1 V ⊗k2 R[1].

Applying the functor RHomR-R(−,R ⊗k R), we get the distinguished triangle

R! →
RHomR-R(R ⊗k1 R,R ⊗k R)

⊕
RHomR-R(R ⊗k2 R,R ⊗k R)

→ RHomR-R(R ⊗k1 V ⊗k2 R,R ⊗k R)→ R![1].

Now notice that2

k1R � k1 ⊕ V k2R � k2 Rk1 � k1 Rk2 � V ⊕ k2.

Using these isomorphisms of bimodules we can simplify the above distinguished triangle
and get

R! → k ⊕ k ⊕ V ⊕ V → V∗ ⊕ V∗ ⊗ V ⊕ V∗ ⊗ V ⊕ V∗ ⊗ V ⊗ V → R![1].

Then, the statement follows from taking the long exact sequence induced by the above
distinguished triangle. �

We now wish to show that all of the conditions of Lemma 3.1.1 can be achieved if V
satisfies3 HomDb(k)(V,V[d]) = 0.

Definition 3.1.2. For a graded vector space V we denote max V (resp. min V) the maxi-
mum (resp. minimum) degree of a non-zero element of V .

2Here the subscript means that we are restricting the action via the inclusion ki ↪→ R.
3Notice that V is bounded by construction as T is proper.
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Notice that if max V ≤ d, then V1+d = 0; if max V < −d, then (V∗)d = 0; and if 2 max V −
min V < d, then (V∗ ⊗k V ⊗k V)d = 0. Furthermore, notice that if we exchange E1 with
E1[n] the spherical twist does not change: TE1[n] � T1, but the degrees in which Vn =

Hom•T (E2, E1[n]) lives do. More precisely, we have

max Vn = max V − n 2 max Vn −min Vn = 2 max V −min V − n.

In particular, if we take n >> 0 the three inequalities above can always be achieved, and the
only remaining vanishing required by Lemma 3.1.1 is (V∗ ⊗k V)d = HomDb(k)(V,V[d]) = 0.

Hence we get

Lemma 3.1.3. Let E1 and E2 be two d-spherical objects in T a k-linear, proper, dg en-
hanced triangulated category with a split-generator and a Serre functor. Set V :=
Hom•T (E2, E1).

If HomDb(k)(V,V[d]) = 0, then, up to replacing E1 with E1[n] and V with V[n] for n >> 0,
the assumption of part (1) of Theorem 2.0.6 are satisfied for the spherical functor

D(R)c f :=− L⊗R(E2⊕E1)−−−−−−−−−−−→ T .

Let us remark that we do not know whether the condition HomDb(k)(V,V[d]) = 0 is really
needed or whether it can be removed by a more thorough study of the map R∗[−d]→ R[1].

Remark 3.1.4. In principle what we did in this section can be done for any upper tri-
angular dg algebra, and hence one could try to find sufficient conditions under which the
hypothesis of part (1) of Theorem 2.0.6 is satisfied for any couple of spherical functors.

Unfortunately, the problem is that the terms involved are now RHom’s between dg bi-
modules over the dg algebras A and B from which the upper triangular dg algebra R is
constructed. Hence, homs can go in any direction regardless of the cohomological bounds
we impose.

However, it is worthy to point out that in the case of the dg algebra arising from [3,
Theorem 4.1.2] for the composition of many spherical twists around spherical objects it is
still possible to give sufficient conditions based on cohomological bounds (because we can
bring all the RHom’s back at the vertices of the dg algebra).

3.2. Categorical entropy of the Serre functor.
3.2. Categorical entropy of the Serre functor. Theorem 3.0.1 and Lemma 3.1.1 tell

us that if HomDb(k)(V,V[d]) = 0, V = Hom•T (E2, E1), then the entropy of T2 ◦ T1 can be
computed by computing the entropy of the Serre functor for D(R)c, R = k ⊕ k ⊕ V (up to
shift V , but we will not care about this because shifting V will not affect the final result, as
it ought to be).

Even though our motivation for computing the entropy of the Serre functor of D(R)c is
computing the entropy of T2 ◦ T1, the results of this section apply for any upper triangular
dg algebra of the form k ⊕ k ⊕W where W is a graded vector space with 2 ≤ dim W < ∞.
Hence, in the following A will denote any such upper triangular dg algebra.

We know by [24] that the Serre functor for D(A)c is given by SA := − L⊗A A∗, so the only
thing we have to do is to compute ht(SA).

Unfortunately, this is not an easy task for a general t ∈ R. However, using the results of
[6], we will be able to compute the categorical entropy of SA, i.e. h0(SA) (and the entropy
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itself in the case dim W = 2).

Remark 3.2.1. In [5, pag. 32] the authors state the value of the entropy of the Serre func-
tor for the derived category of the Kronecker quiver with m ≥ 3 arrows. Our computations
will recover that value when W lives only in degree 0, and they will show that the grading
on W does not affect h0(SA).

As our category is of the form D(A)c, by [5, Theorem 2.6] we know that computing h0(SA)
amounts to computing

lim
m→+∞

1
m

log

⎛⎜⎜⎜⎜⎜⎝∑
n∈Z

dim Hn
(
(A∗)⊗Am

)⎞⎟⎟⎟⎟⎟⎠ .
Thanks to4 [6, Lemma 8.2], we know that∑

n∈Z
dim Hn

(
(A∗)⊗Am

)
= d2m−2 + d2m−3 + d2m−1 + d2m−2,

where dm satisfies the relations

(2)

dm+2 + dm = dm+1 · dim W ∀ m ≥ −1

d1 = dim W

d0 = 1

d−1 = 0.

Set N = dim W. To solve this recurrence relation we use the characteristic equation

Nσ−1 − σ−2 = 1 ⇐⇒ σ± =
N ± √N2 − 4

2
.

We see that we have to distinguish between two cases.
If N = 2 the the solution to the recurrence equation is given by

dm = m + 1.

If N ≥ 3 then the solution is given by

dm = ασ
m
− + βσ

m
+ , α =

1
2
− N

2
√

N2 − 4
, β =

1
2
+

N

2
√

N2 − 4
.

Hence we get

Lemma 3.2.2. We have

h0(SA) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 dim W = 2

log

⎛⎜⎜⎜⎜⎜⎝ (dim W)2 − 2 +
√

(dim W)4 − 4(dim W)2

2

⎞⎟⎟⎟⎟⎟⎠ > 0 dim W ≥ 3
.

Proof. Notice that by the recurrence relations (2) we have∑
n∈Z

dim Hn
(
(A∗)⊗Am

)
= (2 + dim W)d2m−2.

4What we denote dm is dimψm(W) in ibidem.
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Hence we have

h0(SA) = lim
m→+∞

1
m

log(d2m−2).

If N = 2 we have

h0(SA) = lim
m→+∞

1
m

log(2m − 1) = 0.

If N ≥ 3 have

h0(SA) = lim
m→+∞

1
m

log(ασ2m−2
− + βσ2m−2

+ )

= lim
m→+∞

1
m

(2m − 2) log(σ+) = log(σ2
+),

where in the second line we used that σ+ > σ− and β � 0. �

Proposition 3.2.3. Set w = max W −min W. If dim W = 2, we have

ht(SA) =
{

(1 − w)t t ≤ 0
(1 + w)t t ≥ 0

.

Proof. This follows from Lemma 3.2.2, [6, Proposition 8.4], [7, Proposition 6.13], and
Proposition 2.0.10. �

4. Composition of two spherical twists around spherical objects

4. Composition of two spherical twists around spherical objects
Now that we have introduced all the pieces that we need, we can move on to compute the

categorical entropy of the composition of two spherical twists around spherical objects, and
in some cases the entropy itself.

Let us recall the setting. We have T a k-linear, proper, dg enhanced triangulated category
with a split-generator and a Serre functor. Moreover, we have two d-spherical objects E1,
E2 ∈ T , and we want to compute the entropy of T2 ◦ T1, where Ti = TEi .

By Theorem 3.0.1 we know that for f = − L⊗R (E2 ⊕ E1) : D(R)c → T , where R =
k ⊕ k ⊕ Hom•T (E2, E1), we have T2 ◦ T1 � T f , C f � SR[−1 − d].

Moreover, by Lemma 3.1.3 we know that if HomDb(k)(V,V[d]) = 0, V = Hom•T (E2, E1),
then we can compute the entropy of T2 ◦ T1 using Theorem 2.0.6.

Finally, by Lemma 3.2.2 we know the exact value h0(SR) when dim V ≥ 2.
Let us put together all these pieces to get the following results.

Theorem 4.0.1. Assume HomDb(k)(V,V[d]) = 0. Then the categorical entropy of T2 ◦ T1

is given by

h0(T2 ◦ T1) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
0 dim V = 0, 1, 2

log

⎛⎜⎜⎜⎜⎜⎝ (dim V)2 − 2 +
√

(dim V)4 − 4(dim V)2

2

⎞⎟⎟⎟⎟⎟⎠ > 0 dim V ≥ 3
.

Moreover, if dim V = 0 we have

ht(T2 ◦ T1) =
{

(1 − d)t t ≤ 0
≤ 0 otherwise

,
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while if dim V = 1 we have

ht(T2 ◦ T1) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(
4
3
− d

)
t ∀t :

(
4
3
− d

)
t ≥ 0

≤ 0 otherwise
.

In all cases, if E⊥1 ∩ E⊥2 � 0, then ht(T2 ◦ T1) ≥ 0.

Proof. When dim V ≥ 2, the first statement is a rephrasing of Lemma 3.2.2 taking into
account C f = SR[−1 − d].

If dim V = 0 we have R = k ⊕ k and SR = id ⊕ id on D(R)c � D(k)c ⊕D(k)c. Hence, using
[5, Theorem 2.6] to compute ht(SR), we have

ht(T2 ◦ T1) = ht(SR)︸︷︷︸
=0

+(1 − d)t = (1 − d)t ∀t : (1 − d)t ≥ 0

and ht(T2 ◦ T1) ≤ 0 otherwise.
If dim V = 1 we can always shift V so that R is the path algebra of the Dynkin quiver

A2. Hence, D(R)c is fractional Calabi–Yau of dimension 1/3, see [11], [4]. For any d ≥ 1
Lemma 3.1.3 applies (without need of further shifting V), and therefore, using once again
[5, Theorem 2.6], we get

ht(T2 ◦ T1) = ht(SR) + (1 − d)t =
(
4
3
− d

)
t ∀t :

(
4
3
− d

)
t ≥ 0

and ht(T2 ◦ T1) ≤ 0 otherwise.
The statement about the case in which the common orthogonal is not zero follows from

Theorem 2.0.6. �

Remark 4.0.2. When dim V = 0 the twists T2 and T1 commute with each other. In this
case the result we obtained can also be proved using the same strategy used in [21, Theorem
3.1].

Remark 4.0.3. It was noticed in [20, Theorem 3.1] and [19, Remark 3.5] that the com-
position of many spherical twists can have positive categorical entropy, but the value of the
entropy was not computed. The above theorem gives the precise value of the entropy of the
composition of two spherical twists and tells us when it is positive.

Theorem 4.0.4. Assume HomDb(k)(V,V[d]) = 0 and set w = max V−min V. If dim V = 2,
then we have the following:

(1) if d + w ≥ 2 and d − w > 2, then

ht(T2 ◦ T1) =
{

(2 − (d + w))t t ≤ 0
≤ 0 t ≥ 0

;

(2) if d + w ≥ 2 and d − w ≤ 2, then

ht(T2 ◦ T1) =
{

(2 − (d + w))t t ≤ 0
(2 − (d − w))t t ≥ 0

;

(3) if d + w < 2 and d − w > 2, then
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ht(T2 ◦ T1) ≤ 0 ∀t ∈ R;

(4) if d + w < 2 and d − w ≤ 2, then

ht(T2 ◦ T1) =
{ ≤ 0 t ≤ 0

(2 − (d − w))t t ≥ 0
.

In all cases, if E⊥1 ∩ E⊥2 � 0, then ht(T2 ◦ T1) ≥ 0.

Proof. Theassumptions, togetherwithTheorem 2.0.6,Lemma 3.1.3, andProposition 3.2.3,
imply that5

ht(T2 ◦ T1) = ht(SR) + (1 − d)t =
{

(2 − (d + w))t t ≤ 0
(2 − (d − w))t t ≥ 0

as long as the right hand side is bigger than or equal to 0, and ht(T2 ◦T1) ≤ 0 otherwise. The
statement of the theorem then follows by a case by case argument. �

5. Counterexamples to Kikuta–Takahashi

5. Counterexamples to Kikuta–Takahashi
In this section, using Theorem 4.0.1, we will produce new counterexamples to Kikuta–

Takahashi’s conjecture [16]. In particular, we will produce the first counterexamples in odd
dimension.

Let T be a k-linear, proper, dg enhanced triangulated category with a Serre functor and
a split-generator, and let K(T ) be its Grothendieck group. The Euler form χ : K(T ) ×
K(T )→ Z is defined by

χ([E], [F]) =
∑
i∈Z

(−1)i dim HomT (E, F[i]).

We define the numerical Grothendieck group Knum(T ) as6

Knum(T ) = K(T )/〈[E] ∈ K(T ) | χ([E],−) = 0〉.
Note that the induced Euler form χ : Knum(T ) × Knum(T ) → Z is non-degenerate. In this
section, we only consider triangulated categories whose numerical Grothendieck groups are
of finite rank.

Corollary 5.0.1. Let E1, E2 ∈ T be d-spherical objects and V = Hom•T (E2, E1). Sup-
pose [E1], [E2] are non-zero and linearly independent in Knum(T ), that HomDb(k)(V,V[d]) =
0, and that χ([E2], [E1]) � ±2 if d is even, χ([E2], [E1]) � 0 if d is odd. If dim V = 0, 1, 2,
then

h0(T2 ◦ T1) = log ρ([T2 ◦ T1]) = 0,

and if dim V ≥ 3, then

h0(T2 ◦ T1) ≥ log ρ([T2 ◦ T1]),

5Here R depends on how much we shift E1, but the entropy of the Serre functor does not, so we drop the
dependence on n.

6Notice that the existence of a Serre functor implies that the right and left radical of χ agree, so there is no
ambiguity in the definition of Knum(T ).
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where the equality holds if and only if χ([E2], [E1]) = ± dim V.

Proof. First of all, notice that as [E1], [E2] are assumed to be non-zero and linearly in-
dependent the subspace W := Span([E1], [E2]) is two dimensional. Moreover, the fact that
[E1], [E2] are d-spherical implies W⊥ = ⊥W.

The assumptions on χ([E2], [E1]) imply that the restriction of χ to W is non-degenerate.
Hence, we get a basis of Knum(T ) ⊗Z R by taking [E1],[E2] and a basis of W⊥.

By definition, we have

[Ti](v) = v − χ([Ei], v)[Ei] ∀ v ∈ Knum(T ).

Denote λ = χ([E2], [E1]). Then, with respect to the previously chosen basis,

[T2 ◦ T1] =
(

A 0
0 Id

)

where

A = (−1)1−d
(

1 λ

−λ 1 − λ2

)
.

The eigenvalues are

λ2 − 2 ± √λ4 − 4λ2

2
,

and the logarithm of the spectral radius is7

log ρ([T2 ◦ T1]) = log

∣∣∣∣∣∣∣
λ2 − 2 +

√
λ4 − 4λ2

2

∣∣∣∣∣∣∣ .
By Theorem 4.0.1, we have

h0(T2 ◦ T1) = log

∣∣∣∣∣∣∣
(dim V)2 − 2 +

√
(dim V)4 − 4(dim V)2

2

∣∣∣∣∣∣∣.
This shows the statement for dim V = 0, 1, 2. As the function

x �→ log

⎛⎜⎜⎜⎜⎜⎝ x − 2 +
√

x2 − 4x
2

⎞⎟⎟⎟⎟⎟⎠
is injective on x ≥ 4, we also get the statement for dim V ≥ 3. �

Example 5.0.2. Consider Pn × Pm with either
(1) n ≥ 3, n odd, m ≥ 2, m even;
(2) n,m ≥ 2, n,m even.

Take X to be the zero locus of a general section of Pn×Pm(n+1,m+1). Then, from the exact
sequence

Pn×Pm(−n − 1,−m − 1)→ Pn×Pm → X

we see that X is a true Calabi–Yau manifold of dimension m + n − 1. In particular, line

7Notice that here we are taking the absolute value of (possibly) a complex number.



666 F. Barbacovi and J. Kim

bundles on X are d := m + n − 1 spherical objects.
Consider  = X(n + 1, 0). Then, from the above exact sequence we see that

RΓ() � kN ⊕ k[−m + 1] N =
(

2n + 1
n + 1

)

In particular, if we set V = Hom•Db(X)(X ,), we have: dim V = N + 1, and λ = N − 1 > 2 in
case (1) (m is even and n ≥ 3), λ = N − 1 > 0 in case (2) (m is even and n ≥ 2). Moreover,
we have max V −min V = m − 1 < d, and therefore HomDb(k)(V,V[d]) = 0.

As the line bundles X and  have linearly independent classes in Knum(Db(X)),8 Corol-
lary 5.0.1 applies. In particular, we get

log
(
ρ(TX ◦ T)

)
< h0

(
TX ◦ T

)
,

thus contradicting Kikuta–Takahashi’s conjecture.

5.1. A2 Ginzburg dg algebra.
5.1. A2 Ginzburg dg algebra. The d-Calabi–Yau Ginzburg dg algebra Γd

2 associated to
the A2 quiver is defined as follows. First, as a graded algebra, it is the path algebra of the
graded quiver with two vertices {1, 2} and four arrows: a : 1 → 2 in degree 0, a∗ : 2 → 1 in
degree 2−d and ti : i→ i (i = 1, 2) in degree 1−d. The differential is given by da = da∗ = 0,
dt1 = aa∗ and dt2 = −a∗a.

Let Dd
2 be the derived category of dg Γd

2-modules with finite dimensional cohomology.
It is known that Dd

2 is a d-Calabi–Yau category and the simple modules S1, S2 are spherical
objects such that V = Hom•

Dd
2
(S2, S1) = C[1 − d]. Denote by T1, T2 the spherical twists

around them; we obtain a braid group action via Br3 = 〈σ1, σ2〉 � σi �→ Ti. We call an object
a reachable spherical object if it is isomorphic to an objectσSi for someσ ∈ Br3 and i = 1, 2.
For two reachable spherical objects E1, E2, the Poincaré polynomial of Hom•

Dd
2
(E2, E1), i.e.

(3) p(E2, E1) =
∑
n∈Z

dim HomDd
2
(E2, E1[n])qn

coincides with a weighted intersection number of some arcs on the disk with 3 marked
points, [12]. Let us recall the precise statement.

Let (D,Δ) be the unit disk D with 3 marked points Δ = {p1, p2, p3} ⊂ D. A closed arc in
(D,Δ) is an embedding c : [0, 1] → D such that c−1(Δ) = {0, 1}. Define P = P(T (D \ Δ))
to be the real projectivisation of the tangent bundle of D \ Δ. By considering an oriented
trivialization of D, we can identify P with RP1 × (D \ Δ). For each pi, take a small loop λi

winding pi positively once. Then [pt × λi] and [RP1 × pt] form a basis of H1(P,Z). Define
α ∈ H1(P,Z2) by α([pt×λi]) = (−2, 1) and α([RP1×pt]) = (1, 0). Let P̃ be the covering space
with covering group Z determined by α. A bigraded closed arc (c, c̃) (or c̃ for short) in (D,Δ)
is a closed arc c in (D,Δ) together with a lift c̃ : (0, 1) → P̃ of the section sc : (0, 1) → P
given by sc(t) = Tc(t)c.

Let c̃0, c̃1 be bigraded closed arcs having minimal intersection in the sense that they in-
tersect transversely and do not bound a disk. We shall define a bigrading of an intersection
point z ∈ c0 ∩ c1. Take a small loop l around z and an arc a : [0, 1] → l ⊂ D which moves
clockwise along l and a−1(ci) = {i} for i = 0, 1. Let us also take a path π : [0, 1] → P
such that π(t) ∈ Pa(t) for all t, π(i) = Ta(i)ci for i = 0, 1 and π(t) � Ta(t)l for all t. Let

8E.g. their Euler pairing is non-zero.
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π̃ : [0, 1] → P̃ be the lift of π with π̃(0) = c̃0(a(0)). Then we have c̃1(a(1)) = (μ1, μ2) · π̃(1)
for a unique (μ1, μ2) ∈ Z2 which acts as a covering transformation. In this case, we denote
(μ1(z), μ2(z)) = (μ1, μ2) and define the bigraded intersection number of c̃0 and c̃1 to be

I(c̃0, c̃1) = (1 + q−1
1 q2)

∑
z∈(c0∩c1)\Δ

qμ1(z)
1 qμ2(z)

2 +
∑

z∈c0∩c1∩Δ
qμ1(z)

1 qμ2(z)
2 ∈ Z[q±1

1 , q±1
2 ].

It was shown in [12] that the behavior of reachable spherical objects of Dd
2 can be read off

from the topology of bigraded closed arcs in (D,Δ). More precisely, there are some bigraded
closed arcs b̃1, b̃2 and a braid group action Br3 = 〈σ1, σ2〉 � σi �→ ti, where ti is the half
twist around bi, on the set of isotopy classes of (admissible) bigraded curves satisfying

(4) p(σSi, τS j) = I(σb̃i, τb̃ j)|q1=q,q2=qd
9

for any σ, τ ∈ Br3 and i, j = 1, 2.

Corollary 5.1.1. Let E1, E2 be reachable spherical objects which are non-isomorphic to
each other up to shift. Then self extensions of V = Hom•

Dd
2
(E2, E1) have degree of the form

k(d − 1) for some k ≥ 0. In particular, we have

h0(T2 ◦ T1) = log

∣∣∣∣∣∣∣
(dim V)2 − 2 +

√
(dim V)4 − 4(dim V)2

2

∣∣∣∣∣∣∣.
Moreover,

h0(T2 ◦ T1) = log ρ([T2 ◦ T1])

holds if and only if dim V = 1, 2 or dim V ≥ 3 and d is odd.

Remark 5.1.2. Notice that in the above corollary the case dim V = 0 does not appear.
This is because the dimension of V is at least one in the above setup. Indeed, each Ei

corresponds to some closed arc bi on the disk with 3 marked points, and the dimension of
V can be computed via (3) and (4) setting q = 1. Since b1 and b2 share at least one marked
point, the dimension of V is at least 1.

Proof. For simplicity, we assume that the marked points on the disk are p1 = (− 1
2 , 0), p2 =

(0, 0), p3 = ( 1
2 , 0). Without loss of generality, we can assume that E2 = S2 and a bigraded

closed arc b̃2 corresponding to it is the straight arc connecting p2 and p3. Let c̃ be a bigraded
closed arc corresponding to E1. By twisting around b2, we can assume c has p2 as one of its
end points. Denote the intersection points of b2 and c by zi = (ai, 0) where 0 = a1 < a2 <

· · · < an ≤ 1
2 .

To prove the first claim, it is enough to prove that

δi = μ1(zi+1) + dμ2(zi+1) − (μ1(zi) + dμ2(zi)) = k(d − 1)

for some k ∈ Z and for all i. Here, we shall only show it for the case i = 1 as the other cases
can be shown similarly. Up to twisting around b2,10 we have four possibilities in that case
which are depicted in Figure 1. For each of four cases, δ1 is d − 1, 2(d − 1),−2(d − 1) and
−3(d − 1) respectively.

9We only need the existence of such bigraded closed arcs, for their explicit description see [12].
10Note that twisting around b2 doesn’t change δi.
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Fig.1. δ1 is d − 1 (top left), 2(d − 1) (top right), −2(d − 1) (bottom left) and
−3(d − 1) (bottom right) respectively.

The second claim can be seen by noticing that χ([E2], [E1]) = dim V when d is odd while
|χ([E2], [E1])| = 1, 2 when d is even.11 �

This example has the following symplecto-geometric interpretation. Let Xd
2 be the Milnor

fiber of A2-singularity of dimension 2d > 2 and L1, L2 be the vanishing cycles (equipped
with suitable grading structures). It is known that L1, L2 split-generate the (split-closed)
derived Fukaya category Dπ

 (Xd
2 ). Since S1, S2 also split-generate the finite-dimensional

derived category Dd
2 and the graded algebra

2⊕
i, j=1

Hom•Dπ (Xd
2 )(Li, Lj) �

2⊕
i, j=1

Hom•
Dd

2
(Si, S j)

is intrinsically formal (see [23, Lemma 4.21]), we have an exact equivalence

Dπ
 (Xd

2 ) � Dd
2 .

In particular, under this equivalence, Li corresponds to Si and the Dehn twist τi around Li

corresponds to the spherical twist Ti around Si. Therefore, Corollary 5.1.1 can be stated in
terms of symplectic geometry.

Corollary 5.1.3. Let L1, L2 be reachable Lagrangian spheres in Xd
2 . Then we have

h0(τ2 ◦ τ1) = log

∣∣∣∣∣∣∣
m2 − 2 +

√
m4 − 4m2

2

∣∣∣∣∣∣∣
where m = dim HF•(L2, L1).

Remark 5.1.4. Let d be even and b̃1, b̃2 be the bigraded closed arcs corresponding
to L1, L2 respectively. Suppose b̃1 and b̃2 share only one end point. Then, p(L1, L2) =
I(b̃1, b̃2)|q1=q,q2=qd implies that λ = χ(L1, L2) = ±1. Thus, by the Picard–Lefschetz formula,
(τ2 ◦ τ1)3 acts on Hd(Xd

2 ,Z) = 〈[L1], [L2]〉 as

11When d is even, the absolute value of χ([E2], [E1]) is exactly the number of common end points of the
closed arcs corresponding to E1, E2.
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( −1 ∓1
±1 0

)3

=

(
1 0
0 1

)
,

i.e. it is in the symplectic Torelli group of Xd
2 . As we have seen, the categorical entropy of

τ2 ◦ τ1 (and also (τ2 ◦ τ1)3) is positive whenever dim HF•(L2, L1) ≥ 3. Therefore, in such a
case, (τ2◦τ1)3 gives a higher-dimensional counterexample to Kikuta–Takahashi’s conjecture
coming from an element in the symplectic Torelli group having positive categorical entropy.
This answers a question in [14, Problem 1.2] about the existence of such an autoequivalence
for higher-dimensions.
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