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Abstract
Let G be a finite group. It is known that if a homotopy sphere X has a one-fixed-point smooth

G-action then the dimension of X is greater than or equal to 6. It is also known that there is an
effective 2-pseudofree one-fixed-point smooth G-action on the sphere Sn of dimension n if and
only if n is equal to 6 and G is isomorphic to the alternating group A5 on five letters. E. Stein
proved that for the group G = SL(2, 5) × Zm such that m is prime to 30, there is a 3-pseudofree
one-fixed-point smooth G-action on S7, where Zm is a cyclic group of order m. In this article,
we determine the finite groups G possessing 3-pseudofree one-fixed-point smooth G-actions on
S6. In addition, for an arbitrary finite group G isomorphic to A5, A5 × Z2, or SL(2, 5) × Zm such
that m is prime to 30, we prove that there is a 3-pseudofree one-fixed-point smooth G-action on
S7.

1. Introduction

1. Introduction
In this paper, G is a finite group and we read a G-manifold as a smooth manifold with

a smooth G-action. Let (G) denote the set of all subgroups of G and E the trivial group.
The set (G) is an ordered set (possibly not a totally ordered set), i.e. for H, K ∈ (G),
we say H < K if H is a proper subgroup of K. For a subset A of (G), let max(A) denote
the set of maximal elements of A with respect to the order on A inherited from (G). A
real G-representation V is called free if dim VH = 0 for all H ∈ (G) � {E}. Let m be a
non-negative integer. We call a G-action on a manifold X m-pseudofree if dim XH ≤ m for
all H ∈ (G) � {E}. We call an m-pseudofree G-action on X properly m-pseudofree if there
is a subgroup H ∈ (G) � {E} such that dim XH = m. We call a G-action on X a one-fixed-
point action if XG consists of exactly one point. It is known that the Poincaré sphere (a
homology sphere of dimension 3) admits a one-fixed-point action of the alternating group
A5 on five letters. However the works M. Furuta [12], S. Demichelis [9] and N. Buchdahl–
S. Kwasik–R. Schultz [7] together show that any homotopy sphere of dimension ≤ 5 does
not admit a one-fixed-point action of finite group. Therefore a homotopy sphere Σ possessing
a one-fixed-point action of finite group satisfies dimΣ ≥ 6. The existence of one-fixed-point
G-action on a homotopy sphere makes it look like there exists a one-fixed-point G-action on
the same dimensional sphere.
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Our present study was motivated by the following results of E. Laitinen–P. Traczyk [17].
Unless otherwise stated, let Σ be a homotopy sphere of dimension ≥ 5 equipped with a G-
action and let x0 be a G-fixed point of Σ. For a G-fixed point x of Σ, let Tx(Σ) denote the
tangential G-representation of Σ at x. The trivial real G-representation of dimension 1 will
be denoted by R.

Laitinen–Traczyk Theorem 1. Suppose the G-action on Tx0 (Σ) is 2-pseudofree. If the G-
fixed-point set ΣG contains at least 2 points then ΣH is diffeomorphic to the k-dimensional
sphere, where k is 0, 1, or 2, for any H ∈ (G) � {E}.

They obtain the next result as a corollary to the theorem above from S. Illman [13, Theo-
rem 5].

Laitinen–Traczyk Theorem 2. Suppose the G-action on Tx0 (Σ) is 2-pseudofree. Then
for any x ∈ ΣG, the tangential G-representation Tx(Σ) is G-homeomorphic to Tx0 (Σ). In
addition, Σ is G-homeomorphic to the unit sphere of R ⊕ V, where V = Tx0 (Σ).

They obtained a necessary condition on 2-pseudofree one-fixed-point G-actions on ho-
motopy spheres.
Laitinen–Traczyk Theorem 3. If ΣG = {x0} and Tx0 (Σ) is a 2-pseudofree G-representation
then dimΣ = 6, the group G is isomorphic to A5, and Tx0 (Σ) is the direct sum of two
irreducible real G-representations of dimension 3.

We recall the following facts concerning the existence of one-fixed-point actions of finite
group on spheres. Let Sn denote the sphere of dimension n.

(F1) In [32, Proposition 4.3], E. Stein showed the existence of 3-pseudofree one-fixed-
point actions on S7 of the group SL(2, 5) × Zm satisfying (m, 30) = 1.

(F2) In [19, Theorem A], [22, Theorem A], we showed the existence of 2-pseudofree
one-fixed-point actions on S6 of A5.

(F3) In [3, Theorem 7], A. Bak and the author showed the existence of 3-pseudofree
one-fixed-point actions on S7 of A5.

Therefore, putting Laitinen–Traczyk Theorem 3 and (F2) together, we see that a homotopy
sphere Σ admits a 2-pseudofree one-fixed-point action of finite group if and only if dimΣ =
6.

In the present paper, we will obtain the following two theorems from Laitinen–Traczyk
Theorems 1–3.

Theorem 1.1. Suppose that Σ is of even dimension ≥ 6 and the G-action on Tx0 (Σ) is
3-pseudofree. If the G-fixed-point set contains at least 2 points then ΣG is a Z2-homology
sphere of dimension ≤ 3, and for any x ∈ ΣG, Tx(Σ) is 〈g〉-homeomorphic to Tx0 (Σ) for any
g ∈ G.

Theorem 1.2. If Σ is of even dimension ≥ 6, Tx0 (Σ) is a properly 3-pseudofree G-
representation, and ΣG = {x0}, then dimΣ = 6 and either (1) or (2) below holds.

(1) G is isomorphic to the symmetric group S5 on five letters, and Tx0 (Σ) is an irreducible
real G-representation.

(2) G is isomorphic to A5 × Z such that Z is a group of order 2, and the real G-
representations VZ and VZ are irreducible and 3-dimensional, where V = Tx0 (Σ),
VZ is the Z-fixed-point set of V, and VZ is the orthogonal complement of VZ in V.
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In addition, S. Tamura and the author [27] showed that S5 does not admit a one-fixed-
point action on S7, and P. Mizerka [18] showed that TL(2, 5) (the GAP ID is 240(89)) does
not admit an effective one-fixed-point action on Sn for any n ≤ 13.

In the present paper, we will also prove the next existence result of one-fixed-point actions
of finite group on spheres.

Theorem 1.3. For the integer n, the finite group G, and the real G-representation V
described below, there is an effective one-fixed-point G-action on the sphere S of dimension
n such that Tx0 (S) is isomorphic to V as real G-representations, where x0 is the G-fixed point
of S.

(1) n = 6:
(i) G = A5 and V is a direct sum of two irreducible real G-representations of

dimension 3. In this case, the G-action on V is properly 2-pseudofree.
(ii) G = S5 and V is an irreducible real G-representation of dimension 6. In this

case, the G-action on V is properly 3-pseudofree.
(iii) G = A5 × Z, where Z is a group of order 2, and V has the form V = VZ ⊕ VZ

such that VZ and VZ are irreducible real G-representations of dimension 3. In
this case, the G-action on V is properly 3-pseudofree.

(2) n = 7:
(iv) G = A5 and V is a direct sum of irreducible real G-representations of dimension

3 and 4. In this case, the G-action on V is properly 3-pseudofree.
(v) G = A5 × Z, where Z is a group of order 2, and V has the form V = VZ ⊕ VZ

such that VZ is an irreducible real G-representation of dimension 3 and VZ is
an irreducible real G-representation of dimension 4. In this case, the G-action
on V is properly 3-pseudofree.

(3) n = 3 + 4k with k ∈ N:
(vi) G = SL(2, 5) × Zm, where Zm is a cyclic group of order m satisfying (m, 30) =

1, and V has the form V = VZ×Zm ⊕ W, where Z = Center(SL(2, 5)), such
that VZ×Zm is an irreducible real G-representation of dimension 3 and W is a
free real G-representation of dimension 4k. In this case, the G-action on V is
properly 3-pseudofree.

(4) n = 6 + 8k with k ∈ N:
(vii) G = TL(2, 5) × Zm, where TL(2, 5) is the double cover of S5 of minus type (the

GAP ID is 240(89)) with Z = Center(TL(2, 5)), Zm is a cyclic group of order
m satisfying (m, 30) = 1, and V has the form V = VZ×Zm ⊕W such that VZ×Zm

is an irreducible real G-representation of dimension 6 and W is a free real
G-representation of dimension 8k. In this case, the G-action on V is properly
6-pseudofree.

Concerning this result, we note that there exist a free real G-representation of dimension 4
for G = SL(2, 5)×Zm and a free real G-representation of dimension 8 for G = TL(2, 5)×Zm

whenever (m, 30) = 1. We remark that Theorem 1.3 implies the facts (F1)–(F3) mentioned
above.

Next note that the sphere Sn of dimension n admits a properly 3-pseudofree one-fixed-
point action of finite group if n = 6 or 3+4k with k ∈ N. There arises a question: we wonder
whether the sphere Sn of dimension n = 5 + 4k with k ∈ N admits a properly 3-pseudofree
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one-fixed-point action of finite group.

2. Proof of Theorems 1.1 and 1.2

2. Proof of Theorems 1.1 and 1.2
Let Σ be a Z-homology sphere of even dimension ≥ 6 equipped with a 3-pseudofree G-

action and with a G-fixed point x0, let V denote the tangential G-representation Tx0 (Σ) of Σ
at x0, and let G0 denote the subgroup

{g ∈ G | the transformation g : V → V preserves an orientation of V}
of G. Therefore |G/G0| = 1 or 2.

Proposition 2.1. Let H be a subgroup of G. If dim VH = 3 then the order of H is 2, the
generator σ of H acts on V as the scalar −1, and σ � G0.

Proof. We have the decomposition V = VH ⊕ VH as real H-representations. Since the
G-action on V is 3-pseudofree and dim VH = 3, VH is a free H-representation. Since dim V
is even and dim VH = 3, dim VH is odd. Therefore |H| = 2 and the generator of H acts on
V as the scalar −1. Since dim VH is odd, the action of the generator reverses orientations of
VH and V . �

Proposition 2.2. The G0-action on V is 2-pseudofree.

Proof. Let H ∈ (G0) � {E}. Proposition 2.1 says dim VH ≤ 2. �

Proposition 2.3. Suppose Σ is a homotopy sphere. Then the following holds.

(1) If |ΣG0 | ≥ 2 then for any H ∈ (G0)�{E}, ΣH is diffeomorphic to Sk, where 0 ≤ k ≤ 2.
(2) If |ΣG0 | = 1 then G0 is isomorphic to A5, Σ is diffeomorphic to S6, and resG

G0
V is a

direct sum of two irreducible real G0-representations of dimension 3.

Proof. This follows from Proposition 2.2 and Laitinen–Traczyk Theorems 1–3. �

Proof of Theorem 1.1. If G = G0 then the G-action on V is 2-pseudofree and the theorem
is clear from Laitinen–Traczyk Theorems 1 and 2. Thus it suffices to prove the theorem in
the case |G/G0| = 2. We suppose |G/G0| = 2.

If G0 � E then ΣG0 � Sk, where 0 ≤ k ≤ 2, we obtain ΣG = (ΣG0 )G/G0 � (Sk)G/G0 � Sh

for h = 0, 1, or 2. If G0 = E then G is a group of order 2, and hence ΣG is a Z2-homology
sphere.

Let x ∈ ΣG
� {x0} and set W = Tx(Σ). If dimΣG ≥ 1 then ΣG is connected and hence W is

isomorphic to V as real G-representations.
Suppose dimΣG = 0. Since ΣG is a Z2-homology sphere, we have ΣG = {x0, x}. Let

g ∈ G. If g belongs to G0 or dim Vg ≤ 2 then Laitinen–Traczyk Theorem 2 implies that W
is 〈g〉-homeomorphic to V . Finally we suppose dim Vg = 3. Proposition 2.1 says that g is of
order 2. Since Σg is a Z2-homology sphere, we get dim Wg = dim Vg = 3. Clearly we have
dim W = dim V = dimΣ. Therefore W is isomorphic to V as real 〈g〉-representations. �

Proof of Theorem 1.2. Recall that if |ΣG0 | ≥ 2 then Laitinen–Traczyk Theorem 1 implies
that ΣG0 is diffeomorphic to Sk for k = 0, 1, or 2. In this case ΣG is also diffeomorphic to
Sh for h = 0, 1, or 2, which is a contradiction. Therefore we get ΣG0 = ΣG = {x0}, which
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implies dimΣ = 6, G0 is isomorphic to A5, and resG
G0

V is a direct sum of two irreducible
real G0-representations V1 and V2 of dimension 3. Since V is properly 3-pseudofree, there
is an element g ∈ G such that dim Vg = 3. Then the order of g is 2 and g � G0. Therefore
G is isomorphic to S5 or A5 × Z with Z = 〈g〉. In the case G � S5, the irreducibility of V
follows from the property resG

G0
V = V1 ⊕ V2. In the case G � A5 × Z, V is isomorphic to

(V1 ⊗W1) ⊕ (V2 ⊗W2), where W1 and W2 are real Z-representations of dimension 1. Since
V is 3-pseudofree, one of W1 or W2 has a nontrivial Z-action and the other has the trivial
Z-action. �

3. The element βG of the Burnside ring of G

3. The element βG of the Burnside ring of G
Let G be a finite group and let Ω(G) denote the Burnside ring of G. Each element of

Ω(G) is an equivalence class [F1] − [F2] of a pair (F1, F2) consisting of finite G-sets F1 and
F2. A subgroup H gives the homomorphism χH : Ω(G) → Z defined by χH([F1] − [F2]) =
|FH

1 | − |FH
2 |.

Suppose that G is nonsolvable. Let (G)sol be the set of all solvable subgroups of G and
set (G)nonsol = (G) � (G)sol. Then by [8, (1.3.2), (1.3.3), Proposition 1.3.5], there is a
unique element β (= βG) of Ω(G) such that

(3.1) χH(β) =

⎧⎪⎪⎨⎪⎪⎩
0 for H ∈ (G)nonsol

1 for H ∈ (G)sol.

For a subgroup H of G, we denote by (H)G the G-conjugacy class of H, i.e.

(H)G = {gHg−1 |g ∈ G} ⊂ (G).

For H, K ∈ (G), we say that H is subconjugate (or G-subconjugate) to K and write (H)G ≤
(K)G if gHg−1 is a subgroup of K for some element g ∈ G. There is a unique subset Iso(G, β)
of (G) which is closed under conjugations of elements in G and satisfies

(3.2) β =
∑

(H)G⊂Iso(G,β)

a(H)G [G/H] for some integers a(H)G � 0.

It immediately follows that Iso(G, β) ⊂ (G)sol, max((G)sol) ⊂ Iso(G, β), and a(H)G = 1
holds for each H ∈ max((G)sol). By (3.1), β is an idempotent of Ω(G).

The subgroup lattice of A5 up to conjugations is as in Figure 1.
In Figure 1, Cm and Dn denote a cyclic group of order m and a dihedral group of order n,
respectively, and A4 denote the alternating group on four letters. There a real line between
two subgroups H and K indicates that gHg−1 � K holds for some g ∈ G, and a dotted line
indicates that gHg−1 < K holds for some g ∈ G and gHg−1 � K does not hold for any g ∈ G.

Proposition 3.1. Let G be A5. Then the idempotent βG in Ω(G) has the form

(3.3) βG = [G/A4] + [G/D10] + [G/D6] − [G/C3] − 2[G/C2] + [G/E],

and therefore

(3.4) Iso(G, βG) = (A4)G ∪ (D10)G ∪ (D6)G ∪ (C3)G ∪ (C2)G ∪ (E)G.
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Fig.1.

Proof. We tabulate the data |(G/H)K | necessary to determine βG in Table 1. The proposi-
tion is readily follows from Table 1. �

Table 1.

K G A4 D10 D6 C5 D4 C3 C2 E
G/G 1 1 1 1 1 1 1 1 1
G/A4 0 1 0 0 0 1 2 1 5

G/D10 0 0 1 0 1 0 0 2 6
G/D6 0 0 0 1 0 0 1 2 10
G/C5 0 0 0 0 2 0 0 0 12
G/D4 0 0 0 0 0 3 0 3 15
G/C3 0 0 0 0 0 0 2 0 20
G/C2 0 0 0 0 0 0 0 2 30
G/E 0 0 0 0 0 0 0 0 60

The subgroup lattice of S5 up to conjugations is as in Figure 2.
There Cm and Dn are a cyclic subgroup and a dihedral subgroup (not of A5 but) of S5 of
order m and n, respectively, F20 is a subgroup of order 20, S3 is a subgroup isomorphic to
the symmetric group on 3 letters, S3C2 is a subgroup of order 12 isomorphic to S3 × C2,
where S3 is a subgroup conjugate to S3 in S5.

Proposition 3.2. Let G be S5. Then the idempotent βG in Ω(G) has the form

βG = [G/S4] + [G/F20] + [G/S3C2] − [G/S3] − [G/D4] − [G/C4] + [G/C2](3.5)

and hence

(3.6) Iso(G, βG) = (S4)G ∪ (F20)G ∪ (G/S3C2)G ∪ (S3)G ∪ (D4)G ∪ (C4)G ∪ (C2)G.

Proof. The proposition is easily obtained from Table 2 of the numbers |(G/H)K |. �
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Fig.2.

Remark 3.1.
(1) For the case G = A5 × Z with |Z| = 2, βG is obtained as f ∗βA5 , where f : G → A5 is

the canonical projection.
(2) For the case G = SL(2, 5)×Zm, βG is obtained as g∗βA5 , where g : SL(2, 5)×Zm → A5

is an epimorphism.
(3) For the case G = TL(2, 5)×Zm, βG is obtained as h∗βS5 , where h : TL(2, 5)×Zm → S5

is an epimorphism.

Let V be a real G-representation. For the connected-sum operation on G-framed maps
with the target manifold D(V) or S(R ⊕ V), we need the next property for V .

Definition 3.1. We say that V is ample for βG if Iso(G, βG) � max(sol(G)) is contained
in Iso(G,V � {0}).

Proposition 3.3. In the following cases, V is ample for βG.

(1) Case G = A5 and V containing an irreducible real G-representation of dimension 3.
(2) Case G = S5 and V containing an irreducible real G-representation of dimension 6.
(3) Case G = A5 × Z, where |Z| = 2, and V such that VZ contains an irreducible real

G-representation of dimension 3.
(4) Case G = SL(2, 5) × Zm, where (m, 30) = 1, and V such that VZ×Zm contains an

irreducible real G-representation of dimension 3, where Z is the center of SL(2, 5).
(5) G = TL(2, 5)×Zm, where (m, 30) = 1, and V such that VZ×Zm contains an irreducible
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real G-representation of dimension 6, where Z is the center of TL(2, 5).

Proof. First we consider the case G = A5. Clearly we have

max((G)sol) = (A4)G ∪ (D10)G ∪ (D6)G.

Let W be an irreducible real G-representation of dimension 3. Then the H-fixed-point set
WH , H ∈ (G), has the dimension as in Table 3.

Table 3.

H C5 C3 C2 E Non Cyclic
dim WH 1 1 1 3 0

Table 3 shows

(3.7) Iso(G,W � {0}) = (E)G ∪ (C2)G ∪ (C3)G ∪ (C5)G.

It follows from (3.4) and (3.7) that W is ample for βG.
Second we consider the case G = S5. It follows readily that

max((G)sol) = (S4)G ∪ (F20)G ∪ (S3C2)G.

Let W be an irreducible real G-representation of dimension 6. Then the H-fixed-point set
WH , H ∈ (G), has the dimension as in Table 4.

Table 4.

H S3 C6 C5 D4 C4 C3 C2 C2 E H ∈ 
dim WH 1 1 2 1 1 2 3 2 6 0

where  = {G, A5, S4,S3C2,F20, A4,D10,D8,D6,D4}. Table 4 shows

(3.8)
Iso(G,W � {0}) =(E)G ∪ (C2)G ∪ (C2)G ∪ (C3)G

∪ (C4)G ∪ (D4)G ∪ (C5)G ∪ (C6)G ∪ (S3)G.

It follows from (3.6) and (3.8) that W is ample for βG.
The ampleness of V for βG in the cases (3), (4) and (5) follows from that in the cases (1)

and (2). �

4. Definition of G-framed maps

4. Definition of G-framed maps
Let G be a finite nonsolvable group and let I denote the closed unit interval [0, 1]. For a

space A and a map g : P → Q, we denote by A × g the map idA × g : A × P → A × Q. For
a space A and a pair g = (g, c) of maps g : P → Q and c : S → T , we denote by A × g

the pair (A × g, A × c). In this paper, we mean by a G-framed map f a pair ( f , b) consisting
of a G-map f : (X, ∂X) → (Y, ∂Y) between G-manifolds X and Y with boundaries ∂X and
∂Y , respectively, where the case ∂X = ∂Y = ∅ is possible, and a G-bundle isomorphism
b : τX → f ∗τY , where τX = εX(R) ⊕ T (X) ⊕ εX(R	) and τY = εY(R) ⊕ T (Y) ⊕ εY(R	) and
we suppose 	 ≥ dim X + 2. In this situation, the equality dim XH = dim YH holds for all
H ∈ (G) such that XH � ∅, because dim XH is equal to the fiber dimension of the real
vector bundle T (X)H and it is true for X replaced by Y .
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In this paper, unless otherwise stated, for G-framed maps f = ( f , b), f ′ = ( f ′, b′), f ′′ =
( f ′′, b′′), . . . , the source manifolds of f , f ′, f ′′, . . . , are (X, ∂X), (X′, ∂X′), (X′′, ∂X′′), . . . and
the target manifolds of them are same (Y, ∂Y), and we suppose that ∂X = ∂X′ = ∂X′′ = · · · =
∂Y . A homotopy F from f to f ′ means a pair (F, B) consisting of a G-map F : I×X → I×Y
and a G-bundle isomorphism

B : T (I × X) ⊕ εI×X(R	)→ F∗T (I × Y) ⊕ εI×X(R	)

satisfying the following conditions.
(1) pI(F(t, x)) = t for all t ∈ I and x ∈ X, where pI is the projection I × Y → I.
(2) The restriction of F to {0} × X coincides with {0} × f .
(3) The restriction of F to {1} × X coincides with {1} × f ′.
(4) The restriction of F to I × ∂X coincides with I × f |∂X , where f |∂X is the restriction

of f to ∂X.
A G-framed cobordism F from f to f ′ rel. boundary (or rel. ∂) means a pair (F, B) consist-
ing of a G-map

(4.1) F : (W, ∂0W, ∂1W, ∂01W)→ (Z, ∂0Z, ∂1Z, ∂01Z),

and a G-bundle isomorphism

B : T (W) ⊕ εW(R	)→ F∗T (Z) ⊕ εW(R	),

where ∂0W, ∂1W, and ∂01W are G-manifolds canonically identified with X, X′, and I × ∂Y ,
respectively, and Z = I × Y , ∂0Z = {0} × Y , ∂1Z = {1} × Y and ∂01Z = I × ∂Y , satisfying the
following conditions.

(1) ∂W = ∂0W ∪ ∂1W ∪ ∂01W, ∂0W ∩ ∂1W = ∅, ∂0W ∩ ∂01W = ∂(∂0W), ∂1W ∩ ∂01W =
∂(∂1W), and ∂(∂01W) = ∂(∂0W) � ∂(∂1W).

(2) The restriction of F to ∂0W coincides with f up to homotopies of G-framed maps
rel. ∂.

(3) The restriction of F to ∂1W coincides with f ′ up to homotopies of G-framed maps
rel. ∂.

(4) The restriction of F to ∂01W coincides with I × idY |∂Y (= I × idX |∂X), where idY |∂Y

is the restriction of idY to ∂Y .
Here the G-cobordism W from X and X′ is not necessarily diffeomorphic to I × X. For a
subset of A of X, if I × A ⊂ W and the restriction of F to I × A coincides with I × f |A up
to G-homotopies of G-framed maps then we call F a G-framed cobordism rel. A. Let  be
a G-conjugation-invariant set of subgroups of G, i.e. if H ∈  then (H)G ⊂  . If F is a
G-framed map rel. a G-regular neighborhood of

⋃
K∈ XK , we say that F is a G-framed map

rel.  . For a G-framed map F = (F, B), the map F in (4.1) will be written as F : W → I ×Y
for simplicity of notation when the context is clear.

Let M be a subgroup of G. Hereafter FM = (FM, BM), F ′M = (F′M, B
′
M), F ′′M = (F′′M, B

′′
M),

. . . , are M-framed cobordisms with M-maps FM : WM → I × Y , F′M : W ′M → I × Y ,
F′′M : W ′′M → I × Y , . . . , respectively.

Let V be a real G-representation being (G)nonsol-free, i.e.

dim VH = 0 for all H ∈ (G)nonsol.
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Hereafter, unless otherwise stated, Y will be the unit disk D(V) of V with respect to a G-
invariant inner product. Clearly, the boundary of Y is obviously the unit sphere S(V). Re-
mark that if V is faithful then the G-action Y is effective and therefore the G-action on X is
also effective. We assume that a G-framed map f = ( f , b), where f : (X, ∂X) → (Y, ∂Y),
satisfies the boundary condition that ∂X = ∂Y and there is a G-collar neighborhood C of ∂X
in X such that the restriction f |C = ( f |C , b|C) of f to C is the identity G-framed map on C.
This clearly requires that C is also a G-collar neighborhood of ∂Y in Y .

5. G-connected sums of G-framed maps

5. G-connected sums of G-framed maps
Let f = ( f , b) be a G-framed map with target Y = D(V). We have the canonical G-bundle

isomorphisms f ∗εY(R) → εX(R), f ∗εY(R	) → εX(R	), T (Y) → εY(V), and f ∗T (Y) →
εX(V). Let o1 and o	 be the canonical orientations of R and R	, respectively. For a subgroup
H of G, we get the induced orientations o1YH , o	YH , o1XH , o	XH , of εYH (R), εYH (R	), εXH (R),
εXH (R	), respectively. Note that T (YH) = T (Y)H = εYH (VH), ( f ∗T (Y))H = f H∗T (YH). Let
τH

X = εXH (R) ⊕ T (XH) ⊕ εXH (R	). There are two possibilities in choice of an orientation of
sVH = R ⊕ VH ⊕ R	 even if dim VH = 0. Fix an orientation osVH of sVH . This induces the
orientation oτH

Y
of τH

Y = εYH (R)⊕T (YH)⊕εYH (R	), and oτH
X

of τH
X via bH . In this paper we refer

to oτH
Y

and oτH
X

as orientations of YH and XH , respectively. Without loss of any generality, we
can assume that the restriction oτH

Y
|y0 of oτH

Y
to y0 = 0 ∈ Y coincides with o1 ∪ o′ for some

orientation o′ of VH ⊕ R	.
Let Σ(X, Y) denote the union X ∪∂ Y of X and Y glued along the boundary ∂Y = ∂X. Here

Σ(X, Y) is a G-manifold. We have the G-map Σ( f , idY) : Σ(X, Y) → Y such that the restric-
tions Σ( f , idY)|X and Σ( f , idY)|Y are f and idY , respectively. We call Σ(X, Y) and Σ( f , idY)
the quasisphericalizations of X and f , respectively. For a while let Z be the quasispher-
icalization of X. The stable tangent bundle τH

Z = εZH (R) ⊕ T (ZH) ⊕ εZH (R	) of ZH has
the orientation oτH

Z
extending oτH

X
such that the restriction oτH

Z
|y0 of oτH

Z
to y0 coincides with

(−o1) ∪ o′. The restriction of Σ( f , idY)H to a small disk-neighborhood of y0 in Σ(X, Y)H is
orientation reversing.

Let DX(x) and DY(y0) be small H- and G-disk-neighborhoods of x and y0 in X and Y ,

respectively. For a subset A of X or Y , the interior of A in X or Y is denoted by
◦
A. Suppose

that the isotropy subgroup of G at x is H and the restriction f |DX(x) : DX(x) → DY(y0) of f
is an H-diffeomorphism such that f K : XK → YK is locally orientation preserving at x for
any K ≤ H. Then ψ = f |G·DX(x) : G · DX(x) → G ×H DY(y0) is a G-diffeomorphism. The
G-manifold

X #G,H,x,y0 (G ×H Σ(X, Y)) = (X �G · ◦DX(x))∪ϕG ×H (Σ(X, Y) �
◦
DY(y0)),

where

ϕ : G ×H ∂DY(y0)→ G · ∂DX(x)

is the restriction of ψ−1, is called the G-connected sum of X and Σ(X, Y) of isotropy type (H)G

with respect to points x and y0. For any subgroup K of G, the manifold (X#G,H,x,y0 (G ×H

Σ(X, Y)))K has the orientation of which the restriction to (X � G · ◦DX(x))K coincides with

the restriction of oτK
X

to (X �G · ◦DX(x))K . We get the G-map f #G,H,x,y0G ×H Σ( f , idY) glu-
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ing the restriction of f to X �G · ◦DX(x) and the restriction of G ×H Σ( f , idY) to G ×H

(Σ(X, Y) �
◦
DY(y0)). We mean by ([G/G] + [G/H])X and ([G/G] + [G/H]) f the G-manifold

X #G,H,x,y0 (G ×H Σ(X, Y)) and the G-map f #G,H,x,y0 (G ×H Σ( f , idY)), respectively.
On the other hand, the G-manifold

X #G,H,x,x (G ×H −Σ(X, Y)) = (X �G · ◦DX(x))∪ιG ×H (Σ(X, Y) �
◦
DX(x)),

where

ι : G ×H ∂DX(x)→ G · ∂DX(x)

is the canonical map, is called the G-connected sum of X and −Σ(X, Y) of isotropy type (H)G

with respect to points x (∈ X) and x (∈ −Σ(X, Y)). For any subgroup K of G, the manifold

(X#G,H,x,x(G ×H −Σ(X, Y)))K has the orientation of which the restriction to (X �G · ◦DX(x))K

coincides with the restriction of oτK
X

to (X �G · ◦DX(x))K . We get the G-map f #G,H,x,xG ×H

−Σ( f , idY) gluing the restriction of f to X �G · ◦DX(x) and the restriction of G ×H Σ( f , idY)

to Σ(X, Y) �
◦
DX(x). We mean by ([G/G] − [G/H])X and ([G/G] − [G/H]) f the G-manifold

X #G,H,x,x (G ×H −Σ(X, Y)) and the G-map f #G,H,x,x (G ×H −Σ( f , idY)), respectively.
Let γ0 and γ = γ0+ [G/H] (resp. γ = γ0− [G/H]) be elements of the Burnside ring Ω(G).

Suppose that Iso(G, γ0) ∪ Iso(G, γ) ⊂ Iso(G,V � {0}). As an inductive step, we assume
that we have obtained γ0 X and γ0 f . Suppose there is x ∈ (γ0 f )−1(y0) with Gx = H such
that γ0 f is transverse regular to {y0} in Y and (γ0 f )K is locally orientation preserving at
x for every K ≤ H. Then similarly to the construction above of ([G/G] ± [G/H])X and
([G/G] ± [G/H]) f , we can obtain the equivariant connected sums

γ X = γ0 X #G,H,x,y0 (G ×H Σ(X, Y)),(5.1)

γ f = γ0 f #G,H,x,y0 (G ×H Σ( f , idY)),(
resp. γ X = γ0 X #G,H,x,x (G ×H −Σ(X, Y)),

γ f = γ0 f #G,H,x,x (G ×H −Σ( f , idY))
)
.

6. Basic lemmas on the reflection method

6. Basic lemmas on the reflection method
Let M ∈ (G)sol, f = ( f , b) a G-framed map and FM = (FM, B) a G-framed cobordism

from resG
Mf to resG

MidY rel. ∂. Here we recall that Y = D(V), f : (X, ∂X) → (Y, ∂Y), and
FM : WM → I × Y . For a submanifold Z of X and an embedding Ψ : I × Z → WM, we call
Ψ a product embedding if

(1) Ψ(t, x) = (t, x) in ∂01WM for all x ∈ Z ∩ ∂X and t ∈ I,
(2) Ψ(t, x) = (t, x) in a collar neighborhood CX = [0, δ] × X of {0} × X in WM for all

t ∈ [0, δ] and x ∈ Z, and
(3) Ψ(1 − t, x) = (1 − t, ψ(x)) in a collar neighborhood CY = [1 − δ, 1] × Y of {1} × Y in

WM for all t ∈ [0, δ] and x ∈ Z, for some embedding ψ : Z → Y .
Here δ is a small positive real number and [0, δ] and [1 − δ, 1] are the closed intervals ⊂ R.
For K ∈ (G) and a K-subcomplex Z of X with respect to a smooth G-triangulation of X, let
NK(Z, X) denote a K-regular neighborhood of Z in X. Therefore for H ∈ (G), NK(XH , X)
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is a K-tubular neighborhood of XH , where K = NG(H). By virtue of the G-isomorphism b,
the restriction f H : XH → YH of f is K-homotopic to a diffeomorphism if and only if the
restriction f |NK (XH ,X) : NK(XH , X) → NK(YH , Y) of f is K-homotopic to a diffeomorphism,
where K = NG(H). For a subgroup H of G, we denote by G(H) the set of subgroups K of
G satisfying H < K. For H ∈ (M), we call the set

X>H =
⋃

K∈G(H)

XK

the G-singular set of X at H.

Definition 6.1. Let H be a subgroup of G satisfying NG(H) ⊂ M. We say that (X, Y,WM)
has the (G, M)-tame singular set at H (or X>H is (G, M)-tame in (X,WM)) if there is a product
M-embedding ΨM : I × NM(M · X>H , X)→ WM such that Im(ΨM)>H = WM

>H .

For a subgroup K ∈ (G), let

G(K) = (G) �
⋃

L∈(K)G

(L), and(6.1)

M,G(K) = (M) �
⋃

L∈(K)G

(M ∩ L).

We remark that if H ∈ (M), NG(H) ⊂ M, and (H)G ∩ (M) = (H)M then

(6.2) {g ∈ G | gHg−1 ⊂ M} ⊂ M.

The modification of G-framed maps by following Lemmas 6.1, 6.2, and 6.4 is called the
reflection method in G-surgery theory.

Lemma 6.1. Let M ∈ (G)∗sol and H ∈ (M) satisfying NG(H) ⊂ M. Suppose the
following.

(i) (X, Y,WM) has the (G, M)-tame singular set at H with respect to a product M-
embedding ΨM : I × NM(M · X>H , X)→ WM.

(ii) There is an M-homotopy

HM : (WM, ∂0WM, ∂1WM, ∂01WM) × I → (Z, ∂0Z, ∂1Z, ∂01Z)

rel. ∂1WM ∪ ∂01WM such that HM |WM×{0} coincides with FM and HM |Im(ΨM)×{1} is a
diffeomorphism.

Then there are

• a G-framed map f ′ rel. ∂, where f ′ = ( f ′, b′) and f ′ : (X′, ∂X′)→ (Y, ∂Y),
• a G-framed cobordism FG from f to f ′ rel. ∂ and G(H),
• an M-framed cobordism FM from resG

MFG∪resG
Mf FM to F ′M rel. ∂ and M(H), where

F ′M = (F′M, B
′
M) is an M-framed cobordism from resG

Mf ′ to resG
MidY rel. ∂ and

M,G(H), and

F′M : (W ′M, ∂0W ′M, ∂1W ′M, ∂01W ′M)→ (Z, ∂0Z, ∂1Z, ∂01Z),

• a product M-embedding Φ′M : I × NM(M · X′H , X′) → W ′M with Im(Φ′M) = NM(M ·
W ′M

H ,W ′M), and
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• an M-homotopy

H
′
M : (W ′M, ∂0W ′M, ∂1W ′M, ∂01W ′M) × I → (Z, ∂0Z, ∂1Z, ∂01Z)

rel. ∂1W ′M ∪ ∂01W ′M
possessing the following properties.

(1) NM(M · X′>H , X′) = NM(M · X>H , X), NM(M ·W ′M>H ,W ′M) = NM(M ·WM
>H ,WM),

and Φ′M |I×N = ΨM |I×N for N = NM(M · X′H , X′) ∩ NM(M · X>H , X).
(2) H′M |W′M×{0} coincides with F′M, H′M |NM(M·W′M H ,W′M)×{1} is a diffeomorphism, and
H
′
M |Φ′M(I×N)×I coincides with HM |ΨM(I×N)×I for N above.

In particular, X′H is NG(H)-diffeomorphic rel. ∂ to YH and f ′H : X′H → YH is NG(H)-
homotopic rel. ∂ to a diffeomorphism.

Remark 6.1. If (H)G |M = (H)M, where (H)G |M = (H)G ∩ (M), then the properties (1)
and (2) in Lemma 6.1 are true for H replaced by arbitrary H′ ∈ (H)G |M.

Proof. By virtue of ΨM, we can regard WM
H is an NG(H)-cobordism from XH to YH rel.

X>H ∪ ∂XH . Let WM
H∗ be a copy of WM

H and let YH∗ and ΨM({1} × NM(M · X>H , X))H∗

be the copies of YH and ΨM({1} × NM(M · X>H , X))H , respectively, in WM
H∗. Then the

union U = WM
H∗ ∪XH WM

H of WM
H∗ and WM

H attached along XH can be regarded as an
NG(H)-cobordism rel. ∂ and ΨM({1} × NM(M · X>H , X))H∗ from YH∗ to YH .

In addition, the associated map f H∗ : YH∗ → YH is a copy of the identity map on YH . Let
FG = (FG, BG), where FG : WG → I × Y , be the G-framed cobordism from f to f ′ rel. ∂
obtained by G-surgeries on X of isotropy type (H)G such that WG

H = WM
H∗. Then f ′ is a

desired G-framed map.
Let us observe FG above. Set W ′′M = WG ∪X WM and F ′′M = (F′′M, B

′′
M), where F′′M =

FG ∪ f FM and B′′M = BG ∪b BM. The following two pictures
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show that W ′′M
H = WG

H∪XH WM
H is NM(H)-cobordant rel. ∂ to the product cobordism I×YH .

Therefore F ′′M is M-framed cobordant rel. ∂ to an M-framed cobordism F ′M = (F′M, B
′
M),

where F′M : W ′M → I × Y , such that W ′M
H is NG(H)-diffeomorphic rel. ∂ to I × YH and

F′M
H : W ′M

H → I × YH is NG(H)-homotopic to a diffeomorphism. We can formalize the
above observation to Lemma 6.1. �

Lemma 6.2. Let M, H and Z be as in Lemma 6.1. Invoke the following hypotheses
(i)–(iii).

(i) (resG
MX, resG

MY,WM) has the (M, M)-tame singular set at H with respect to a product
M-embedding ΨM : I × NM(M · (resG

MX)>H , resG
MX)→ WM.

(ii) There is an M-homotopy

HM : (WM, ∂0WM, ∂1WM, ∂01WM) × I → (Z, ∂0Z, ∂1Z, ∂01Z)

rel. ∂1WM ∪ ∂01WM such that HM |WM×{0} coincides with FM and HM |Im(ΨM)×{1} is a
diffeomorphism.

(iii) There is K ∈ M(H) such that dim YH = dim YK > 0 and X>H = XK.

Then the conclusion same as Lemma 6.1 holds. In particular, X′H = X′K = XK, f ′H =
f ′K = f K, and W ′M

H = W ′M
K = WK

M for some K ∈ M(H).

Proof. If K1 and K2 both satisfy the conditions required for K in (iii) then so does K1∩K2.
Let K be the smallest subgroup satisfying the conditions in (iii). Then we have X>H = XK

and XH = XK � X=H . In addition WM
H = WM

>H � WM
=H = WM

K � WM
=H follows from

(i) and (iii). Let W∗M be a copy of WM. Then W∗M
H ∪XH WM

H is NM(H)-cobordant rel. ∂
to W∗M

K ∪XH WM
K by M-surgeries of isotropy type (H)M. Therefore, we can remove X=H

and WM
=H by G-surgeries on f and M-surgeries on FM of isotropy types (H)G and (H)M,

respectively. �

Define (G, M,H) by

(6.3) (G, M,H) = {K ∈ G(H) | K ∩ M = H}.
Let Z be a G-manifold. We say that Z satisfies the primitive gap condition for (G, M,H) if
the following conditions are satisfied.

(1) dim ZH
α > dim ZK

β for all K ∈ M(H), α ∈ π0(ZH) and β ∈ π0(ZK) with Zβ ⊂ Zα.
(2) dim ZK = 0 for all K ∈ (G, M,H).
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Lemma 6.3. Let M ∈ (G)sol and H ∈ (M) such that NG(H) ⊂ M. Suppose the
following conditions are fulfilled.

(1) (resG
MX, resG

MY,WM) has the (M, M)-tame singular set at H.
(2) X satisfies the primitive gap condition for (G, M,H).
(3) WM

H is connected.

Then (X, Y,WM) has the (G, M)-tame singular set at H.

Proof. The set X() =
⋃

K∈(G,M,H) XK is a finite set. Therefore it is easy to obtain a
product NM(H)-embedding I×X()→ WM

H
�WM

>H and to obtain a product M-embedding
ΨM : I × NM(M · X>H , X)→ WM such that Im(ΨM)>H = WM

>H . �

The next lemma follows from Lemmas 6.1 and 6.3.

Lemma 6.4. Let M, H, Z be as in Lemma 6.1. Suppose the following (i)–(iv).
(i) (resG

MX, resG
MY,WM) has the (M, M)-tame singular set with respect to a product M-

embedding ΨM : I × NM(M · (resG
MX)>H , X)→ WM.

(ii) There is an M-homotopy

HM : (WM, ∂0WM, ∂1WM, ∂01WM) × I → (Z, ∂0Z, ∂1Z, ∂01Z)

rel. ∂1WM ∪ ∂01WM such that HM |WM×{0} coincides with FM and HM |Im(ΨM)×{1} is a
diffeomorphism.

(iii) X satisfies the primitive gap condition for (G, M,H).
(iv) WM

H is connected.

Then the conclusion same as Lemma 6.1 holds.

In the rest of this section we give a remark on the (G, M)-tame singularity. Let Z be a
G-manifold. We say that Z satisfies the gap condition at H if

(6.4) 2 dim ZK
β < dim ZH

α

holds for all K ∈ G(H), α ∈ π0(ZH), β ∈ π0(ZK) with ZK
β ⊂ ZH

α , where ZH
α and ZK

β stand for
the underlying spaces of α and β. We say that Z satisfies the cobordism gap condition at H
if

(1) dim ZK
β + dim ZL

γ + 1 < dim ZH
α holds for all K ∈ G(H) � M(H), L ∈ M(H),

α ∈ π0(ZH), β ∈ π0(ZK) with ZK
β ⊂ ZH

α , γ ∈ π0(ZL) with ZL
γ ⊂ ZH

α , and
(2) 2 dim ZK

β + 1 < dim ZH
α holds for all K ∈ G(H) �M(H), α ∈ π0(ZH), β ∈ π0(ZK)

with ZK
β ⊂ ZH

α .

Remark 6.2. Suppose the following conditions are fulfilled.
(1) (resG

MX, resG
MY,WM) has the (M, M)-tame singular set at H.

(2) Y satisfies the cobordism gap condition at H.
(3) f H : XH → YH and FM

H : WM
H → I × YH are connected up to the middle dimen-

sions, respectively.
Then (X, Y,WM) has the (G, M)-tame singular set at H.
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7. Remarks on specific representations

7. Remarks on specific representations
Let  and  be sets of subgroups of G such that  ⊂ . We call  upper closed in  if

K belongs to  whenever H ∈  , K ∈ , and H ⊂ K.

Definition 7.1. Let  be a subset of (G)sol which is G-conjugation invariant and upper
closed in (G)sol. We say that  is G-simply organized (for equivariant surgeries) if there
are a complete set  ∗ of representatives of  and a map ρmax :  ∗ → max( )∗, where
max( )∗ =  ∗ ∩ max( ), satisfying the following conditions.

(1) H ⊂ NG(H) ⊂ ρmax(H) for any H ∈  ∗.
(2) ρmax(K∗) = ρmax(H) for any H ∈  ∗ and K ∈ ρmax(H)(H), where K∗ is the represen-

tative of (K)G in  ∗.
(3) (H)G ∩ (ρmax(H)) = (H)ρmax(H) for any H ∈  ∗.

We remark that if  is G-simply organized as above then by (6.2) we have

{g ∈ G | gHg−1 ⊂ ρmax(H)} ⊂ ρmax(H).

for all H ∈  ∗, and furthermore if  ′ is a subset of  such that  ′ is G-invariant and upper
closed in (G)sol then  ′ is G-simply organized.

Let H be a subgroup of G and Z a G-manifold. We say that Z satisfies the weak gap
condition at H if

(7.1) 2 dim ZK
δ ≤ dim ZH

γ

holds for all γ ∈ π0(ZH), K ∈ G(H), and δ ∈ π0(ZK) with ZK
δ ⊂ ZH

γ . For γ ∈ π0(ZH), let Hγ

denote the set of elements g of H = NG(H)/H such that gγ = γ, and letΠ(H, γ)1/2 denote the
set of pairs (K, δ) of K ∈ G(H) and δ ∈ π0(ZK) such that ZK

δ ⊂ ZH
γ and 2 dim ZK

δ = dim ZH
γ .

We say that Z satisfies the modified weak gap condition at H if the following conditions are
fulfilled.

(1) Z satisfies the weak gap condition at H.
(2) For all γ ∈ π0(ZH) with dim ZH

γ > 0 and (K, δ) ∈ Π(H, γ)1/2,
(a) K ⊂ NG(H) and K/H ⊂ Hγ,
(b) |(K/H) ∩ Hγ(2)| ≤ 1, where Hγ(2) is the set of elements in Hγ of order 2, and
(c) dim ZL

ω + 1 < dim ZK
δ for all L ∈ G(K) and ω ∈ π0(ZL) with ZL

ω ⊂ ZK
δ .

(3) For all γ ∈ π0(ZH) with dim ZH
γ > 0 and (K1, δ1), (K2, δ2) ∈ Π(H, γ)1/2, the smallest

subgroup 〈K1,K2〉 of G containing K1 ∪ K2 is solvable.
Let S5 (resp. A5) denote the symmetric group (resp. the alternating group) on the five

letters 1, 2, . . . , 5. We fix subgroups of S5 as follows.
S4 (resp. A4) the symmetric group (resp. the alternating group)

on the letters 2, 3, 4, 5.
S3 the symmetric group on the letters 1, 2, 3.
C2 = 〈(4, 5)〉, C4 = 〈(2, 4, 3, 5)〉, and C6 = 〈(1, 2, 3)(4, 5)〉 (cyclic groups).
S3C2 = 〈(1, 2), (1, 2, 3), (4, 5)〉 (� S3 × C2).
C2 = 〈(2, 3)(4, 5)〉, C3 = 〈(1, 2, 3)〉, and C5 = 〈(1, 2, 3, 4, 5)〉 (cyclic groups).
D4 = 〈(2, 3)(4, 5), (2, 4)(3, 5)〉, D6 = 〈(1, 2, 3), (2, 3)(4, 5)〉, and
D10 = 〈(1, 2, 3, 4, 5), (2, 5)(3, 4)〉 (dihedral groups).
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D4 = 〈(2, 3), (2, 3)(4, 5)〉, and D8 = 〈(2, 4, 3, 5), (2, 3)〉 (dihedral groups).
The normalizers of subgroups H of G = A5 are as in Table 5.

Table 5.

H A4 D10 D6 D4 C5 C3 C2 E
NG(H) A4 D10 D6 A4 D10 D6 D4 G

We assign ρmax(H) to H as in Table 6.

Table 6.

H A4 D10 D6 D4 C5 C3 C2

ρmax(H) A4 D10 D6 A4 D10 D6 A4

We immediately obtain the proposition:

Proposition 7.1. Let G = A5,  = (A5)sol � {E}, and  ∗ = {A4, D10, D6, D4, C5, C3,
C2}. Then  is G-simply organized with respect to ρmax :  ∗ → max( )∗ given by Table 6.

The next result follows from Table 3.

Proposition 7.2. Let G = A5. Let W3 and W ′3 be irreducible real G-representations of
dimension 3 and let W = W3 ⊕W ′3. Then

(1) dim WH
3 = 0 for H = A4, D10, D6, D4,

(2) dim WH
3 = 1, W3 satisfies the gap condition at H for H = C5, C3, C2,

(3) dim WH = 2 and W satisfies the primitive gap condition for (G, ρmax(H),H) (as well
as the gap condition at H) for H = C5, C3, C2, and

(4) W satisfies the gap condition at H = E.

Let G = A5. Let W3 and W4 be irreducible real G-representations of dimensions 3 and 4,
respectively, and let W = W3 ⊕W4. Then the dimensions of the H-fixed-point sets WH are
as in the next table.

Table 7.

H G A4 D10 D6 C5 D4 C3 C2 E
dim WH 0 1 0 1 1 1 3 3 7

We immediately obtain the proposition:

Proposition 7.3. Let G = A5. Let W3 and W4 be irreducible real G-representations of
dimensions 3 and 4, respectively, and let W = W3 ⊕W4. Then

(1) dim WH = 0 for H = D10,
(2) dim WH = 1 for H = A4, D6, C5, D4, and W satisfies the gap condition at H for

H = A4, D6, C5,
(3) dim WH = 3 and W satisfies the gap condition at H for for H = C3, C2, and
(4) W satisfies the gap condition at H = E.
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Next we consider the case G = S5. The normalizers of subgroups H of S5 are as in the
Table 8.

Table 8.

H A5 S4 F20 S3C2 A4 D10 D8 S3 D6 C6

NG(H) G S4 F20 S3C2 S4 F20 D8 S3C2 S3C2 S3C2

H C5 D4 D4 C4 C3 C2 C2 E
NG(H) F20 D8 S4 D8 S3C2 S3C2 D8 G

We assign ρmax(H) to H as Table 9.

Table 9.

H S4 F20 S3C2 A4 D10 D8 S3 D6 C6

ρmax(H) S4 F20 S3C2 S4 F20 S4 S3C2 S3C2 S3C2

H C5 D4 D4 C4 C3 C2

ρmax(H) F20 S4 S4 S4 S3C2 S4

We immediately obtain the proposition.

Proposition 7.4. Let G = S5,  = (G)sol � ({E} ∪ (C2)G), and  ∗ the set of subgroups H
in Table 9. Then  is G-simply organized with respect to ρmax :  ∗ → max((G)sol)∗ given
by Table 9.

The next result follows from Table 4.

Proposition 7.5. Let G = S5 and let W be an irreducible real G-representation of dimen-
sion 6. Then

(1) dim WH = 0 for H = S4, F20, S3C2, A4, D10, D8, D6, D4,
(2) dim WH = 1 and W satisfies the gap condition at H for H = S3, C6, D4, C4,
(3) dim WH = 2 and W satisfies the primitive gap condition for (G, ρmax(H),H) for

H = C5, C3, C2,
(4) dim WH = 3 and W satisfies the gap condition at H for H = C2, and
(5) W satisfies the modified weak gap condition at H = E.

Now let G = A5 × Z, where Z is a group of order 2. We identify subgroups H ∈ (A5)
with H×{e} ∈ (G), respectively, and Z with {e}×Z ∈ (G). Let 2 be the subgroup of order
2 belonging to (C2Z)� {C2, Z}. Let 2n be the dihedral subgroup of order 2n generated by
Cn and 2. We tabulate subgroups H giving a complete set of representatives of conjugacy
classes of subgroups of G = A5 × Z and the normalizers of subgroups H in Table 10.

Table 10.

H G A5 A4Z D10Z D6Z A4 10 D10 C5Z D4Z C3Z
NG(H) G G A4Z D10Z D6Z A4Z D10Z D10Z D10Z A4Z D6Z

H 6 D6 C5 4 C2Z D4 C3 2 C2 Z E
NG(H) D6Z D6Z D10Z A4Z D4Z A4Z D6Z D4Z D4Z G G
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Table 11.

H A4Z D10Z D6Z A4 10 D10 C5Z D4Z C3Z
ρmax(H) A4Z D10Z D6Z A4Z D10Z D10Z D10Z A4Z D6Z

H 6 D6 C5 4 C2Z D4 C3 C2

ρmax(H) D6Z D6Z D10Z A4Z A4Z A4Z D6Z A4Z

In the case G = A5 × Z above, we assign ρmax(H) to H as in Table 11.
We immediately obtain the next proposition.

Proposition 7.6. Let G = A5 × Z, where Z is a group of order 2,  = (G)sol � ({E, Z} ∪
(2)G), and  ∗ the set of subgroups H in Table 11. Then  is G-simply organized with
respect to ρmax :  ∗ → max((G)sol)∗ given by Table 11.

Let W3 and W ′3 be irreducible real A5-representations of dimension 3 and let R and R± be
1-dimensional real Z-representations with trivial and nontrivial Z-actions, respectively. The
dimensions of the H-fixed-point sets WH of W = (W3 ⊗ R) ⊕ (W ′3 ⊗ R±) are as in Table 12.

Table 12.

H 10 C5Z C3Z 6 C5 4 C2Z C3 2 C2 Z E H ∈ 
dim WH 1 1 1 1 2 1 1 2 3 2 3 6 0

where  = {G, A5, A4Z,D10Z,D6Z, A4,D10,D4Z,D6,D4}. The next proposition follows.

Proposition 7.7. Let G = A5 × Z, where Z is a group of order 2, and let W = (W3 ⊗ R) ⊕
(W′3 ⊗ R±) be a real G-representation of dimension 6 described above. Then

(1) dim WH = 0 for H = A4Z, D10Z, D6Z, A4, D10, D4Z, D6, D4,
(2) dim WH = 1 and W satisfies the gap condition at H for H = 10, C5Z, C3Z, 6,

4, C2Z,
(3) dim WH = 2 and W satisfies the primitive gap condition for (G, ρmax(H),H) for

H = C5, C3, C2,
(4) dim WH = 3 and W satisfies the gap condition at H for H = 2, Z, and
(5) W satisfies the modified weak gap condition at H = E.

Next we consider the case where W = (W3 ⊗ R) ⊕ (W4 ⊗ R±), where W4 is an irreducible
real A5-representation of dimension 4. Then the dimensions of the H-fixed-point sets WH of
W are as in the Table 13.

Table 13.

H A4 C5Z C3Z D6 6 C5 4 D4 C2Z C3 2 C2 Z E H ∈ 
dim WH 1 1 1 1 1 1 1 1 1 3 3 3 3 7 0

where  = {G, A5, A4Z,D10Z,D6Z,10,D10,D4Z}. The next proposition follows.

Proposition 7.8. Let G = A5 × Z, where Z is a group of order 2, and let W = (W3 ⊗ R) ⊕
(W4 ⊗ R±) be a real G-representation of dimension 7 described above. Then

(1) dim WH = 0 for H = A4Z, D10Z, D6Z, 10, D10, D4Z,
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(2) dim WH = 1 and W satisfies the gap condition at H for H = A4, C5Z, 6, D6, C3Z,
C5, 4, C2Z,

(3) dim WH = 3 and W satisfies the gap condition at H for H = C3, 2, C2, Z,
(4) W satisfies the gap condition at H = E.

8. G-surgery obstructions of isotropy type (H)G

8. G-surgery obstructions of isotropy type (H)G
Let f = ( f , b) be a G-framed map as in Section 6. Recall that f : (X, ∂X) → (Y, ∂Y),

Y = D(V), b : τX → f ∗τY , and ∂ f : ∂X → ∂Y is the identity map on ∂X = ∂Y . Hence the
mapping degree of f H : (XH , ∂XH)→ (YH , ∂YH) is 1 whenever H ∈ (G) and dim VH > 0.

Let H be a subgroup and set H = NG(H)/H. Let G(2) denote the set of elements of order
2 in G. Thus H(2) is the set of elements of order 2 in H. For a principal ideal domain R
satisfying a2 = a in R/2R for all a ∈ R, let AH = R[H] denote the group algebra of H over R.
Therefore AH = Map(H,R). Let wH : H → {1,−1} denote the orientation homomorphism
of VH with H-action. Set nH = dim VH , let kH be the integer satisfying nH = 2kH or 2kH +1,
and set λH = (−1)kH . AH has the involution − : AH → AH; x �→ x, defined by

(8.1)
∑

g∈H rg g =
∑

g∈H rgwH(g)g−1,

where rg ∈ R. Depending on ε ∈ {1,−1}, we define the submodule minε(AH) of AH by

minε(AH) = {x − εx | x ∈ AH} (see (8.1)).

Case nH = 2kH ≥ 6. Let QH (resp. SH) denote the set of elements g ∈ H(2) satisfying
dim(VH)g = kH − 1 (resp. dim(VH)g = kH). Let

AH,s = R[SH],

ΓH = min−λH (AH) + R[SH],

ΛH = minλH (AH) + R[QH],

where R[SH] = Map(SH ,R) and R[QH] = Map(QH ,R). We call

AH = (AH , (−, λH), ΓH ,H, AH,s, AH,s + ΛH)

the double parameter algebra of the H-manifold YH , see [6, Definition 2.5] and [6, p. 538].
Let ΘH,2 be the set of all generators of HkH ((YH)K , ∂(YH)K ;Z2) � Z2, where K runs over

(H) such that dim(YH)K = kH , and Θ̃H the set of all generators of HkH ((YH)K , ∂(YH)K ;Z) �
Z, where K runs over (H) such that dim(YH)K = kH . The canonical map prH : Θ̃H → ΘH,2
is a double covering. We have the map ρH : ΘH,2 → P(SH), where P(SH) is the set of
subsets of SH , defined by ρH(t) = K ∩ SH for a generator t of HkH ((YH)K , ∂(YH)K;Z2) with
dim(YH)K = kH . We call

ΘH = (prH : Θ̃H → ΘH,2, ρH : ΘH,2 → P(SH))

the positioning data of the H-manifold YH , see [6, pp. 533, 538]. By the definition [6,
p. 545], we obtain the abelian group

V,H(R[H]) = WnH (R,H,QH , SH ,ΘH)free.



514 M. Morimoto

Case nH = 2kH + 1 ≥ 3. Let QH denote the set of elements g with order 2 of H satisfying
dim(VH)g = kH and

ΛH = minλH (AH) + R[QH].

We call

AH = (AH , (−, λH),ΛH)

the form algebra of the H-manifold YH . By [20, Definition 1.5], we obtain the abelian group

V,H(R[H]) = WλH
1 (AH ,ΛH).

Suppose V is (G)nonsol-free, i.e. VL = {0} for all L ∈ (G)nonsol. Let H ∈ (G)sol. We ob-
tain the H-framed map f H = ( f H , bH) from the G-framed map f , where f H : (XH , ∂XH)→
(YH , ∂YH) and bH : τXH → f H∗τYH .

We say that f is -adjusted at H if f K : XK → YK is a Zp-homology equivalence for
every prime p and every K ∈ NG(H)(H) such that |K/H| is a power of p. We suppose that
Y satisfies the modified weak gap condition at H and f is -adjusted at H. The G-framed
map f is G-framed cobordant rel. ∂ by G-surgeries of isotropy type (H)G to f ′ = ( f ′, b′),
where f ′ : (X′, ∂X′)→ (Y, ∂Y), such that f : X′ → Y is kH-connected, where dim YH = 2kH

or 2kH + 1. Suppose f H : XH → YH is kH-connected. We define the surgery kernel L( f H; R)
to be the H-module

Ker[ f H
∗ : HkH (XH; R)→ HkH (YH; R)] = HkH (XH; R) if dim YH = 2kH ≥ 6,(8.2)

KkH+1(XH
0, ∂H U) ⊗Z R if dim YH = 2kH + 1 ≥ 5, see [20, Diagram 4.2], and

K2(XH
0, ∂H U; R) if dim YH = 3, see [24, Diagram 3.1],

where U is a submanifold of H-manifold XH and XH
0 = XH

� H
◦
U.

Lemma 8.1. Let R = Z or Z(p) for a prime p. Suppose the following (i)–(iii).
(i) V satisfies the modified weak gap condition at H.

(ii) f is -adjusted at H.
(iii) f H : XH → YH is kH-connected.

If the surgery kernel L( f H; R) is stably free over R[H] then there is an element

σG,H(f ) (= σH(f H)) of V,H(R[H])

having the property: if σG,H(f ) = 0 then f is G-framed cobordant rel. ∂ by G-surgeries of
isotropy type (H)G to f ′ = ( f ′, b′), where f ′ : (X′, ∂X′)→ (Y, ∂Y), such that

(1) X′H is 1-connected and R-acyclic if dim VH ≥ 5, and
(2) X′H is (connected and) R-acyclic if dim VH = 3.

Proof. The lemma follows from the proofs of [6, Theorems 1.1 and 1.2], [20, Theorem A],
and [24, Theorem 1.1]. �
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9. Construction of G-framed maps

9. Construction of G-framed maps
Let G be a nonsolvable group, β = βG the idempotent of Ω(G) defined by (3.1), and V a

real G-representation of positive dimension being (G)nonsol-free and ample for βG. Recall
that VL = {0} for all L ∈ (G)nonsol. Let Z = S(R⊕V) and Z+ = Z�{pt}. The sphere Z is the
union of the hemispheres S+ = {(u, v) ∈ S(R⊕V) | u ≥ 0} and S− = {(u, v) ∈ S(R⊕V) | u ≤ 0},
where u ∈ R and v ∈ V . Let y+ = (1, 0) ∈ S(R ⊕ V) and y− = (−1, 0) ∈ S(R ⊕ V), where
±1 ∈ R and 0 ∈ V . We have the canonical G-diffeomorphism S+ → D(V), which carries
y+ to y0 = 0, and identify S+ with D(V) via the diffeomorphism. Recall the generalized
cohomology

ω0
G(Z) = lim

m→∞[Z+ ∧ M•, M•]G
0 ,

where M• is the one-point compactification of M = R[G]m. For α = 1 − β, the set S = {α} is
a multiplicatively closed subset of Ω(G) and the restriction map

(9.1) S−1ω0
G(Z) �� S−1ω0

G(ZG)

=

��
S−1ω0

G({y+}) ⊕ S−1ω0
G({y−}) �

�� S−1Ω(G) ⊕ S−1Ω(G)

is an isomorphism. The module Ω(G)⊕Ω(G) contains the element (α, 0). By the arguments
in [23] and [26, Section 4], originally due to T. Petrie [30, Sections 1 and 2], we obtain the
next lemma.

Lemma 9.1. There are a G-framed map f = ( f , b), where Y = D(V), f : (X, ∂X) →
(Y, ∂Y) with ∂ f = id∂Y and b : τX → f ∗τY , and M-framed cobordisms FM = (FM, BM)
from resG

Mf to resG
MidY rel. ∂, where FM : WM → I × Y is an M-map and BM : T (WM) ⊕

εWM (R	)→ FM
∗T (I ×Y)⊕ εWM (R	) is an M-bundle isomorphism, for all M ∈ max((G)sol),

satisfying the following conditions (C1)–(C3).
(C1) XL = ∅ for any L ∈ (G)nonsol.
(C2) f −1(y0)H consists of one point, say xH, f : X → Y is transverse regular at xH to y0

in Y, and f K : XK → YK is locally an orientation-preserving diffeomorphism from a
neighborhood of xH in XK to a neighborhood of y0 in YK, for any H ∈ max((G)sol)
with dim VH = 0 and K ∈ (H).

(C3) f −1(y0)=H = ∅ for each H ∈ (G)sol � max((G)sol) with dim VH = 0, where
f −1(y0)=H is the subset of f −1(y0)H consisting of points with isotropy subgroup H.

In the lemma above, it holds that
(C4) Iso(G, X) ⊃ Iso(G, Y � {y0}) ∪max((G)sol) ⊃ Iso(G, β), and
(C5) deg[ f H : (XH , ∂XH)→ (YH , ∂YH)] = 1 for any H ∈ (G) with dim VH > 0.

Lemma 9.2. For the M-framed cobordism FM, where M ∈ max((G)sol), in Lemma 9.1,
we can adjust it so as to satisfy the following conditions.

(C6) XM is diffeomorphic to Y M and WM
M is a product cobordism, i.e. diffeomorphic to

I × Y M, and furthermore

FM
M : (WM

M, ∂0WM
M, ∂1WM

M, ∂01WM
M)→ (ZM, ∂0ZM, ∂1ZM, ∂01ZM),
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where Z = I × Y, is homotopic rel. ∂1WM
M ∪ ∂01WM

M to a diffeomorphism. There-
fore f M : XM → Y M is homotopic rel. ∂ to a diffeomorphism.

(C7) If H ∈ (M) and dim VH = 0 then WM
H = WM

M (and WM
H is diffeomorphic to the

closed interval [0, 1]).

Proof. The properties in (C6) is readily achieved by the reflection method.
To show (C7), let H ∈ (M) with dim VH = 0. If X=H � ∅ then we get H = M by

(C2) and (C3). In the case H = M, we get XH = {xM} and dim WM
H = 1 and it holds that

one of the connected components of dim WM
H is diffeomorphic to [0, 1] and the others are

diffeomorphic to the circle. It is easy to convert WM by M-surgeries of isotropy type (H)M

(H = M) so that WM
H is diffeomorphic to [0, 1]. Therefore it suffices to consider the case

H < M. As an inductive assumption, suppose that WM
K = WM

M for all K ∈ M(H). Then
each connected component of WM

H
�WM

>H (WM
>H = WM

M) is diffeomorphic to the circle.
We can readily remove those undesired connected components of WM

H by M-surgeries of
isotropy type (H)M to obtain the property WM

H = WM
M. �

In the following sections, we assume that f and FM are adjusted by Lemma 9.2.

Proposition 9.3. Let H be a solvable subgroup of G. Suppose the G-framed map f =

( f , b) above satisfies the modified weak gap condition at H and the condition that

(1) XK is Z-acyclic for all K ∈ G(H) such that H � K and K/H is a hyper-elementary
group.

Set nH = dim VH and let kH be the integer satisfying nH = 2kH or 2kH + 1. Suppose nH ≥ 5
(resp. nH = 3) and XH is (kH − 1)-connected. Then ([G/G] − βG) f is G-framed cobordant
rel. ∂ to f ′ = ( f ′, b′), where f ′ : (X′, ∂X′) → (Y, ∂Y) and b′ : τX′ → f ′∗τY , by G-surgeries
of isotropy type (H)G, such that X′H is contractible (resp. Z-acyclic).

Here we remark that the equalities XL = ∅ = X′L and dim XH = dim YH = dim X′H hold
for L ∈ (G)nonsol and H ∈ (G)sol, respectively.

Proof. Note that XH is 1-connected and f H : XH → YH is kH-connected (resp. XH is
connected and f H

# : π1(XH) → π1(YH) is surjective). Let L( f H;Z) be the surgery kernel.
By the condition (1) above, L( f H;Z) is stably free over Z[H], where H = NG(H)/H.
By Lemma 8.1, we obtain the obstruction σG,H(f ;Z) in V,H(Z[H]) to convert f so that
f H : XH → YH would be a homotopy equivalence (resp. a Z-homology equivalence) by
G-surgeries rel. ∂ of isotropy type (H)G. Note the property

σG,H(([G/G] − βG) f ;Z) = ([H/H] − βG
H)σG,H(f ;Z),

where βG
H is the element [XH

1 ]− [XH
2 ] ∈ Ω(H) if β = [X1]− [X2] for finite G-sets X1 and X2.

Recall the induction theory of equivariant-surgery-obstruction groups, see [10, 11], [2], [14,
Corollary 1.4], and [25, Theorems 1.1 and 13.5]. If H � K ∈ (G) and K/H is solvable,
then K is solvable and

resH
K/H([G/G] − βG)H = (resG

K([G/G] − βG))H = 0 in Ω(K/H).

It follows that

resH
K/H(([H/H] − βG

H)σG,H(f ;Z)) = 0
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for all K/H ∈ (H)sol and

([H/H] − βG
H)σG,H(f ;Z) = 0.

Therefore, ([G/G] − βG) f is G-framed cobordant rel. ∂ to f ′ stated in the proposition by
G-surgeries of isotropy type (H)G. �

10. Simply organized families and G-surgeries

10. Simply organized families and G-surgeries
Let G be a nonsolvable group and V an (G)nonsol-free real G-representation. Set

(10.1) (G,V, 0) = {H ∈ (G)sol | dim VH = 0}.
Let f = ( f , b) and FM = (FM, BM) be the G-framed map and the M-framed cobordisms,
where M ∈ max((G)sol), obtained in Lemma 9.1. Let Z = I×Y , ∂0Z = {0}×Y , ∂1Z = {1}×Y ,
and ∂01Z = I × ∂Y . We suppose that f and FM are adjusted by Lemma 9.2. In this situation,
for every M ∈ max((G)sol), WM

M is diffeomorphic to I × Y M, XM is diffeomorphic to Y M,
f M : XM → Y M is homotopic rel. ∂ to a diffeomorphism, WM

M is diffeomorphic to I × Y M,
and FM

M : WM
M → I × Y M is homotopic rel. ∂1WM

M ∪ ∂01WM
M to a diffeomorphism.

In addition, we have X=H = ∅ and W=H
M = ∅ for all H ∈ (G,V, 0) � max((G)sol) and

M ∈ max((G)sol) such that H ⊂ M.
For a subset  of (G), let X() denote the union of XH , where H ranges over . Let

M ∈ max((G)sol) and set M = {M} ∪ (G,V, 0). Let NM(X(M), X) be an M-regular
neighborhood of X(M) in X. In this section we set X(0) = X, f (0) = f , W (0)

M = WM,
F (0)

M = FM, for M ∈ max((G)sol), and F (0)
G = I × f . It is easy to obtain a product M-

embedding Φ(0)
M : I × NM(X(M), X)→ WM and an M-homotopy

H
(0)
M : (WM, ∂0WM, ∂1WM, ∂01WM) × I → (Z, ∂0Z, ∂1Z, ∂01Z)

rel. ∂1WM ∪ ∂01WM such that H(0)
M |WM×{0} = FM and H(0)

M |Im(Φ(0)
M )×{1} is a diffeomorphism to

its image.
Now let  be a G-conjugation-invariant and upper-closed subset of (G)sol and suppose

 is G-simply organized with respect to ρmax :  ∗ → max( )∗, where max( )∗ =  ∗ ∩
max( ). By Definition 7.1, the equality

(10.2) X(G(H)) = X(M(H)) ∪ X((G, M,H))

holds for H ∈  ∗ and M = ρmax(H), where (G, M,H) is the set of subgroups K ∈ G(H)
such that K ∩ M = H. Here we note that X(G(H)) = X>H and X(M(H)) = (resG

MX)>H .

Lemma 10.1. Suppose  contains  (0) = max((G)sol)∪(G,V, 0). In addition suppose
the next condition is fulfilled.

(D1) dim VK = 0 for all H ∈ ( ∗ ∩ Iso(G,V � {0})) �  (0) and K ∈ (G, ρmax(H),H).
Then there are a G-framed map f ′ rel. ∂, a G-framed cobordism FG from f to f ′ rel. ∂
and (M)nonsol, and an M-framed cobordism F ′M from resG

Mf ′ to resG
MidY rel. ∂ for each

M ∈ max( )∗ having the following properties.

(1) X′H is diffeomorphic to YH and f ′H : X′H → YH is NG(H)-homotopic rel. ∂ to a
diffeomorphism for all H ∈  .
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(2) For each M ∈ max( )∗, there is an M-homotopy

H
′
M : (W ′M, ∂0W ′M, ∂1W ′M, ∂01W ′M) × I → (Z, ∂0Z, ∂1Z, ∂01Z)

rel. ∂1W ′M ∪ ∂01W ′M such that H′M |W′M×{0} coincides with F′M and H′M |W′M H×{1} is a
diffeomorphism to its image for every H ∈  ∗ with ρmax(H) = M.

Proof. We can write  in the form

 = 
(0) � (H1)G � (H2)G � · · · � (Hm)G,

where Hi ∈  ∗ for 1 ≤ i ≤ m, satisfying the condition that if |Hi| > |Hj| then i < j.
Set Mi = ρmax(Hi). Let Hi be one of the subgroups above such that (Hi)G is a maximal
conjugacy class in  �  (0). For H = Hi and M = ρmax(H), since X>H ⊂ X( (0)), we will
adopt a restriction of Φ(0)

M as a product M-embedding Ψ(i)
i : I × NM(M · X>H , X)→ WM.

For k = 1, . . . , m, we inductively define  (k) by  (k) =  (k−1) � (Hk)G. We prove the
lemma by induction on k = 1, . . . , m. Recall that for integers i and j, we mean by [i.. j] the
set of integers t such that i ≤ t ≤ j. Suppose that (for fixed k) we have obtained inductively,

• G-framed maps f (i) rel. ∂, where f (i) : (X(i), ∂X(i))→ (Y, ∂Y),
• G-framed cobordisms F (i)

G rel. ∂ and G(Hi), from f (i−1) to f (i), where

F(i)
G : (W (i)

G , ∂0W (i)
G , ∂1W (i)

G , ∂01W (i)
G )→ (Z, ∂0Z, ∂1Z, ∂01Z),

• M-framed cobordisms F (i)
M rel. ∂ from resG

Mf (i) to resG
MidY , where

F(i)
M : (W (i)

M , ∂0W (i)
M , ∂1W (i)

M , ∂01W (i)
M )→ (Z, ∂0Z, ∂1Z, ∂01Z),

such that F(i)
M is obtained by M-surgeries rel. ∂1W (i−1)

M ∪∂01W (i−1)
M on F(i−1)

M of isotropy
types (K)M, where K runs over {L ∩ M | L ∈ (Hi)G},

for i ∈ [0..(k − 1)] and M ∈ max( )∗,
• product Mj-embeddings Ψ(i)

j : I × NM j(Mj · (resG
M j

X(i−1))>Hj , X(i−1)) → W (i−1)
M j

such

that Ψ(i)
j = Ψ

(i−1)
j whenever j ≤ i − 1,

• product Mj-embeddings Φ(i)
j : I × NM j(Mj · (X(i))Hj , X(i)) → W (i)

M j
such that Φ(i)

j =

Φ
(i−1)
j whenever j ≤ i − 1 and that Ψ(i)

j
>Hj
=
⋃

LΦ
(i)
j

L
, where L runs over M j(Hj),

and
• Mj-homotopies

H
(i)
j : (W (i)

M j
, ∂0W (i)

M j
, ∂1W (i)

M j
, ∂01W (i)

M j
) × I → (Z, ∂0Z, ∂1Z, ∂01Z)

rel. ∂1W (i)
M j
∪ ∂01W (i)

M j
such that H(i)

M j
|W (i)

M j
×{0} coincides with F(i)

M j
and H(i)

j |Im(Φ(i)
j )×{1} is

a diffeomorphism to its image,
for i ∈ [1..(k − 1)] and j ∈ [1..i].

Note that dim VHk > 0.
Case 1: Hk � Iso(G,V). By (10.2), there is a subgroup K ∈ Mk (Hk) such that dim VK =

dim VHk > 0. It follows that X>Hk ⊂ XK and XHk = XK�X=Hk . By Lemma 6.2, we can obtain
f (k), F (k)

Mk
, Φ(k)

k , and H(k)
k . Let M ∈ max( )∗ � {Mk} and set F (k)

M
′
= FG ∪f (k−1) F (k−1)

M . Note
that WG

Hj is a product cobordism for each j ∈ [1..(k − 1)]. Therefore, for j ∈ [1..(k − 1)],
by deforming F (k)

M j

′
, we can obtain desired F (k)

M j
, Ψ(k)

j , Φ(k)
j , and H(k)

j , where W (k)
M j

is Mj-
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homeomorphic to W (k)
G ∪X(k−1) W (k−1)

M j
. For t ∈ [(k + 1)..m], we adopt F (k)

Mt

′
as F (k)

Mt
.

Case 2: Hk ∈ Iso(G,V). In this case we have dim VK < dim VHk for all K ∈ G(Hk). By
performing G-surgeries of isotropy type (Hk)G on f (k−1) (resp. Mk-surgeries of isotropy type
(Hk)Mk on F (k−1)

Mk
), we can assume without any loss of generality that X(k−1)Hk (resp. W (k−1)

Mk
)

is connected. We can obtain an Mk-product embedding Ψ(k)
k : I × NMk (Mk · (resG

Mk
X(k−1))>Hk ,

resG
Mk

X(k−1))→ W (i−1)
Mk

from Φ(0)
Mk

and Φ( j)
k , where j runs over the set

Jk = { j ∈ [1..(k − 1)] | ρmax(Hj) = Mk}.
Recall the condition that dim VK = 0 for K ∈ (G, Mk,Hk) is fulfilled. By Lemma 6.4, we
can obtain f (k), F (k)

Mk
, Φ(k)

k , and H(k)
k . Moreover we can obtain F (k)

M for M ∈ max( )∗ � {Mk},
and Ψ(k)

j , Φ(k)
j , and H(k)

j for j ∈ [1..(k − 1)] quite similarly to Case 1.
Putting Cases 1 and 2 together, we set f ′ = f (m),

FG = F (1)
G ∪f (1)F (2)

G ∪f (2) · · · ∪f (m−1)F (m)
G ,

and F ′M = F (m)
M and H′M = H

(m)
j , where M = Mj. Then the conclusion of Lemma 10.1

follows. �

11. Construction theorems of one-fixed-point actions on spheres

11. Construction theorems of one-fixed-point actions on spheres
In the present section, let G be a nonsolvable group, let  and  be G-conjugation-

invariant and upper-closed subsets of (G)sol such that  is G-simply organized with respect
to ρmax :  ∗ → max( )∗, where max( )∗ =  ∗ ∩max( ), and

(11.1) max((G)sol) ∪(G,V, 0) ⊂  ⊂ ,

let βG be the element of Ω(G) defined in (3.1), and let V be an (G)nonsol-free real G-
representation. Suppose V is ample for βG and satisfy the condition (D1) in Lemma 10.1.
Let f and FM be a G-framed map and M-framed cobordisms, where M ∈ max((G)sol)∗,
obtained in Lemma 9.1. In this section we suppose that f and FM are adjusted by Lem-
mas 9.2 and 10.1.

Theorem 11.1. Further suppose V satisfies

(D2) dim VH = 3 or dim VH ≥ 5 for H ∈  �  , and
(D3) the modified weak gap condition at H, for H ∈  �  .

Then there exists a G-framed map f ′ = ( f ′, b′), where f ′ : (X′, ∂X′) → (Y, ∂Y), satisfying
the following conditions.

(1) f ′ is G-framed cobordant rel. ∂ and (G)nonsol to fm, where fi = ([G/G] − βG)fi−1

(i ∈ [1..m]) and f0 = f , for some m ∈ N. Therefore X′G is the empty set.
(2) f ′H : X′H → YH is NG(H)-homotopic rel. ∂ to a diffeomorphism for H ∈  .
(3) f ′H : X′H → YH is a homotopy equivalence rel. ∂ for H ∈  with dim VH � 3.
(4) f ′H : X′H → YH is a Z-homology equivalence rel. ∂ for H ∈  with dim VH = 3.

Proof. Inductively applying Proposition 9.3 to H ∈  �  , we obtain the theorem. �

Theorem 11.2. In the situation of Theorem 11.1, suppose  = (G)sol and dim V > 5.
Then there exists a one-fixed-point G-action on the standard sphere S such that Tx0 (S) � V
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as real G-representations, where x0 is the G-fixed point of S.

Proof. Let X′ be the G-manifold obtained in Theorem 11.1 and set Σ = D(V) ∪∂ X′. It is
clear that Σ is a homotopy sphere with exactly one G-fixed point, say x0, and Tx0 (Σ) �G V .
Let S be the G-connected sum ([G/G] − βG)Σ with respect to the expression (3.2) of βG.
Then S is the standard sphere with exactly one G-fixed point, cf. [16, Proposition 1.3]. �

Let G̃ be an extension of G by a finite solvable group N, i.e. we have the exact sequence

E −→ N −→ G̃
π−→ G −→ E.

A subgroup H̃ of G̃ is solvable if and only if π(H̃) is solvable. It follows that

βG̃ = π
∗βG and (G̃)sol = π

−1((G)sol).

Let Ũ be a free real G̃-representation and set

Ṽ = Ũ ⊕ π∗V.
Let Ỹ be the unit disk of Ṽ . There are a G̃-framed map f̃ = ( f̃ , b̃) rel. ∂, where f̃ : (X̃, ∂X̃)→
(Ỹ , ∂Ỹ), b̃ : τX̃ → f̃ ∗τỸ , τX̃ = εX̃(R) ⊕ T (X̃) ⊕ εX̃(R	), and τỸ = εỸ(R) ⊕ T (Ỹ) ⊕ εỸ(R	),
and M̃-framed cobordisms F̃M̃ = (F̃M̃, B̃M̃), where M ∈ max((G)sol), M̃ = π−1(M), F̃M̃ :
W̃M̃ → I × Ỹ , and

B̃M̃ : T (W̃M̃) ⊕ εW̃M̃
(R	)→ F̃∗

M̃

(
T (I × Ỹ)

)
⊕ εW̃M̃

(R	)

such that

f̃ N = f and F̃M̃
N
= FM.

Theorem 11.3. In the situation of Theorem 11.1, suppose  = (G)sol. Let G̃ and Ũ be
as above. Suppose the condition that

(D4) dim Ũ > dim V and dim Ũ + dim V > 5
is fulfilled. Then there exists a one-fixed-point G̃-action on the standard sphere S̃ such that
Tx0 (̃S) � Ũ ⊕ π∗V as real G̃-representations, where x0 is the G̃-fixed point of S̃.

Proof. Let f ′ be the G-framed map rel. ∂ stated in Theorem 11.1. There is a G̃-framed
map f̃ ′ = ( f̃ ′, b̃′) rel. ∂, where f̃ ′ : (X̃′, ∂X̃′) → (Ỹ , ∂Ỹ), such that f̃ ′

N
= f ′. Then f̃ ′K is

a Z-homology equivalence for every K ∈ (G̃)sol � {E}. By the condition (D4), X̃′ satisfies
the gap condition at E, because

2 dim X̃′H = 2 dim ŨH + 2 dim Vπ(H) = 2 dim Vπ(H) ≤ 2 dim V < dim Ũ + dim V = dim X̃′

for H ∈ (G̃) � {E} such that X̃′H � ∅. Without any loss of generality, we can suppose f̃ ′

is connected up to the middle dimension. We have the G̃-surgery obstruction σG̃,E(f̃ ′) of
isotropy type (E)G̃ in Ṽ ,E(Z[G̃]). Recall Proposition 9.3. Performing G̃-surgeries rel. ∂
of isotropy type (E)G̃ on ([G̃/G̃] − βG̃)f̃ ′, we can obtain a G̃-framed map f̃ ′′ = ( f̃ ′′, b̃′′),
where f̃ ′′ : (X̃′′, ∂X̃′′) → (Ỹ , ∂Ỹ), such that X̃′′L = ∅ for all L ∈ (G̃)nonsol and f̃ ′′ is a
homotopy equivalence. Then Σ̃ = D(Ṽ) ∪∂ X̃′′ is a homotopy sphere with exactly one G̃-
fixed point, say x0. We have Tx0 (Σ̃) � Ṽ as real G̃-representations. Let S̃ be the G̃-connected
sum ([G̃/G̃]−βG̃)Σ̃ with respect to the expression of βG̃ induced from the expression (3.2) of
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βG. Then S̃ is the standard sphere with exactly one G̃-fixed point, cf. [16, Proposition 1.3].
�

12. Proof of Theorem 1.3

12. Proof of Theorem 1.3
In this section we prove Theorem 1.3 on a case-by-case basis. Before the proof, we

recall that the condition (D1) in Lemma 10.1 (concerning the primitive gap condition for
(G, ρmax(H),H) ) will be requested for H ∈  � (max((G)sol) ∪ (G,V, 0)), and that the
conditions (D2) and (D3) in Theorem 11.1 (concerning the modified weak gap condition at
H) will be requested for H ∈ (G)sol �  . We will give Figures 3–7 to help readers follow
the arguments. In the diagrams, we adopt the following conventions.

(1) For a subgroup H, H(m) indicates dim VH = m.
(2) For subgroups H and K of G, an arrow (resp. a dotted arrow) from H(m1) to K(m2)

indicates ρmax(H) = K and H � K (resp. ρmax(H) = K and H ��K).
Proof in Case n = 6 (i). Here G = A5 and V has the form V = V3 ⊕ V ′3 for irreducible

real G-representations V3 and V ′3 of dimension 3. The element βG has the form (3.3). The
fixed-point-set dimensions of V for A5 are as in Figure 3.

Fig.3.

By Proposition 3.3 (1), V is ample for βG. Let  = (G)sol�{E} and  = (G)sol. By Propo-
sition 7.1,  is G-simply organized. By Proposition 7.2, V satisfies (D1) in Lemma 10.1 and
(D2), (D3) in Theorem 11.1. The condition (11.1) is also fulfilled. Therefore Theorem 11.2
gives a desired one-fixed-point G-action on S6. �

Proof in Case n = 6 (ii). Here G = S5 and V is an irreducible real G-representation of
dimension 6. The element βG has the form (3.5). The fixed-point-set dimensions of V for S5

are as in Figure 4.
By Proposition 3.3 (2), V is ample for βG. Let  = (G)sol � ({E} ∪ (C2)G) and  =

(G)sol. By Proposition 7.4,  is G-simply organized. By Proposition 7.5, V satisfies (D1)
in Lemma 10.1 and (D2), (D3) in Theorem 11.1. The condition (11.1) is also fulfilled.
Therefore Theorem 11.2 gives a desired one-fixed-point G-action on S6. �

Proof in Case n = 6 (iii). Here G = A5 × Z, where |Z| = 2, and V has the form
V = VZ ⊕VZ such that VZ and VZ are irreducible real G-representations of dimension 3. The
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Fig.4.

element βG has the form βG = π
∗βL, where L = A5 and π : G → L is an epimorphism. The

fixed-point-set dimensions of V for A5 × Z are as in Figure 5.

Fig.5.

By Proposition 3.3 (3), V is ample for βG. Let  = (G)sol � ({E, Z} ∪ (2)G) and  =

(G)sol. By Proposition 7.6,  is G-simply organized. By Proposition 7.7, V satisfies (D1)
in Lemma 10.1 and (D2), (D3) in Theorem 11.1. The condition (11.1) is also fulfilled.
Therefore Theorem 11.2 gives a desired one-fixed-point G-action on S6. �
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Proof in Case n = 7 (iv). Here G = A5 and V has the form V = V3 ⊕V4, where V3 and V4

are irreducible real G-representations of dimension 3 and 4, respectively. The fixed-point-set
dimensions of V for A5 are as in Figure 6.

Fig.6.

By Proposition 3.3 (1), V is ample for βG. Let  = (G)sol � ({E} ∪ (C2)G ∪ (C3)G) and
 = (G)sol. By Proposition 7.1,  is G-simply organized. By Proposition 7.3, V satisfies
(D1) in Lemma 10.1 and (D2), (D3) in Theorem 11.1. The condition (11.1) is also fulfilled.
Therefore Theorem 11.2 gives a desired one-fixed-point G-action on S7. �

Proof in Case n = 7 (v). Here G = A5 × Z, where |Z| = 2, and V has the form
V = VZ ⊕ VZ such that VZ and VZ are irreducible real G-representations of dimension 3 and
4, respectively. The fixed-point-set dimensions of V for A5 × Z are as in Figure 7.

Fig.7.

By Proposition 3.3 (3), V is ample for βG. Let  = (G)sol� ({E, Z}∪ (C2)G∪ (2)G∪ (C3)G)
and  = (G)sol. By Proposition 7.6,  is G-simply organized. By Proposition 7.8, V
satisfies (D1) in Lemma 10.1 and (D2), (D3) in Theorem 11.1. The condition (11.1) is also
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fulfilled. Therefore Theorem 11.2 gives a desired one-fixed-point G-action on S7. �

Proof in Case n = 3 + 4k (vi). Changing notation, let G̃ = SL(2, 5) × Zm and G = A5.
Let π : G̃ → G be an epimorphism. Changing notation, let V be an irreducible real G-
representation of dimension 3, let Ũ be a free real G̃-representation of dimension 4k, and set
Ṽ = Ũ ⊕ π∗V . The kernel N of π is Z ×Zm, where Z = Center(SL(2, 5)). The element βG̃ has
the form βG̃ = π

∗βG. By Proposition 3.3 (1), V is ample for βG. Let  = (G)sol � {E} and
 = (G)sol. By Proposition 7.1,  is G-simply organized. By Proposition 7.2, V satisfies
(D1) in Lemma 10.1 and (D2), (D3) in Theorem 11.1. The condition (11.1) is also fulfilled.
Therefore Theorem 11.3 gives a desired one-fixed-point G̃-action on S3+4k. �

Proof in Case n = 6 + 8k (vi). Changing notation, let G̃ = TL(2, 5) × Zm and G = S5.
Let π : G̃ → G be an epimorphism. Changing notation, let V be an irreducible real G-
representation of dimension 6, let Ũ be a free real G̃-representation of dimension 8k, and set
Ṽ = Ũ ⊕π∗V . The kernel N of π is Z ×Zm, where Z = Center(TL(2, 5)). The element βG̃ has
the form βG̃ = π

∗βG. By Proposition 3.3 (2), V is ample for βG. Let  = (G)sol � ({E} ∪
(C2)G) and  = (G)sol. By Proposition 7.4,  is G-simply organized. By Proposition 7.5,
V satisfies (D1) in Lemma 10.1 and (D2), (D3) in Theorem 11.1. The condition (11.1) is
also fulfilled. Therefore Theorem 11.3 gives a desired one-fixed-point G̃-action on S6+8k.

�

We remark that the real G-representation V in Theorem 1.3 is faithful and therefore the
G-action on V is effective. Since Tx0 (S) � V , the G-action on S obtained in Theorem 1.3 is
effective.
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