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Abstract
In this article, we prove that Buchstaber invariant of 4-dimensional real universal complex is

no less than 24 as a follow-up to the work of Ayzenberg and Sun. Moreover, a lower bound for
Buchstaber invariants of n-dimensional real universal complexes is given as an improvement of
result of Erokhovets.

1. Introduction

1. Introduction
Moment-angle complex and its real counterpart are fundamental objects in toric topology

as they construct links between algebraic geometry, symplectic geometry and combinatorics
(see Definition 1). These objects are equipped with certain group actions, yielding applica-
tions in both non-equivariant and equivariant categories (see [4] for more details).

For a given simplicial complex K on m vertices, the associated real moment-angle com-
plex RK (resp. moment-angle complex K) admits a natural Zm

2 -action (resp. T m-action)
by coordinate-wise sign permutation (resp. rotation). However, these actions fail to be free
unless K is the empty complex, leading to the definition of real Buchstaber invariant sR(K)
(resp. Buchstaber invariant s(K)) as the maximal rank of subgroup (resp. toric subgroup)
that acts freely on RK (resp. K) (see Definition 2). These two types of invariants measure
the degree of symmetry of the corresponding complexes and were first introduced in [3] for
simplicial spheres with generalization in [8] for arbitrary simplicial complexes.

Buchstaber asked for a combinatorial description of s(K) in [3], which turns out to be
quite hard and remains open till today. As a matter of fact, calculation of s(K) is not com-
pleted even for the special case where K is the boundary of a cyclic polytope. The partial
results can be found in [7].

On the other hand, there exists a general bound for sR(K) and s(K):

(1.1) m − γ(K) ≤ s(K) ≤ sR(K) ≤ m − n

where K is an (n − 1)-dimensional simplicial complex on m vertices and γ(K) stands for
ordinary chromatic number of K. This formula can be derived from relations among gen-
eralized chromatic numbers in a systematic manner, as shown in [1]. Indeed, with the
help of real universal complex n

1 and universal complex n
2 introduced in [6], sR(K) and

s(K) can be expressed as m − rR(K) and m − r(K) respectively, where rR(K) and r(K)
are minimal rank of certain colorings on K (see Section 2, also see [10]). Moreover, the
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upper bound of s(K) and sR(K) is controlled by the sum of rational Betti numbers since
2m−n ≤ ∑

i dimHi(K;Q) =
∑

i dimHi(RK ;Q) was proved as a special case of Halperin-
Carlsson conjecture (see [5, 16]).

The general inequality s(K) ≤ sR(K) follows from the fact that involutions on T m and
K induced by complex conjugation have fixed point sets Zm

2 and RK respectively. Thus,
any free T r-action on K induces a free Zr

2-action on RK . Meanwhile, the special case
s(K) = sR(K) is closely related to Lifting problem (see Section 2) presented by Lü at the
conference on toric topology held in Osaka in November 20111. Let Δ(K) = sR(K)− s(K) =
r(K) − rR(K) denote the difference, then the vanishing of Δ(K) is necessary for the validity
of Lifting problem on K.

For real universal complex n
1, we have the following monotonicity and universal prop-

erty:

Proposition 1 ([15, Theorem 3.3]). Δ(n
1) ≤ Δ(n+1

1 ).

Proposition 2 ([15, Proposition 4.1]). rR(K) ≤ rR(n
1) =⇒ Δ(K) ≤ Δ(n

1).

Therefore, the value of Δ(n
1) is significant as it gives out an upper bound for general

cases. In [1] and [2], Ayzenberg showed that Δ(n
1) = 0 for n = 1, 2, 3 and Δ(4

1) > 0
respectively. In [15], Δ(4

1) = 1 was confirmed by Sun. Furthermore, an upper bound
Δ(n

1) ≤ 3 · 2n−2 − 1 − n for n ≥ 2 can be viewed as a corollary of Proposition 3.3.4 in [7]
(see Remark 5).

Main aim of this article is to further estimate the upper bound for Δ(n
1), which can be

deduced from construction of certain colorings. Since s(n
1) + Δ(n

1) = 2n − 1 − n by
definition (see Section 2), upper bound estimation of Δ(n

1) is equivalent to lower bound
estimation of s(n

1). Explicit construction of non-degenerate simplicial maps from 5
1 to 7

2
and from n

1 to 2n−2+1
2 for n ≥ 2 yields the following theorems:

Theorem 1. Δ(5
1) ≤ 2, i.e., s(5

1) ≥ 24.

Theorem 2. For n ≥ 2, Δ(n
1) ≤ 2n−2 + 1 − n, i.e., s(n

1) ≥ 3 · 2n−2 − 2.

Remark 1. The construction process is equivalent to finding the solution to a system of
nonlinear Diophantine equations. These equations all belong to a certain type discussed in
[12], where existence and classification problem of solutions to a single equation was solved.
However, existence problem of solutions to the system is much harder to deal with since the
number of equations grow rapidly as n increases.

Remark 2. Vanishing of Δ(n
1) for n = 1, 2, 3 follows from the fact that every matrix

in GL(3,Z2) has integral determinant ±1. For general n, upper bound estimation of Δ(n
1)

is also related to determinant calculation in both Z2 and Z. An upper bound (n + 1)
(n+1)

2 /2n

for absolute value of integral determinant of matrix in GL(n,Z2) was given in [9]. This
is a special case of Hadamard maximum determinant problem which aims to calculate the
maximal determinant of a square matrix with elements restricted in a given set S. It should
be pointed out that this problem is far from being solved even for the simplest case S = {0, 1}

1http://www.sci.osaka-cu.ac.jp/masuda/toric/torictopology2011 osaka.html
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since whether the bound given above is sharp or not remains unknown except for n+1 being
power of 2. Computational results in low dimensions (n ≤ 9) with the aid of computer were
listed in [17] and recent theoretical progress can be found in [13].

This article is organized as follows. In Section 2, basic definitions and notations are listed.
Section 3 is devoted to the proof of Theorem 1 via explicit construction and computer-aided
verification. Section 4 includes the proof of Theorem 2 with an illustrative example.

2. Preliminaries

2. Preliminaries
In the first place, we shall give out the formal definition of (real) moment-angle complex

and (real) Buchstaber invariant.

Definition 1. Given a simplicial complex K on [m] = {1, . . . ,m}, we can define the real
moment-angle complex RK and the moment-angle complex K associated to K:

RK =
⋃
I⊂K

(D1, S0)I ⊆ (D1)m;K =
⋃
I⊂K

(D2, S1)I ⊆ (D2)m,

where (X, A)I = {(x1, . . . , xm) ∈ Xm, xi ∈ A if i � I} for A ⊆ X.

Definition 2. For RK and K associated to a simplicial complex K on [m]:
(1) The real Buchstaber invariant sR(K) is the maximal rank of a subgroup H ⊆ Zm

2 such
that the restricted action H � RK is free;
(2) The Buchstaber invariant s(K) is the maximal rank of a toric subgroup G ⊆ T m such that
the restricted action G� K is free.

Example 1. Let K be the boundary of a square with vertices labeled as 1, 3, 2, 4 counter-
clockwise. By definition K = (D2 × S1 ∪ S1 × D2) × (D2 × S1 ∪ S1 × D2) = S3 × S3 while
RK = (D1 × S0 ∪ S0 × D1) × (D1 × S0 ∪ S0 × D1) = S1 × S1. Moreover, s(K) = sR(K) = 2
follows from (1.1) and γ(K) = dimK + 1 = 2, where γ(K) is the chromatic number of K.

Secondly, we introduce the (real) universal complex and the corresponding coloring to
get an equivalent expression of (real) Buchstaber invariant.

Definition 3. Let Rn
d = Z

n
2 when d = 1 and Rn

d = Z
n when d = 2. The simplicial complex

n
d is defined on the set of primitive vectors in Rn

d as follow:

[u1, . . . , uk] is a simplex of n
d ⇐⇒ {u1, . . . , uk} is part of a basis of Rn

d.

n
1 is called real universal complex while n

2 is called universal complex.

Definition 4. An Rr
d-coloring on a simpicial complex K is defined as a non-degenerate

simplicial map λ : K → r
d. The non-degenerate condition means λ is an isomorphism on

each simplex of K.

Let rR(K) denote the minimum value of r such that there exists an Rr
1-coloring on K.

Similarly, r(K) is the minimum value of r such that there exists an Rr
2-coloring on K. Then

rR(n
1) = r(n

2) = n follows from definition. In addition, equivalent expressions sR(K) =
m − rR(K) and s(K) = m − r(K) were first proved in [10]. Since there are 2n − 1 primitive



574 Q. Shen

vectors in n
1, we have sR(n

1) = s(n
1) + Δ(n

1) = 2n − 1 − n.
With notations above, we can formally state the Lifting problem as follow:

Lifting Problem ([11, Remark 6]). For any given simplicial complex K and non-
degenerate simplicial map f : K → 

sR(K)
1 , does there exist a lifting map f̃ : K → 

sR(K)
2

such that the diagram below is commutative:


sR(K)
2

π

��

K

f̃
����������� f �� sR(K)

1

where π : sR(K)
2 → 

sR(K)
1 is the natural modulo 2 projection.

3. Lower bound for s(5
1
)

3. Lower bound for s(5
1
)3.1. Preparation.

3.1. Preparation. Let e represent the identity of Z2 and 1 represent the identity of Z to
avoid confusion. As listed in the table below, we can take a partition vt(5

1) = V1�V2�V3�
V4 � V5 such that Vi consists of primitive vectors with (5 − i) zeros and label 31 elements of
vt(5

1) in lexicographic order.

V1 V2 V3 V4

u1 = (e, 0, 0, 0, 0) u6 = (e, e, 0, 0, 0) u16 = (e, e, e, 0, 0) u26 = (e, e, e, e, 0)
u2 = (0, e, 0, 0, 0) u7 = (e, 0, e, 0, 0) u17 = (e, e, 0, e, 0) u27 = (e, e, e, 0, e)
u3 = (0, 0, e, 0, 0) u8 = (e, 0, 0, e, 0) u18 = (e, e, 0, 0, e) u28 = (e, e, 0, e, e)
u4 = (0, 0, 0, e, 0) u9 = (e, 0, 0, 0, e) u19 = (e, 0, e, e, 0) u29 = (e, 0, e, e, e)
u5 = (0, 0, 0, 0, e) u10 = (0, e, e, 0, 0) u20 = (e, 0, e, 0, e) u30 = (0, e, e, e, e)

u11 = (0, e, 0, e, 0) u21 = (e, 0, 0, e, e)
u12 = (0, e, 0, 0, e) u22 = (0, e, e, e, 0)
u13 = (0, 0, e, e, 0) u23 = (0, e, e, 0, e)
u14 = (0, 0, e, 0, e) u24 = (0, e, 0, e, e)
u15 = (0, 0, 0, e, e) u25 = (0, 0, e, e, e)

V5 : u31 = (e, e, e, e, e)

Within the rest of this article, we assume all vectors are understood as column vectors.
And for a binary square matrix M, detZ2 M represents its determinant taken in Z2 while
detM represents its determinant taken in Z. The statement of Theorem 1 is equivalent to
r(5

1) ≤ 7, i.e., there exists a vertex map Λ : vt(5
1) → vt(7

2) which induces a non-
degenerate simplicial map from 5

1 to 7
2. By the restriction of non-degenerate condition, it

remains to verify that:

∀ {ui1 , ui2 , ui3 , ui4 , ui5} ⊆ vt(5
1) satisfying detZ2 (ui1 , ui2 , ui3 , ui4 , ui5) = e,(�)

∃ α = (a1, . . . , a7)T ∈ Z7 and β = (b1, . . . , b7)T ∈ Z7 with the property :

det(Λ(ui1),Λ(ui2),Λ(ui3),Λ(ui4),Λ(ui5),α,β) = ±1.

Indeed, it is even possible to construct Λ with additional restrictions:



Buchstaber Invariants of Real Universal Complexes 575

p j ◦ Λ = id j for j ∈ {1, 2, 3, 4, 5},
where p j is the projection onto the jth coordinate of Z7 and id j is the identity map of the jth

coordinate. For the 6th and 7th coordinate, write φ = p6 ◦Λ, ψ = p7 ◦Λ and suppose for each
i ∈ {1, . . . , 31}, φ(ui) = si ∈ Z, ψ(ui) = ti ∈ Z. Then write Φ(ui) =

( ui
si

) ∈ Z6, Ψ(ui) =
( ui

ti
) ∈

Z6 and α′ = (a1, . . . , a5, a6)T, β′ = (b1, . . . , b5, b7)T. Furthermore, let A = (ui1 , ui2 , ui3 , ui4 , ui5)
and (A) j denote the matrix A with jth row replaced by (si1 , si2 , si3 , si4 , si5 ), (A) j denote the
matrix A with jth row replaced by (ti1 , ti2 , ti3 , ti4 , ti5 ). Then by basic linear algebra:

det(Φ(ui1),Φ(ui2),Φ(ui3),Φ(ui4),Φ(ui5),α
′)

= a6detA − a1det(A)1 − a2det(A)2 − a3det(A)3 − a4det(A)4 − a5det(A)5;

det(Ψ(ui1),Ψ(ui2),Ψ(ui3),Ψ(ui4),Ψ(ui5),β
′)

= b7detA − b1det(A)1 − b2det(A)2 − b3det(A)3 − b4det(A)4 − b5det(A)5.

By Chinese Remainder Theorem, the existence of α′ for the first determinant being ±1 is
equivalent to

g.c.d.(detA, det(A)1, det(A)2, det(A)3, det(A)4, det(A)5) = 1.(�1)

Similarly, the existence of β′ for the second determinant being ±1 is equivalent to

g.c.d.(detA, det(A)1, det(A)2, det(A)3, det(A)4, det(A)5) = 1.(�2)

If (�1) or (�2) holds, then taking β = e7 or α = e6 as standard basis of Z7 yields the validity
of (�). Specifically, there is nothing to verify when |detA| = 1 itself. On the other hand, it
follows from the upper bound given in [9] that |detA| ≤ 5 if A ∈ GL(5,Z2). Thus, (�1) can
be reformulated as:

∃ i ∈ {1, . . . , 5} such that det(A)i � 0 (mod |detA|),(�1′)

and (�2) can be reformulated as:

∃ i ∈ {1, . . . , 5} such that det(A)i � 0 (mod |detA|).(�2′)

3.2. Explicit values of φ and ψ.
3.2. Explicit values of φ and ψ.

Fact. φ(ui) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0 ui ∈ V1,

1 ui ∈ V2 � V3 � V4,

2 ui ∈ V5,

and ψ(ui) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0 ui ∈ V2 � V4,

1 ui ∈ V3,

2 ui ∈ V1 � V5,

guarantee the va-

lidity of (�1′) or (�2′). Consequently, Λ(ui) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
ui
φ(ui)
ψ(ui)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ for i ∈ {1, . . . , 31} induces a non-

degenerate simplicial map from 5
1 to 7

2.

This fact can be verified with the help of a MATLAB program2 that searches for all exotic
cases (|detA| = 3 or 5) and check the validity of (�1′) or (�2′) therein.

2The script for computer-aided verification is available at https://github.com/QiFanSHEN/Buchstaber-
invariant-Verification/blob/main/Buchstaber%20invariant%20verification.m.
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Remark 3. Due to addtional restrictions p j ◦ Λ = id j for j ∈ {1, . . . , 5}, most cases are
not exotic. Moreover, φ and ψ are defined to be constant on each Vi. Thus, verification can
be passed down to the level of equivalence classes determined by permutations of both rows
and columns. As a result, the amount of calculation is greatly reduced, making it possible to
construct Λ and verify the fact by hand (see [14]).

Remark 4. The value of φ and ψ can be taken modulo 15 since only coprimeness to 3
and 5 is concerned. As a matter of fact, the value of ψ can be taken modulo 3 and it can be
arbitrary on set V1 � V5 since φ guarantees the validity of (�1′) for most of the exotic cases,
resulting in only a few restrictions on ψ (see [14]).

4. Lower bound for s(n
1
)

4. Lower bound for s(n
1
)

By Proposition 2, Δ(n
1) can be viewed as an upper bound for general cases. However, it

remains open whether or not Δ(n
1) is bounded when n goes to +∞. On the other hand, by

mapping 2n − 1 primitive vectors in vt(n
1) to standard basis of Z2n−1, one can easily verify

that Δ(n
1) ≤ 2n − 1 − n. With some symmetric modifications, this upper bound can be

improved to 2n−2 + 1 − n for n ≥ 2, as stated in Theorem 2.

Proof. Since n ≥ 2, one can choose two arbitrary primitive vectors x, y ∈ vt(n
1),

then a partition of vt(n
1) is given by A0={x, y, x+y} and Ai={ai, ai+x, ai+y, ai+x+y} for

i=1,. . . ,2n−2 − 1 with addition taken in Z2. Define a vertex map Λ : vt(n
1) → vt(2n−2+1

2 )
with the following assignment:

x �→ e1 y �→ e2 ai �→ ei+2

x + y �→ e1 + e2

ai + x �→ e1 + ei+2

ai + y �→ e2 + ei+2

ai + x + y �→ e1 + e2 + ei+2

where {e j}2n−2+1
j=1 is the standard basis. It suffices to verify that Λ induces a non-degenerate

simplicial map Λ̃ from n
1 to 2n−2+1

2 . Apparently, for each simplex σ ∈ n
1, A0 � vt(σ). Let

	(X) denote the number of elements in set X, then there are three different cases:

Case 1 	(A0 ∩ vt(σ))=2.
By linear dependency, 	(Ai ∩ vt(σ)) ≤ 1 for any i ≥ 1. Thus, images of vt(σ) are parts of
columns in the matrix equivalent to

P =
(
P2 ∗
0 I2n−2−1

)
,

where P2=
(

1 0
0 1

)
or

(
1 1
0 1

)
and I2n−2−1 stands for identity matrix of dimension 2n−2 − 1.

Case 2 	(A0 ∩ vt(σ))=1.
By linear dependency, there exists at most one index i0 ≥ 1 such that 	(Ai0 ∩ vt(σ))=2 while
	(Ai ∩ vt(σ)) ≤ 1 is valid for any other i ≥ 1. Take subtraction between columns if such i0
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do exist, then images of vt(σ) are parts of columns in the matrix equivalent to

Q =
(
Q2 ∗
0 I2n−2−1

)
,

where Q2=
(

1 0
0 1

)
or

(
1 1
0 1

)
or

(
1 −1
0 1

)
.

Case 3 	(A0 ∩ vt(σ))=0.
Similar to Case 2, either there exists at most one index j0 ≥ 1 such that 	(Aj0 ∩ vt(σ))=3
while 	(Aj ∩ vt(σ)) ≤ 1 for any other j ≥ 1, or there are at most two indices j1, j2 ≥ 1
such that 	(Aj1 ∩ vt(σ))=	(Aj2 ∩ vt(σ))=2 while 	(Aj ∩ vt(σ)) ≤ 1 for any other j ≥ 1. Take
subtraction between columns if such j0 or j1, j2 do exist, then images of vt(σ) can also be
viewed as parts of columns in the matrix equivalent to Q.
Since detP = detQ = 1, the induced map Λ̃ is non-degenerate as desired. �

Remark 5. Erokhovets gave an upper bound of r(K) for general simplicial complex K
on [m] in terms of minimal non-simplices: r(K) ≤ ∑l

i=0 dimωi if there exists a collection of
minimal non-simplices {ωi}li=0 such that ∪l

i=0ωi = [m] (see Proposition 3.3.4 in [7]). Take
K = n

1 and ωi = Ai, then an upper bound 3 · 2n−2 − 1 − n is obtained for Δ(n
1). Theorem

2 can be regarded as an improvement of this result and it gives out sharp upper bound when
n ≤ 4.

Remark 6. Choosing one primitive vector in n
1, an upper bound 2n−1−n can be obtained

for any n ≥ 1 by similar argument. However, similar construction can not give out better
results. If three linearly independent primitive vectors in n

1 are chosen at the beginning,
then for any simplex σ ∈ n

1, the images of vt(σ) can be viewed as parts of columns in the
matrix equivalent to

R =
(
R3 ∗
0 I2n−3−1

)
.

Here R3 may be equal to
(

1 1 1
1 0 −1
1 −1 0

)
due to necessary column subtractions, leading to detR=−3

instead of ±1. Starting from choosing more linearly independent primitive vectors causes
more problems like this.

Example 2. For n=4, take primitive vectors x, y as (1, 0, 0, 0)T and (0, 1, 0, 0)T respec-
tively, then Λ : vt(4

1)→ vt(5
2) is defined as follow:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�→

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.
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Since p j ◦ Λ � id j for j = 3, 4, this map is different from the construction given in [15].
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