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Abstract
We study locally standard T k-manifolds M. In particular, we study the case where there is a

continuous section to the orbit map π : M → M/T . We give a classification of T k-manifolds
satisfying these conditions up to equivariant diffeomorphism.

1. Introduction

1. Introduction
A smooth action of a torus T k on a manifold M (without boundary, not necessary com-

pact) is called locally standard if each T k-orbit in M has an invariant neighborhood which is
equivariantly diffeomorphic to some V = Cn×T k−n×Rm, where n and m may depend on the
orbit. Here the action on V can be described as follows: There is a splitting T k = T n × T k−n

such that T n acts linearly and effectively on Cn, T k−n acts by left multiplication on itself and
T k acts trivially on Rm. The action on V is the product of these actions.

If dim M = 2k and there is a T k-fixed point in M then M is a torus manifold and it is
locally standard in the usual sense if and only if it is locally standard in the sense of the above
definition. The orbit space of a locally standard T k-manifold is naturally a manifold with
corners. If M is a torus manifold and M/T is homeomorphic to a simple convex polytope,
then M is said to be quasitoric. The study of quasitoric manifolds began with [3]. In [8], they
have been classified up to equivariant diffeomorphism in terms of combinatorial data. Later
in [9] this classification has been extended to locally standard torus manifolds with shellable
orbit spaces all of whose closed faces are diffeomorphic to standard discs after smoothing
corners.

Later on in [7] topological contact toric manifolds have been introduced and classified up
to equivariant homeomorphism. These are also locally standard T k-manifolds in our sense.

In this note we prove a classification of general locally standard T k-manifolds up to equi-
variant diffeomorphism. Our main result is as follows.

Theorem 1.1. Let Mi, i = 1, 2, be two locally standard T k-manifolds with orbit spaces
Pi and characteristic functions λi. Assume that there are sections si : Pi → Mi to the orbit
maps.

If there is a diffeomorphism

Φ : P1 → P2

such that
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λ1 = λ2 ◦ Φ,
then there is an equivariant diffeomorphism Ψ : M1 → M2.

In the above theorem the characteristic function λ is a map from the orbit space of a
locally standard T k-manifold M to the set of subtori of T k which assigns to each orbit its
isotropy group. Note that λ is constant on open faces of M/T . Therefore we might also think
of λ as defined on the set of faces of M/T .

Note that there is always a section to the orbit map M → M/T if H2(M/T ;Z) = 0.
By combining the above theorem with Theorem 4.2 of [2] we also get:

Theorem 1.2. Let Mi, i = 1, 2, be two locally standard T k-manifolds with orbit spaces
Pi and characteristic functions λi. Assume that all closed faces of the Pi are contractible.

If there is an isomorphism of posets

Φ : (P1)→ (P2)

such that

λ1 = λ2 ◦ Φ,
and Φ(F) is diffeomorphic to F after smoothing corners for all four-dimensional faces F of
P1 then there is an equivariant diffeomorphism Ψ : M1 → M2.

Here (P) denotes the face poset of P, i.e. the set of faces of P partially ordered by
inclusion.

Theorem 1.1 is probably known to experts. It follows for example from results of [4].
But as pointed out in [5] there is a gap in the arguments of [4]. However, we could not find
another proof in the literature. Moreover, because the arguments presented here are much
simpler than those given for example in [5] or [8] we think they are worth to be written
down.

This note is structured as follows. In the next section we describe local properties of lo-
cally standard torus actions. Then we show the existence of so-called regular cross-sections
to orbit maps if there is a section to the orbit map. This is used in the last section to proof
Theorem 1.1.

I would like to thank the Fields Institute in Toronto, Canada, for hospitality where the
work for this paper was carried out. I also want to thank the participants of the Thematic
Program on Toric Topology and Polyhedreal Products 2020 at the Fields Institute for discus-
sions on the subject of this paper. In particular, I want to thank Matthias Franz and Mikiya
Masuda.

This research was supported by Deutsche Forschungsgemeinschaft through CRC 1442
Geometry: Deformations and Rigidity and through the Cluster of Excellence Mathematics
Münster.

2. Local coordinates

2. Local coordinates
In this section we describe local properties of orbit spaces of locally standard T k-actions

and introduce a smooth structure on these orbit spaces.
We start with a lemma.



Smooth Classification of Locally Standard T k-Manifolds 551

Lemma 2.1. Let f : Rn
≥0 × Rm → R be a map. Then f is smooth if and only if

F : Rn × Rm → R (x1, . . . , xn, y1, . . . , ym) �→ f (x2
1, . . . , x

2
n, y1, . . . , ym)

is smooth.

Proof. Note that when f is smooth it immediately follows that F is smooth. Therefore
we only have to show the other implication.

For n = 1 this was done in Section 5 of Chapter VI in [1]. To prove the general case we
proceed by induction on n. Assume that the lemma holds for some fixed n ∈ N. We have to
show that this implies that it holds for n + 1. This is similar to the arguments in the proof in
[1]. Therefore we only indicate the idea.

Let f : Rn+1
≥0 × Rm → R such that the corresponding F is smooth. Then it follows from

the induction hypothesis that f is smooth away from {x1 = 0}. Since F is an even function
in all xi-coordinates its Taylor-expansion at x1 = 0 up to order 2r + 1 is of the form

h0(x2, . . . , xn+1, y1, . . . , ym) + h1(x2, . . . , xn+1, y1, . . . , ym)x2
1 + · · ·

+ hr(x2, . . . , xn+1, y1, . . . , ym)x2r
1

Note that the hi are smooth functions which are even in all xi-variables. Hence by the
induction hypothesis, they are of the form

hi(x2, . . . , xn+1, y1, . . . , ym) = h̄i(x2
2, . . . , x

2
n+1, y1, . . . , ym),

with some smooth map h̄i : Rn
≥0 × Rm → R. Hence, it follows from the above form of the

Taylor expansion of F that

f (x1, . . . , xn+1, y1, . . . , ym) = F(
√

x1, . . . ,
√

xn+1, y1, . . . , ym)

is of class Cr at {x1 = 0}. Since this holds for all r, it follows that f is smooth. �

Now let T k act on M = Cn × T k−n × Rm in the standard way. Then the map

π : M → Rn
≥0 × Rm (z1, . . . , zn, t, y) �→ (|z1|2, . . . , |zn|2, y)

induces an identification of M/T with Rn
≥0 × Rm. From the above lemma we immediately

get the following corollary.

Corollary 2.2. A map f : Rn
≥0 × Rm → R is smooth if and only if f ◦ π is smooth. In

particular every smooth torus invariant map M → R induces a smooth map on the orbit
space.

Remark 2.3. The above lemma and corollary are special cases of a more general result
of G.W. Schwarz (see [6]).

Applying this corollary to π◦ f where f is a transition function of invariant smooth charts
on a locally standard T k-manifold implies the following.

Corollary 2.4. The orbit space of a locally standard T k-manifold is a smooth manifold
with corners.

In the following we have to deal with T k-manifolds of a particular type which we call
conical.
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Definition 2.5. Let M be a locally standard T k-manifold and U ⊂ M/T an open subset.
We say that U is conical if it is diffeomorphic to Rn

≥0×N, where N is some manifold without
boundary. We say that M is conical if M/T is conical.

For conical T k-manifolds we can show the following theorem.

Theorem 2.6. (1) Every conical T k manifold M over Rn
≥0×N is equivariantly diffeomor-

phic to the normal bundle of N0 = π
−1({0} × N) in M.

(2) If there is a section to the orbit map π : M → M/T, then this normal bundle is trivial,
i.e. (weakly) equivariantly diffeomorphic to Cn × T k−n × N.

Proof. (1) Note that N0 is an invariant submanifold of M. Therefore there is a tubular
neighborhood of N0 which is equivariantly diffeomorphic to the normal bundle of N0. Let
d : Rn

≥0 → R be the Euclidean distance from 0 and d0 = d ◦ p where p : Rn
≥0 × N → Rn

≥0
is the projection. Then d0 is proper and smooth away from {0} × N. Moreover, all points in
M/T − ({0} × N) are regular. Therefore the claim follows from the Morse lemma applied to
d0 ◦ π.

(2) Since there is a section to the orbit map, N0 is diffeomorphic to T k−n × N. Since the
normal bundle of N0 splits as a sum of complex line bundles it suffices to consider the case
n = 1. In that case a section to the normal bundle E → N0 is given by s ◦ tε ◦ π, where
tε : {0} × N0 → {ε} × N0 is the obvious diffeomorphism for some small ε and s is the section
to the orbit map.

Therefore the second claim follows. �

We also need to know the equivariant self-diffeomorphisms of conical T k-manifolds.

Theorem 2.7. Let M = Cn×T k−n×N then the group (M) of equivariant diffeomorphisms
of M is isomorphic to

C∞(M/T, T k) � Diff(M/T ),

where Diff(M/T ) is the group of all diffeomorphisms of M/T which map each face of M/T
to itself and C∞(M/T, T k) denotes the group of smooth maps M/T → T k.

Indeed, every equivariant diffeomorphism Ψ of M is of the form

Ψ(z) = Ψ(z1, . . . , zn, t, x) =⎛⎜⎜⎜⎜⎜⎜⎜⎝z1 f1(π(z))

√
Φ1(π(z))
|z1|2 , . . . , zn fn(π(z))

√
Φn(π(z))
|zn|2 , th(π(z)),ΦN(π(z))

⎞⎟⎟⎟⎟⎟⎟⎟⎠
where Φ : M/T → M/T is a diffeomorphism, Φi denotes the i-th component of Φ and
fi : M/T → S1 and h : M/T → T k−n are smooth. Moreover, for every choice of such maps
Φ, fi, h, one gets a diffeomorphism Ψ as above.

Proof. This is basically a local version of Lemma 2.3 in [10]. But note that in that
paper the group of weakly equivariant diffeomorphisms was considered, whereas here the
group of (strongly) equivariant diffeomorphisms is used. In the paper [10] we considered the
normalizer of the torus in the group of all diffeomorphism. Here we consider the centralizer
of the torus.
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For the sake of completeness we give a complete proof here.
We have two homomorphisms of topological groups:

l1 : (M)→ Diff(M/T ) f �→ ([x] �→ [ f (x)])

l2 : C∞(M/T k, T k)→ ker l1 f �→ (x �→ x · f (π(x))).

To prove the theorem if suffices to show that
(1) There is a section to l1.
(2) l2 is surjective.

On (1). Let Φ be a diffeomorphism of M/T . Then

Ψ(z1, . . . , zn, t, y) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
√
Φ1(π(z, t, y))

1
|z1|2 z1, . . . ,

√
Φn(π(z, t, y))

1
|zn|2 zn, t,ΦN(y)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
is a T k-equivariant homeomorphism of M coveringΦ. We claim thatΨ is of class C∞. Since
our argument is also valid for the inverses ofΦ andΨ, this shows thatΨ is a diffeomorphism.
To show that Ψ is C∞ we can deal with each component separately.

It is clear that the last two components are smooth therefore we only have to deal with the
components of the form √

Φi(π(z, t, x))
1
|zi|2 zi.

Since Φi(π(z, t, x)) = 0 if and only if zi = 0, we only have to check differentiability of
this component at points with zi = 0. Note that since Φ is a diffeomorphism of M/T which
preserves the face structure of M/T we have

∂Φi

∂|z j|2
∣∣∣∣∣∣
zi=0
= 0 for j � i

and

∂Φi

∂|zi|2
∣∣∣∣∣∣
zi=0
> 0.

Therefore smoothness of the above component follows from Lemma 2.8 below.
On (2). We show that the kernel of the natural map l1 : (M)→ Diff(M/T ) is isomorphic

to C∞(M/T, T k). Since T k is abelian, there is a natural map l2 from C∞(M/T, T ) to the kernel
of l1. Namely f �→ (x �→ x · f (π(x))).

We show that this map is a homeomorphism. To do so, let F ∈ ker l1. Then F leaves all
T -invariant subsets of M invariant. Since M is conical F has the following form:

F(z1, . . . , zn, t, y) = (z1 f1(z1, . . . , zn, y), . . . , zn fn(z1, . . . , zn, y), th(z, y), FN(z1, . . . , zn, y)),

where (z1, . . . , zn) ∈ Cn, t ∈ T k−n, y ∈ N and f j(z1, . . . , zn, y) ∈ S1, h(z, y) ∈ T k−n, for
j = 1, . . . , n depends only on (|z1|2, . . . , |zn|2) and y.

We have to show that f j is smooth for all j.
Smoothness in points with z j � 0 follows from the smoothness of F. We show that f j is

also smooth in points with z j = 0.
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Since F is smooth, by the fundamental theorem of calculus (applied to the derivative of
the function t �→ F j(z1, . . . , z j−1, z jt, z j+1, . . . , zn, y)), we have for (z1, . . . , zn) ∈ Cn,

z j f j(z1, . . . , zn, y) = F j(z1, . . . , zn, y)

=

∫ 1

0
(Dzj F j(z1, . . . , z j−1, z jt, z j+1, . . . , zn, y))(z j) dt,

where

(Dzj F j(z1, . . . , zn, y))(z) =
(
∂F j

∂x j
(z1, . . . , zn, y),

∂F j

∂y j
(z1, . . . , zn, y)

)
(v, w)t

with zl = xl + iyl for l = 1, . . . , n and z = v + iw, xl, v, yl, w ∈ R is the derivative of F j in the
point (z1, . . . , zn, y) in direction z in the j-th coordinate.

Since F is T -equivariant, we have

zF j(z1, . . . , zn) = F j(z1, . . . , z j−1, zz j, z j+1 . . . , zn)

for z ∈ S1 ⊂ C. Hence it follows that

zDzj F j(z1, . . . , zn)(z′) = Dzj F j(z1, . . . , z j−1, zz j, z j+1, . . . , zn)(zz′)

for z′ ∈ C.
Therefore it follows that

z j f j(z1, . . . , zn, y) =
∫ 1

0
(Dzj F j(z1, . . . , z j−1, z jt, z j+1, . . . , zn, y))(z j) dt

=

∫ 1

0
z j(Dzj F j(z1, . . . , z j−1,

|z j|
z j

z jt, z j+1, . . . , zn, y))(1) dt

= z j

∫ 1

0
(Dzj Fk(z1, . . . , z j−1, |z j|t, z j+1, . . . , zn, y))(1) dt.

Since F is T -equivariant, it follows that

t �→ (Dzj Fk(z1, . . . , z j−1, t, z j+1, . . . , zn, y))(1),

t ∈ R, is an even function. Therefore the integrand in the last integral depends smoothly on
(z1, . . . , zn, y) and f j is smooth everywhere. Because f j is T -invariant, it induces a smooth
map on the orbit space, whose derivatives depend continuously on the derivatives of F.

Hence the theorem is proved. �

Lemma 2.8. Let f : R≥0 × Rn−1 → R, (x, y) �→ f (x, y) be a smooth function such that:

(1) f (0, ·) = 0,
(2) ∂ f

∂x (0, ·) > 0, and
(3) f (x, y) > 0 if x > 0.

Then g : R≥0 × Rn−1 → R,

g(x, y) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
f (x, y)

x
if x > 0

∂ f
∂x

(0, y) if x = 0
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is a smooth positive function. In particular,
√
g is a smooth positive function.

Proof. We only have to prove smoothness of g at {x = 0}. To do so note that the Taylor
expansion of f at {x = 0} up to order r with respect to the first coordinate is of the form

pr(x, y) =
∂ f
∂x

(0, y)x +
r∑

i=2

hi(y)xi

with smooth functions hi : Rn−1 → R. Dividing this expression by x shows that g is of class
Cr−1. Since this holds for all r smoothness of g follows. �

3. Existence of regular sections

3. Existence of regular sections
One technical problem in the classification of smooth locally standard T k-manifolds is

that there is never a section to the orbit map of such a manifold which is smooth at the
boundary of M/T . However, in this section we show that if there is a continuous cross-
section to the orbit map then there is also a section with enough regularity to carry out the
proof of the smooth classification. We call these sections regular sections. We start with the
setup for their definition.

Let M be a locally standard T k-manifold and s : M/T → M a section to the orbit map.
Let x ∈ M/T . Let U ⊂ M/T be a conical neighborhood of x. Then by the previous
section π−1(U) is diffeomorphic to Cn × T k−n × N. In these coordinates s|U is of the form
s(x, y) = f (x, y)s0(x, y), where s0(x, y) = s0(x1, . . . , xn, y) = (

√
x1, . . . ,

√
xn, 1, y) for x =

(x1, . . . , xn) ∈ Rn
≥0, y ∈ N, f : U → T k some map which might be non-continuous at the

boundary. Note that in general f is not unique.

Definition 3.1. We say that s is regular at x if f can be chosen so that it is smooth in an
open neighborhood V ⊂ U of x. We say that s is regular if it is regular at every x ∈ M/T .

We need to know that the above definition does not depend on the choice of coordinates
around x. This is done by the following lemma.

Lemma 3.2. If s|U is of the form in the definition for some choice of coordinates, then it
is also of this form for all other coordinates.

Proof. Let U1,U2 be two conical neighborhoods of x. We can assume that they are both
equal as subsets of M/T . Moreover, we can assume that they are both diffeomorphic to the
same standard model Ustd = R

n
≥0 × N with π−1(Ustd) = Cn × T k−n × N. Let Φ̄i : Ustd → Ui

be diffeomorphisms and Φ̄ = Φ̄−1
1 ◦ Φ̄2 the transition function. Let Φ be an equivariant

diffeomorphism π−1(Ustd) → π−1(Ustd) covering Φ̄. Write s1(x) = Φ−1
1 ◦ s ◦ Φ̄1(x) = f (x) ·

s0(x). Then

s2(x) = Φ−1
2 ◦ s ◦ Φ̄2(x) = Φ−1 ◦ s1 ◦ Φ̄(x) = f (x)Φ−1 ◦ s0 ◦ Φ̄(x) = g(x) f (x)s0(x)

with g : Ustd → T k smooth as in Theorem 2.7. Therefore if s1 is regular at x it follows that
s2 is also regular at x. �

After this preparation we can show the existence of regular sections.
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Theorem 3.3. Let M be a locally standard T k-manifold such that there is a section to
π : M → M/T. Then there is a regular section.

Proof. There is a partial ordering of the open faces of M/T as follows:

F ≥ F′ ⇔ F′ ⊂ F,

where F denotes the closure of F. Order the faces F0, F1, . . . , Fm of M/T in such a way that

i ≤ j if Fi ≥ F j.

For j = 0, . . . ,m let Mj = π
−1(

⋃ j
i=0 Fi). Then M0 is the union of principal orbits and

Mm = M. Note that there is a smooth section to π|M0 : M0 → M0/T .
Therefore it suffices to show the following claim:

Claim: If there is a regular section to π|M j , then there is also a regular section to π|M j+1 .
To see this let E j+1 be a tubular neighborhood of F j+1 ⊂ Mj+1/T . Note E j+1 is conical.
Therefore the problem of extending a regular section on Mj/T to a regular section on

Mj+1/T is the same as extending a smooth map f : E j+1 − F j+1 → T k to all of E j+1. Note
that E j+1 is diffeomorphic to F j+1×Rn

≥0, via a diffeomorphism which maps F j+1 to F j+1×{0}.
Hence E j+1 −F j+1 is homotopy equivalent to E j+1. Therefore we can perturb f so that it can
be extended to all of E j+1. Hence the claim and the theorem are proven. �

4. The proof of the main result

4. The proof of the main result
After establishing the existence of regular sections we can now prove our main result.

Theorem 4.1. Let Mi, i = 1, 2, be two locally standard T k-manifolds with orbit spaces
Pi and characteristic functions λi. Assume that there are regular sections si : Pi → Mi.

If there is a diffeomorphism

Φ : P1 → P2

such that

λ1 = λ2 ◦ Φ,
then there is a unique equivariant diffeomorphism Ψ : M1 → M2, such that

(4.1) Ψ ◦ s1 = s2 ◦ Φ.
Proof. The existence of a unique equivariant homeomorphism Ψ such that (4.1) holds,

follows as in the proof of Proposition 1.8 of [3]. Therefore it suffices to show that Ψ is
smooth. Smoothness is a local property. Therefore it suffices to show the claim for the local
models of Mi, that is for conical Mi; say Mi � Cn × T k−n × Rm and Pi � Rn

≥0 × Rm.
Since the sections si, i = 1, 2, are regular there exist smooth functions fi : Pi → T n such

that

si(x) = fi(x) · s0(x),

where s0 is as in Section 3. So, from (4.1), we have
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Ψ(z) = Ψ(z1, . . . , zn, t, y) =
(

f2(Φ(π1(z))) · f1(π1(z))−1
)
·
⎛⎜⎜⎜⎜⎜⎜⎜⎝
√
Φi(π1(z))
|zi|2 zi, t,ΦN(y)

⎞⎟⎟⎟⎟⎟⎟⎟⎠ .
Note that the fi and π1 are smooth and Φ is a diffeomorphism. Hence Ψ is a diffeomorphism
by Theorem 2.7. �

Now Theorem 1.1 follows from Theorems 3.3 and 4.1.
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