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Abstract

Using gauge theory, we classify SU(2)-equivariant holomorphic embeddings from CP! with
the Fubini-Study metric into Grassmann manifold Gry_,(C"). It is shown that the moduli
spaces of those embeddings are identified with the gauge equivalence classes of non-flat in-
variant connections satisfying semi-positivity on the vector bundles given by extensions of line
bundles. A topology on the moduli is obtained by means of L*-inner product on Dolbeault
cohomology group to which the extension class belongs. The compactification of the moduli is
provided with geometric meaning from viewpoint of maps.

1. Introduction

Among many advances in the theory of holomorphic isometric embeddings of the com-
plex projective line CP' into Grassmann manifolds, one of prominent results is shown by
E. Calabi, namely, a rigidity of holomorphic isometric embeddings of CP' into complex
projective spaces [2]. All those embeddings turn out to be equivariant under SU(2)-actions.
Hence a natural problem arises when replacing the target by general Grassmannians.

However, there exist non-equivariant holomorphic isometric embeddings into general
Grassmannians. Even in the case of equivariant maps, it does not seem to be far from the
complete classification. Despite of the situation, Peng and Xu classify all SU(2)-equivariant
minimal immersions of CP' into complex Grassmannians of two-planes from Lie theoretic
viewpoint in [6].

In the present paper, we adopt another viewpoint—gauge theory—in particular, differ-
ential geometry of vector bundles with connections. Over a Grassmann manifold Gr,(C")
of p-planes in N-dimensional complex vector space CV, there exists a holomorphic vector
bundle called the universal quotient bundle Q — Gr,(C") (see §2). If we fix a Hermitian
inner product on CV, Gr,(C") is provided with a Kihler structure of Fubini-Study type.
Moreover, the universal quotient bundle is also equipped with a Hermitian metric. We have
a compatible connection on Q — Gr,(C") with the fibre metric and the holomorphic struc-
ture of the bundle, which is called the Hermitian connection. Then Grp(CN ) is a compact
Hermitian symmetric space and Q — Gr,(C") is a homogeneous vector bundle. The Her-
mitian connection on Q — Grp(CN ) is an invariant connection. Since CV can be regarded
as the space of holomorphic sections of Q — Grp(CN ) by Borel-Weil theorem, we obtain
the evaluation map Gr,(C") x C¥ — @, which is an SU(N)-equivariant bundle map.
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When f is a holomorphic map from a Kéahler manifold M into Gr,(C"), the pull-back
vector bundle of the universal quotient bundle is also a holomorphic vector bundle f*Q —
M. By the pull-back of the evaluation map, CV gives rise to holomorphic sections of f*Q —
M. Thus a holomorphic map of M into a Grassmannian is recovered by the vector bundle and
a subspace of the holomorphic sections of the bundle. If p = 1, then the well-known Kodaira
embedding is induced by a positive line bundle and the space of holomorphic sections. These
are the typical examples of classifying maps [1]. Since a classifying map is constructed
by a vector bundle and a finite dimensional subspace of sections of the bundle, it is quite
natural to consider a holomorphic vector bundle and a space of holomorphic sections when
considering holomorphic maps into Grassmannians.

Let f be an SU(2)-equivariant holomorphic map from CP' into Grp(CN ). Then f*Q —
CP! has an SU(2)-action and the pull-back connection is also an invariant connection.
A subspace CV is an SU(2)-module and the pull-back of the evaluation map is SU(2)-
equivariant. Thus an SU(2)-equivariant holomorphic map is constructed by the vector bun-
dle with an SU(2)-action and a subspace of the holomorphic sections of the bundle with an
invariant Hermitian inner product, which is an SU(2)-module. We shall tackle this program
in the case that p = N — 2.

In §2, we review an invariant connection and geometry of the complex Grassmannian
mainly, to fix notation. In §3, invariant connections are realized through the extension of
vector bundles. Using sheaf theory including sheaf cohomology groups, we show a key
result in which we classify holomorphic vector bundles of rank 2 with SU(2)-actions and
invariant connections over CP! (Theorem 3.2). After introducing (semi-)positivity of vector
bundles with a Hermitian metric, we obtain the classification of homogeneous semi-positive
vector bundles of rank 2 on CP! (Corollary 3.3).

In the final section, we introduce an induced map by a holomorphic vector bundle and
a space of holomorphic sections. Then the compatibility condition with a Hermitian in-
ner product and the induced connection is the main subject to be considered. In the holo-
morphic category, the compatibility condition is easily handled, due to the uniqueness of
the Hermitian connection. We obtain three types of equivariant holomorphic maps, one of
which constitutes a one parameter family. This one parameter family has a natural topology
induced from L?-inner product on the space of extension classes regarded as the correspond-
ing Dolbeault cohomology group and the action of covariant constant gauge transformations.
The compactification of the family enables us to combine the family with the other type of
equivariant holomorphic maps. Finally, we classify equivariant holomorphic maps from
CP! into Grassmann manifold Gry_»(C") as induced maps (Theorem 4.6). As a result, it
turns out that the moduli spaces of those maps are identified with the set of non-flat invari-
ant connections modulo gauge equivalence on the vector bundles of rank 2 on CP! with
semi-positivity (Theorem 4.7).

The authors were supported by JISPS KAKENHI Grant Numbers18K1341 and 17K05230,
respectively.

2. Preliminaries

2.1. Holomorphic vector bundles. Let (V, ) be a pair of a holomorphic vector bundle
V — M over a Kidhler manifold M and a Hermitian metric 2on V — M. We call (V, h) a Her-
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mitian (vector) bundle. We have a unique connection compatible with / and the holomorphic
vector bundle structure, which is called the Hermitian connection [4]. Then (Vy, hy) is said
to be holomorphically isomorphic to (V>, h,) if there exists a bundle isomorphism preserving
the metrics and the Hermitian connection.

We introduce a group action on a vector bundle over a manifold M with a G-action. Let
ny : 'V — M be a vector bundle over M with structure group K, where K is a compact Lie
group. A compact Lie group G acts on M and V — M on the left in such a way that

e 1y is G-equivariant, and
e the G action on V — M commutes with the K action. More precisely, the G action
induces linear isomorphisms preserving the K structure on the fibres of V — M.

Then the vector bundle V — M is said to have a G-action (compatible with the G-action on
M). When V — M has a G-action, the space of sections I'(V) inherits an action of G.

Let V — M be a vector bundle with a G-action. If a connection V on V — M is invariant
under the G-action, then V is called an invariant connection. One of the typical examples is
given on a symmetric space G/K with the standard decomposition g = @ m, where g and
t are the Lie algebras of G and K, respectively. On the principal fibre bundle G — G/K
with K as the fibre, the canonical connection is defined by taking the horizontal subspace
as L,m, where g € G and L, means the left translation by g. Then a homogeneous vector
bundle G xx Vo — G/K, where V; is a K-representation, admits an obvious G-action and
the canonical connection is an invariant connection.

We usually suppose that M is a Kidhler manifold and (V, k) is a Hermitian vector bundle.
In this case, the group action is supposed to preserve the fibre metric and the Hermitian
connection throughout this paper.

2.2. Geometry of Grassmannians. We follow [5] in which the details of the theory may
be found. We denote by Gr,(C") a complex Grassmannian of p-planes in CV. The tauto-
logical vector bundle is denoted by S — Gr,(W). By definition, we have a bundle injection
is : S = CV, where CV — Gr,(C") is a trivial bundle of fibre C". Then, the quotient vector
bundle Q — Gr,(C") with natural projection 7y : C¥ — Q is called the universal quotient
bundle. By the natural projection mp, CV can also be regarded as a subspace of I'(Q) which
is the space of sections of Q — Gr,(C"). Then ny is also called an evaluation map. The
(holomorphic) tangent bundle 7y — Grp(CN ) is identified with §* ® Q — Grp(CN ).

Next, we fix a Hermitian inner product on CV. It gives orthogonal projections and so,
we obtain two bundle homomorphisms: 7rs : C¥ — §, and ip : Q — C". Then the vector
bundles S, 0 — Grp(CN ) are equipped with fibre metrics hg and hg, respectively. We can
also induce a Kihler structure on Grp(CN ) induced by hg and hg using the identification of
T1o — Gr,(CY) with §* ® Q — Gr,(C").

A section ¢t of Q — Grp(CN ) is regarded as a C"-valued function io(t). Then the differ-
ential dig(f) can be decomposed into two components:

diQ([) = ﬂsdiQ(I) + ﬂQdiQ(Z).

Indeed, modig(?) is a connection denoted by V2z. The other term msdig(f) denoted by Kt is
called the second fundamental form in the sense of Kobayashi [4], which turns out to be a
1-form with values in Hom(Q, S) = Q" ® S.

In a similar way, the second fundamental form H := modis is defined, which is a 1-form
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with values in Hom(S, Q) = $* ® Q.

If Gr,,(CN ) is regarded as the homogeneous space U(N)/U(p) X U(N — p), then O —
Gr,(C") is expressed as U(N) Xy(pxun-p) CV P, where CV7 is the standard representation
of U(N — p). Then the induced connection V€ is the canonical connection, which induces
a holomorphic vector bundle structure of O — Grp(CN ). Moreover, mg : C_N — Qs an
equivariant homomorphism.

We will need the following property of the second fundamental forms in the next section.

Lemma 2.1 ([4], see also [5]). The second fundamental forms H and K satisfy ho(Hu, v)
= —hg(u, Kv),where u € S and v € Q.

If f: M — Gry(C") is a smooth map from a Riemannian manifold M, then we pull-
back the fibre metric and the connection on 0 — Grp(CN ) to obtain a fibre metric and
a connection on the pull-back bundle f*Q — M. The second fundamental forms also
pull back, which are denoted by the same symbols H and K. A bundle homomorphism
A € I'(End f*Q) is defined as the trace of the composite of the second fundamental forms
HK € (T*® T* ® End f* Q). The bundle endomorphism A € I' (End f*Q) is called the mean
curvature operator of f: M — Gr,(C").

3. Invariant connections on the complex projective line

3.1. Examples. Let [z; : z»] be the homogeneous co-ordinates on the complex projective
line CP!. Two open subsets of CP! denoted by U; and U, are defined as

Ui={lzi:21€CP' |z %0}, i=12

We denote the inhomogeneous co-ordinates by z := zp/z; on Uy and w := z;/z; on U;. A
(1,0) form 6 is defined on U, as

]
0= — dz.
1+ P%

The dual vector field of 6 is denoted by Z, which is of type (1, 0):
0
Z=~1+]zH—.
(1 +1[zI%) 7

For simplicity, a Riemannian metric of the Fubini—Study type is defined in such a way that
|Z|> = 1. Thus, the Kihler form is, by definition, expressed as V=16 A 6.

We regard CP! as a homogeneous space SU(2)/U(1). Let O(—1) — CP! be the tautolog-
ical vector bundle which, by definition, is a subbundle of a trivial bundle C*> — CP' of rank
2. Consequently, we have an exact sequence of vector bundles:

(1) 0- 0525 o) - o,

where O(1) — CP! is the hyperplane bundle. Then C? is considered as the standard repre-
sentation of SU(2). Hence C? has an invariant Hermitian inner product (-, -) and an invariant
complex symplectic form w. If a unitary basis {e}, e;} of C? satisfies w(ey,e;) = 1, then
{e1,es) is called the standard basis of C2. We fix a standard basis {e;, 2} of C? once and
for all in this paper. And the homogeneous co-ordinates are supposed to be compatible with
{e1, e>}. In other words, if the equivalence class [g] € CP' represented by g € SU(2) corre-



EquivarianT HoLoMORPHIC EMBEDDINGS 499

sponds to the line represented by [z : z2], then we have ge; = z1e; + zp€2, up to a constant
multiple. Thus g which corresponds to z € U; may be represented using the basis {e;, e;} as

2) g= S (
Consequently, O(—1) — CP' has an SU(2)-action under which i is an equivariant bundle
homomorphism.

From (1), C? can be regarded as the space of holomorphic sections of O(1) — CP'. Thus
e; and e, induce holomorphic sections of @(1) — CP! denoted by #; and 7,, respectively. If
O(1) — CP! is regarded as homogeneous vector bundle SU(2) Xu) Ce, and the orthogonal
projection is denoted by m, : C> — Ce, then, by definition, we obtain

iz ) = [g.mglen], i=1,2.

Notice that 7, and 7, satisfy 7j = —zf>. The identification between (1) — CP' and the
orthogonal complement of @(-1) — CP! in C> — CP! provides us with the induced
Hermitian metric denoted by 4; on O(1) — CP':

.. 2 - - —Z AR S
h (7, 5) = TP hy (f1,1) = T hi (6. 12) = T2

1 -z

. 1) on Uj.

Hence, O(1) — CP! also has an SU(2)-action under which 7 is an equivariant bundle ho-
momorphism and /4, is an invariant metric.
Next, we take holomorphic frame fields §; € I'(O(-1)|y,) and §, € I'(O(-1)|y,) on U,

and U, respectively:
. 1 o w
i(5)):= and i(5) := .
Z 1

Then, we have §, = w§;. In the same manner, we induce a Hermitian metric #_; on O(—1) —
CP! which is an invariant metric. A connection V on @(-1) — CP! is induced from the
product connection d on C> — CP':

V3§ =i'di(5)) = 205,,

where i* is the adjoint homomorphism of i. Since d and the induced Hermitian metric are
invariant under the action of SU(2), V is also an invariant connection.

The tautological vector bundle @(~1) — CP! is dual to ©O(1) — CP'. This relation
is described by the complex symplectic form w on C? in the following way. We use the
adjoint homomorphism 7* of 7 to regard v € (1) as a vector 7%(v) in C2. If u € O(-1), and
v € O(1),, where x € CP!, then w (i(u), 7*(v)) gives a perfect pairing. Since

—Z

- -z . 1 -z
*l‘ = —_— 5 d *t = B
7 (f) 1+|z|2(1) and 77(f2) 1+|z|2(1)
we have

w(i(3)), 7" () = -z, and  w(i(5),7"(R)) = 1.

Thus 7, is the dual frame field of §; on U;. Consequently, we obtain the induced connection
on O(1) —» CP":
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Vi, = —=705,, Vi = —6h,,

which is also an invariant connection.
Using the normalization of §; and 7», we define unitary frame fields of @(—1) — CP' and
O(1) = CP! on U,, which are denoted by s; and ¢, respectively. Then, we have

Vs = w_y1s1, Vi = wity,
where, w; = —w_; = % (Zé - ZH) . Thus the curvature form R_; and R; is expressed as
R_15q 2—9/\§S1, Rty IQAétl.

Notice that s; and #; are invariant under g € SU(2) represented in (2) on U, and so, the
relevant forms are invariant forms.

The second fundamental forms associated with (1) are defined as ndi and i*drn*, which
are indeed 1-forms with values in bundles:

ndi(sy) =~Lﬂ'dl‘(§1) = L <(0),7T*(l’1)> h

|51] 1511 \\dz
1 0\ (—z
S — , t = 01.
ST+ 12P) <(dz) ( 1 )> T
Since i*dn* = —(ndi)* from Lemma 2.1, we have 7*di*(t;) = —0s.

Under the identification of @(—2) — CP! with the canonical bundle 7'°CP' — CP' and
O(2) — CP! with T;,CP' — CP!, respectively, we get

0=51®s;, and Z=1 Q1.

Since V(51 ® 51) = —2w151® 51, V(11 ® 11) = 2wt 11, and the induced metric is the same
as the Riemannian metric, it follows that

VO = -2w0, and VZ =2wZ.
In particular, we can describe the Riemannian curvature R;:
RZ =20 A6Z,

and so, the scalar curvature is 2.

Using the tensor product of line bundles, we can find an SU(2)-action on O(k) — CP!
(k € Z), an invariant Hermitian metric 4 and an invariant connection V¥ on Q(k) — CP!
as the Hermitian connection. Since @(k) — CP' is also a homogeneous vector bundle,
O(k) — CP! has the canonical connection. We will show that V¥ is nothing but the canoni-
cal connection as follows. It follows from Kodaira vanishing theorem that the holomorphic
vector bundle structure on ©O(k) — CP' is unique. In addition, the Hermitian Yang—Mills
connection is also unique up to gauge transformation on @(k) — CP!. Since the curva-
ture form of an invariant connection is a constant multiple of the Kdhler form, an invariant
connection on a line bundle over CP! is the Hermitian Yang—Mills connection. (See [3]
for the definition of the Hermitian Yang—Mills connection.) We deduce that the canonical
connection on O(k) — CP! is a unique invariant connection.

The above observation yields that a direct sum (O(k) ® O(), hy ® h;) (k,l € Z) of line
bundles on CP! has an SU(2)-action preserving the metric and the Hermitian connection.
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Since the Hermitian connection is the direct sum of the canonical connections, it is also an
invariant connection.

However, we can find other invariant connections on a vector bundle of rank 2 over CP',
which is explained in the next subsection.

3.2. Extension. (See [3, §10.2.1] for general argument of the extension of holomorphic
vector bundles from the differential-geometric viewpoint.) First of all, we begin with a
remark. The sheaf cohomology groups of a sheaf S on CP' are denoted by H/(S). We do
not distinguish vector bundles from the corresponding locally free sheaves.

We consider an extension of @(1) — CP' by @(-1) — CP'. The extension class is,
by definition, an element of H o) @ O(-1)) = H(O(-2)). It follows from Bott—Borel—
Weil theorem that H'((O(-2)) is identified with a trivial representation space C as SU(2)-
module. Thus such an extension is determined by a € C and we have an exact sequence of
vector bundles:

(3) 0— O=1) -V, 2 o) >0,

where V, — CP! has the metric & = h_; @ h; and the second fundamental form corresponds
to the Dolbeault representative —a0® s; ® sy € H (O(=2)) on U;. Since V, — CP'is
isomorphic to the direct sum of line bundles O(—1) ® O(1) — CP! as C*-bundle, we can
use frames s; and #; on U to express the Hermitian connection V¢ on (V,, h):

Ve = w_1s1 +abt;, Vi = —ﬁésl + wity.

Notice that V, — CP! has a non-trivial action of SU(2) which is induced from the action
on O(-1)® O(1) — CP'. Since all forms involved in connection forms are invariant, the
connection V¢ is an invariant connection.

If a is not a real number, say a = re‘/‘_"”, then we make use of a constant gauge transfor-
mation

exp (_—le) 0

\/—_w/)

g =
0 exp(T

to obtain a connection V' = g~!V%g. Hence, to describe an invariant connection up to gauge
transformation, we can assume that a is a non-negative real number.
With this understood, the curvature form R is expressed as:

Ris| = (Clz - 1)S19/\§, Rt = (1 - az)tle/\é.

We take an associated long exact sequence of cohomology groups with (3) to conclude
that 7, : H(V,) = H°(O(1)) = C2. Since the SU(2)-action on V, — CP!' preserves the
connection, and so the holomorphic structure, H°(V,,) inherits an SU(2)-action. Moreover,
we can deduce that 7, : H(V,) = H°(O(1)) is an equivariant map, because 7, : V, — (1)
is an equivariant map. Indeed, a direct computation yields

Lemma 3.1. Let V, — CP' be a holomorphic vector bundle of which the holomorphic
structure is induced by V®. Then

1
. -1 a . .
i = (1 + |z|2) *(asy —zt) = 581+ 14,
1 +1z|
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-5 az -
i =(1+22) * (aZs) + 1) = ——=5, +17
$=(1+17) * (azsi +1) Stk
are holomorphic sections of V, — CP! satisfying ma(uf) = fi=1,2.
Proof. By definition of V¢, we have

Vil = (a® - )bh, Vil = (@® - 1)70h. O
We can easily see that

a e AP (@ =Dz o AP+
h(ul,ul) = T|Z|2’ (ul,uz) = ﬁ, (uz,uz) = lelz

If a = 0, then (V, h) is (O(=1) @ O(1), h), in other words, V, — CP' is the orthogonal direct
sum of the indicated line bundles. If a # 0, then {@#, i} is a global holomorphic frame of
V, = CP' and V, = © & O as holomorphic vector bundle. Since ii; and ii, give a global
parallel unitary frame in the case that a = 1, (V1, h;) is holomorphically isomorphic to a flat
bundle (O ® O, hy ® hy) and the Hermitian connection of (Vy, h;) is the product connection.

Since V, — CP' (a # 0) is holomorphically isomorphic to V; — CP!, we can find a
complex gauge transformation ¢ : V; — V, such that V! is complex gauge equivalent to V*.
(See [3, p.210] for the action of complex gauge transformation to connections. Here, the
action respects the Hermitian metric.) To find ¢, we denote by @, the connection form of

Véon Uj:
w-_1 —a@
o, = .
¢ ( ad  w )

Next we define a constant complex gauge transformation ¢ as
a 0
o= 1)

¢ 0 Z)p = ©1(Z), and ¢ 02" = Dy(2).

Then, we have

Thus, V¢ (a # 0) is complex gauge equivalent to V! under ¢.
For our purpose, we would like to fix the space of holomorphic sections. To do so, we
pull-back the Hermitian metric on V, — CP!:

¢*h = da’h_y + hy.
If we use h, := ¢*h as a Hermitian metric on V; — CP! and holomorphic sections of
V) — CP!
_1 _1
i = (1+ 1) * (1 —zn), o =(1+1P) @i +n),
then we obtain

a’ + |z (@®> - 1)z a’lz)? + 1
h i b i = 7, h i b i = 7’ h i b i = 7’
a iy, ) T (i1, it2) T (it, it2) [+ P

and
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B(iy) = i, plin) = il

From this point of view, the holomorphic structure does not change on V; — CP!, but the
Hermitian metric varies and so, the Hermitian connection also varies. Since R* and ¢ are
of the diagonal form and so, they commute, the curvature form of the pull-back connection
denoted by the same symbol V¢ does not change.

If we take a tensor product of (Vy, h,), (a # 0) with (O(k), ), then we obtain a Hermitian
bundle (V;(k) := V; ® O(k), h, ® h;) on CP'. An SU(2)-action is induced on (V; (k), h, ® hy),
which preserves the metric and the Hermitian connection.

If k is positive, then the curvature form R, of the Hermitian connection denoted by the
same symbol V¢ on (V(k), h, ® hy) is provided with

@ Ris; ® t’l‘ =@ -1+ks ® t’l‘G AB,
Rty @tk =(1-a>+ kbt @6 né.

3.3. Classification of invariant connections.

Theorem 3.2. Let CP! be the projective line and (V, h) a Hermitian vector bundle on CP'
of rank 2 with an SU(2)-action. If the SU(2)-action preserves h and the holomorphic vec-
tor bundle structure, then (V, h) is holomorphically isomorphic to (O(ky) & O(ky), hy, & hy,),
where ki and ky are integers or (Vi(k), h, ® hy) for an integer k and a non-negative real
number a. These bundle isomorphisms can be taken to preserve the group actions.

Proof. Taking tensor product with a line bundle of an appropriate degree with the canon-
ical connection, if necessary, we can assume that H(V(-1)) = 0 and H°(V) # 0 without
loss of generality, from a theorem of Grothendieck. Then for any point p € CP', we use a
section 7, € H° (O(1)) which vanishes at p to obtain a sequence of sheaves:

®1,
0-V(-1)—V->0-0,
where Q is the quotient sheaf. Taking a long exact sequence of cohomology groups, we get
0— H(V(-1)) > H'(V) > V, - -,

where HO(V) — V), is obtained as the evaluation of sections at p. It follows from our
assumption that H(V) — V, is injective.

Next, since the SU(2)-action on V — CP! preserves the holomorphic structure of the
bundle, H°(V) also has an SU(2)-action.

Suppose that the SU(2)-action on HO(V) is trivial. If r € HO(V) is not a zero section,
then ¢ is a nowhere vanishing section, because SU(2)-action covers the transitive action on
the base manifold. Hence, there exists a trivial line bundle with an SU(2)-action compatible
with the SU(2)-action on CP!, which is a subbundle of V. — CP'. Thus we have an exact
sequence of vector bundles:

005V 01— 0,

where O(I) — CP' denotes the quotient line bundle. Since the bundle map i is an equivariant
injection, O(l) — CP' has the canonical connection as the induced connection. From our
assumption, the degree / of the quotient bundle must be non-positive. Since Bott—Borel-Weil
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theorem yields that H'(Hom(O(]), ©)) = H'(O(~1)) = 0, the extension class of O(I) — CP!
by © — CP'is zero. Consequently, V — CP! is a direct sum of line bundles as holomorphic
vector bundle with an invariant Hermitian metric, and so the connection is also the direct
sum of the canonical connections. This bundle isomorphism can be taken to preserve group
actions, due to the equivariance of the relevant homomorphisms.

Suppose that the SU(2)-action on H°(V) is non-trivial. The injectivity of H(V) — V,
implies that H°(V) is the standard representation of SU(2) and H°(V)) is isomorphic to V, for
an arbitrary p € CP'. Considering the evaluation homomorphism, V — CP' is isomorphic
to H'(V) — CP! as holomorphic bundle. Hence if V — CP' is regarded as a trivial
bundle CP' x C?, the action of g € SU(2) on V — CP! is described as g(x,v) = (gx, gv).
Since H°(V) is isomorphic to H°(((1)) as SU(2)-module, we obtain an equivariant bundle
homomorphism ev;:

evy : V- 0O(), evi(x,v) =0v(x),

where v € C? is now considered as a holomorphic section of @(1) — CP'. Thus, computing
the Chern class, we see that V — CP! is obtained as the extension of @(1) — CP! by
O(-1) —» CP":

0—-0(-1)-»V->0(01)—-0.

Since the evaluation ev; is an equivariant homomorphism, @(—1) — CP! is also equipped
with the canonical connection as the induced connection. Hence, V — CP! is gauge equiv-
alent to V, — CP'. The equivariance implies that the isomorphism can be taken to preserve
the group actions. O

Suppose that V. — M is a holomorphic vector bundle on a Kéhler manifold M. Then
V — M is semi-positive if we have a Hermitian metric 7 on V. — M such that for each
xXeM,

5) WR(Z,Z),v) 20 VZ e T M\{0}, Vv € V,\{0},

where R is the curvature of the Hermitian connection (see, for example, [4]). In this paper,
the pair (V, h) is called semi-positive if the Hermitian connection of (V, h) satisfies (5).

Corollary 3.3. Let (V,h) — CP' be a non-flat semi-positive holomorphic vector bundle
of rank 2. If (V,h) has an SU(2)-action preserving h and the holomorphic vector bundle
structure, then the invariant connection on (V, h) is indexed by a pair of non-negative integers
(ki, ky), where O < ky < ky, or a pair of a positive integer and a real number {k,a}, where

0<asvVk+1.

Proof. The pair (ki, k) represents a direct sum O(k;) ® O(k,) with the canonical metrics.
The semi-positivity yields that k; = 0.

The pair {k, a} stands for (V(k), h, ® hy). Then (4) gives 0 < a £ Vk + 1 by the semi-
positivity. |
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4. Classification

Let Gr,(C"*?) be a complex Grassmannian of n-subspaces in C"*>. We fix a Hermitian
inner product on C™*? to obtain a Kihler structure on Gr,(C"*?) as in §2. Then the Kihler
form wg on Gr,(C"*?) satisfies

trace R = —V-1lwy,

where, R is the curvature two-form of the canonical connection on the universal quotient
bundle.

Denote by wy a Kihler form on CP! and by R; the curvature two-form of the canonical
connection on (1) — CP'. We have R| = —V-1wy.

Let f be a map from CP! into Gr,(C"*?). Then the pull-back bundle of the universal
quotient bundle is regarded as a complex vector bundle with the induced connection whose
curvature form denoted by the same symbol R satisfies

trace R = —V-1f"wyp.

DeriNiTION 4.1, Let f be a map from CP! into Gr,,(C"*?). A map f : CP! — Gr,(C"*?)
is called an equivariant map, if we have a group homomorphism p : SU(2) — U(n +2) such
that f(gx) = p(g)f(x), where x € CP!, g € SU(2) and p(g) is now regarded as a holomorphic
isometry of Gr,(C"*?).

If f is an equivariant map, then we have an integer / such that
(6) ffwo = lw,

because both forms are invariant forms which represent the Chern classes of line bundles
A2f*Q — CP' and O(l) — CP' and the Picard group of CP! is Z. If an equivariant
map f : CP' — Gr,(C"?) satisfies (6), then f is called a map of degree I. When f
is an equivariant map, f*Q — CP' has an SU(2)-action and the induced connection on
f*Q — CP! is an invariant connection. Moreover the pull-back of the evaluation map
frev : C™2 — f*Q is an equivariant epimorphism, where C"*> — CP! is a trivial bundle
with fibre C"*2.

Proposition 4.2. Let f : CP' — Gr,(C™?) be an equivariant holomorphic map of degree
1. Then the pull-back of the universal quotient bundle f*Q — CP! with the induced metric is
holomorphically isomorphic to (O(k,) ® O(kz), h, ® h,), where 0 < ki < ky and ky +ky =1,
or (Vi(k), h, ® hy) for a positive real number a, where 2k = l and k = 0.

Proof. Since f is a holomorphic map, f*Q — CP' is a holomorphic vector bundle of rank
2. The equivariance of f implies that f*Q — CP! has an SU(2)-action with an invariant
Hermitian metric. Then Theorem 3.2 determines f*Q — CP' up to a gauge equivalence.

In addition, C"*? induces holomorphic sections of f*Q — CP!. Since the evaluation map
is an epimorphism, it follows that relevant integers are non-negative. O

To classity equivariant holomorphic maps, we introduce the induced map by a holomor-
phic vector bundle and the space of holomorphic sections of the bundle. (For a general
argument, see [5].) Let V. — CP! be a holomorphic vector bundle of rank 2. It is said
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that C¥ ¢ HO(V) globally generates V. — CP!, if the evaluation map ev : C¥ — V is an
epimorphism. In the case that C¥ ¢ H(V) globally generates V — CP!, we have a map
f: CP' = Gry_»(CN) called the induced map from (V — CP', CV), which is defined as

f(x) =Kerev, C cV, xecCP.

Conversely, every holomorphic map f : CP' — Gry_»(C") can be recognized as the in-
duced map from (f*Q — CP',CV), where Q — Gry_,(C") is the universal quotient bun-
dle.

Next, our main concern is the space of holomorphic sections of V;(k) — CP', where k is
positive.

Let S'C? be the I-th symmetric product of C? with the induced Hermitian inner product.
It is well-known that S'C? is an irreducible SU(2)-module.

We put a symmetric product of degree / as

ell—peg =e1Qe1Q - QeI VR - QRery+--+e,Q0erQ - ®er®e; R---Vey.

Hence, the induced Hermitian inner product denoted by ¢, -); satisfies
_ _ l
(7) <el1 Pel, el1 qeg>l = 5”(17)’ where 6, is the Kronecker delta.

Borel-Weil theorem yields that H*(O(k)) = S*C? and H'(((k)) vanishes. From the exact
sequence of vector bundles:

0-0k=-1)—> Vik)> Ok+1)— 0,
we obtain
0 - $1C* - H(Vi(k) —» $'C* - 0.

By dimension count, H(V;(k)) is identified with H(V}) ® H*(O(k)). Thus H°(V,(k)) is
spanned by

ﬁi@flk_pf;, l:1,2 and p:O”k

Notice that H(V;) and H°(O(1)) can be regarded as the standard representation of SU(2).
Lemma 3.1 and the definition of 7; yield that e; corresponds to i; and 7;, respectively, where
i=1,2.

Next, we fix an invariant Hermitian inner product denoted by (-, )y, on H°(V,) under
which {i1}, i1} is a unitary basis. We also fix an SU(2)-invariant Hermitian inner product on
H°(O(k)) = S*C? in the same manner as (7), which is denoted by the same symbol. An
invariant Hermitian inner product (-, -) on H(V}) ® H°(O(k)) is defined as (-, ) := (-, ")y, ®
(CRS

Clebsch—Gordan formula yields that

(8) H(Vi(k) = C* @ S'C? = s C? @ S+ C2.
This decomposition is given by the symmetric product and the contraction by the complex
symplectic form w. Under the identification e; with i; and 7;, it; ® flq_lfzk Dy g e flq f; -,

g =0,....k+ 1 of C*>® S*C? can be regarded as a symmetric tensor. Hence, for g =
0,....k+1,81C? c H(V,(k)) is spanned by
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9) o= ef T i @7

Considering weights and the orthogonality between S*!C?, we see that for p = 0,...,k— 1,
S1C? ¢ HO(V,(k)) is spanned by

S k!
(10) oF ;:( ) i IPZk P ( . 1) ®tp+1 ~k— (P+l)
p p

Since the evaluation map plays a crucial role to identify the induced map, we describe the
evaluation map using explicit expression of sections in each case. Due to the equivariance,
the evaluation is provided only at one point. Let 0 € CP! be a reference point corresponding
to [e], where e is the unit of SU(2).

Borel-Weil theorem imply that H° (O(ky) ® O(ky)) = S©C? @ S©2C2. An evaluation map
ev: SKC2 @ SR C? — O(k) ® O(ky) is given by ev = evy, @ evy,, where evy, : SKC? — O(k;)
is an evaluation for i = 1, 2. Since 7,(0) = 0 and h(%(0), /(0)) = 1, it follows that

Ker evy,, = Span <t~1pf2k"7” | 1<p< ki>.

As already seen, H°(V,(k)) is equivalent to S*"'C? @ S*!'C? as SU(2)-module. Suppose
that a > 0. We denote the evaluation map by ev' : S&1C? @ S**!C? — V; (k). In addition to
the behaviour of 7;(0), since {ii;, ii,} is a global frame of V; — CP!, it follows from (9) and
(10) that

¥, p=1,...,k=1, and !, ¢g=2,....k+1

are in Ker ev). Since —v? + v} = (k' + Dit; ® 175!, we deduce that —® + v}, is also in
Kerev!. By d1mens1on count, we conclude that

Kerev},:Span<v"_’,vﬁ’r,—v9+v}r 1§p§k—1,2§q§k+1>.

Next, we consider the induced connection on the pull-back of the universal quotient bun-
dle by the induced map.

First of all, we begin with the general theory. Let f : CP' — Gry_»(C") be the induced
holomorphic map from (V — CP!,CV), where V — CP! is a holomorphic vector bundle
of rank 2. Suppose that V' — CP! has a Hermitian metric 4 and an SU(2)-action which
preserves the metric 4 and the holomorphic vector bundle structure. We can deduce that
V — CP' has a unique invariant Hermitian connection V. Suppose that CV is an SU(2)-
module such that the evaluation map ev : CV¥ — V is equivariant under the SU(2)-actions.
Then f is an equivariant map. We fix an SU(2)-invariant Hermitian inner product (-, -) on CV.
Then the pull-back of the universal quotient bundle has the induced metric. If the induced
metric is the same as £, then (-, -) is called to be compatible with h. Then the uniqueness
of the Hermitian connection implies that the induced connection is the same as the invariant
connection V. In our case, the compatibility condition is easily checked, because of the
equivariance. Let 0 € CP! be the reference point and U(1) the isotropy subgroup of SU(2).
Then V, the fibre of V — CP! at o is regarded as a U(1)-module. We take the orthogonal
complement Ker*ev, of Kerev, ¢ CV. Then the compatibility condition is expressed as

(01, 02) = h(D1(0), 02(0)),

where 71,7, € Ker*ev,. The image of the adjoint homomorphism ev* of ev at o is identified
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with Kertev,. Since ev is equivariant, Ker*ev, is also regarded as a U(1)-module which is
equivalent to V,, as representation. Hence C" has the same weights as ones of V,,.

From Theorem 3.2, the candidates for (V, k) are (O(k;) ® O(k,), hy, ® hy,) and (Vi(k), h, ®
hi). We will examine the compatibility condition in each case.

First of all, we begin with (O(ky) & O(k,), hy, & hy, ).

Proposition 4.3. Let f : CP' — Gry_o(CN) be the induced holomorphic map from
(Ok1) ® O(ky) — CP', CN), where C is a submodule of the SU(2)-representation space
HY (O(k1) ® O(ky)). We put an invariant Hermitian inner product on CV.

Then, the induced connection is the direct product of the canonical connections if and
only if CN is equivalent to S C?> @ S*C? with a Hermitian inner product (-, Ve ® -k, as
SU2)-module.

Proof. Let f : CP' — Gry_,(C") be the induced holomorphic map from (O(k;) ®
O(ky) — CP',CM). Since CV inherits an SU(2)-action induced by the group action on
O(ky) ® O(ky) — CP!', the evaluation map is equivariant. Borel-Weil theorem yields that
CV is a submodule of Y C>@S*C?. Suppose that k; # ky. If CV is a proper submodule, then
the evaluation is not an epimorphism by Schur’s lemma. This is a contradiction. Suppose
that k; = k,. Then CN has —k; as weight with multiplicity two. However, Sk C? has —k;
with multiplicity 1 as weight. Hence C is §¥ C? @ $*2C? in both cases. As already seen, the
evaluation ev : SYC? @ S2C? — O(k;) ® O(k,) is given by ev = ey, ® ev,. Consequently,
we may check the compatibility condition for each i = 1, 2.

Since S%C? is an irreducible module, an invariant Hermitian inner product is unique up to

a constant multiple. We therefore deduce that {7}’ fzk"_p |p=0,1,...,k;} is a unitary basis of
Sk C2. Since Ker evy,, is spanned by flp fzk"_p ,where p = 1,..., k;, we see that fzk" is orthogonal
to Ker ev,. Thus the compatibility condition is satisfied only in the case that the Hermitian
inner product is (-, - ), on SkiC2. m]

We denote by f;. the induced map from (O(k;) — CP!,$%C?), where S¥C? has an in-
variant Hermitian inner product (-, -);,. Then the induced map f; from (O(k,) ® O(k) —
CP!, sk C? @ S C?), where $% C? @ S*2C? has an invariant Hermitian inner product (-, -);, ®
(*» )k, 1s described by

Jfa(x) = fi, ®© fr, = Kerev, @ Kereuy, ,
which is called of direct sum type. Using equivariance, f; is also expressed as
Jfa(lg]) = gKereuv,,, ® gKerevy,,, g€ SUQ2).

Since f; is determined up to an isomorphism CV with S¥ C? @ S*C? preserving the Her-
mitian inner products and the group actions, f; is unique up to the composite of a holomor-
phic isometry of Gry_»(CM).

We have already defined an invariant Hermitian inner product (-, -) on H Y(vik)) as (-, ) :=
(,)v, ® (-, ). If the Hermitian inner product (-, ) is restricted to the subspace S**!C? of
H°(V,(k)), then we obtain an invariant Hermitian inner product denoted by (-, -)|z+, respec-
tively.
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Proposition 4.4. Let f : CP' — Gry_o(CN) be the induced holomorphic map from
(Vi(k) — CP',CN). Suppose that CV is a submodule of the SU(2)-representation space
H® (V,(k)). We put an invariant Hermitian inner product on CV.

Then, the induced connection is V, (a # 0) if and only if CV is equivalent as SU(2)-
module to

(1) S*1'C?@S**1C? with a Hermitian inner product a’k Gy M1 @ 1 for 0 < a <

k+1-a?
Vk+ 1, or
(2) S**'C? with a Hermitian inner product {-, Y+ for a = Vk + 1.

Proof. Let f : CP' — Gry_»(CM) be the induced holomorphic map from (V(k) —
CP!,C"). Since CV inherits an SU(2)-action induced by the group action on V;(k) — CP',
the evaluation map is equivariant. It follows from (8) that CV is a subspace of S*"'C? @
S¥1C2. Then CN has —k + 1 and —k — 1 as weights. On the one hand, S¥~'C? has —k + 1 with
multiplicity 1 as weight and —k — 1 is not a weight of S*~'C2. On the other hand, S**!C? has
—k + 1 and —k — 1 as weight, each of which has multiplicity 1. Hence we conclude that C
is S&1C? @ SM1C2 or SH1C2,

Suppose that C¥ = S¥-1C? @ S¥*!C2. Schur’s lemma yields that an invariant Hermitian
inner product on CV is of the form b{-, -)|;_; ® (-, -)|x+ for some positive real numbers b and
¢, which is denoted by (-, -),. (Though we omit c in this notation, the reason will be clear in
the next paragraph.)

Since (-, Y41 is an invariant Hermitian inner product on S**!C? and S*!C? is an ir-
reducible SU(2)-module, (-, -)|¢+1 is the unique invariant Hermitian inner product up to a
constant multiple. Hence i1, ® fzk € S¥1C? is orthogonal to Ker ev!. By definition, we have
that

(ity ®l~2k,17t2 ®f2k>b = cC.
Since @iy (0) = t1(0) and 7> (0) = t1(0), it follows for a # O that
ha ® hy (ii2(0) ® 75(0), 12 (0) ® 75 (0)) = 1.

Thus we deduce that ¢ = 1.

Next, we abbreviate v° and v! to v_ and v,, respectively. We examine the compatibility
condition for av_ + fv,, where @ and § are complex numbers. The compatibility condition
requires

av_ + v, € Kereuv, ,
and
{av- + By, av- + Py, = hy ® hy (av_(0) + Pv4(0), av_(0) + Pv4(0)) .

Since (-, -)|x+1 is an invariant Hermitian inner product on $**! C? and $**! C? is an irreducible
SU(2)-module, the condition av_ + Sv, € Ker ev},L is equivalent to a condition that

{av_ + Bos, —v_ +vdp = —ba(l + kY + Bk + 1) = 0.
Thus 8 = k~'ba. From the definition of (-, -);, we have

{@u_ + Bus, av_ + Pu)y = blalPk ' (k+ 1) + |8 (k + 1).
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On the other hand, since v_(0) = v4(0) = 51 ® t’l‘(o), we get
ha ® hy (@v_(0) + Bv+(0), @v-(0) + Bu4(0)) = la + Bla’.
Hence the compatibility condition implies that
b= a’k
Ck+1-a%
In the case that CY = S¥*!C2, an invariant Hermitian inner product on C" is unique up to
a constant multiple by Schur’s lemma. Therefore we take c(-, -)|r+1 as an invariant Hermitian

inner product on CV. Since Kerev! is spanned by v/ (g = 2,...,k + 1), it follows that
Kerev!" is spanned by

1)9_ = ﬁ2®fzk, and l)_l'_ =i ®le< + ﬁ2®fllf2k_l’

which are orthogonal. Consequently, the compatibility condition requires
(W), VD1 = hy ® Iy (i12(0) ® 12(0), 12 (0) ® 12(0)) = 1
and
WL, V)1 = ho ® Iy (sl ® flk(a), 51Q® flk(o)) =da’.

It follows that ¢ = 1 and a® = 1 + k. O

Remark 1. We have found an induced map f for 0 < a £ Vk+ 1, under which the
induced connection on f*Q — CP! is gauge equivalent to V¢ on V;(k) — CP'. If f :
CP! — Gr,(C"?) is a holomorphic map satisfying f*Q = V,(k), then the mean curvature
operator coincides with the induced curvature contracted with the Kéhler form up to the sign
([5, Proposition 4.4]). From (4), we see that the eigenvalues of the mean curvature operator
are —(k — 1 + a®) and —(k + 1 — a?). Since the mean curvature operator is a non-positive
Hermitian endomorphism [5, Lemma 3.2], we have a £ Vk + 1. In summary, a £ Vk + 1 is
a necessary condition for the existence of holomorphic map with the pull-back connection
being gauge equivalent to V.

We describe the induced map f, from (V,(k) — CP!,S*'C? @ S¥*'C?), where 0 < a <
Vk + 1. The Hermitian inner product on S¥"'C? @ S*!C? given in Proposition 4.4 is denoted

by ¢, )t

a’k

¢ = b a1 @ i1 = m(', Mi=1 ® €5 a1

The equivariance of f; yields that
falgD) = Kerevy,, = gKerev,, g € SUQ),
where
Ker ev) = Span<v’_’,v’i,—vg +ol | 1Spsk-1,22g<k+ 1>.

Since f, is determined up to an isomorphism of CV with S*1C? @ S*!1C? preserving the
SU(2) structure, f;, is unique up to the composite of a holomorphic isometry of Gry_,(CV).
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To describe f,;7. the evaluation ev' is now restricted to $**'C2. Then, the induced map

fyizr from the pair (V 7 — CP!,5¥1C?), where S**'C? has (-, -)|s+; as Hermitian inner
product, is expressed as

Syei(lgl) = Ker evllsmcz[g] = g Ker evllsmczo, g € SU2).

Since fy 7 is determined up to an isomorphism CV with $*!C? preserving the SU(2)
structure, f\z77 is unique up to the composite of a holomorphic isometry of Gry_»(CM).

ReMARK 2. When a = 1, V;(k) — CP! is holomorphically isomorphic to the orthogonal
direct sum O(k) ® O(k) — CP' with the canonical connection. The group action on O(k) ®
O(k) — CP! is obtained by forgetting the group action on V; — CP! from the action on
Vi(k) — CP'. This means that ii; has weight 0 in the case of the group action on O(k) ®
O(k) — CP'. Using ii;, the compatible Hermitian inner product on H°(O(k)) ® H(O(k))
is expressed as (-, )k @ (-, )k = (-, )y, ® (-, ). Thus, HO(V,(k)) and H*(O(k) ® O(k)) have
the same Hermitian inner product. Since the evaluation map is independent of the group
actions, we have the same induced map, which is equivariant under both group actions.

We would like to understand f;, as a deformation of f;. For this end, we fix a Hermitian
inner product ¢-, )y, ® -, ), on C?+2 = =1C2 @ S+ 1C? and vary the evaluation. Recall that

Kerev}]:Span<v’_’,vZ,—vo +ol | 1<p<k-1, 2§q§k+1>.

Next, we introduce a Hermitian transformation 7, of C**2 as

(%};az[sk—lcl 0 ]

T, :=
0 ISk+]C2

to obtain (Ty, Ta-)p = (-, Jp=1 = {5 vy @ (5 hk-

Since a Hermitian inner product (-, -), on C?**2 provides a complex Grassmannian with
a Kihler metric, a Kihler manifold Gro(C?*2) is denoted by (Gry(C?**2),(-,-)). With
this understood, T, gives a holomorphic isometry of (Gry(C**2),(-,-)p) into (Gry (C**?),
(. )=1) as U +— T,;'U, where U is a 2k-dimensional subspace in C**2, By the com-
position, we can describe the induced map denoted by the same symbol f, : CP! —
(Grar(©2), (- Yy ) as

(11) fulg)) = T, 'gKerev) = gT'Kerev), g€ SUQ),
where,
(12) T, 'Kerev! = span(vl_’,u‘i, —aVk® + Vk + 1 — a?o! | 1<psk-1,25qg<k+ 1).

The map f 7 is also explained as a deformation of fi. If S*'C? is considered as
a subspace of C**2, then Gri(S**'C?) is realized as a totally geodesic submanifold of
(Ger(CZk”), ¢, -);,zl). Because the Hermitian inner product on $**!C? is unchanged. From
the viewpoint of vector bundle, Gri(S**1C?) is the zero set of sections, which belong to
SEIC? ¢ HO(Ger(C2k+2); Q), of the universal quotient bundle over Gry(C**?). Notice
that Ker T 77 is nothing but S¥1C?, and so, T 7 determines the totally geodesic embed-
ding. The evaluation ev' restricted to S¥*! C? satisfies
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Ker ev'|g+1¢c2, = Span <v’i 2<q<sk+ 1>.

Though T is not invertible, a subspace T:/IL_IKer ev} of C%**2 can be defined by putting
a’® = k + 1in (12). It follows that

1 _ -1 1~ cktl 2
Kerev [g1c2, = TWKerevo NS C.

By the composition with the totally geodesic embedding, the induced map from (V77 —

CP!,§*1(C?) is regarded as a map into Grassmannian (Gr2k(C2k+2), ¢, -);,zl), which is de-
scribed as

fyi(lg)) = gT\_/ILr_lKerev[l), g € SU(2).

Hence f 7 is called of degenerate type.

Next, we compactify the moduli space. Since T, € Aut(C?**?), where C**2 = S&-1C2 @
S1C2, is invertible in the case that 0 < a < Vk + 1, f, is well-defined as (11), which is
considered as the deformation of f; for a € (0, Vk+ 1). We can equip the moduli space
(0, Vk + 1) with a natural topology as follows. The L*-inner product provides the Dolbeault
cohomology group H'((9(-2)) with a topology. Since [0, o) is the quotient of H'((O(-2))
by S!- (or constant gauge group) action from our description of the extension, [0, %) has
the induced topology. Then, (0, Vk + 1) is indeed an open interval of [0, c0). Hence the
closed interval [0, Vk + 1] is considered as the natural compactification of (0, Vk + 1) from
the induced topology. We give a geometric interpretation to the compactification of the
moduli.

Since Vy(k) = O(k — 1) ® O(k + 1), the induced map fj is expected to be of the direct sum
type. On the one hand, the Hermitian transform 7, is blown-up, and so 7, seems to be of no
use for our purpose. On the other hand, putting a = 0 in (12), we obtain

Ty 'Kereo) = Span (o2 vf|1 S p <k -1 1< g <k+1),

which is the same as Kerevi_;, ® Ker evy,;,. Notice that we fix Hermitian inner products
(v, ®G ) on C**2 and ()1 @ ¢, xer on SKIC2 @ SHIC? = HO (O(k — 1)@ HO (O(k + 1)).
Under the identification e; with it; and 7;, we define a contraction operator C : C+2

S¥1C? as
k+1(k=1\",
C’) =0, and C(UP)Z\/%( . ) ik,

and a symmetrization operator S : C?*+2 — S¥1C2 a5
Sl =75 and  SQ@”) = 0.

Then C @ S : C**2 — $*1C? @ S¥*!C? preserves the Hermitian inner products. Under the
identification C%**2 = S*1C?2 @ S**'C%2 by C @ S, f; is regarded as a map of the direct sum
type fi-1 ® fi+1-

In the case that > = k + 1, we have a map of degenerate type and a totally geodesic
embedding of Gri(S¥*'C?) into Gry (C*+?) specified by Ker T 7 as already seen.

Thus, our compactification of the moduli space is naturally interpreted from subspaces
T, 'Ker ev, and Ker 7,,.
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To state the main theorem, we define the fullness of a map.

DerintTioN 4.5 ([5]). Let £ : CP' — Gr,(C*?) be a map. Then every element of C"*2
gives a section of f*Q — CP' by the pull-back of section, and so we have a linear map
F : C™? = I'(f*Q). If the linear map F has a trivial kernel, then f is called a full map.

Finally, to present the main theorem in terms of representation theory, we define a unitary
basis of S¥C? as

!
wi‘, = ( ) efe];_p, p=0,1,... k
4

Theorem 4.6. Let f : CP' — Gr,(C"?) be an equivariant full holomorphic embedding
of degree I. Then, 1 is positive and one of the following three cases holds.

(1) We have n = . There exist non-negative integers ky and ky satisfying ky + ky = 1. The
vector space C'*? is identified with S C* @S> C? as SU(2)-module. The map f is congruent
to f; defined as

fulg)) = gUs, @ gUs,, Uy, = Span(ufy [ 12 p < ki).i=1,2.

(2) We have n = I. There exist a positive integer k satisfying 2k = [ and a € (0, Vk + 1).
The vector space C"*? is identified with S*-'C* ® S**1C? as SU(2)-module. The map f is
congruent to f, defined as

fa(lg]) = gU,,

U, = Span <wk_1 Wt —awf ™+ Vi + 1 - a2uft!

Lk 1Sp<k-125q<k+1)

(3) We have 2n = L. There exists a positive integer k satisfying 2k = I. The vector space
C™2 is identified with S**'C? as SU(2)-module. The map f is congruent to Syt defined as

Fueio) = gU. U =Span(uf* |22 g <k +1).

Proof. Let f : CP! — Gr,(C"?) be an equivariant full holomorphic map of degree /.
Since f is a holomorphic embedding, / is positive. It follows from the equivariance that
f*Q — CP' is a holomorphic vector bundle of rank 2 with an invariant connection. By
fullness of the map, C"*? is regarded as a subspace of the space of holomorphic sections of
f*Q — CP'. Thus f is considered as the induced map from ( f*Q — CP!, C”+2). Proposi-
tions 4.2, 4.3, 4.4 and the successive classification of induced maps imply the result. O

From Theorem 4.6 and Corollary 3.3, we can conclude

Theorem 4.7. The set of equivariant full holomorphic embeddings of CP' into Grass-
mannians of two-planes are identified with the set of non-flat invariant connections modulo
gauge equivalence on the vector bundles of rank two on CP' with semi-positivity.
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