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Abstract
Using gauge theory, we classify SU(2)-equivariant holomorphic embeddings from CP1 with

the Fubini–Study metric into Grassmann manifold GrN−2(CN). It is shown that the moduli
spaces of those embeddings are identified with the gauge equivalence classes of non-flat in-
variant connections satisfying semi-positivity on the vector bundles given by extensions of line
bundles. A topology on the moduli is obtained by means of L2-inner product on Dolbeault
cohomology group to which the extension class belongs. The compactification of the moduli is
provided with geometric meaning from viewpoint of maps.

1. Introduction

1. Introduction
Among many advances in the theory of holomorphic isometric embeddings of the com-

plex projective line CP1 into Grassmann manifolds, one of prominent results is shown by
E. Calabi, namely, a rigidity of holomorphic isometric embeddings of CP1 into complex
projective spaces [2]. All those embeddings turn out to be equivariant under SU(2)-actions.
Hence a natural problem arises when replacing the target by general Grassmannians.

However, there exist non-equivariant holomorphic isometric embeddings into general
Grassmannians. Even in the case of equivariant maps, it does not seem to be far from the
complete classification. Despite of the situation, Peng and Xu classify all SU(2)-equivariant
minimal immersions of CP1 into complex Grassmannians of two-planes from Lie theoretic
viewpoint in [6].

In the present paper, we adopt another viewpoint—gauge theory—in particular, differ-
ential geometry of vector bundles with connections. Over a Grassmann manifold Grp(CN)
of p-planes in N-dimensional complex vector space CN , there exists a holomorphic vector
bundle called the universal quotient bundle Q → Grp(CN) (see §2). If we fix a Hermitian
inner product on CN , Grp(CN) is provided with a Kähler structure of Fubini–Study type.
Moreover, the universal quotient bundle is also equipped with a Hermitian metric. We have
a compatible connection on Q→ Grp(CN) with the fibre metric and the holomorphic struc-
ture of the bundle, which is called the Hermitian connection. Then Grp(CN) is a compact
Hermitian symmetric space and Q → Grp(CN) is a homogeneous vector bundle. The Her-
mitian connection on Q → Grp(CN) is an invariant connection. Since CN can be regarded
as the space of holomorphic sections of Q → Grp(CN) by Borel–Weil theorem, we obtain
the evaluation map Grp(CN) × CN → Q, which is an SU(N)-equivariant bundle map.
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When f is a holomorphic map from a Kähler manifold M into Grp(CN), the pull-back
vector bundle of the universal quotient bundle is also a holomorphic vector bundle f ∗Q →
M. By the pull-back of the evaluation map, CN gives rise to holomorphic sections of f ∗Q→
M. Thus a holomorphic map of M into a Grassmannian is recovered by the vector bundle and
a subspace of the holomorphic sections of the bundle. If p = 1, then the well-known Kodaira
embedding is induced by a positive line bundle and the space of holomorphic sections. These
are the typical examples of classifying maps [1]. Since a classifying map is constructed
by a vector bundle and a finite dimensional subspace of sections of the bundle, it is quite
natural to consider a holomorphic vector bundle and a space of holomorphic sections when
considering holomorphic maps into Grassmannians.

Let f be an SU(2)-equivariant holomorphic map from CP1 into Grp(CN). Then f ∗Q →
CP1 has an SU(2)-action and the pull-back connection is also an invariant connection.
A subspace CN is an SU(2)-module and the pull-back of the evaluation map is SU(2)-
equivariant. Thus an SU(2)-equivariant holomorphic map is constructed by the vector bun-
dle with an SU(2)-action and a subspace of the holomorphic sections of the bundle with an
invariant Hermitian inner product, which is an SU(2)-module. We shall tackle this program
in the case that p = N − 2.

In §2, we review an invariant connection and geometry of the complex Grassmannian
mainly, to fix notation. In §3, invariant connections are realized through the extension of
vector bundles. Using sheaf theory including sheaf cohomology groups, we show a key
result in which we classify holomorphic vector bundles of rank 2 with SU(2)-actions and
invariant connections over CP1 (Theorem 3.2). After introducing (semi-)positivity of vector
bundles with a Hermitian metric, we obtain the classification of homogeneous semi-positive
vector bundles of rank 2 on CP1 (Corollary 3.3).

In the final section, we introduce an induced map by a holomorphic vector bundle and
a space of holomorphic sections. Then the compatibility condition with a Hermitian in-
ner product and the induced connection is the main subject to be considered. In the holo-
morphic category, the compatibility condition is easily handled, due to the uniqueness of
the Hermitian connection. We obtain three types of equivariant holomorphic maps, one of
which constitutes a one parameter family. This one parameter family has a natural topology
induced from L2-inner product on the space of extension classes regarded as the correspond-
ing Dolbeault cohomology group and the action of covariant constant gauge transformations.
The compactification of the family enables us to combine the family with the other type of
equivariant holomorphic maps. Finally, we classify equivariant holomorphic maps from
CP1 into Grassmann manifold GrN−2(CN) as induced maps (Theorem 4.6). As a result, it
turns out that the moduli spaces of those maps are identified with the set of non-flat invari-
ant connections modulo gauge equivalence on the vector bundles of rank 2 on CP1 with
semi-positivity (Theorem 4.7).

The authors were supported by JSPS KAKENHI Grant Numbers18K1341 and 17K05230,
respectively.

2. Preliminaries

2. Preliminaries2.1. Holomorphic vector bundles.
2.1. Holomorphic vector bundles. Let (V, h) be a pair of a holomorphic vector bundle

V → M over a Kähler manifold M and a Hermitian metric h on V → M. We call (V, h) a Her-
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mitian (vector) bundle. We have a unique connection compatible with h and the holomorphic
vector bundle structure, which is called the Hermitian connection [4]. Then (V1, h1) is said
to be holomorphically isomorphic to (V2, h2) if there exists a bundle isomorphism preserving
the metrics and the Hermitian connection.

We introduce a group action on a vector bundle over a manifold M with a G-action. Let
πV : V → M be a vector bundle over M with structure group K, where K is a compact Lie
group. A compact Lie group G acts on M and V → M on the left in such a way that

• πV is G-equivariant, and
• the G action on V → M commutes with the K action. More precisely, the G action

induces linear isomorphisms preserving the K structure on the fibres of V → M.
Then the vector bundle V → M is said to have a G-action (compatible with the G-action on
M). When V → M has a G-action, the space of sections Γ(V) inherits an action of G.

Let V → M be a vector bundle with a G-action. If a connection ∇ on V → M is invariant
under the G-action, then ∇ is called an invariant connection. One of the typical examples is
given on a symmetric space G/K with the standard decomposition g = k ⊕ m, where g and
k are the Lie algebras of G and K, respectively. On the principal fibre bundle G → G/K
with K as the fibre, the canonical connection is defined by taking the horizontal subspace
as Lgm, where g ∈ G and Lg means the left translation by g. Then a homogeneous vector
bundle G ×K V0 → G/K, where V0 is a K-representation, admits an obvious G-action and
the canonical connection is an invariant connection.

We usually suppose that M is a Kähler manifold and (V, h) is a Hermitian vector bundle.
In this case, the group action is supposed to preserve the fibre metric and the Hermitian
connection throughout this paper.

2.2. Geometry of Grassmannians.
2.2. Geometry of Grassmannians. We follow [5] in which the details of the theory may

be found. We denote by Grp(CN) a complex Grassmannian of p-planes in CN . The tauto-
logical vector bundle is denoted by S → Grp(W). By definition, we have a bundle injection
iS : S→ CN , where CN → Grp(CN) is a trivial bundle of fibre CN . Then, the quotient vector
bundle Q → Grp(CN) with natural projection πQ : CN → Q is called the universal quotient
bundle. By the natural projection πQ, CN can also be regarded as a subspace of Γ(Q) which
is the space of sections of Q → Grp(CN). Then πQ is also called an evaluation map. The
(holomorphic) tangent bundle T1,0 → Grp(CN) is identified with S∗ ⊗ Q→ Grp(CN).

Next, we fix a Hermitian inner product on CN . It gives orthogonal projections and so,
we obtain two bundle homomorphisms: πS : CN → S, and iQ : Q → CN . Then the vector
bundles S,Q → Grp(CN) are equipped with fibre metrics hS and hQ, respectively. We can
also induce a Kähler structure on Grp(CN) induced by hS and hQ using the identification of
T1,0 → Grp(CN) with S∗ ⊗ Q→ Grp(CN).

A section t of Q → Grp(CN) is regarded as a CN-valued function iQ(t). Then the differ-
ential diQ(t) can be decomposed into two components:

diQ(t) = πSdiQ(t) + πQdiQ(t).

Indeed, πQdiQ(t) is a connection denoted by ∇Qt. The other term πSdiQ(t) denoted by Kt is
called the second fundamental form in the sense of Kobayashi [4], which turns out to be a
1-form with values in Hom(Q, S) � Q∗ ⊗ S.

In a similar way, the second fundamental form H := πQdiS is defined, which is a 1-form
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with values in Hom(S,Q) � S∗ ⊗ Q.
If Grp(CN) is regarded as the homogeneous space U(N)/U(p) × U(N − p), then Q →

Grp(CN) is expressed as U(N)×U(p)×U(N−p) CN−p, where CN−p is the standard representation
of U(N − p). Then the induced connection ∇Q is the canonical connection, which induces
a holomorphic vector bundle structure of Q → Grp(CN). Moreover, πQ : CN → Q is an
equivariant homomorphism.

We will need the following property of the second fundamental forms in the next section.

Lemma 2.1 ([4], see also [5]). The second fundamental forms H and K satisfy hQ(Hu, v)
= −hS(u,Kv),where u ∈ S and v ∈ Q.

If f : M → Grp(CN) is a smooth map from a Riemannian manifold M, then we pull-
back the fibre metric and the connection on Q → Grp(CN) to obtain a fibre metric and
a connection on the pull-back bundle f ∗Q → M. The second fundamental forms also
pull back, which are denoted by the same symbols H and K. A bundle homomorphism
A ∈ Γ (End f ∗Q) is defined as the trace of the composite of the second fundamental forms
HK ∈ (T ∗ ⊗ T ∗ ⊗ End f ∗Q). The bundle endomorphism A ∈ Γ (End f ∗Q) is called the mean
curvature operator of f : M → Grp(CN).

3. Invariant connections on the complex projective line

3. Invariant connections on the complex projective line3.1. Examples.
3.1. Examples. Let [z1 : z2] be the homogeneous co-ordinates on the complex projective

line CP1. Two open subsets of CP1 denoted by U1 and U2 are defined as

Ui =
{
[z1 : z2] ∈ CP1

∣∣∣ zi � 0
}
, i = 1, 2.

We denote the inhomogeneous co-ordinates by z := z2/z1 on U1 and w := z1/z2 on U2. A
(1, 0) form θ is defined on U1 as

θ =
1

1 + |z|2 dz.

The dual vector field of θ is denoted by Z, which is of type (1, 0):

Z = (1 + |z|2)
∂

∂z
.

For simplicity, a Riemannian metric of the Fubini–Study type is defined in such a way that
|Z|2 = 1. Thus, the Kähler form is, by definition, expressed as

√−1θ ∧ θ.
We regard CP1 as a homogeneous space SU(2)/U(1). Let (−1)→ CP1 be the tautolog-

ical vector bundle which, by definition, is a subbundle of a trivial bundle C2 → CP1 of rank
2. Consequently, we have an exact sequence of vector bundles:

(1) 0→ (−1)
i−→ C2 π−→ (1)→ 0,

where (1) → CP1 is the hyperplane bundle. Then C2 is considered as the standard repre-
sentation of SU(2). Hence C2 has an invariant Hermitian inner product 〈·, ·〉 and an invariant
complex symplectic form ω. If a unitary basis {e1, e2} of C2 satisfies ω(e1, e2) = 1, then
{e1, e2} is called the standard basis of C2. We fix a standard basis {e1, e2} of C2 once and
for all in this paper. And the homogeneous co-ordinates are supposed to be compatible with
{e1, e2}. In other words, if the equivalence class [g] ∈ CP1 represented by g ∈ SU(2) corre-



Equivariant Holomorphic Embeddings 499

sponds to the line represented by [z1 : z2], then we have ge1 = z1e1 + z2e2, up to a constant
multiple. Thus g which corresponds to z ∈ U1 may be represented using the basis {e1, e2} as

(2) g =
1√

1 + |z|2
(
1 −z
z 1

)
on U1.

Consequently, (−1) → CP1 has an SU(2)-action under which i is an equivariant bundle
homomorphism.

From (1), C2 can be regarded as the space of holomorphic sections of (1)→ CP1. Thus
e1 and e2 induce holomorphic sections of (1)→ CP1 denoted by t̃1 and t̃2, respectively. If
(1)→ CP1 is regarded as homogeneous vector bundle SU(2)×U(1) Ce2 and the orthogonal
projection is denoted by π2 : C2 → Ce2, then, by definition, we obtain

t̃i ([z1 : z2]) =
[
g, π2(g−1ei)

]
, i = 1, 2.

Notice that t̃1 and t̃2 satisfy t̃1 = −zt̃2. The identification between (1) → CP1 and the
orthogonal complement of (−1) → CP1 in C2 → CP1 provides us with the induced
Hermitian metric denoted by h1 on (1)→ CP1:

h1
(
t̃1, t̃1

)
=
|z|2

1 + |z|2 , h1
(
t̃1, t̃2

)
=
−z

1 + |z|2 , h1
(
t̃2, t̃2

)
=

1
1 + |z|2 .

Hence, (1) → CP1 also has an SU(2)-action under which π is an equivariant bundle ho-
momorphism and h1 is an invariant metric.

Next, we take holomorphic frame fields s̃1 ∈ Γ((−1)|U1 ) and s̃2 ∈ Γ((−1)|U2 ) on U1

and U2, respectively:

i (s̃1) :=
(
1
z

)
and i (s̃2) :=

(
w

1

)
.

Then, we have s̃2 = ws̃1. In the same manner, we induce a Hermitian metric h−1 on (−1)→
CP1 which is an invariant metric. A connection ∇ on (−1) → CP1 is induced from the
product connection d on C2 → CP1:

∇s̃1 = i∗di(s̃1) = zθ s̃1,

where i∗ is the adjoint homomorphism of i. Since d and the induced Hermitian metric are
invariant under the action of SU(2), ∇ is also an invariant connection.

The tautological vector bundle (−1) → CP1 is dual to (1) → CP1. This relation
is described by the complex symplectic form ω on C2 in the following way. We use the
adjoint homomorphism π∗ of π to regard v ∈ (1) as a vector π∗(v) in C2. If u ∈ (−1)x and
v ∈ (1)x, where x ∈ CP1, then ω (i(u), π∗(v)) gives a perfect pairing. Since

π∗(t̃1) =
−z

1 + |z|2
(−z

1

)
, and π∗(t̃2) =

1
1 + |z|2

(−z
1

)
,

we have

ω
(
i(s̃1), π∗(t̃1)

)
= −z, and ω

(
i(s̃1), π∗(t̃2)

)
= 1.

Thus t̃2 is the dual frame field of s̃1 on U1. Consequently, we obtain the induced connection
on (1)→ CP1:
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∇t̃2 = −zθt̃2, ∇t̃1 = −θt̃2,
which is also an invariant connection.

Using the normalization of s̃1 and t̃2, we define unitary frame fields of (−1)→ CP1 and
(1)→ CP1 on U1, which are denoted by s1 and t1, respectively. Then, we have

∇s1 = ω−1s1, ∇t1 = ω1t1,

where, ω1 = −ω−1 =
1
2

(
zθ − zθ

)
. Thus the curvature form R−1 and R1 is expressed as

R−1s1 = −θ ∧ θs1, R1t1 = θ ∧ θt1.
Notice that s1 and t1 are invariant under g ∈ SU(2) represented in (2) on U1 and so, the
relevant forms are invariant forms.

The second fundamental forms associated with (1) are defined as πdi and i∗dπ∗, which
are indeed 1-forms with values in bundles:

πdi(s1) =
1
|s̃1|πdi(s̃1) =

1
|s̃1|

〈(
0
dz

)
, π∗(t1)

〉
t1

=
1

|s̃1||t̃2|(1 + |z|2)

〈(
0
dz

)
,

(−z
1

)〉
t1 = θt1.

Since i∗dπ∗ = −(πdi)∗ from Lemma 2.1, we have π∗di∗(t1) = −θs1.
Under the identification of (−2)→ CP1 with the canonical bundle T 1,0CP1 → CP1 and

(2)→ CP1 with T1,0CP1 → CP1, respectively, we get

θ = s1 ⊗ s1, and Z = t1 ⊗ t1.

Since ∇ (s1 ⊗ s1) = −2ω1s1 ⊗ s1, ∇ (t1 ⊗ t1) = 2ω1t1 ⊗ t1, and the induced metric is the same
as the Riemannian metric, it follows that

∇θ = −2ω1θ, and ∇Z = 2ω1Z.

In particular, we can describe the Riemannian curvature R2:

R2Z = 2θ ∧ θZ,
and so, the scalar curvature is 2.

Using the tensor product of line bundles, we can find an SU(2)-action on (k) → CP1

(k ∈ Z), an invariant Hermitian metric hk and an invariant connection ∇k on (k) → CP1

as the Hermitian connection. Since (k) → CP1 is also a homogeneous vector bundle,
(k) → CP1 has the canonical connection. We will show that ∇k is nothing but the canoni-
cal connection as follows. It follows from Kodaira vanishing theorem that the holomorphic
vector bundle structure on (k) → CP1 is unique. In addition, the Hermitian Yang–Mills
connection is also unique up to gauge transformation on (k) → CP1. Since the curva-
ture form of an invariant connection is a constant multiple of the Kähler form, an invariant
connection on a line bundle over CP1 is the Hermitian Yang–Mills connection. (See [3]
for the definition of the Hermitian Yang–Mills connection.) We deduce that the canonical
connection on (k)→ CP1 is a unique invariant connection.

The above observation yields that a direct sum ((k) ⊕ (l), hk ⊕ hl) (k, l ∈ Z) of line
bundles on CP1 has an SU(2)-action preserving the metric and the Hermitian connection.
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Since the Hermitian connection is the direct sum of the canonical connections, it is also an
invariant connection.

However, we can find other invariant connections on a vector bundle of rank 2 over CP1,
which is explained in the next subsection.

3.2. Extension.
3.2. Extension. (See [3, §10.2.1] for general argument of the extension of holomorphic

vector bundles from the differential-geometric viewpoint.) First of all, we begin with a
remark. The sheaf cohomology groups of a sheaf  on CP1 are denoted by Hi(). We do
not distinguish vector bundles from the corresponding locally free sheaves.

We consider an extension of (1) → CP1 by (−1) → CP1. The extension class is,
by definition, an element of H1((1)∗ ⊗ (−1)) = H1((−2)). It follows from Bott–Borel–
Weil theorem that H1((−2)) is identified with a trivial representation space C as SU(2)-
module. Thus such an extension is determined by a ∈ C and we have an exact sequence of
vector bundles:

(3) 0→ (−1)→ Va
πa−→ (1)→ 0,

where Va → CP1 has the metric h = h−1 ⊕ h1 and the second fundamental form corresponds
to the Dolbeault representative −aθ ⊗ s1 ⊗ s1 ∈ H1 ((−2)) on U1. Since Va → CP1 is
isomorphic to the direct sum of line bundles (−1) ⊕ (1) → CP1 as C∞-bundle, we can
use frames s1 and t1 on U1 to express the Hermitian connection ∇a on (Va, h):

∇as1 = ω−1s1 + aθt1, ∇at1 = −aθs1 + ω1t1.

Notice that Va → CP1 has a non-trivial action of SU(2) which is induced from the action
on (−1) ⊕ (1) → CP1. Since all forms involved in connection forms are invariant, the
connection ∇a is an invariant connection.

If a is not a real number, say a = re
√−1ψ, then we make use of a constant gauge transfor-

mation

g =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
exp

(
−
√−1ψ

2

)
0

0 exp
(√−1ψ

2

)
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

to obtain a connection ∇r = g−1∇ag. Hence, to describe an invariant connection up to gauge
transformation, we can assume that a is a non-negative real number.

With this understood, the curvature form Ra is expressed as:

Ras1 =
(
a2 − 1

)
s1θ ∧ θ, Rat1 =

(
1 − a2

)
t1θ ∧ θ.

We take an associated long exact sequence of cohomology groups with (3) to conclude
that πa : H0(Va) � H0((1)) = C2. Since the SU(2)-action on Va → CP1 preserves the
connection, and so the holomorphic structure, H0(Va) inherits an SU(2)-action. Moreover,
we can deduce that πa : H0(Va) � H0((1)) is an equivariant map, because πa : Va → (1)
is an equivariant map. Indeed, a direct computation yields

Lemma 3.1. Let Va → CP1 be a holomorphic vector bundle of which the holomorphic
structure is induced by ∇a. Then

ũa
1 =

(
1 + |z|2

)− 1
2 (as1 − zt1) =

a
1 + |z|2 s̃1 + t̃1,
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ũa
2 =

(
1 + |z|2

)− 1
2 (azs1 + t1) =

az
1 + |z|2 s̃1 + t̃2

are holomorphic sections of Va → CP1 satisfying πa(ua
i ) = t̃i, i = 1, 2.

Proof. By definition of ∇a, we have

∇aũa
1 = (a2 − 1)θt̃2, ∇aũa

2 = (a2 − 1)zθt̃2. �

We can easily see that

h
(
ũa

1, ũ
a
1

)
=

a2 + |z|2
1 + |z|2 , h

(
ũa

1, ũ
a
2

)
=

(a2 − 1)z
1 + |z|2 , h

(
ũa

2, ũ
a
2

)
=

a2|z|2 + 1
1 + |z|2 .

If a = 0, then (V0, h) is ((−1) ⊕ (1), h), in other words, V0 → CP1 is the orthogonal direct
sum of the indicated line bundles. If a � 0, then

{
ũa

1, ũ
a
2

}
is a global holomorphic frame of

Va → CP1 and Va �  ⊕  as holomorphic vector bundle. Since ũ1 and ũ2 give a global
parallel unitary frame in the case that a = 1, (V1, h1) is holomorphically isomorphic to a flat
bundle ( ⊕ , h0 ⊕ h0) and the Hermitian connection of (V1, h1) is the product connection.

Since Va → CP1 (a � 0) is holomorphically isomorphic to V1 → CP1, we can find a
complex gauge transformation φ : V1 → Va such that ∇1 is complex gauge equivalent to ∇a.
(See [3, p.210] for the action of complex gauge transformation to connections. Here, the
action respects the Hermitian metric.) To find φ, we denote by Φa the connection form of
∇a on U1:

Φa =

(
ω−1 −aθ
aθ ω1

)
.

Next we define a constant complex gauge transformation φ as

φ :=
(
a 0
0 1

)
.

Then, we have

φ−1Φa(Z)φ = Φ1(Z), and φ∗Φa(Z)φ∗
−1
= Φ1(Z).

Thus, ∇a (a � 0) is complex gauge equivalent to ∇1 under φ.
For our purpose, we would like to fix the space of holomorphic sections. To do so, we

pull-back the Hermitian metric on Va → CP1:

φ∗h = a2h−1 + h1.

If we use ha := φ∗h as a Hermitian metric on V1 → CP1 and holomorphic sections of
V1 → CP1

ũ1 =
(
1 + |z|2

)− 1
2 (s1 − zt1) , ũ2 =

(
1 + |z|2

)− 1
2 (zs1 + t1) ,

then we obtain

ha (ũ1, ũ1) =
a2 + |z|2
1 + |z|2 , ha (ũ1, ũ2) =

(a2 − 1)z
1 + |z|2 , ha (ũ2, ũ2) =

a2|z|2 + 1
1 + |z|2 ,

and
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φ(ũ1) = ũa
1, φ(ũ2) = ũa

2.

From this point of view, the holomorphic structure does not change on V1 → CP1, but the
Hermitian metric varies and so, the Hermitian connection also varies. Since Ra and φ are
of the diagonal form and so, they commute, the curvature form of the pull-back connection
denoted by the same symbol ∇a does not change.

If we take a tensor product of (V1, ha), (a � 0) with ((k), hk), then we obtain a Hermitian
bundle (V1(k) := V1 ⊗ (k), ha ⊗ hk) on CP1. An SU(2)-action is induced on (V1(k), ha ⊗ hk),
which preserves the metric and the Hermitian connection.

If k is positive, then the curvature form Ra of the Hermitian connection denoted by the
same symbol ∇a on (V1(k), ha ⊗ hk) is provided with

(4)

⎧⎪⎪⎨⎪⎪⎩Ras1 ⊗ tk
1 = (a2 − 1 + k)s1 ⊗ tk

1θ ∧ θ,
Rat1 ⊗ tk

1 = (1 − a2 + k)t1 ⊗ tk
1θ ∧ θ.

3.3. Classification of invariant connections.
3.3. Classification of invariant connections.

Theorem 3.2. Let CP1 be the projective line and (V, h) a Hermitian vector bundle on CP1

of rank 2 with an SU(2)-action. If the SU(2)-action preserves h and the holomorphic vec-
tor bundle structure, then (V, h) is holomorphically isomorphic to

(
(k1) ⊕ (k2), hk1 ⊕ hk2

)
,

where k1 and k2 are integers or (V1(k), ha ⊗ hk) for an integer k and a non-negative real
number a. These bundle isomorphisms can be taken to preserve the group actions.

Proof. Taking tensor product with a line bundle of an appropriate degree with the canon-
ical connection, if necessary, we can assume that H0(V(−1)) = 0 and H0(V) � 0 without
loss of generality, from a theorem of Grothendieck. Then for any point p ∈ CP1, we use a
section tp ∈ H0 ((1)) which vanishes at p to obtain a sequence of sheaves:

0→ V(−1)
⊗tp−−→ V → → 0,

where  is the quotient sheaf. Taking a long exact sequence of cohomology groups, we get

0→ H0(V(−1))→ H0(V)→ Vp → · · · ,
where H0(V) → Vp is obtained as the evaluation of sections at p. It follows from our
assumption that H0(V)→ Vp is injective.

Next, since the SU(2)-action on V → CP1 preserves the holomorphic structure of the
bundle, H0(V) also has an SU(2)-action.

Suppose that the SU(2)-action on H0(V) is trivial. If t ∈ H0(V) is not a zero section,
then t is a nowhere vanishing section, because SU(2)-action covers the transitive action on
the base manifold. Hence, there exists a trivial line bundle with an SU(2)-action compatible
with the SU(2)-action on CP1, which is a subbundle of V → CP1. Thus we have an exact
sequence of vector bundles:

0→ 
i−→ V → (l)→ 0,

where (l)→ CP1 denotes the quotient line bundle. Since the bundle map i is an equivariant
injection, (l) → CP1 has the canonical connection as the induced connection. From our
assumption, the degree l of the quotient bundle must be non-positive. Since Bott–Borel–Weil
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theorem yields that H1(Hom((l),)) = H1((−l)) = 0, the extension class of (l)→ CP1

by → CP1 is zero. Consequently, V → CP1 is a direct sum of line bundles as holomorphic
vector bundle with an invariant Hermitian metric, and so the connection is also the direct
sum of the canonical connections. This bundle isomorphism can be taken to preserve group
actions, due to the equivariance of the relevant homomorphisms.

Suppose that the SU(2)-action on H0(V) is non-trivial. The injectivity of H0(V) → Vp

implies that H0(V) is the standard representation of SU(2) and H0(V) is isomorphic to Vp for
an arbitrary p ∈ CP1. Considering the evaluation homomorphism, V → CP1 is isomorphic
to H0(V) → CP1 as holomorphic bundle. Hence if V → CP1 is regarded as a trivial
bundle CP1 × C2, the action of g ∈ SU(2) on V → CP1 is described as g(x, v) = (gx, gv).
Since H0(V) is isomorphic to H0((1)) as SU(2)-module, we obtain an equivariant bundle
homomorphism ev1:

ev1 : V → (1), ev1(x, v) = v(x),

where v ∈ C2 is now considered as a holomorphic section of (1)→ CP1. Thus, computing
the Chern class, we see that V → CP1 is obtained as the extension of (1) → CP1 by
(−1)→ CP1:

0→ (−1)→ V → (1)→ 0.

Since the evaluation ev1 is an equivariant homomorphism, (−1) → CP1 is also equipped
with the canonical connection as the induced connection. Hence, V → CP1 is gauge equiv-
alent to Va → CP1. The equivariance implies that the isomorphism can be taken to preserve
the group actions. �

Suppose that V → M is a holomorphic vector bundle on a Kähler manifold M. Then
V → M is semi-positive if we have a Hermitian metric h on V → M such that for each
x ∈ M,

(5) h(R(Z, Z)v, v) � 0 ∀Z ∈ T1,0Mx\{0}, ∀v ∈ Vx\{0},
where R is the curvature of the Hermitian connection (see, for example, [4]). In this paper,
the pair (V, h) is called semi-positive if the Hermitian connection of (V, h) satisfies (5).

Corollary 3.3. Let (V, h) → CP1 be a non-flat semi-positive holomorphic vector bundle
of rank 2. If (V, h) has an SU(2)-action preserving h and the holomorphic vector bundle
structure, then the invariant connection on (V, h) is indexed by a pair of non-negative integers
(k1, k2), where 0 � k1 < k2, or a pair of a positive integer and a real number {k, a}, where
0 < a �

√
k + 1.

Proof. The pair (k1, k2) represents a direct sum (k1) ⊕ (k2) with the canonical metrics.
The semi-positivity yields that k1 � 0.

The pair {k, a} stands for (V1(k), ha ⊗ hk). Then (4) gives 0 < a �
√

k + 1 by the semi-
positivity. �
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4. Classification

4. Classification
Let Grn(Cn+2) be a complex Grassmannian of n-subspaces in Cn+2. We fix a Hermitian

inner product on Cn+2 to obtain a Kähler structure on Grn(Cn+2) as in §2. Then the Kähler
form ωQ on Grn(Cn+2) satisfies

trace R = −√−1ωQ,

where, R is the curvature two-form of the canonical connection on the universal quotient
bundle.

Denote by ω0 a Kähler form on CP1 and by R1 the curvature two-form of the canonical
connection on (1)→ CP1. We have R1 = −

√−1ω0.
Let f be a map from CP1 into Grn(Cn+2). Then the pull-back bundle of the universal

quotient bundle is regarded as a complex vector bundle with the induced connection whose
curvature form denoted by the same symbol R satisfies

trace R = −√−1 f ∗ωQ.

Definition 4.1. Let f be a map from CP1 into Grn(Cn+2). A map f : CP1 → Grn(Cn+2)
is called an equivariant map, if we have a group homomorphism ρ : SU(2)→ U(n+ 2) such
that f (gx) = ρ(g) f (x), where x ∈ CP1, g ∈ SU(2) and ρ(g) is now regarded as a holomorphic
isometry of Grn(Cn+2).

If f is an equivariant map, then we have an integer l such that

(6) f ∗ωQ = lω0,

because both forms are invariant forms which represent the Chern classes of line bundles
∧2 f ∗Q → CP1 and (l) → CP1 and the Picard group of CP1 is Z. If an equivariant
map f : CP1 → Grn(Cn+2) satisfies (6), then f is called a map of degree l. When f
is an equivariant map, f ∗Q → CP1 has an SU(2)-action and the induced connection on
f ∗Q → CP1 is an invariant connection. Moreover the pull-back of the evaluation map
f ∗ev : Cn+2 → f ∗Q is an equivariant epimorphism, where Cn+2 → CP1 is a trivial bundle
with fibre Cn+2.

Proposition 4.2. Let f : CP1 → Grn(Cn+2) be an equivariant holomorphic map of degree
l. Then the pull-back of the universal quotient bundle f ∗Q→ CP1 with the induced metric is
holomorphically isomorphic to

(
(k1) ⊕ (k2), hk1 ⊗ hk2

)
, where 0 � k1 � k2 and k1+ k2 = l,

or (V1(k), ha ⊗ hk) for a positive real number a, where 2k = l and k � 0.

Proof. Since f is a holomorphic map, f ∗Q→ CP1 is a holomorphic vector bundle of rank
2. The equivariance of f implies that f ∗Q → CP1 has an SU(2)-action with an invariant
Hermitian metric. Then Theorem 3.2 determines f ∗Q→ CP1 up to a gauge equivalence.

In addition, Cn+2 induces holomorphic sections of f ∗Q→ CP1. Since the evaluation map
is an epimorphism, it follows that relevant integers are non-negative. �

To classify equivariant holomorphic maps, we introduce the induced map by a holomor-
phic vector bundle and the space of holomorphic sections of the bundle. (For a general
argument, see [5].) Let V → CP1 be a holomorphic vector bundle of rank 2. It is said
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that CN ⊂ H0(V) globally generates V → CP1, if the evaluation map ev : CN → V is an
epimorphism. In the case that CN ⊂ H0(V) globally generates V → CP1, we have a map
f : CP1 → GrN−2(CN) called the induced map from (V → CP1,CN), which is defined as

f (x) = Ker evx ⊂ CN , x ∈ CP1.

Conversely, every holomorphic map f : CP1 → GrN−2(CN) can be recognized as the in-
duced map from ( f ∗Q → CP1,CN), where Q → GrN−2(CN) is the universal quotient bun-
dle.

Next, our main concern is the space of holomorphic sections of V1(k)→ CP1, where k is
positive.

Let SlC2 be the l-th symmetric product of C2 with the induced Hermitian inner product.
It is well-known that SlC2 is an irreducible SU(2)-module.

We put a symmetric product of degree l as

el−p
1 ep

2 := e1 ⊗ e1 ⊗ · · · ⊗ e1 ⊗ e2 ⊗ · · · ⊗ e2 + · · · + e2 ⊗ e2 ⊗ · · · ⊗ e2 ⊗ e1 ⊗ · · · ⊗ e1.

Hence, the induced Hermitian inner product denoted by 〈·, ·〉l satisfies

(7)
〈
el−p

1 ep
2 , e

l−q
1 eq

2

〉
l
= δpq

(
l
p

)
, where δpq is the Kronecker delta.

Borel–Weil theorem yields that H0((k)) � SkC2 and H1((k)) vanishes. From the exact
sequence of vector bundles:

0→ (k − 1)→ V1(k)→ (k + 1)→ 0,

we obtain

0→ Sk−1C2 → H0(V1(k))→ Sk+1C2 → 0.

By dimension count, H0(V1(k)) is identified with H0(V1) ⊗ H0((k)). Thus H0(V1(k)) is
spanned by

ũi ⊗ t̃ k−p
1 t̃ p

2 , i = 1, 2 and p = 0, · · · , k.
Notice that H0(V1) and H0((1)) can be regarded as the standard representation of SU(2).
Lemma 3.1 and the definition of t̃i yield that ei corresponds to ũi and t̃i, respectively, where
i = 1, 2.

Next, we fix an invariant Hermitian inner product denoted by 〈·, ·〉V1 on H0(V1) under
which {ũ1, ũ2} is a unitary basis. We also fix an SU(2)-invariant Hermitian inner product on
H0((k)) � SkC2 in the same manner as (7), which is denoted by the same symbol. An
invariant Hermitian inner product 〈·, ·〉 on H0(V1) ⊗ H0((k)) is defined as 〈·, ·〉 := 〈·, ·〉V1 ⊗
〈·, ·〉k.

Clebsch–Gordan formula yields that

(8) H0(V1(k)) � C2 ⊗ SkC2 � Sk−1C2 ⊕ Sk+1C2.

This decomposition is given by the symmetric product and the contraction by the complex
symplectic form ω. Under the identification ei with ũi and t̃i, ũ1 ⊗ t̃ q−1

1 t̃ k−(q−1)
2 + ũ2 ⊗ t̃ q

1 t̃ k−q
2 ,

q = 0, . . . , k + 1 of C2 ⊗ SkC2 can be regarded as a symmetric tensor. Hence, for q =
0, . . . , k + 1, Sk+1C2 ⊂ H0(V1(k)) is spanned by
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(9) v
q
+ := ũ1 ⊗ t̃ q−1

1 t̃ k−(q−1)
2 + ũ2 ⊗ t̃ q

1 t̃ k−q
2 .

Considering weights and the orthogonality between Sk±1C2, we see that for p = 0, . . . , k−1,
Sk−1C2 ⊂ H0(V1(k)) is spanned by

(10) v
p
− :=

(
k
p

)−1

ũ1 ⊗ t̃ p
1 t̃ k−p

2 −
(

k
p + 1

)−1

ũ2 ⊗ t̃ p+1
1 t̃ k−(p+1)

2 .

Since the evaluation map plays a crucial role to identify the induced map, we describe the
evaluation map using explicit expression of sections in each case. Due to the equivariance,
the evaluation is provided only at one point. Let o ∈ CP1 be a reference point corresponding
to [e], where e is the unit of SU(2).

Borel–Weil theorem imply that H0 ((k1) ⊕ (k2)) = Sk1C2 ⊕ Sk2C2. An evaluation map
ev : Sk1C2 ⊕ Sk2C2 → (k1) ⊕ (k2) is given by ev = evk1 ⊕ evk2 , where evki : SkiC2 → (ki)
is an evaluation for i = 1, 2. Since t̃1(o) = 0 and h1(t̃2(o), t̃2(o)) = 1, it follows that

Ker evkio = Span
〈
t̃ p
1 t̃ ki−p

2

∣∣∣∣ 1 � p � ki

〉
.

As already seen, H0(V1(k)) is equivalent to Sk−1C2 ⊕ Sk+1C2 as SU(2)-module. Suppose
that a > 0. We denote the evaluation map by ev1 : Sk−1C2 ⊕ Sk+1C2 → V1(k). In addition to
the behaviour of t̃i(o), since {ũ1, ũ2} is a global frame of V1 → CP1, it follows from (9) and
(10) that

v
p
−, p = 1, . . . , k − 1, and v

q
+, q = 2, . . . , k + 1

are in Ker ev1
o. Since −v0− + v1

+ = (k−1 + 1)ũ2 ⊗ t̃1 t̃ k−1
2 , we deduce that −v0− + v1

+ is also in
Ker ev1

o. By dimension count, we conclude that

Ker ev1
o = Span

〈
v

p
−, v

q
+,−v0

− + v
1
+

∣∣∣∣ 1 � p � k − 1, 2 � q � k + 1
〉
.

Next, we consider the induced connection on the pull-back of the universal quotient bun-
dle by the induced map.

First of all, we begin with the general theory. Let f : CP1 → GrN−2(CN) be the induced
holomorphic map from (V → CP1,CN), where V → CP1 is a holomorphic vector bundle
of rank 2. Suppose that V → CP1 has a Hermitian metric h and an SU(2)-action which
preserves the metric h and the holomorphic vector bundle structure. We can deduce that
V → CP1 has a unique invariant Hermitian connection ∇. Suppose that CN is an SU(2)-
module such that the evaluation map ev : CN → V is equivariant under the SU(2)-actions.
Then f is an equivariant map. We fix an SU(2)-invariant Hermitian inner product 〈·, ·〉 on CN .
Then the pull-back of the universal quotient bundle has the induced metric. If the induced
metric is the same as h, then 〈·, ·〉 is called to be compatible with h. Then the uniqueness
of the Hermitian connection implies that the induced connection is the same as the invariant
connection ∇. In our case, the compatibility condition is easily checked, because of the
equivariance. Let o ∈ CP1 be the reference point and U(1) the isotropy subgroup of SU(2).
Then Vo the fibre of V → CP1 at o is regarded as a U(1)-module. We take the orthogonal
complement Ker⊥evo of Ker evo ⊂ CN . Then the compatibility condition is expressed as

〈ṽ1, ṽ2〉 = h(ṽ1(o), ṽ2(o)),

where ṽ1, ṽ2 ∈ Ker⊥evo. The image of the adjoint homomorphism ev∗ of ev at o is identified
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with Ker⊥evo. Since ev is equivariant, Ker⊥evo is also regarded as a U(1)-module which is
equivalent to Vo as representation. Hence CN has the same weights as ones of Vo.

From Theorem 3.2, the candidates for (V, h) are
(
(k1) ⊕ (k2), hk1 ⊕ hk2

)
and (V1(k), ha⊗

hk). We will examine the compatibility condition in each case.
First of all, we begin with

(
(k1) ⊕ (k2), hk1 ⊕ hk2

)
.

Proposition 4.3. Let f : CP1 → GrN−2(CN) be the induced holomorphic map from
((k1) ⊕ (k2) → CP1,CN), where CN is a submodule of the SU(2)-representation space
H0 ((k1) ⊕ (k2)). We put an invariant Hermitian inner product on CN.

Then, the induced connection is the direct product of the canonical connections if and
only if CN is equivalent to Sk1C2 ⊕ Sk2C2 with a Hermitian inner product 〈·, ·〉k1 ⊕ 〈·, ·〉k2 as
SU(2)-module.

Proof. Let f : CP1 → GrN−2(CN) be the induced holomorphic map from ((k1) ⊕
(k2) → CP1,CN). Since CN inherits an SU(2)-action induced by the group action on
(k1) ⊕ (k2) → CP1, the evaluation map is equivariant. Borel–Weil theorem yields that
CN is a submodule of Sk1C2⊕Sk2C2. Suppose that k1 � k2. If CN is a proper submodule, then
the evaluation is not an epimorphism by Schur’s lemma. This is a contradiction. Suppose
that k1 = k2. Then CN has −k1 as weight with multiplicity two. However, Sk1C2 has −k1

with multiplicity 1 as weight. Hence CN is Sk1C2 ⊕Sk2C2 in both cases. As already seen, the
evaluation ev : Sk1C2 ⊕ Sk2C2 → (k1) ⊕ (k2) is given by ev = evk1 ⊕ evk2 . Consequently,
we may check the compatibility condition for each i = 1, 2.

Since SkiC2 is an irreducible module, an invariant Hermitian inner product is unique up to
a constant multiple. We therefore deduce that {t̃ p

1 t̃ ki−p
2 | p = 0, 1, . . . , ki} is a unitary basis of

SkiC2. Since Ker evkio is spanned by t̃ p
1 t̃ ki−p

2 , where p = 1, . . . , ki, we see that t̃ ki
2 is orthogonal

to Ker evo. Thus the compatibility condition is satisfied only in the case that the Hermitian
inner product is 〈·, ·〉ki on SkiC2. �

We denote by fki the induced map from ((ki) → CP1, SkiC2), where SkiC2 has an in-
variant Hermitian inner product 〈·, ·〉ki . Then the induced map fd from ((k1) ⊕ (k2) →
CP1, Sk1C2 ⊕ Sk2C2), where Sk1C2 ⊕ Sk2C2 has an invariant Hermitian inner product 〈·, ·〉k1 ⊕
〈·, ·〉k2 , is described by

fd(x) = fk1 ⊕ fk2 = Ker evk1 x ⊕ Ker evk2 x ,

which is called of direct sum type. Using equivariance, fd is also expressed as

fd([g]) = gKer evk1o ⊕ gKer evk2o , g ∈ SU(2).

Since fd is determined up to an isomorphism CN with Sk1C2 ⊕ Sk2C2 preserving the Her-
mitian inner products and the group actions, fd is unique up to the composite of a holomor-
phic isometry of GrN−2(CN).

We have already defined an invariant Hermitian inner product 〈·, ·〉 on H0(V1(k)) as 〈·, ·〉 :=
〈·, ·〉V1 ⊗ 〈·, ·〉k. If the Hermitian inner product 〈·, ·〉 is restricted to the subspace Sk±1C2 of
H0(V1(k)), then we obtain an invariant Hermitian inner product denoted by 〈·, ·〉|k±1, respec-
tively.
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Proposition 4.4. Let f : CP1 → GrN−2(CN) be the induced holomorphic map from
(V1(k) → CP1,CN). Suppose that CN is a submodule of the SU(2)-representation space
H0 (V1(k)). We put an invariant Hermitian inner product on CN.

Then, the induced connection is ∇a (a � 0) if and only if CN is equivalent as SU(2)-
module to

(1) Sk−1C2⊕Sk+1C2 with a Hermitian inner product a2k
k+1−a2 〈·, ·〉|k−1⊕〈·, ·〉|k+1 for 0 < a <√

k + 1, or
(2) Sk+1C2 with a Hermitian inner product 〈·, ·〉|k+1 for a =

√
k + 1.

Proof. Let f : CP1 → GrN−2(CN) be the induced holomorphic map from (V1(k) →
CP1,CN). Since CN inherits an SU(2)-action induced by the group action on V1(k)→ CP1,
the evaluation map is equivariant. It follows from (8) that CN is a subspace of Sk−1C2 ⊕
Sk+1C2. Then CN has −k+1 and −k−1 as weights. On the one hand, Sk−1C2 has −k+1 with
multiplicity 1 as weight and −k− 1 is not a weight of Sk−1C2. On the other hand, Sk+1C2 has
−k + 1 and −k − 1 as weight, each of which has multiplicity 1. Hence we conclude that CN

is Sk−1C2 ⊕ Sk+1C2 or Sk+1C2.
Suppose that CN = Sk−1C2 ⊕ Sk+1C2. Schur’s lemma yields that an invariant Hermitian

inner product on CN is of the form b〈·, ·〉|k−1⊕c〈·, ·〉|k+1 for some positive real numbers b and
c, which is denoted by 〈·, ·〉b. (Though we omit c in this notation, the reason will be clear in
the next paragraph.)

Since 〈·, ·〉|k+1 is an invariant Hermitian inner product on Sk+1C2 and Sk+1C2 is an ir-
reducible SU(2)-module, 〈·, ·〉|k+1 is the unique invariant Hermitian inner product up to a
constant multiple. Hence ũ2 ⊗ t̃ k

2 ∈ Sk+1C2 is orthogonal to Ker ev1
o. By definition, we have

that

〈ũ2 ⊗ t̃ k
2 , ũ2 ⊗ t̃ k

2 〉b = c.

Since ũ2(o) = t1(o) and t̃2(o) = t1(o), it follows for a � 0 that

ha ⊗ hk

(
ũ2(o) ⊗ t̃ k

2 (o), ũ2(o) ⊗ t̃ k
2 (o)

)
= 1.

Thus we deduce that c = 1.
Next, we abbreviate v0− and v1

+ to v− and v+, respectively. We examine the compatibility
condition for αv− + βv+, where α and β are complex numbers. The compatibility condition
requires

αv− + βv+ ∈ Ker ev⊥ao
,

and

〈αv− + βv+, αv− + βv+〉b = ha ⊗ hk (αv−(o) + βv+(o), αv−(o) + βv+(o)) .

Since 〈·, ·〉|k±1 is an invariant Hermitian inner product on Sk±1C2 and Sk±1C2 is an irreducible
SU(2)-module, the condition αv− + βv+ ∈ Ker ev1

o
⊥ is equivalent to a condition that

〈αv− + βv+,−v− + v+〉b = −bα(1 + k−1) + β(k + 1) = 0.

Thus β = k−1bα. From the definition of 〈·, ·〉b, we have

〈αv− + βv+, αv− + βv+〉b = b|α|2k−1(k + 1) + |β|2(k + 1).
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On the other hand, since v−(o) = v+(o) = s1 ⊗ tk
1(o), we get

ha ⊗ hk (αv−(o) + βv+(o), αv−(o) + βv+(o)) = |α + β|2a2.

Hence the compatibility condition implies that

b =
a2k

k + 1 − a2 .

In the case that CN = Sk+1C2, an invariant Hermitian inner product on CN is unique up to
a constant multiple by Schur’s lemma. Therefore we take c〈·, ·〉|k+1 as an invariant Hermitian
inner product on CN . Since Ker ev1

o is spanned by v
q
+ (q = 2, . . . , k + 1), it follows that

Ker ev1
o
⊥ is spanned by

v0
+ = ũ2 ⊗ t̃ k

2 , and v1
+ = ũ1 ⊗ t̃ k

2 + ũ2 ⊗ t̃ 1
1 t̃ k−1

2 ,

which are orthogonal. Consequently, the compatibility condition requires

c〈v0
+, v

0
+〉|k+1 = ha ⊗ hk

(
ũ2(o) ⊗ t̃2(o), ũ2(o) ⊗ t̃2(o)

)
= 1

and

c〈v1
+, v

1
+〉|k+1 = ha ⊗ hk

(
s1 ⊗ t̃ k

1 (o), s1 ⊗ t̃ k
1 (o)

)
= a2.

It follows that c = 1 and a2 = 1 + k. �

Remark 1. We have found an induced map f for 0 < a �
√

k + 1, under which the
induced connection on f ∗Q → CP1 is gauge equivalent to ∇a on V1(k) → CP1. If f :
CP1 → Grn(Cn+2) is a holomorphic map satisfying f ∗Q � V1(k), then the mean curvature
operator coincides with the induced curvature contracted with the Kähler form up to the sign
([5, Proposition 4.4]). From (4), we see that the eigenvalues of the mean curvature operator
are −(k − 1 + a2) and −(k + 1 − a2). Since the mean curvature operator is a non-positive
Hermitian endomorphism [5, Lemma 3.2], we have a �

√
k + 1. In summary, a �

√
k + 1 is

a necessary condition for the existence of holomorphic map with the pull-back connection
being gauge equivalent to ∇a.

We describe the induced map fa from (V1(k) → CP1, Sk−1C2 ⊕ Sk+1C2), where 0 < a <√
k + 1. The Hermitian inner product on Sk−1C2⊕Sk+1C2 given in Proposition 4.4 is denoted

by 〈·, ·〉b:

〈·, ·〉b := b〈·, ·〉|k−1 ⊕ 〈·, ·〉|k+1 =
a2k

k + 1 − a2 〈·, ·〉|k−1 ⊕ 〈·, ·〉|k+1.

The equivariance of fa yields that

fa([g]) = Ker ev1
[g] = gKer ev1

o, g ∈ SU(2),

where

Ker ev1
o = Span

〈
v

p
−, v

q
+,−v0

− + v
1
+

∣∣∣ 1 � p � k − 1, 2 � q � k + 1
〉
.

Since fa is determined up to an isomorphism of CN with Sk−1C2 ⊕ Sk+1C2 preserving the
SU(2) structure, fa is unique up to the composite of a holomorphic isometry of GrN−2(CN).
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To describe f√k+1, the evaluation ev1 is now restricted to Sk+1C2. Then, the induced map
f√k+1 from the pair (V√k+1 → CP1, Sk+1C2), where Sk+1C2 has 〈·, ·〉|k+1 as Hermitian inner
product, is expressed as

f√k+1([g]) = Ker ev1|Sk+1C2 [g] = gKer ev1|Sk+1C2 o, g ∈ SU(2).

Since f√k+1 is determined up to an isomorphism CN with Sk+1C2 preserving the SU(2)
structure, f√k+1 is unique up to the composite of a holomorphic isometry of GrN−2(CN).

Remark 2. When a = 1, V1(k) → CP1 is holomorphically isomorphic to the orthogonal
direct sum (k) ⊕ (k) → CP1 with the canonical connection. The group action on (k) ⊕
(k) → CP1 is obtained by forgetting the group action on V1 → CP1 from the action on
V1(k) → CP1. This means that ũi has weight 0 in the case of the group action on (k) ⊕
(k) → CP1. Using ũi, the compatible Hermitian inner product on H0((k)) ⊕ H0((k))
is expressed as 〈·, ·〉k ⊕ 〈·, ·〉k = 〈·, ·〉V1 ⊗ 〈·, ·〉k. Thus, H0(V1(k)) and H0((k) ⊕ (k)) have
the same Hermitian inner product. Since the evaluation map is independent of the group
actions, we have the same induced map, which is equivariant under both group actions.

We would like to understand fa as a deformation of f1. For this end, we fix a Hermitian
inner product 〈·, ·〉V1 ⊗〈·, ·〉k on C2k+2 = Sk−1C2⊕Sk+1C2 and vary the evaluation. Recall that

Ker ev1
o = Span

〈
v

p
−, v

q
+,−v0

− + v
1
+

∣∣∣∣ 1 � p � k − 1, 2 � q � k + 1
〉
.

Next, we introduce a Hermitian transformation Ta of C2k+2 as

Ta :=

⎛⎜⎜⎜⎜⎜⎝
√

k+1−a2

a
√

k
ISk−1C2 O

O ISk+1C2

⎞⎟⎟⎟⎟⎟⎠
to obtain 〈Ta·, Ta·〉b = 〈·, ·〉b=1 = 〈·, ·〉V1 ⊗ 〈·, ·〉k.

Since a Hermitian inner product 〈·, ·〉b on C2k+2 provides a complex Grassmannian with
a Kähler metric, a Kähler manifold Gr2k(C2k+2) is denoted by (Gr2k(C2k+2), 〈·, ·〉b). With
this understood, Ta gives a holomorphic isometry of (Gr2k(C2k+2), 〈·, ·〉b) into (Gr2k(C2k+2),
〈·, ·〉b=1) as U �→ T−1

a U, where U is a 2k-dimensional subspace in C2k+2. By the com-
position, we can describe the induced map denoted by the same symbol fa : CP1 →(
Gr2k(C2k+2), 〈·, ·〉b=1

)
as

(11) fa([g]) = T−1
a gKer ev1

o = gT−1
a Ker ev1

o, g ∈ SU(2),

where,

T−1
a Ker ev1

o = Span
〈
v

p
−, v

q
+, − a

√
kv0
− +
√

k + 1 − a2v1
+

∣∣∣∣ 1 � p � k − 1, 2 � q � k + 1
〉
.(12)

The map f√k+1 is also explained as a deformation of f1. If Sk+1C2 is considered as
a subspace of C2k+2, then Grk(Sk+1C2) is realized as a totally geodesic submanifold of(
Gr2k(C2k+2), 〈·, ·〉b=1

)
. Because the Hermitian inner product on Sk+1C2 is unchanged. From

the viewpoint of vector bundle, Grk(Sk+1C2) is the zero set of sections, which belong to
Sk−1C2 ⊂ H0

(
Gr2k(C2k+2); Q

)
, of the universal quotient bundle over Gr2k(C2k+2). Notice

that Ker T√k+1 is nothing but Sk−1C2, and so, T√k+1 determines the totally geodesic embed-
ding. The evaluation ev1 restricted to Sk+1C2 satisfies
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Ker ev1|Sk+1C2 o = Span
〈
v

q
+

∣∣∣∣ 2 � q � k + 1
〉
.

Though T√k+1 is not invertible, a subspace T−1√
k+1

Ker ev1
o of C2k+2 can be defined by putting

a2 = k + 1 in (12). It follows that

Ker ev1|Sk+1C2 o = T−1√
k+1

Ker ev1
o ∩ Sk+1C2.

By the composition with the totally geodesic embedding, the induced map from (V√k+1 →
CP1, Sk+1C2) is regarded as a map into Grassmannian

(
Gr2k(C2k+2), 〈·, ·〉b=1

)
, which is de-

scribed as

f√k+1([g]) = gT−1√
k+1

Ker ev1
o, g ∈ SU(2).

Hence f√k+1 is called of degenerate type.
Next, we compactify the moduli space. Since Ta ∈ Aut(C2k+2), where C2k+2 = Sk−1C2 ⊕

Sk+1C2, is invertible in the case that 0 < a <
√

k + 1, fa is well-defined as (11), which is
considered as the deformation of f1 for a ∈ (0,

√
k + 1). We can equip the moduli space

(0,
√

k + 1) with a natural topology as follows. The L2-inner product provides the Dolbeault
cohomology group H1((−2)) with a topology. Since [0,∞) is the quotient of H1((−2))
by S1- (or constant gauge group) action from our description of the extension, [0,∞) has
the induced topology. Then, (0,

√
k + 1) is indeed an open interval of [0,∞). Hence the

closed interval [0,
√

k + 1] is considered as the natural compactification of (0,
√

k + 1) from
the induced topology. We give a geometric interpretation to the compactification of the
moduli.

Since V0(k) � (k − 1)⊕(k + 1), the induced map f0 is expected to be of the direct sum
type. On the one hand, the Hermitian transform Ta is blown-up, and so Ta seems to be of no
use for our purpose. On the other hand, putting a = 0 in (12), we obtain

T−1
0 Ker ev1

o = Span
〈
v

p
−, v

q
+

∣∣∣∣1 � p � k − 1, 1 � q � k + 1
〉
,

which is the same as Ker evk−1o ⊕ Ker evk+1o . Notice that we fix Hermitian inner products
〈, 〉V1 ⊗〈, 〉k on C2k+2 and 〈, 〉k−1⊕〈, 〉k+1 on Sk−1C2⊕Sk+1C2 � H0 ((k − 1))⊕H0 ((k + 1)).
Under the identification ei with ũi and t̃i, we define a contraction operator C : C2k+2 →
Sk−1C2 as

C(vq
+) = 0, and C(vp

−) =

√
k + 1

k

(
k − 1

p

)−1

t̃ p
1 t̃ k−1−p

2 ,

and a symmetrization operator S : C2k+2 → Sk+1C2 as

S(vq
+) = t̃ q

1 t̃ k+1−q
2 and S(vp

−) = 0.

Then C ⊕ S : C2k+2 → Sk−1C2 ⊕ Sk+1C2 preserves the Hermitian inner products. Under the
identification C2k+2 � Sk−1C2 ⊕ Sk+1C2 by C ⊕ S, f0 is regarded as a map of the direct sum
type fk−1 ⊕ fk+1.

In the case that a2 = k + 1, we have a map of degenerate type and a totally geodesic
embedding of Grk(Sk+1C2) into Gr2k(C2k+2) specified by Ker T√k+1 as already seen.

Thus, our compactification of the moduli space is naturally interpreted from subspaces
T−1

a Ker evo and Ker Ta.
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To state the main theorem, we define the fullness of a map.

Definition 4.5 ([5]). Let f : CP1 → Grn(Cn+2) be a map. Then every element of Cn+2

gives a section of f ∗Q → CP1 by the pull-back of section, and so we have a linear map
F : Cn+2 → Γ( f ∗Q). If the linear map F has a trivial kernel, then f is called a full map.

Finally, to present the main theorem in terms of representation theory, we define a unitary
basis of SkC2 as

wk
p =

√(
k
p

)−1

ep
1ek−p

2 , p = 0, 1, . . . , k.

Theorem 4.6. Let f : CP1 → Grn(Cn+2) be an equivariant full holomorphic embedding
of degree l. Then, l is positive and one of the following three cases holds.

(1) We have n = l. There exist non-negative integers k1 and k2 satisfying k1 + k2 = l. The
vector space Cn+2 is identified with Sk1C2⊕Sk2C2 as SU(2)-module. The map f is congruent
to fd defined as

fd([g]) = gUk1 ⊕ gUk2 , Uki = Span
〈
wki

p

∣∣∣∣ 1 � p � ki

〉
, i = 1, 2.

(2) We have n = l. There exist a positive integer k satisfying 2k = l and a ∈ (0,
√

k + 1).
The vector space Cn+2 is identified with Sk−1C2 ⊕ Sk+1C2 as SU(2)-module. The map f is
congruent to fa defined as

fa([g]) = gUa,

Ua = Span
〈
wk−1

p ,wk+1
q ,−awk−1

0 +
√

k + 1 − a2wk+1
1

∣∣∣∣ 1 � p � k − 1, 2 � q � k + 1
〉
.

(3) We have 2n = l. There exists a positive integer k satisfying 2k = l. The vector space
Cn+2 is identified with Sk+1C2 as SU(2)-module. The map f is congruent to f√k+1 defined as

f√k+1([g]) = gU, U = Span
〈
wk+1

q

∣∣∣∣ 2 � q � k + 1
〉
.

Proof. Let f : CP1 → Grn(Cn+2) be an equivariant full holomorphic map of degree l.
Since f is a holomorphic embedding, l is positive. It follows from the equivariance that
f ∗Q → CP1 is a holomorphic vector bundle of rank 2 with an invariant connection. By
fullness of the map, Cn+2 is regarded as a subspace of the space of holomorphic sections of
f ∗Q → CP1. Thus f is considered as the induced map from

(
f ∗Q→ CP1,Cn+2

)
. Proposi-

tions 4.2, 4.3, 4.4 and the successive classification of induced maps imply the result. �

From Theorem 4.6 and Corollary 3.3, we can conclude

Theorem 4.7. The set of equivariant full holomorphic embeddings of CP1 into Grass-
mannians of two-planes are identified with the set of non-flat invariant connections modulo
gauge equivalence on the vector bundles of rank two on CP1 with semi-positivity.
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