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Abstract
Let f1 : (Rn, 0n) → (Rp, 0p) and f2 : (Rm, 0m) → (Rp, 0p) be analytic germs of independent

variables, where n,m ≥ p ≥ 2. In this paper, we assume that f1, f2 and f = f1 + f2 satisfy a f -
condition. Then we show that the tubular Milnor fiber of f is homotopy equivalent to the join
of tubular Milnor fibers of f1 and f2. If p = 2, the monodromy of the tubular Milnor fibration
of f is equal to the join of the monodromies of the tubular Milnor fibrations of f1 and f2 up to
homotopy.

1. Introduction

1. Introduction
Let g : (RN , 0N) → (Rp, 0p) be an analytic germ, where N ≥ p ≥ 2, 0N and 0p are

the origins of RN and Rp respectively. Take a positive real number ε0 sufficiently small if
necessary. Assume that for any 0 < ε ≤ ε0, there exists a positive real number δ such that
δ � ε and

g : BN
ε ∩ g−1(Dp

δ \ {0p})→ Dp
δ \ {0p}

is a locally trivial fibration, where BN
ε = {x ∈ RN | ‖x‖ ≤ ε} and Dp

δ = {w ∈ Rp | ‖w‖ ≤ δ}. In
this paper, BN

ε is used for the disk in the defining euclidean space. The isomorphism class of
the above fibration does not depend on the choice of ε and δ. This map is called the tubular
Milnor fibration of g. If f1 and f2 are holomorphic functions of independent variables, the
following theorem is known.

Theorem 1 (Join theorem). Let f1 : (Cn, 02n) → (C, 02) and f2 : (Cm, 02m) → (C, 02) be
holomorphic functions of independent variables z = (z1, . . . , zn) and w = (w1, . . . , wm). Set
f (z,w) = f1(z) + f2(w). Then the Milnor fiber of f is homotopy equivalent to the join of the
Milnor fibers of f1 and f2 and the monodromy of f is equal to the join of the monodromies
of f1 and f2 up to homotopy.

Join theorem is algebraically proved by M. Sebastiani and R. Thom for isolated singular-
ities [31]. M. Oka showed this for weighted homogeneous singularities [23]. For general
complex singularities, this is proved by K. Sakamoto [30]. In [14], L. H. Kauffman and
W. D. Neumann studied fiber structures and Seifert forms of links defined by tame isolated
singularities of real analytic germs of independent variables. In this paper, we study Join
theorem for more general real analytic singularities.

To show the existence of Milnor fibrations for real analytic singularities, we consider
stratifications of analytic sets. Let ε be a small positive real number. Let g : (RN , 0N) →
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(Rp, 0p) be a smooth map and  be a stratification of BN
ε ∩ g−1(0p). The map g satisfies

a f -condition if BN
ε \ g−1(0p) has no critical point and satisfies the following condition: For

any sequence pν ∈ BN
ε \ g−1(0p) such that

Tpνg
−1(g(pν))→ τ, pν → p∞ ∈ M,

where M ∈  , we have Tp∞M ⊂ τ. A stratification  is called Whitney (a)-regular if for
any pair of strata (S1, S2) of  and any point p ∈ S1 ∩ S2, (S1, S2) satisfies the following
condition: For any sequence qν ∈ S2 satisfying

qν → p, TqνS2 → T,

we have TpS1 ⊂ T . We say ε is an a f -stable radius for g with respect to  if it satisfies the
following: Each sphere SN−1

ε′ , 0 < ε′ ≤ ε intersects transversely with any stratum of  and
0p is the only critical value of g : BN

ε → Rp.
Let f1 : (Rn, 0n) → (Rp, 0p) and f2 : (Rm, 0m) → (Rp, 0p) be analytic germs, where

n,m ≥ p ≥ 2. Set V( f1) = f −1
1 (0p) ∩ Bn

ε and V( f2) = f −1
2 (0p) ∩ Bm

ε for 0 < ε � 1. We
denote a stratification of V( f1) (resp. V( f2)) by 1 (resp. 2). Assume that f1 and f2 satisfy
the following conditions:

(a-i) V( f j) has codimension p at the origin, f j has an isolated value at the origin and f j is
locally surjective on V( f j) near the origin for j = 1, 2,

(a-ii) f j satisfies a f -condition with respect to  j for j = 1, 2.
Here g : (RN , 0N) → (Rp, 0p) is locally surjective near the origin if there exists a positive
real number ε so that for any x ∈ V(g) ∩ BN

ε , there exists an open neighborhood W of x so
that 0p is an interior point of the image g(W). Since V( f1) and V( f2) are real analytic sets,
we may assume that 1 and 2 are Whitney stratifications. See [10] for further information.
We take ε sufficiently small if necessary. Then the sphere ∂Bn

ε (resp. ∂Bm
ε ) intersects M1

(resp. M2) transversely for any M1 ∈ 1 and M2 ∈ 2. See [19, Corollary 2.9] and the proof
of [3, Lemma 3.2].

Take a common a f -stable radius ε for f1 and f2 and take a sufficiently small δ, 0 < δ � ε

so that f −1
j (η) intersects transversely with the sphere of radius ε for j = 1, 2. See Lemma 1

below for the existence of such a δ. Hereafter we use 0 < δ � ε in this sense.
We assume that ε is a common a f -stable radius for f j with respect to  j for j = 1, 2 and

take U1 = U1(ε, δ) and U2 = U2(ε, δ) for 0 < δ � ε. Here U j(ε, δ) = {x ∈ Bn j
ε | ‖ f j(x)‖ ≤ δ}

with n1 = n and n2 = m. By the above conditions and the Ehresmann fibration theorem [33],
we may assume that

f j : U j \ V( f j)→ Dp
δ \ {0p}

is a locally trivial fibration for j = 1, 2. We call these fibrations stable tubular Milnor
fibrations of f j for j = 1, 2.

Let f : (Rn × Rm, 0n+m) → (Rp, 0p) be the analytic germ defined by f = f1 + f2. Put
V( f ) = f −1(0) ∩ (U1 × U2). By [1, Proposition 5.2], f also satisfies the conditions (a-i) and
(a-ii) with respect the stratification  for f which will be defined in Section 2. See Section
2.1. The main theorem of this paper is the following.

Theorem 2. Let f1 : (Rn, 0n) → (Rp, 0p) and f2 : (Rm, 0m) → (Rp, 0p) be analytic germs
of independent variables, where n,m ≥ p ≥ 2. Assume that f1 and f2 satisfy the conditions
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(a-i) and (a-ii). Set f = f1 + f2. Then the fiber of the tubular Milnor fibration of f is
homotopy equivalent to the join of the fibers of the tubular Milnor fibrations of f1 and f2.

Moreover, if p = 2, the monodromy of the tubular Milnor fibration of f is equal to the
join of the monodromies of f1 and f2 up to homotopy.

Moreover, we assume that f1, f2 and f satisfy the following condition:
(a-iii) there exists a positive real number r′ such that

P/|P| : ∂BN
r \ KP → Sp−1

is a locally trivial fibration and this fibration is isomorphic to the tubular Milnor fibra-
tion of P, where KP = ∂BN

r ∩P−1(0) and 0 < r ≤ r′ for (P,N) = ( f1, n), ( f2,m), ( f , n+
m).

The fibration in (a-iii) is called the spherical Milnor fibration of P. By using Theorem 2 and
the condition (a-iii), we have

Corollary 1. Let f1 : (Rn, 0n)→ (Rp, 0p) and f2 : (Rm, 0m)→ (Rp, 0p) be analytic germs
in Theorem 2. Assume that f1, f2 and f = f1 + f2 satisfy the condition (a-iii). Then the fiber
of the spherical Milnor fibration of f is homotopy equivalent to the join of the fibers of the
spherical Milnor fibrations of f1 and f2.

If p is equal to 2, analytic germs which satisfy the above conditions were studied by
Oka [25, 26]. Let (ρ1, ρ2) : (R2n, 02n) → (R2, 02) be an analytic map germ with real 2n-
variables x1, . . . , xn and y1, . . . , yn. Then (ρ1, ρ2) is represented by a complex-valued function
of variables z = (z1, . . . , zn) and z̄ = (z̄1, . . . , z̄n) as

P(z, z̄) := ρ1

(
z + z̄

2
,

z − z̄
2
√−1

)
+
√−1 ρ2

(
z + z̄

2
,

z − z̄
2
√−1

)
.

Here any complex variable z j of Cn is represented by x j +
√−1y j and z̄ j is the complex

conjugate of z j for j = 1, . . . , n. Then a map P : (Cn, 02n) → (C, 02) is called a mixed
function map. For mixed weighted homogeneous singularities, Join theorem is proved by J.
L. Cisneros-Molina [4]. Oka introduced the notion of Newton boundaries of mixed functions
and the concept of strong non-degeneracy. If P is a convenient strongly non-degenerate
mixed function or a strongly non-degenerate mixed function which is locally tame along
vanishing coordinate subspaces, then P satisfies the conditions (a-i), (a-ii) and (a-iii). See
[25, 26, 8].

We study the topology of Milnor fibrations of join type. If a mixed function P satisfies the
condition (a-iii) and the origin is an isolated singularity of P, the Seifert form is determined
by the spherical Milnor fibration of P. Note that the Seifert form is a topological invariant of
fibrations. Then we calculate Seifert forms defined by joins of Milnor fibrations of 1-variable
mixed functions in Corollary 5. This is a generalization of [29, Corollary 3].

We also study homotopy types of fibered links defined by isolated singularities of join
type. In [20, 21, 22], W. Neumann and L. Rudolph defined the enhanced Milnor number and
the enhancement to the Milnor number of a fibered link. These are invariants of homotopy
types of fibered links in S2k+1. If k = 1, it is shown that for any d ∈ Z, there exists a mixed
polynomial P such that the enhancement to the Milnor number of KP is equal to d [11]. If k
is greater than 1, the enhanced Milnor number is represented by ((−1)k+1	, r), where 	 ∈ N
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and r ∈ {0, 1}. Note that there exists a complex polynomial Q such that the enhanced Milnor
number determined by the Milnor fibration of Q is equal to ((−1)k+1	, 0) for 	 ∈ N and k ≥ 2.
We show that there exists a mixed polynomial of join type such that the enhanced Milnor
number of a link defined by a mixed polynomial is equal to ((−1)k+1	, 1) for 	 ∈ N and k ≥ 2.

This paper is organized as follows. In Section 2 we give some Join type statements, the
definition of zeta functions of monodromies and strongly non-degenerate mixed functions.
In Section 3 we prove Theorem 2 and Corollary 1. In Section 4 we consider Join theorem
of Seifert forms of links defined by 1-variable mixed polynomials. In Section 5 we study
homotopy types of Milnor fibrations defined by mixed polynomial of Join type.

2. Preliminaries

2. Preliminaries2.1. Join type statements.
2.1. Join type statements. Let g : (RN , 0N) → (Rp, 0p) be an analytic germ which sat-

isfies the conditions (a-i) and (a-ii) with respect to a Whitney regular stratification  . By
using the same argument in [26, Proposition 11], we can show the following lemma.

Lemma 1. Assume that an analytic germ g : (RN , 0N)→ (Rp, 0p) satisfies the conditions
(a-i) and (a-ii). Take an a f -stable radius r0 for g. For any positive real number r1 which
satisfies r1 ≤ r0, there exists a positive real number δ̃ such that g−1(η) intersects transversely
with the sphere SN−1

r for r1 ≤ r ≤ r0 and 0 < ‖η‖ ≤ δ̃.
Corollary 2. Take an a f -stable radius r0 for g and take any δ̃1 ≤ δ̃. Then for any r1 ≤ r ≤

r0, the isomorphism class of the tubular Milnor fibration g : U(r, δ̃1) \ g−1(0p)→ Dp
δ̃1
\ {0p}

is independent of the choice of r and δ̃1.

Let f1 : (Rn, 0n)→ (Rp, 0p) and f2 : (Rm, 0m)→ (Rp, 0p) be analytic germs which satisfy
the conditions (i) and (ii), where n,m ≥ p ≥ 2. Let f : (Rn × Rm, 0n+m) → (Rp, 0p) be the
analytic germ defined by f = f1 + f2. Put V( f ) = f −1(0) ∩ (U1(ε0, δ) × U2(ε0, δ)). We take
the stratification  of V( f ) as follows:

 : (1 × 2) 
 (
V( f ) \ (V( f1) × V( f2))

)
,

where  j is a stratification of V( f j) in Section 1 for j = 1, 2. By [9, p.12], we may assume
that 1 × 2 is Whitney (a)-regular. By using the stratification  of V( f ), R. N. Araújo dos
Santos, Y. Chen and M. Tibăr showed the following lemma.

Lemma 2 ([1, Proposition 5.2]). Let f1 : (Rn, 0n) → (Rp, 0p) and f2 : (Rm, 0m) →
(Rp, 0p) be analytic germs which satisfy the conditions (a-i) and (a-ii), where n,m ≥ p ≥ 2.
Then the analytic germ f = f1 + f2 : (Rn ×Rm, 0n+m)→ (Rp, 0p) also satisfies the conditions
(a-i) and (a-ii).

By Lemma 1 and Lemma 2, we have

Corollary 3. Take ε0 sufficiently small so that we assume that ε0 is also an a f -stable
radius for f with respect to the above  . Then f satisfies the conditions (a-i) and (a-ii) on
Bn+m
ε for 0 < ε ≤ ε0. Moreover, there exists a positive real number δ such that

f : Bn+m
ε ∩ f −1(Dp

δ \ {0p})→ Dp
δ \ {0p}

is a locally trivial fibration.
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2.2. Divisors and Zeta functions of monodromies.
2.2. Divisors and Zeta functions of monodromies. Take 1-variable polynomials q1(t)

and q2(t) with q1(0) = q2(0) = 0. Set q1(t) = a
∏k

j=1(t−αi) and q2(t) = b
∏	

j=1(t−β j), where
a, b, αi, β j ∈ C∗ := C \ {0} for i = 1, . . . , k and j = 1, . . . , 	. Then we define the divisor of
q1(t)/q2(t) by

(
q1(t)
q2(t)

)
=

k∑
i=1

〈αi〉 −
	∑

j=1

〈β j〉 ∈ Z(C∗),

where Z(C∗) is the group ring of C∗.
Let F be the fiber of the spherical Milnor fibration of g : (R2n, 02n) → (R2, 02) and

h : F → F be the monodromy of this fibration. Set Pj(t) = det(Id − th∗, j), where h∗, j :
Hj(F,Q) → Hj(F,Q) is an isomorphism induced by h. Then the zeta function ζ(t) of the
monodromy is defined by

ζ(t) =
2n−2∏
j=0

Pj(t)(−1) j+1
.

See [19, Section 9] and [24, Chapter I]. Assume that g satisfies the following properties:
(a) 02n is an isolated singularity of g,
(b) F has a homotopy type of a finite CW-complex of dimension ≤ n − 1,
(c) F is (n − 2)-connected.

Then the zeta function ζ(t) is equal to Pn−1(t)(−1)n
/(t − 1) and the reduced zeta function is

defined by ζ̃(t) = (t − 1)ζ(t).

2.3. Strongly non-degenerate mixed functions.
2.3. Strongly non-degenerate mixed functions. In this subsection, we introduce a class

of mixed functions which admit tubular Milnor fibrations and spherical Milnor fibrations
given by Oka in [25]. Let P(z, z̄) be a mixed function, i.e., P(z, z̄) is a function expanded in
a convergent power series of variables z = (z1, . . . , zn) and z̄ = (z̄1, . . . , z̄n)

P(z, z̄) :=
∑
ν, μ

cν, μzνz̄μ,

where zν = zν1
1 · · · zνn

n for ν = (ν1, . . . , νn) (respectively z̄μ = z̄μ1
1 · · · z̄μn

n for μ = (μ1, . . . , μn)).
The Newton polygon Γ+(P; z.z̄) is defined by the convex hull of⋃

(ν, μ)

{(ν + μ) + Rn
+ | cν, μ � 0},

where ν + μ is the sum of the multi-indices of zνz̄μ, i.e., ν + μ = (ν1 + μ1, . . . , νn + μn).
The Newton boundary Γ(P; z, z̄) is the union of compact faces of Γ+(P; z, z̄). The strongly
non-degeneracy is defined from the Newton boundary as follows: let Δ1, . . . ,Δm be the
faces of Γ(P; z, z̄). For each face Δk, the face function PΔk (z, z̄) is defined by PΔk (z, z̄) :=∑

(ν+μ)∈Δk
cν, μzνz̄μ. If PΔk (z, z̄) : C∗n → C has no critical point, and PΔk is surjective if

dimΔk ≥ 1, we say that P(z, z̄) is strongly non-degenerate for Δk, where C∗n = {z =
(z1, . . . , zn) | z j � 0, j = 1, . . . , n}. If P(z, z̄) is strongly non-degenerate for any Δk for
k = 1, . . . ,m, we say that P(z, z̄) is strongly non-degenerate. If P((0, . . . , 0, z j, 0, . . . , 0),
(0, . . . , 0, z̄ j, 0, . . . , 0)) � 0 for each j = 1, . . . , n, then we say that P(z, z̄) is convenient. Oka
showed that a convenient strongly non-degenerate mixed function P(z, z̄) has both tubular
and spherical Milnor fibrations and also two fibrations are isomorphic [25].
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Theorem 3 ([25, 26, 8]). Let P(z, z̄) : (Cn, 02n) → (C, 02) be a convenient strongly non-
degenerate mixed function. Then 02n is an isolated singularity of P and P satisfies the
conditions (a-i), (a-ii) and (a-iii).

Let ft be an analytic family of convenient strongly non-degenerate mixed polynomials
such that the Newton boundary of ft is constant for 0 ≤ t ≤ 1. C. Eyral and M. Oka
showed that the topological type of (V( ft), 02n) is constant for any t and their tubular Milnor
fibrations are equivalent [8].

3. Proof of Theorem 2

3. Proof of Theorem 2
Assume that f1 and f2 satisfy the conditions (a-i) and (a-ii) in Section 1. Then the proof

of Theorem 2 is analogous to the holomorphic case [30]. We assume that ε0 is a common
a f -stable radius of f1, f2 and f1 + f2. Taking δ0 � ε0 sufficiently small and put

U1 := U1(ε0, δ0), U2 := U2(ε0, δ0).

Set Xt = f −1
1 (t) ∩ U1, Yt = f −1

2 (t) ∩ U2 and Zt = f −1(t) ∩ (U1 × U2). We fix a point t ∈ Rp

with 0 < ‖t‖ � δ0 and define the map
F1 : Zt → At as (x, y) �→ f1(x),

where At = {w ∈ Rp | ‖w‖ ≤ δ0, ‖t − w‖ ≤ δ0}.
Lemma 3. The restriction map F1 : Zt \ F−1

1 ({0p, t}) → At \ {0p, t} is a locally trivial
fibration.

Proof. From the tubular Milnor fibrations of f1 and f2, for each w ∈ At \ {0p, t}, we may
find a neighborhood Vw ⊂ At \ {0p, t} of w such that there exist local trivializations

φ1 : Vw × Xw
�−→ f −1

1 (Vw) ∩ U1, φ2 : Vt−w × Yt−w
�−→ f −1

2 (Vt−w) ∩ U2,

where Vt−w = {t − w | w ∈ Vw} ⊂ At \ {0p, t}. We define the map on Vw × F−1
1 (w) =

Vw × (Xw × Yt−w) as follows:

ψ : Vw × (Xw × Yt−w)→ F−1
1 (Vw), (w′, x, y) �→ (φ1(w′, x), φ2(w′, y)).

Since φ1 and φ2 are local trivializations, ψ is a continuous map. For any (x′, y′) ∈ F−1
1 (Vw),

we put (w′, x) = φ−1
1 (x′) and (t − w′, y) = φ−1

2 (y′). Then ψ−1(x′, y′) = (w′, x, y) and thus
we see that ψ−1 is a continuous map. Thus ψ is a homeomorphism. This shows the local
triviality of F1. �

Lemma 4. Let J be the line segment with endpoints 0p and t. The inclusion F−1
1 (J) ↪→ Zt

is a homotopy equivalence.

Proof. Since Zt is semi-analytic, there is a triangulation of Zt such that F−1
1 (J) is a sub-

complex [17]. Since Zt is compact, by using the local triviality of F1 and the partition of
unity, Zt is deformed into a regular neighborhood of F−1

1 (J). Thus F−1
1 (J) and Zt are homo-

topy equivalent. See [28, Chapter 3]. �

Let π : U1 × U2 → (U1/V( f1)) × (U2/V( f2)) be the identification map where we use the
quotient topology for U1/V( f1) and U2/V( f2).
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Lemma 5. The identification map π : F−1
1 (J)→ π(F−1

1 (J)) is a homotopy equivalence.

Proof. The semi-analytic set V( f j) has a conic structure for j = 1, 2 by [19, Theorem
2.10] and [3], i.e.,

V( f1) � Cone(V( f1) ∩ Sn−1
ε0

) = ([0, 1] × (V( f1) ∩ Sn−1
ε0

))/({0} × (V( f1) ∩ Sn−1
ε0

)),

V( f2) � Cone(V( f2) ∩ Sm−1
ε0

) = ([0, 1] × (V( f2) ∩ Sm−1
ε0

))/({0} × (V( f2) ∩ Sm−1
ε0

)).

So V( f1) and V( f2) retract to the origins of Rn and Rm respectively by strong deformation
retracts. We can construct deformation retractions from F−1

1 (0p) = V( f1) × Yt to {0n} × Yt

and from F−1
1 (t) = Xt × V( f2) to Xt × {0m}. By applying a triangulation of F−1

1 (J) and using
the homotopy extension property of a polyhedral pair [32, p.118], the above homotopies can
extend to a homotopy Hs : F−1

1 (J)→ F−1
1 (J), where 0 ≤ s ≤ 1 so that

H0 = idF−1
1 (J), H1(F−1

1 (0p) ∪ F−1
1 (t)) = {0n} × Yt ∪ Xt × {0m}.

Let H̃s : π(F−1
1 (J)) → π(F−1

1 (J)) be the homotopy which satisfies π(Hs(x, y)) = H̃s(π(x, y)),
where (x, y) ∈ F−1

1 (J) and 0 ≤ s ≤ 1. Note that π(F−1
1 (J)) \ ({0n} × Yt ∪ Xt × {0m}) =

F−1
1 (J) \ (F−1

1 (0p) ∪ F−1
1 (t)). The map ϕ : π(F−1

1 (J))→ F−1
1 (J) is defined by

ϕ |π(F−1
1 (J))\({0n}×Yt∪Xt×{0m})= H1 |F−1

1 (J)\(F−1
1 (0p)∪F−1

1 (t)),

ϕ({0n} × Yt) = {0n} × Yt, ϕ(Xt × {0m}) = Xt × {0m}.
Then ϕ is continuous and H1 = ϕ ◦ π. By the definition of H̃s, π ◦ ϕ = H̃1. Thus the
identification map π is a homotopy equivalence. �

Lemma 6. Let Xt∗Yt be the join of Xt and Yt. Then Xt∗Yt is homeomorphic to π(F−1
1 (J)).

Proof. Put I = [0, 1]. By the local trivialities of the tubular Milnor fibrations of f1 and f2,
there exist homeomorphisms

φ̃1 : (I \ {0}) × Xt → f −1
1 (J \ {0p}) ∩ U1, φ̃2 : (I \ {0}) × Yt → f −1

2 (J \ {0p}) ∩ U2

such that f1(φ̃1(s, x)) = f2(φ̃2(s, y)) = st for 0 < s ≤ 1. We define the map
Φ : Xt × I × Yt → π(F−1

1 (J)) as (x, s, y) �→ π(φ̃1(s, x), φ̃2(1 − s, y)),
where φ̃1(0, x) = 0n and φ̃2(0, y) = 0m. Since V( f1) and V( f2) have conic structures, Φ is a
continuous map. Let Ψ : Xt ∗Yt → π(F−1

1 (J)) be the map defined by Ψ([x, s, y]) = Φ(x, s, y),
where [x, s, y] is the equivalence class of (x, s, y). By the definition ofΦ and conic structures
of V( f1) and V( f2), Ψ is a continuous and bijective map. Thus Ψ is a homeomorphism. �

Lemma 7. The fiber Zt is homotopy equivalent to f −1(t) ∩ Bn+m
ε′ , where 0 < ε′ � 1.

Proof. Let ε0 be a common a f -stable radius of f1, f2 and f = f1 + f2. Put

U(ε0, δ0) := {(x, y) ∈ Rn+m | ‖(x, y)‖ ≤ ε0, ‖ f1(x) + f2(y)‖ ≤ δ0},
where 0 < δ0 � ε0. As the families {U1(ε0, δ0) × U2(ε0, δ0)}0<δ0�ε0 and {U(ε0, δ0)}0<δ0�ε0

are cofinal systems of neighborhoods of the origin 0n+m respectively for ε0 which is an a f -
stable radius of f1, f2, f and 0 < δ0 � ε0. Thus we can choose positive real numbers
ε3 < ε2 < ε1 < ε0 and sufficiently small δ3 < δ2 < δ1 < δ0 with δ j � ε j for j = 0, . . . , 3 so
that
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U1(ε1, δ1) × U2(ε1, δ1) ⊃ U(ε1, δ1) ⊃ U1(ε2, δ2) × U2(ε2, δ2)

⊃ U(ε2, δ2) ⊃ U1(ε3, δ3) × U2(ε3, δ3) ⊃ U(ε3, δ3).

By Corollary 2, the inclusions

ι j : U1(ε j, δ j) × U2(ε j, δ j)→ U1(ε j−1, δ j−1) × U2(ε j−1, δ j−1),

ι′j : U(ε j, δ j)→ U(ε j−1, δ j−1)

are isomorphisms for j = 1, . . . , 3. The homotopies of the above sequence can be defined
by ι j and ι′j for j = 1, . . . , 3. Thus by a standard homotopy argument, we can see that
the inclusion maps in the above sequence are homotopy equivalences. Take t ∈ Rp which
satisfies ‖t‖ ≤ δ3. Then we see also the restriction of the homotopies of the above sequence
to f −1(t) is also homotopy equivalences. �

Proof of Theorem 2. By using Lemma 4, Lemma 5 and Lemma 6, we can show that
Xt ∗ Yt is homotopy equivalent to Zt. By Lemma 7, the fiber of the tubular Milnor fibration
of f is homotopy equivalent to Xt ∗ Yt.

If p = 2, set

E = {(x, y) ∈ U1 × U2 | 0 < ‖ f (x, y)‖ ≤ ρ},
where 0 < ρ � ε. Then the map f̃ : π(E)→ D2

ρ \ {02} is defined by f̃ (π(x, y)) = f (x, y). By
the local trivialities of f1 and f2, there are continuous one-parameter families of homeomor-
phisms

αθ : U1 \ V( f1)→ U1 \ V( f1), βθ : U2 \ V( f2)→ U2 \ V( f2)

such that f1(αθ(x)) = eiθ f1(x) and f2(βθ(y)) = eiθ f2(y), where θ ∈ [0, 2π]. Then we define
the map γθ : π(E)→ π(E) as follows:

γθ(π(x, y)) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
π(αθ(x), βθ(y)) x ∈ U1 \ V( f1), y ∈ U2 \ V( f2)

π(0n, βθ(y)) x ∈ V( f1), y ∈ U2 \ V( f2)

π(αθ(x), 0m) x ∈ U1 \ V( f1), y ∈ V( f2).

Note that {γθ} is well-defined and a continuous one-parameter family of homeomorphisms
such that f̃ (γθ(z)) = eiθ f̃ (z), where z ∈ π(E) and θ ∈ [0, 2π]. Hence {γθ} gives the local
triviality of f̃ . Then the monodromy of f̃ can be identified with α2π ∗ β2π up to homotopy.
Here the map α2π ∗ β2π is defined by

α2π ∗ β2π([x, s, y]) = [α2π(x), s, β2π(y)],

where [x, s, y] ∈ Xt ∗ Yt.
By Lemma 7, the fiber of f̃ is homotopy equivalent to the fiber of f . Since D2

ρ \ {02} is
a CW-complex and f̃ −1(t) is homotopy equivalent to f −1(t) for any t ∈ D2

ρ \ {02}, f̃ is fiber
homotopy equivalent to f by [5]. Then the monodromy of the tubular Milnor fibration of f
is equal to α2π ∗ β2π. �

Proof of Corollary 1. By Theorem 2 and the condition (a-iii), the fiber of the spherical
Milnor fibration of f is homotopy equivalent to Xt ∗Yt, where 0 < ‖t‖ � 1. By the condition
(a-iii), Xt and Yt are diffeomorphic to the fibers of the spherical Milnor fibrations of f1 and
f2 respectively. This completes the proof. �
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Let F j be the fiber of the spherical Milnor fibration of f j which satisfies the assumptions
in Section 2.2 for j = 1, 2. By [18], the reduced homology H̃n+m−1(F1 ∗ F2) satisfies

H̃n+m−1(F1 ∗ F2) =
∑

i+ j=n+m−2

H̃i(F1,Z) ⊗ H̃ j(F2,Z) +
∑

i′+ j′=n+m−3

Tor(H̃i′(F1,Z), H̃ j′(F2,Z)).

Let F be the fiber of the spherical Milnor fibration of f = f1 + f2 and τ : F → F1 ∗ F2 be
the homotopy equivalence in Theorem 2. Then f also satisfies the assumptions in Section
2.2 and we have the following commutative diagram:

H̃n+m−1(F,Z)
γ∗−→ H̃n+m−1(F,Z)⏐⏐⏐⏐⏐�τ ⏐⏐⏐⏐⏐�τ

H̃n−1(F1,Z) ⊗ H̃m−1(F2,Z)
α∗⊗ β∗−→ H̃n−1(F1,Z) ⊗ H̃m−1(F2,Z)

,

where α∗, β∗ and γ∗ are the linear transformations induced by the monodromy of the spher-
ical Milnor fibrations of f1, f2 and f respectively. Since the eigenvalues of the linear trans-
formation α∗ ⊗ β∗ : H̃n−1(F1,Z) ⊗ H̃m−1(F2,Z) → H̃n−1(F1,Z) ⊗ H̃m−1(F2,Z) are given by
the product of the eigenvalues of α∗ and β∗, we obtain the following corollary.

Corollary 4. Assume that f1 and f2 satisfy the assumptions in Section 2.2. Let ζ̃1(t), ζ̃2(t)
and ζ̃(t) of the reduced zeta functions defined by α∗, β∗ and γ∗ respectively. Then the divisors
of the reduced zeta functions are related by(

ζ̃(t)
)
=

(
ζ̃1(t)

)
·
(
ζ̃2(t)

)
.

4. Seifert forms of simple links defined by mixed functions

4. Seifert forms of simple links defined by mixed functions
Let K be a link in the (2k + 1)-sphere S2k+1, i.e., K is an oriented codimension-two closed

smooth submanifold in S2k+1. A link K is said to be fibered if there exists a trivialization
K × D2 → N(K) of a tubular neighborhood N(K) of K in S2k+1 and a fibration of the link
exterior E(K) = S2k+1\ Int(N(K)), ξ1 : E(K) → S1 such that ξ0|∂N(K) = ξ1|∂N(K), where
ξ0 : N(K) → D2 is a trivialization K × D2 → N(K) composed with the second factor. This
fibration is also called an open book decomposition of S2k+1. A fiber of ξ1 is called a fiber
surface of the fibration of K. If f (z, z̄) is convenient strongly non-degenerate, Kf is a fibered
link by [25].

We assume that a fibered link K in S2k+1 is (k − 2)-connected and its fiber surface F is
(k − 1)-connected. Then K is called a simple fibered link. Let α, β ∈ H̃k(F;Z) and a and b
be cycles on F representing α and β respectively. Set

LK(α, β) := link(a+, b),

where a+ is a pushed off of a to the positive side of F by a transverse vector field and
link(a+, b) is the linking number of a+ and b. The Seifert form LK of K is the non-singular
bilinear form

LK : H̃k(F;Z) × H̃k(F;Z)→ Z
on the k-th homology group H̃k(F;Z) with respect to a choice of basis of H̃k(F;Z). By [14],
we can show the following proposition.
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Proposition 1 ([29, 14]). Let f1 : (Cn, 02n) → (C, 02) and f2 : (Cm, 02m) → (C, 02) be
mixed function germs of independent variables which satisfy the conditions (a-i), (a-ii) and
(a-iii). Suppose that the origin is an isolated singularity of f j and Kfj is a simple fibered link
for j = 1, 2. Then LK f is congruent to (−1)nmLK f1

⊗ LK f2
.

Kauffman and Neumann studied Seifert forms of non-simple fibered links. See [14].
Let A = (ai, j) and A′ be integral unimodular matrices. We say that A′ is an extension of A

if A′ is congruent to

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1,1 . . . a1,n 0
...

...
...

...

an,1 . . . an,n 0
b1 . . . bn ε

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where n is the rank of A, bi ∈ Z, i = 1, . . . , n and ε = ±1. Let K and K′ be simple fibered
links in S2k+1. Set F and F′ to be the fiber surfaces of K and K′ respectively. If a fiber
surface F is obtained from F′ by a plumbing of a Hopf band, the Seifert form of F is an
extension of the Seifert form of F′ (cf. [16]). If a fiber surface is obtained from a disk
by successive plumbings of Hopf bands then its Seifert form becomes a unimodular lower
triangular matrix for a suitable choice of the basis. D. Lines studied high dimensional fibered
knots by using plumbings [15, 16].

Proposition 2 ([15]). Let F be the fiber surface of a simple fibered link K in S2k+1, where
k ≥ 3. Then F is obtained from a disk by successive plumbings of Hopf bands if and only
if it admits a unimodular lower triangular Seifert form. For k = 1, the above condition is
necessary.

Example 1. Let f1 be a 2-variable complex polynomial which has an isolated singularity
at the origin and f2(w) =

∑m
j=1 w

2
j , where m ≥ 2. In [13, Corollary 1.2], the Milnor fiber

of f1 is obtained from a disk by successive plumbings of Hopf bands. By Proposition 1
and Proposition 2, the Milnor fiber of f1 + f2 is also obtained from a disk by successive
plumbings of Hopf bands.

For mixed singularities, we can find a 2-variable mixed polynomial f ′1 such that the Mil-
nor fiber of f ′1 + f2 cannot be obtained from a disk by successive plumbings of Hopf bands.
We will give an explicit example below. Suppose that α j � α j′ ( j � j′). Then we define a
mixed polynomial as follows:

f ′1(z) := (z1 + α1z2)(z1 + α2z2)(z1 + α3z2).

Note that f ′1 is a convenient strongly non-degenerate mixed polynomial. Thus f ′1 satisfies
the conditions (a-i), (a-ii) and (a-iii). See also [27]. By [12, Lemma 1], the Seifert form of
Kf ′1 is equal to

A1 :=
(

0 −1
−1 2

)
.

Since the Seifert form of Kf2 is equal to (−1)
m(m−1)

2 [6, Proposition 2.2], by Proposition 1,
the Seifert form of Kf ′ is equal to
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Γ1 := εA1 = (−1)
m(m−1)

2

(
0 −1
−1 2

)
,

where f ′ = f ′1 + f2 and ε = (−1)
m(m−1)

2 . We show the following assertion.

Assertion 1. The Milnor fibers of f ′1 and f ′ for m ≥ 2 cannot be obtained by series of
plumbings from a disk.

Proof. By the assertion of Proposition 2.4 of [15], it is enough to show that the corre-
sponding Seifert form of Kf ′ cannot be a lower triangle unimodular matrix. Let e1, e2 be the
basis of the homology group of the Milnor fiber of f ′ which gives Γ1 and take a unimodular

matrix
(
a1 a2

a3 a4

)
, a1a4 − a2a3 = ±1.

We show that the assertion by contradiction. Consider the base change e′1 = a1e1 +

a2e2, e′2 = a3e1 + a4e2 and consider the corresponding Seifert form Γ′1 which should be a
lower triangle unimodular matrix. Let ẽ j and ẽ′j be cycles of the Milnor fiber representing e j

and e′j for j = 1, 2. By the definition of e1, e2, e′1 and e′2, we have

link(ẽ′+1 , ẽ
′
2) = ε{a1a3link(ẽ+1 , ẽ1) + a1a4link(ẽ+1 , ẽ2) + a2a3link(ẽ+2 , ẽ1) + a2a4link(ẽ+2 , ẽ2)}
= ε(2a2a4 − (a1a4 + a2a3))

= ε(2a2a4 − (2a2a3 ± 1)).

If Γ′1 is a lower triangle unimodular matrix, we have the equality 2(a2a4−a2a3)∓1 = 0 which
has no integer solution. Thus the Seifert form of Kf ′ cannot be a lower triangle unimodular
matrix. �
By Proposition 1, Proposition 2 and Assertion 1, the Milnor fiber of f ′ cannot be obtained

from a disk by successive plumbings of Hopf bands.
By using the notion of strongly non-degenerate mixed functions and Proposition 1, we

show a generalization of [29, Corollary 3].

Corollary 5. Let f j(z j) be a strongly non-degenerate mixed polynomial of 1-variable z j

for j = 1, . . . , n. Set mj to be the mapping degree of f j/| f j| : S1
ε j
= {z j ∈ C | |z j| = ε j} → S1

and

g j(z j) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
zmj+	 j

j z̄	 j

j m j > 0

z	 j

j z̄−mj+	 j

j m j < 0
,

where 0 < ε j � 1 for j = 1, . . . , n. Suppose that the Newton boundary of f j is equal to
that of g j for j = 1, . . . , n. For any j ∈ {1, . . . , n}, assume that there exists an analytic
family f j,t of strongly non-degenerate mixed polynomials such that f j,0 = f j, f j,1 = g j and
the Newton boundaries of f j,t is constant for 0 ≤ t ≤ 1. Then the Milnor fibration of
f (z) = f1(z1) + · · · + fn(zn) is equivalent to that of g(z) = g1(z1) + · · · + gn(zn). Set the
(|m| − 1) × (|m| − 1) matrix Λ′m as follows:

Λ′m =

⎧⎪⎪⎨⎪⎪⎩
Λm m > 0
tΛm m < 0

,

where Λm is the (m − 1) × (m − 1) matrix given by
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Λm =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 . . . . . . 0

−1 1
. . .

. . .
...

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
0 . . . 0 −1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Then we have

ΓK f � (−1)
n(n+1)

2 Λ′m1
⊗ · · · ⊗ Λ′mn

.

Proof. Since f j,0 is strongly non-degenerate, the tubular Milnor fibration of ft is equivalent
to that of f0 for 0 ≤ t ≤ 1 [8, Theorem 3.14]. Thus the tubular Milnor fibrations of f j is
equivalent to that of g j for j = 1, . . . , n. By [25] and Corollary 1, the spherical Milnor
fibration of f are equivalent to that of g. By Proposition 1 and [29, Corollary 3], the Seifert
form ΓKg

is congruent to

(−1)
n(n+1)

2 Λ′m1
⊗ · · · ⊗ Λ′mn

.

This completes the proof. �

5. Enhanced Milnor numbers of simple links defined by mixed functions

5. Enhanced Milnor numbers of simple links defined by mixed functions
Let K be a fibered link in S2k+1. By gluing ξ0 and ξ1, we give a piecewise smooth map

ξ : S2k+1 → D2. By [14], ξ can be extended to a continuous map Ξ : B2k+2 → D2 which is a
smooth submersion except at 02 and a corner along ∂N(K). Then we consider the following
map:

B2k+2 \ {02k+2} → G(2k, 2k + 2), x �→ ker D(Ξ(x)),

where D(Ξ(x)) is the differential of Ξ at x and G(2k, 2k + 2) is the Grassman manifold of
oriented 2k-planes in R2k+2. This map defines an element of π2k+1(G(2k, 2k + 2)). Note that
π2k+1(G(2k, 2k + 2)) is isomorphic to⎧⎪⎪⎨⎪⎪⎩

Z ⊕ Z k = 1

Z ⊕ Z/2Z k > 1
.

The homotopy class of Ξ has the form ((−1)k+1μ(K), λ(K)). This pair ((−1)k+1μ(K), λ(K)) is
called the enhanced Milnor number of K and λ(K) is called the enhancement to the Milnor
number. See [20, 21, 22]. Note that if K is a fibered link coming from an isolated singularity
of a complex hypersurface, λ(K) always vanishes. By [21], we have

Theorem 4 ([21]). Let f1 : (Cn, 02n) → (C, 02) and f2 : (Cm, 02m) → (C, 02) be mixed
function germs of independent variables. Assume that f1, f2 and f satisfy the conditions
(a-i), (a-ii) and (a-iii). Suppose that 02n and 02m are isolated singularities of f1 and f2. Then
μ(Kf ) = μ(Kf1 )μ(Kf2 ) and λ(Kf ) ≡ λ(Kf1 )μ(Kf2 ) + μ(Kf1 )λ(Kf2 ) mod 2.

For any 	 ∈ N and k ≥ 2, there exists a (k + 1)-variables Brieskorn polynomial P such
that ((−1)k+1μ(KP), λ(KP)) = ((−1)k+1	, 0). See [2]. By Theorem 4 and [11], we calculate
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the enhanced Milnor numbers of simple fibered links defined by mixed polynomials of join
type as follows.

Theorem 5. For any 	 ∈ N, there exists a (k+1)-variables mixed polynomial P = P1+P2

of join type such that P1, P2 and P satisfies the conditions (a-i), (a-ii) and (a-iii) and KP is a
simple fibered link which satisfies ((−1)k+1μ(KP), λ(KP)) = ((−1)k+1	, 1), where k ≥ 2.

Proof. We define a mixed polynomial and a complex polynomial as follows:

f1(z) = (zp
1 + α1z2)(zp

1 + α2z2)(zp
1 + α3z2), f2(z) = z2

1 + z̄2
2, f3(w) =

∑m
i=1 w

ai
i ,

where α j � α j′ ( j � j′), a j ≥ 2 and m ≥ 1. Then f j is a convenient strongly non-degenerate
mixed polynomial and Kfj is a simple fibered link for j = 1, 2, 3. By [7, 11, 19], we have

(μ(Kf1 ), λ(Kf1 )) = (2p, 1), (μ(Kf2 ), λ(Kf2 )) = (1, 1),

(μ(Kf3 ), λ(Kf3 )) = ((a1 − 1) · · · (am − 1), 0).

If 	 is a positive even integer, we set p = 	
2 , P1 = f1 and P2 = f3. By Corollary 1, KP is also

a simple fibered link. By Theorem 4, we have

(μ(KP), λ(KP)) = (	(a1 − 1) · · · (am − 1), (a1 − 1) · · · (am − 1) mod 2).

We set ai = 2 for i = 1, . . . ,m. Then ((−1)k+1μ(KP), λ(KP)) is equal to ((−1)k+1	, 1).
If 	 is a positive odd integer, put P1 = f2 and P2 = f3. Then we have

(μ(KP), λ(KP)) = ((a1 − 1) · · · (am − 1), (a1 − 1) · · · (am − 1) mod 2).

We set a1 = 	 + 1 and ai = 2 for i = 2, . . . ,m. Then ((−1)k+1μ(KP), λ(KP)) is equal to
((−1)k+1	, 1). �
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