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Abstract
We show that the entropy of the α-continued fraction map w.r.t the absolutely continuous

invariant probability measure is strictly less than that of the nearest integer continued fraction
map when 0 < α < 3−√5

2 . This answers a question by C. Kraaikamp, T. A. Schmidt, and
W. Steiner (2012). To prove this result we make use of the notion of the geodesic continued
fractions introduced by A. F. Beardon, M. Hockman, and I. Short (2012).

1. Introduction

1. Introduction
In this paper, we consider the entropy problem of α-continued fraction maps which is a

1-parameter family of continued fraction maps. The main point of this paper is to apply
the idea of the geodesic continued fractions, defined by A. F. Beardon, M. Hockman, and
I. Short [3], to the metric theory of the α-continued fractions. With this idea, we give the
answer to the question by C. Kraaikamp, T. A. Schmidt, and W. Steiner [12] concerning the
maximum value of the entropy of the α-continued fraction maps. We can apply this idea to
other 1-parameter families of continued fraction maps.

In 1981, the author [16] introduced the notion of α-continued fraction map for α, 1/2 ≤
α ≤ 1, which is defined as follows:

Tα(x) =

⎧⎪⎪⎨⎪⎪⎩
∣∣∣ 1

x

∣∣∣ − ⌊∣∣∣ 1
x

∣∣∣ + 1 − α
⌋

if x ∈ [α − 1, α) \ {0}
0 if x = 0.

It was shown in [16] that there exists an absolutely continuous ergodic invariant probability
measure μα for each Tα and the entropy h(Tα) w.r.t. μα is given by

(1) h(Tα) =

⎧⎪⎪⎨⎪⎪⎩
1

log(g+1) · π
2

6 if 1
2 ≤ α ≤ g

1
log(α+1) · π

2

6 if g < α ≤ 1

where g =
√

5−1
2 . It is easy to see that the definition of Tα can be extended to 0 ≤ α ≤ 1/2 and

a number of papers have been working for the behavior of h(Tα) for 0 < α < 1/2. Here we
note that, in the case of α = 0, Tα has an absolutely continuous ergodic invariant measure of
infinite volume. In 1999, P. Moussa, A. Cassa, and S. Marmi [15] extended the above result
to [
√

2 − 1, 1/2), i.e. for
√

2 − 1 ≤ α < 1/2, h(Tα) = h(T1/2) also holds. Then, in 2008,
L. Luzzi and S. Marmi [14] showed the existence of the absolutely continuous invariant
probability measure, which is ergodic, for 0 < α <

√
2 − 1 and limα→0 h(Tα) = 0. They
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also observed by computer simulation that h(Tα) is not monotone on (0, 1/2) as a function
of α. After this observation, the author and R. Natsui [18] proved the following : there
exist three sequences of sub-intervals {I1,�}, {I2,�}, {I,3,�}, 1 ≤ � < ∞, in (0, g2) such that
for each � ≥ 1 h(Tα) is strictly increasing on I1,�, constant on I2,�, and decreasing on I3,�.
After this result, there are several papers concerning the details of the behavior of h(Tα), e.g.
[6, 7, 12, 22]. The methods used in these papers were mostly based on the construction of
the natural extension of Tα as a planer map and the property which is called the “matching”.
These ideas were appeared in [23, 16] at first.

Since h(Tα) = h(T1/2) for g2 ≤ α ≤ g (see [12]), it is quite natural to ask whether h(Tα),
g2 ≤ α ≤ g takes the maximum value (the question in [12, p. 2242]). Because of (1), the
question was h(Tα) < h(T1/2) holds for 0 < α < g2 or not. This is intuitively obvious by
the computer simulation in [14]. In this paper, we show that this is certainly true. Our result
(Theorem 2 in §3) implies the following:
Main Result (in §3) The maximum value of the entropy of α-continued fraction maps is

1
log(g+1)

π2

6 and h(Tα) = 1
log(g+1)

π2

6 holds if and only if g2 ≤ α ≤ g.

To prove this result, we do not use neither the natural extension nor the matching property,
but use the idea of the geodesic continued fractions introduced in [3]. In this point, the fact
“h(Tα) = 1

log(g+1)
π2

6 holds for g2 ≤ α ≤ g” can be proved simpler than that of [12].
To define the geodesic continued fractions, we start with the definition of the Farey graph

on Q∪{∞}. Suppose two rational numbers r j =
s j

t j
, j = 1, 2, s j, t j ∈ Z, (s j, t j) = 1, satisfy the

condition s1t2 − t1s2 = ±1. Then we call r1 and r2 are adjacent and consider that there is an
edge which connects r1 and r2. In this way we have a graph on the set of rational numbers
with ∞ = 1/0. We call this graph the Farey graph. We see that this is a connected graph
defined on Q ∪ {∞}. For any pair of rational numbers r1 and r2 the minimum path which
connects them is said to be a geodesic path. For A ∈ GL(2,Z), if rational numbers r1 and

r2 are adjacent then A(r1) and A(r2) are also adjacent. Here A =
(
a b
c d

)
∈ GL(2,Z) acts on

Q∪ {∞} as a linear fractional transformation : x 	→ ax+b
cx+d . Thus the image of the Farey graph

by any A ∈ GL(2,Z) is also the Farey graph. If a rational number r has a continued fraction
expansion

r = a0 +
ε1

a1
+
ε2

a2
+
ε3

a3
+ · · · + εk

ak
, ai ∈ N, εi = ±1 for 1 ≤ i ≤ k, a0 ∈ Z

and there is no continued fraction expansion of r of this form such that its expansion length
is less than k, we see that the length of the geodesic path from ∞ to r is equal to k + 1.
We explain this fact in the next section more precisely. In general, there are a number of
geodesic paths from ∞ to a fixed rational number r, see [3]. We combine the notion of the
geodesic path and α-continued fraction expansion of a generic point (irrational number) x to
prove our main result, which is given in §3. It should be noted that in our method we use the
existence of the Legndre constant of the nearest integer continued fractions in addition to
the condition for continued fraction maps being geodesic type. Finally, in §4, we give some
examples of a 1-parameter family of continued fraction maps for which the same method
works.
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2. Some definitions and notations

2. Some definitions and notations
We start with some basic definitions. We fix α ∈ (0, 1). We define

εα,n(x) = sgn (T n−1
α (x))

and

aα,n(x) =

⎧⎪⎪⎨⎪⎪⎩
⌊

1
T n−1
α (x) + 1 − α

⌋
if T n−1

α (x) � 0
0 if T n−1

α (x) = 0

for n ≥ 1. Then we have

x =
εα,1(x)

aα,1(x)
+
εα,2(x)

aα,2(x)
+ · · · + εα,n(x)

aα,n(x)
+ · · ·

for x ∈ [α − 1, α) \ {0} and the right side terminates at some positive integer n if and only if
x is a rational number. We call this expansion the α-continued fraction expansion of x. We
put

(2)
(
pα,n−1(x) pα,n(x)
qα,n−1(x) qα,n(x)

)
=

(
0 εα,1(x)
1 aα,1(x)

) (
0 εα,2(x)
1 aα,2(x)

)
· · ·

(
0 εα,n(x)
1 aα,n(x)

)

for n ≥ 1 and aα,n(x) � 0 and (
pα,−1(x) pα,0(x)
qα,−1(x) qα,0(x)

)
=

(
1 0
0 1

)
.

From (2), we have

pα,n(x)
qα,n(x)

=
εα,1(x)

aα,1(x)
+
εα,2(x)

aα,2(x)
+ · · · + εα,n(x)

aα,n(x)
, n ≥ 1

and call pα,n(x)
qα,n(x) the n-th convergent (of the α-continued fraction expansion) of x. Also from

(2), we see |pα,n−1(x)qα,n(x) − qα,n−1(x)pα,n(x)| = 1, which means pα,n(x)
qα,n(x) and pα,n−1(x)

qα,n−1(x) are

adjacent. Thus the α-continued fraction expansion of x gives a path from ∞ to pα,n(x)
qα,n(x) on the

Farey graph for every n ≥ 1:

∞ → 0→ pα,1(x)
qα,1(x)

→ pα,2(x)
qα,2(x)

→ · · · → pα,n(x)
qα,n(x)

.

In general we consider
(
pα,n−1 pα,n
qα,n−1 qα,n

)
by (2) when εα,1, . . . , εα,n and aα,1, . . . , aα,n are

given without x. For given sequences of ±1 and positive integers, ε̂α,1, . . . , ε̂α,n and bα,1,

bα,2, . . . , bα,n, respectively, we denote by
〈
ε̂α,1
bα,1
,
ε̂α,2
bα,2
, . . . ,

ε̂α,n
bα,n

〉
the associated cylin-

der set, i.e.〈
ε̂α,1
bα,1
,
ε̂α,2
bα,2
, . . . ,

ε̂α,n
bα,n

〉

={x ∈ [α − 1, α) : εα,1(x) = ε̂α,1, . . . , εα,n(x) = ε̂α,n, aα,1(x) = bα,1, . . . , aα,n(x) = bα,n}.
A sequence
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(
ε̂α,1
bα,1
,
ε̂α,2
bα,2
, . . . ,

ε̂α,n
bα,n

)

is said to be admissible if the associated cylinder set has an inner point, here we note that
any cylinder set is an interval (or the empty set). The transpose of (2) shows that

qα,n−1(x)
qα,n(x)

=
1

aα,n(x)
+
εα,n(x)

aα,n−1(x)
+ · · · + εα,2(x)

aα,1(x)
.

For a given rational number r with r =
εα,1

aα,1
+
εα,2

aα,2
+ · · · + εα,n

aα,n
,

(
εα,1
aα,1
,
εα,2
aα,2
, . . . ,

εα,n
aα,n

)
is said to be geodesic if the path

∞ → 0→ pα,1
qα,1
→ pα,2

qα,2
→ pα,3

qα,3
→ · · · → pα,n

qα,n
= r

is a geodesic path from∞ to r.

Definition 1. The α-continued fraction expansion of x ∈ [α − 1, α) \ {0} is said to be
geodesic if for any n ≥ 1, (

εα,1(x)
aα,1(x)

,
εα,2(x)
aα,2(x)

, . . . ,
εα,n(x)
aα,n(x)

)

is geodesic. Moreover, Tα is said to be geodesic type if any α-continued fraction expansion
of x ∈ [α − 1, α) \ {0} is geodesic.

For any εα,k = ±1 and positive integers aα,k, 1 ≤ k ≤ n, we see

εα,1(x)

aα,1(x)
+
εα,2(x)

aα,2(x)
+ · · · + εα,n(x)

aα,n(x)

=
1

εα,1(x)aα,1(x)
+

1

εα,1(x)εα,2(x)aα,2(x)
+ · · · + 1

Πn
k=1εα,k(x) · aα,n(x)

.

Thus the α-continued fraction expansion can be rewritten to the ICF expansion in [3]. In
this way, we have a simple version of [3, Theorem 1.3].

Lemma 1. A continued fraction

εα,1

aα,1
+
εα,2

aα,2
+ · · · + εα,n

aα,n
(εα,k = ±1, aα,k > 0, 1 ≤ k ≤ n)

is geodesic if and only if the following two conditions hold :
1. For any 1 ≤ k ≤ n, aα,k � 1.
2. For any 1 ≤ k < � ≤ n, (

εα,k
aα,k
,
εα,k+1

aα,k+1
, . . . ,

εα,�
aα,�

)
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is not equal to

(3)
( −1

2
,
−1
3
, . . . ,

−1
3︸��������������︷︷��������������︸

�−1

,
−1
2

)
,

⎛⎜⎜⎜⎜⎜⎝if � = k + 1, then this means
( −1

2
,
−1
2

)⎞⎟⎟⎟⎟⎟⎠.
If aα,n = 1 appears, then it is easy to see that Tα can not be geodesic type since

1

a
+

1

1
+

1

b
=

1

a + 1
+
−1

b + 1

holds, (see [11, 16] for the related discussions). We never have (εα,k(x), aα,k(x)) = (−1, 1)
for x ∈ [α − 1, α) and k ≥ 1 (0 < α < 1). If (3) appears for some � ≥ 1, then we can also
shorten it, (see Lemma 3 in §3).

The following theorem is a direct consequence of Lemma 1.

Theorem 1. The α-continued fraction map Tα is geodesic type if and only if g2 ≤ α ≤ g
with g =

√
5−1
2 .

Proof. It is easy to see that aα,n(x) = 1 is only possible for α > g, otherwise (0 < α ≤ g)
aα,n(x) ≥ 2 for any x ∈ [α − 1, α) \ {0} and n ≥ 1. This implies that Tα is not geodesic type
if α > g. It is also easy to see that for α = g2

α − 1 =
−1

2
+
−1

3
+
−1

3
+ · · · + −1

3
+ · · · .

This shows that for α ≥ g2, the sequence of the form( −1
2
,
−1
3
,
−1
3
, . . . ,

−1
3
,
−1
2

)

never appear in any α-continued fractions. This means that Tα is geodesic type for g2 ≤ α ≤
g. On the other hand, if 0 < α < g2, then there exists � ≥ 0 such that

α − 1 =
−1

2
+
−1

3
+
−1

3
+ · · · + −1

3
+ · · · + −1

2
+
εα,�+2(α − 1)

aα,�+2(α − 1)
+
εα,�+3(α − 1)

aα,�+3(α − 1)
+ · · · .

Hence we see from Lemma 1 that Tα is not geodesic type. This completes the proof of this
theorem. �

3. Main Result

3. Main Result
First we show the following basic lemma, which is proved in [16] for 1/2 ≤ α ≤ 1 and

can be easily extended to 0 < α ≤ 1.

Lemma 2. For a.e. x ∈ [α − 1, α), we have

lim
n→∞

1
n

log qα,n(x) = −
∫

[α−1,α)
log |x|dμα.
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Proof. Since the proof is exactly the same as in [16, Proposition 2] in the case of 1/2 ≤
α ≤ 1, we only give a sketch of the proof for 0 < α < 1/2. It is easy to see that

(4)
1

2q2
α,n+1(x)

<

∣∣∣∣∣∣x − pα,n(x)
qα,n(x)

∣∣∣∣∣∣ < 1
(1 − α)q2

α,n(x)

for any x ∈ [α− 1, α) \ {0} and n ≥ 1. For each α, 0 < α < 1/2, there exists a positive integer
m such that if ( −1

2
,
−1
2
, . . . ,

−1
2︸�����������������������︷︷�����������������������︸

�

)

is admissible, then � ≤ m. This shows that there exist D > 1 and C1 > 0 such that

qα,n(x) > C1 · Dn and |pα,n| > C1 · Dn

for any n ≥ 1 and x ∈ [α − 1, α). Thus, from (4), we can find a constant C2 > 0 such that∣∣∣∣∣∣log |x| − log

∣∣∣∣∣∣ pα,n(x)
qα,n(x)

∣∣∣∣∣∣
∣∣∣∣∣∣ ≤ C2D−2n

for n ≥ 1. Thus we have∣∣∣∣∣∣∣ log |T �−1
α (x)| − log

∣∣∣∣∣∣∣
εα,�(x)

aα,�(x)
+
εα,�+1(x)

aα,�+1(x)
+ · · · + εα,n(x)

aα,n(x)

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ ≤ C2 · D−2(n+1−�).

for 1 ≤ � ≤ n. From (2), we see

1
qα,n(x)

= Πn
k=1εα,k(x)Πn

�=1

⎛⎜⎜⎜⎜⎜⎝εα,�(x)

aα,�(x)
+
εα,�+1(x)

aα,�+1(x)
+ · · · + εα,n(x)

aα,n(x)

⎞⎟⎟⎟⎟⎟⎠ .
Hence we see

− lim
n→∞

1
n

n∑
�=1

log
∣∣∣T �−1
α (x)

∣∣∣ = lim
n→∞

1
n

log qα,n(x)

when one of the limits exists. By the ergodic theorem, the limit of the left side exists for a.e.
x ∈ [α − 1, α). Thus we get the assertion of the theorem. �

Remark. Here we recall that h(Tα) = −2
∫

[α−1,α) log |x|dμα, see [14] for example. Thus
we have

(5) h(Tα) = 2 lim
n→∞ log qα,n(x) a.e.

Now we use the following, which concerns the second condition of Lemma 1.

Lemma 3. We have(
0 −1
1 2

) (
0 −1
1 3

)k (
0 −1
1 2

) (
0
1

)
=

(
1 −1
0 1

) (
0 1
1 3

) (
0 −1
1 3

)k (
0
1

)
, k ≥ 0,

which is equivalent to
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−1

2
+
−1

3
+ · · · + −1

3︸��������������︷︷��������������︸
k

+
−1

2
= −1 +

1

3
+
−1

3
+ · · · + −1

3︸��������������︷︷��������������︸
k

.

Proof. Proof.It is easy to see that(
0 −1
1 2

) (
0 −1
1 2

) (
0
1

)
=

(
1 −1
0 1

) (
0 1
1 3

) (
0
1

)

holds. Then we get the assertion by induction. �

This lemma shows that when( −1
2
,
−1
3
, . . . ,

−1
3
,
−1
2

)

appears, we can shorten the length of the continued fraction expansion one size. Then we
can apply the ergodic theorem to get the following:

Theorem 2. 1. For g2 ≤ α ≤ 1/2, we have h(Tα) = h(T1/2).
2. For any 0 < α < g2, we have h(Tα) < h(T1/2) = 1

log(g+1)
π2

6 .

Proof. In this proof, we compare the increasing rate of qα,n(x) and that of q1/2,n(x).

Because of (5), h(Tα) < h(T1/2) or h(Tα) = h(T1/2) is equivalent to lim
n→∞

1
n

log qα,n(x) <

lim
n→∞

1
n

log q1/2,n(x) or lim
n→∞

1
n

log qα,n(x) = lim
n→∞

1
n

log q1/2,n(x) for a “typical” irrational number
x, respectively. First we show the second assertion of the theorem. Then we see that the first
assertion follows by the similar way. Since α < g2, there exists a nonnegative integer k such
that ( −1

2
,
−1
3
, . . . ,

−1
3︸��������������︷︷��������������︸

k

,
−1
2

)

is an admissible sequence. This follows from the expansions of −g2 and g2 − 1 :

−g2 =
−1

3
+
−1

3
+ · · · + −1

3
+ · · · , g2 − 1 =

−1

2
+
−1

3
+
−1

3
+ · · · + −1

3
+ · · · .

Then, for α < g2, we can find k since Tα is order preserving and expanding on [α − 1, −1
2+α )

and on [ −1
2+α ,−g2]. Suppose that(

εα,n+1(x)
aα,n+1(x)

,
εα,n+2(x)
aα,n+2(x)

, . . . ,
εα,n+k+1(x)
aα,n+k+1(x)

,
εα,n+k+2(x)
aα,n+k+2(x)

)

=

( −1
2
,
−1
3
, . . . ,

−1
3︸��������������︷︷��������������︸

k

,
−1
2

)

for x ∈ [α − 1, α). Then
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T n
α(x) =

−1

2
+
−1

3
+ · · · + −1

3︸��������������︷︷��������������︸
k

+
−1

2
+
εα,n+k+3(x)

aα,n+k+3(x)
+ · · ·

and the path

pα,n−1(x)
qα,n−1(x)

→ pα,n(x)
qα,n(x)

→ pα,n+1(x)
qα,n+1(x)

→ · · · → pα,n+k+2(x)
qα,n+k+2(x)

is mapped to

(6) ∞ → 0 → −1
2
→ −3

5
→ · · · → p

q

with

p
q
=
−1

2
+
−1

3
+ · · · + −1

3
+
−1

2

by the linear fractional transformation associated with A :

(7) A =
(
0 εα,1(x)
1 aα,1(x)

)
· · ·

(
0 εα,n(x)
1 aα,n(x)

)
.

The path (6) is of length k + 3. From Lemma 3, there is a path from∞ to p
q of length k + 2:

∞ → −1 → −2
3
→ −5

8
→ · · · → p

q
.

We map this path by the linear fractional transformation defined by (7) and get a path from
pα,n−1(x)
qα,n−1(x) to pα,n+k+2(x)

qα,n+k+2(x) of length k+2, which reduces by one length. Now we consider a “typical”
x as follows. We choose x ∈ [−1/2, α) = [α − 1, α) ∩ [−1/2, 1/2) so that

1.

lim
N→∞

1
N
�

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
1 ≤ n ≤ N : T n

α(x) ∈
〈 −1

2
,
−1
3
, . . . ,

−1
3︸��������������︷︷��������������︸

k

,
−1
2

〉
⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭

=μα

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
〈 −1

2
,
−1
3
, . . . ,

−1
3︸��������������︷︷��������������︸

k

,
−1
2

〉⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

2.

lim
N→∞

1
N

log qα,N(x) =
h(Tα)

2
,

3.

lim
N→∞

1
N

log q1/2,N(x) =
h(T1/2)

2
,

4. There are infinitely many n ≥ 1 such that aα,n > 10 .
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Choosing x with the above four requirements is possible since (Tα, μα) and (T1/2, μ1/2) are
ergodic. Here we recall the fact that the right side of the condition 1 is positive, e.g. see
[14]. For the validation of the requirements 1 and 4, we use the individual ergodic theorem
and for 2 and 3, we use the Shannon-McMillan-Breiman-Chung theorem of entropy. 1 We
put

η = μα

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
〈 −1

2
,
−1
3
, . . . ,

−1
3︸��������������︷︷��������������︸

k

,
−1
2

〉⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

From the choice of x, there exists a subsequence of natural numbers (Nk; k ≥ 1) such that
aα,Nk+1(x) > 10. For those Nk ∣∣∣∣∣∣x − pα,Nk (x)

qα,Nk (x)

∣∣∣∣∣∣ ≤ 1
8q2
α,Nk

(x)
.

Now we use the existence of the Legendre constant of the nearest integer continued fractions
([11]):

if
∣∣∣∣∣x − p

q

∣∣∣∣∣ < 3 − √5
2

1
q2 then

p
q
=

p1/2,n

q1/2,n
for some n ≥ 0

and see that

(8)
pα,Nk (x)
qα,Nk (x)

=
p1/2,Mk (x)
q1/2,Mk (x)

for some Mk ≥ 1. Since T1/2 is geodesic type, Mk + 1 is the length of a geodesic path from
∞ to

pα,Nk (x)
qα,Nk (x) . Then the discussion in the above shows that for any ε, η > ε > 0, there exists

k0 such that

(9) Mk ≤ Nk (1 − (η − ε))
holds for any k ≥ k0. Now

h(Tα)
2
= lim

k→∞
1

Nk
log qα,Nk (x) = lim

k→∞
Mk

Nk
· 1

Mk
log q1/2,Mk (x) = lim

k→∞
Mk

Nk
· h(T1/2)

2
.

From (9), we see limk→∞ Mk
Nk
< 1. Consequently we have h(Tα) < h(T1/2).

If g2 ≤ α ≤ 1/2, then (8) implies Nk = Mk, which shows the first assertion of the theorem.
In this case, we only need the requirements 2, 3, and 4. �

4. Some other examples

4. Some other examples
Here are some other examples of 1-parameter family of continued fraction maps.

1. In 1981, S. Tanaka and S. Ito introduced another type of α-continued fraction map
Sα for 1/2 ≤ α ≤ 1 ([23]) :

1We note that Shannon and McMillan discussed the convergence in probability, then L. Breiman [2] proved
a.e. convergence in the case of finitely many states, and K. L. Chung [8] extended it to the infinitely many states
concerning this theorem.
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Sα(x) =

⎧⎪⎪⎨⎪⎪⎩
1
x −

⌊
1
x + 1 − α

⌋
if x ∈ [α − 1, α) \ {0}

0 if x = 0.

The definition of Sα can be extended to 0 ≤ α ≤ 1. However Sα and S1−α can be
identified by x 	→ 1 − x and thus it is enough to consider the case 1/2 ≤ α ≤ 1.
S. Tanaka and S. Ito constructed the natural extension map for each Sα, 1/2 ≤ α ≤ g
and showed that the entropy value w.r.t. the absolutely continuous invariant measure
is constant on [1/2, g]. It is easy to see that 1 appears in the partial coefficients of
this type of α-continued fractions if and only if α > g. Thus by [3, Theorem 3.1],
we have the following

Theorem 3. Tanaka-Ito’s α-continued fraction map Sα is geodesic type if and
only if g2 ≤ α ≤ g.

To prove this theorem, we use the fact that the digit 1 appears if and only if α > g.
More about the detail of the behavior of this class of continued fraction maps, we
refer to C. Carminati, N. D. S. Langeveld, and W. Steiner [5] and H. Nakada and
W. Steiner [19].

The same holds for the map Vα, 0 < α < 1:

Vα(x) =
⌊
1
x
+ α

⌋
− 1

x

where 0 � x ∈ [α − 1, α) and Vα(0) = 0. g2 ≤ α ≤ g. We see that Vα and V1−α can
be identified. In this case, ±2, ∓3, ±3, ∓3, . . ., ±3, ∓2 appears if and only if α > g if
1/2 ≤ α ≤ 1. Then, again, by [3, Theorem 3.1], we have the following

Theorem 4. The continued fraction map Vα is geodesic type if and only if g2 ≤
α ≤ g.

The same discussion is also possible for Katok-Ugarcovici’s (a, b) continued frac-
tions (see [10]).

2. In F. P. Boca and C. Merriman [1], they introduced a 1-parameter family of contin-
ued fractions with odd partial coefficients, with the parameter

√
5−1
2 ≤ α ≤

√
5+1
2 .

In this case, the coefficients ±1 appear for any parameter value α. The corre-
sponding graph is not the Farey graph but its subgraph and each map associated
to
√

5−1
2 ≤ α ≤

√
5+1
2 is geodesic on this subgraph. We can extend the notion of ge-

odesic to this subgraph. As [1] says, one can extend this type of continued fraction
maps to the parameter value below

√
5−1
2 to 0. Then it turns out that for α < 3−√5

2 , the

associated map it is not geodesic type anymore since
1
k
+
−1

1
+
−1

3
+
−1

1
=

1
k − 2

or

1

k
+
−1

1
+
−1

3
+
−1

3
+ · · · −1

3︸���������������������︷︷���������������������︸
p

+ · · · + −1

1
=

1

k − 2
+

1

3
+
−1

3
+ · · · + −1

3︸��������������︷︷��������������︸
p−2

for some k ≥ 2 can appear.
3. For the set of cusps of Hecke group of index k(≥ 3), we can define a graph similar
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to the Farey graph, see [21]. Then we can get the geodesic and entropy results
for α-Rosen continued fraction maps introduced by K. Dajani, C. Kraaikamp, and
W. Steiner [9] and C. Kraaikamp, T. A. Schmidt, and I. Smeets [13]. However to
discuss the metric theory of α-Rosen continued fraction maps, we have to show the
existence of invariant measures with their ergodicity etc for all possible values of α.
We will discuss the detail on another occasion.
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