QUANDLE TWISTED ALEXANDER INVARIANTS

Atsushi ISHII and Kanako OSHIRO

(Received July 9, 2020, revised June 3, 2021)

Abstract

We establish a quandle version of the twisted Alexander polynomial. We also develop a theory that reduces the size of a twisted Alexander matrix with column relations. The reduced matrix can be used to refine invariants derived from the twisted Alexander matrix.

1. Introduction

The twisted Alexander polynomial $[9,11]$ is a twisted version of the Alexander polynomial, which is twisted by a group representation. The twisted Alexander polynomial is an invariant for a pair of a (knot) group and its group representation. Behavior of the twisted Alexander polynomial for topological properties of knots such as the genus and fiberedness has been studied (e.g. $[1,4,7,8]$). A quandle $[6,10]$ is an algebra whose axioms correspond to the Reidemeister moves on link diagrams. A knot quandle is known as a complete knot invariant, although it is not easy to distinguish two knot quandles. In this paper, we introduce a quandle version of the twisted Alexander polynomial, which is an invariant for a pair of a (knot) quandle and its quandle representation. It can be used to extract information from knot quandles.

The usual (twisted) Alexander polynomial is defined through a reduced (twisted) Alexander matrix, which is obtained by using one relation between columns of the (twisted) Alexander matrix. In this paper, we also develop a theory that reduces the size of a quandle twisted Alexander matrix with column relations, where the quandle twisted Alexander matrix is a matrix obtained by using the derivative with an Alexander pair introduced in [5]. We emphasize that our theory covers multiple relations between columns of a matrix. We introduce a notion of a column relation map, which controls a relation between columns. We then construct an invariant through the reduced quandle twisted Alexander matrix.

This paper is organized as follows. In Section 2, we introduce a column relation matrix of a matrix and define an equivalence relation on pairs of matrices and their column relation matrices. We introduce two invariants for the equivalence classes. In Section 3, we recall quandle presentations and Tietze transformations on them. In Section 4, we recall a quandle derivative and introduce a column relation map, which yields a column relation matrix. In Section 5, we see that an Alexander pair and a column relation map give an invariant of (link) quandles, whose invariance is proven in Section 7. We also see that the twisted Alexander polynomial is recoverable as an invariant in our framework. In Section 6, we give calculation examples of our invariant. In Section 8, we introduce the notion of cohomologous
for Alexander pairs and column relation maps and show that cohomologous Alexander pairs and column relation maps induce the same invariant.

2. Relation matrices

In this section, we introduce a column relation matrix of a matrix and define an equivalence relation on pairs of matrices and their column relation matrices. We introduce two invariants for the equivalence classes.

Let R be a ring. We denote by $M(m, n ; R)$ the set of $m \times n$ matrices over R. We say that two matrices A_{1} and A_{2} over R are equivalent $\left(A_{1} \sim A_{2}\right)$ if they are related by a finite sequence of the following transformations:

$$
\begin{aligned}
& \bullet\left(\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{i}, \ldots, \boldsymbol{a}_{j}, \ldots, \boldsymbol{a}_{n}\right) \leftrightarrow\left(\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{i}+\boldsymbol{a}_{j} r, \ldots, \boldsymbol{a}_{j}, \ldots, \boldsymbol{a}_{n}\right)(r \in R), \\
& \left(\begin{array}{c}
\boldsymbol{a}_{1} \\
\vdots \\
\boldsymbol{a}_{i} \\
\vdots \\
\boldsymbol{a}_{j} \\
\vdots \\
\boldsymbol{a}_{n}
\end{array}\right) \leftrightarrow\left(\begin{array}{c}
\boldsymbol{a}_{1} \\
\vdots \\
\boldsymbol{a}_{i}+r \boldsymbol{a}_{j} \\
\vdots \\
\boldsymbol{a}_{j} \\
\vdots \\
\boldsymbol{a}_{n}
\end{array}\right)(r \in R), \quad \bullet A \leftrightarrow\binom{A}{\mathbf{0}}, \quad \bullet A \leftrightarrow\left(\begin{array}{cc}
A & \mathbf{0} \\
\mathbf{0} & 1
\end{array}\right) .
\end{aligned}
$$

We denote the $n \times n$ identity matrix by E_{n} or simply E. Let $\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{n}$ be the standard unit column vectors in \mathbb{R}^{n}, that is, $\left(\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{n}\right)=E_{n}$. We set

$$
E_{i j}(r):=\left(\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{j-1}, \boldsymbol{e}_{j}+r \boldsymbol{e}_{i}, \boldsymbol{e}_{j+1}, \ldots, \boldsymbol{e}_{n}\right),
$$

whose (i, j)-entry is r. Then, the first and second transformations are written as $A \leftrightarrow A E_{j i}(r)$ and $A \leftrightarrow E_{i j}(r) A$, respectively. We also set

$$
P_{i j}:=\left(\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{j}, \ldots, \boldsymbol{e}_{i}, \ldots, \boldsymbol{e}_{n}\right),
$$

which is a permutation matrix. We denote by R^{\times}the group of units of R.
Proposition 2.1 (c.f. [5]). We have the following equivalences:
(1) $\left(a_{1}, \ldots, a_{i}, \ldots, a_{j}, \ldots, a_{n}\right) \sim\left(a_{1}, \ldots, a_{j}, \ldots,-\boldsymbol{a}_{i}, \ldots, a_{n}\right)$,
(2) $\left(\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{i}, \ldots, \boldsymbol{a}_{n}\right) \sim\left(\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{i} u, \ldots, \boldsymbol{a}_{n}\right)\left(u \in R^{\times}\right)$,

$$
\text { (3) }\left(\begin{array}{c}
\boldsymbol{a}_{1} \\
\vdots \\
\boldsymbol{a}_{i} \\
\vdots \\
\boldsymbol{a}_{j} \\
\vdots \\
\boldsymbol{a}_{n}
\end{array}\right) \sim\left(\begin{array}{c}
\boldsymbol{a}_{1} \\
\vdots \\
\boldsymbol{a}_{j} \\
\vdots \\
-\boldsymbol{a}_{i} \\
\vdots \\
\boldsymbol{a}_{n}
\end{array}\right), \quad \text { (4) }\left(\begin{array}{c}
\boldsymbol{a}_{1} \\
\vdots \\
\boldsymbol{a}_{i} \\
\vdots \\
\boldsymbol{a}_{n}
\end{array}\right) \sim\left(\begin{array}{c}
\boldsymbol{a}_{1} \\
\vdots \\
u \boldsymbol{a}_{i} \\
\vdots \\
\boldsymbol{a}_{n}
\end{array}\right)\left(u \in R^{\times}\right)
$$

Let R be a commutative ring, and let $A \in M(m, n ; R)$. A k-minor of A is the determinant of a $k \times k$ submatrix of A. The (0 th) elementary ideal $E(A)$ of A is the ideal of R generated by all n-minors of A if $n \leq m$; otherwise $E(A)=0$. Suppose that R is a GCD domain. Then, the (0th) Alexander invariant $\Delta(A)$ of A is the greatest common divisor of all n -
minors of A if $n \leq m$; otherwise $\Delta(A)=0$. We remark that $\Delta(A)$ coincides with the greatest common divisor of generators of $E(A)$ and is determined up to unit multiple. If $A \sim B$, then $E(A)=E(B)$ and $\Delta(A) \doteq \Delta(B)$, where the symbol \doteq indicates equality up to a unit factor. See [3] for more details.

Remark 2.2. We may regard a matrix in $M(m, n ; M(k, k ; R))$ as a matrix in $M(k m, k n ; R)$. We call such matrices flat matrices, and emphasize that equivalent matrices are equivalent as flat matrices. The twisted Alexander polynomial is defined through this process.

Lemma 2.3. Let R be a commutative ring. For $A \in M(m, n ; R)$ and $B \in M(n, n ; R)$, we have $E(A B)=(\operatorname{det} B) E(A)$. Let R be a GCD domain. For $A \in M(m, n ; R)$ and $B \in M(n, n ; R)$, we have $\Delta(A B) \doteq(\operatorname{det} B) \Delta(A)$.

Proof. If $n \leq m$, we have

$$
\begin{aligned}
E(A B) & =I\left(\left\{\operatorname{det} A^{\prime} B \mid A^{\prime} \text { is an } n \times n \text { submatrix of } A\right\}\right) \\
& =(\operatorname{det} B) I\left(\left\{\operatorname{det} A^{\prime} \mid A^{\prime} \text { is an } n \times n \text { submatrix of } A\right\}\right) \\
& =(\operatorname{det} B) E(A) ;
\end{aligned}
$$

otherwise $E(A B)=0=(\operatorname{det} B) E(A)$, where $I(S)$ denotes the ideal generated by a set S. Then $\Delta(A B) \doteq(\operatorname{det} B) \Delta(A)$ follows from $E(A B)=(\operatorname{det} B) E(A)$.

Let R be a ring. For $A=\left(a_{i j}\right) \in M(m, n ; R), \boldsymbol{i}=\left(i_{1}, \ldots, i_{s}\right)$ and $\boldsymbol{j}=\left(j_{1}, \ldots, j_{t}\right)$, we define

$$
A_{i, j}:=\left(\begin{array}{cccc}
a_{i_{1} j_{1}} & a_{i_{1} j_{2}} & \cdots & a_{i_{1} j_{t}} \\
a_{i_{2} j_{1}} & a_{i_{2} j_{2}} & \cdots & a_{i_{2} j_{t}} \\
\vdots & \vdots & \ddots & \vdots \\
a_{i_{s} j_{1}} & a_{i_{s} j_{2}} & \cdots & a_{i_{s} j_{t}}
\end{array}\right) .
$$

For example,

$$
A_{(3,2),(1,4)}=\left(\begin{array}{ll}
a_{31} & a_{34} \\
a_{21} & a_{24}
\end{array}\right)
$$

for $A=\left(a_{i j}\right) \in M(4,4 ; R)$. We further note that

$$
A_{i, j}={ }^{t}\left(\boldsymbol{e}_{i_{1}}, \ldots, \boldsymbol{e}_{i_{s}}\right) A\left(\boldsymbol{e}_{j_{1}}, \ldots, \boldsymbol{e}_{j_{t}}\right)
$$

Put $\bar{n}:=(1, \ldots, n)$. For $l \leq n$, we set $S_{n}(l):=\left\{(\sigma(1), \ldots, \sigma(l)) \mid \sigma \in S_{n}\right\}$. For $\boldsymbol{j}=$ $\left(j_{1}, \ldots, j_{l}\right) \in S_{n}(l)$, we denote by \boldsymbol{j}^{c} the vector obtained by removing j_{1}, \ldots, j_{l} from \bar{n}.

Definition 2.4. Let $A \in M(m, n ; R)$. We call $B \in M(n, l ; R)$ a column relation matrix of A if $A B=O$. A column relation matrix $B \in M(n, l ; R)$ is regular if $\operatorname{det} B_{j, \bar{l}} \neq 0$ for some $\boldsymbol{j} \in S_{n}(l)$.

Let R be an integral domain. For $a, b \in R \backslash\{0\}$ and ideals I, J of R, we write $I / a=J / b$ if $b I=a J$, where $a I:=\{a x \mid x \in I\}$. For $a, b \in R \backslash\{0\}$ and $x, y \in R$, we write $x / a \doteq y / b$ if $b x \doteq a y$. We remark that these are equivalence relations.

Definition 2.5. Let $A \in M(m, n ; R)$. Let $B \in M(n, l ; R)$ be a regular column relation matrix of A. We choose $\boldsymbol{j} \in S_{n}(l)$ so that $\operatorname{det} B_{j, \bar{l}} \neq 0$. When R is an integral domain, we define

$$
E(A, B):=E\left(A_{\bar{m}, j^{c}}\right) / \operatorname{det} B_{j, \bar{l}} .
$$

When R is a GCD domain, we define

$$
\Delta(A, B):=\Delta\left(A_{\bar{m}, j^{c}}\right) / \operatorname{det} B_{j, \bar{l}} .
$$

When we consider $E(A, B)$, we implicitly assume that the base ring is an integral domain. When we consider $\Delta(A, B)$, we implicitly assume that the base ring is a GCD domain. The following proposition implies that $E(A, B)$ and $\Delta(A, B)$ are independent of the choices of \boldsymbol{j}.

Proposition 2.6. Let $A \in M(m, n ; R)$. Let $B \in M(n, l ; R)$ be a regular column relation matrix of A. We choose $\boldsymbol{j}, \boldsymbol{k} \in S_{n}(l)$ so that $\operatorname{det} B_{j, \bar{l}} \neq 0$ and $\operatorname{det} B_{k, \bar{l}} \neq 0$. When R is an integral domain, we have

$$
E\left(A_{\bar{m}, j^{c}}\right) / \operatorname{det} B_{j, \bar{l}}=E\left(A_{\bar{m}, \boldsymbol{k}^{c}}\right) / \operatorname{det} B_{k, \bar{l}} .
$$

When R is a GCD domain, we have

$$
\Delta\left(A_{\bar{m}, j^{c}}\right) / \operatorname{det} B_{j, \bar{l}} \doteq \Delta\left(A_{\bar{m}, \boldsymbol{k}^{c}}\right) / \operatorname{det} B_{\boldsymbol{k}, \bar{l}} .
$$

Proof. By permutating rows and columns, we may assume that

$$
\begin{array}{ll}
A=\left(\begin{array}{llll}
A_{1} & A_{2} & A_{3} & A_{4}
\end{array}\right), & A_{\bar{m}, j^{c}}=\left(\begin{array}{ll}
A_{3} & A_{4}
\end{array}\right), \\
B=\left(\begin{array}{l}
B_{1} \\
B_{2} \\
B_{3} \\
B_{4}
\end{array}\right), & A_{\bar{m}, k^{c}}=\left(\begin{array}{ll}
A_{2} & A_{4}
\end{array}\right), \\
B_{j, \bar{l}}=\binom{B_{1}}{B_{2}}, & B_{k, \bar{l}}=\binom{B_{1}}{B_{3}}
\end{array}
$$

Since we have $A_{1} B_{1}+\cdots+A_{4} B_{4}=O$, we then have

$$
\begin{aligned}
\left(\begin{array}{ccc}
E_{n_{1}} & O & O \\
O & A_{3} & A_{4}
\end{array}\right)\left(\begin{array}{cc}
B_{1} & O \\
B_{3} & O \\
O & E_{n_{4}}
\end{array}\right) & =\left(\begin{array}{cc}
B_{1} & O \\
A_{3} B_{3} & A_{4}
\end{array}\right) \\
& =\left(\begin{array}{cc}
B_{1} & O \\
-A_{1} B_{1}-A_{2} B_{2}-A_{4} B_{4} & A_{4}
\end{array}\right) \\
& \sim\left(\begin{array}{cc}
B_{1} & O \\
-A_{2} B_{2} & A_{4}
\end{array}\right) \\
& \sim\left(\begin{array}{cc}
B_{1} & O \\
A_{2} B_{2} & A_{4}
\end{array}\right) \\
& =\left(\begin{array}{ccc}
E_{n_{1}} & O & O \\
O & A_{2} & A_{4}
\end{array}\right)\left(\begin{array}{cc}
B_{1} & O \\
B_{2} & O \\
O & E_{n_{4}}
\end{array}\right)
\end{aligned}
$$

where n_{i} is the number of columns of A_{i}, which coincides with that of rows of B_{i}. Then we have

$$
E\left(\left(\begin{array}{cc}
E_{n_{1}} & O \\
O & A_{\bar{m}, j^{c}}
\end{array}\right)\left(\begin{array}{cc}
B_{\boldsymbol{k}, \bar{l}} & O \\
O & E_{n_{4}}
\end{array}\right)\right)=E\left(\left(\begin{array}{cc}
E_{n_{1}} & O \\
O & A_{\bar{m}, \boldsymbol{k}^{c}}
\end{array}\right)\left(\begin{array}{cc}
B_{j, \bar{l}} & O \\
O & E_{n_{4}}
\end{array}\right)\right)
$$

By Lemma 2.3, we have $\left(\operatorname{det} B_{k, \bar{l}}\right) E\left(A_{\bar{m}, j^{c}}\right)=\left(\operatorname{det} B_{j, \bar{l}}\right) E\left(A_{\bar{m}, k^{c}}\right)$, which implies that $E\left(A_{\bar{m}, j^{c}}\right) / \operatorname{det} B_{j, \bar{l}}=E\left(A_{\bar{m}, k^{c}}\right) / \operatorname{det} B_{k, \bar{l}}$. From this equality, we have $\Delta\left(A_{\bar{m}, j^{c}}\right) / \operatorname{det} B_{j, \bar{l}} \doteq$ $\Delta\left(A_{\bar{m}, k^{c}}\right) / \operatorname{det} B_{k, \bar{l}}$.

Definition 2.7. For matrices A_{1}, A_{2} over a ring R and their column relation matrices B_{1}, B_{2}, we write $\left(A_{1}, B_{1}\right) \sim_{T}\left(A_{2}, B_{2}\right)$ if they are related by a finite sequence of the following transformations:

$$
\begin{array}{ll}
(A, B) \leftrightarrow\left(A P_{i j}, P_{i j} B\right), & (A, B) \leftrightarrow\left(E_{i j}(r) A, B\right), \\
(A, B) \leftrightarrow\left(\binom{A}{\mathbf{0}}, B\right), & (A, B) \leftrightarrow\left(\left(\begin{array}{cc}
A & \mathbf{0} \\
\boldsymbol{a} & 1
\end{array}\right),\binom{B}{-\boldsymbol{a} B}\right) .
\end{array}
$$

We note that $\left(A_{1}, B_{1}\right) \sim_{T}\left(A_{2}, B_{2}\right)$ implies $A_{1} \sim A_{2}$.
Suppose that R is an integral domain. Then B_{1} is regular if and only if B_{2} is regular, since their ranks coincide when we regard B_{1}, B_{2} as matrices over the field of fractions of R.

Proposition 2.8. Let B_{1}, B_{2} be regular column relation matrices of matrices A_{1}, A_{2}, respectively. If $\left(A_{1}, B_{1}\right) \sim_{T}\left(A_{2}, B_{2}\right)$, then $E\left(A_{1}, B_{1}\right)=E\left(A_{2}, B_{2}\right)$ and $\Delta\left(A_{1}, B_{1}\right) \doteq \Delta\left(A_{2}, B_{2}\right)$.

Proof. It is sufficient to show $E\left(A_{1}, B_{1}\right)=E\left(A_{2}, B_{2}\right)$ for each transformation in Definition 2.7. Let $B \in M(n, l ; R)$ be a regular column relation matrix of $A \in M(m, n ; R)$. It is easy to see that $E(A, B)=E\left(A P_{i j}, P_{i j} B\right)$. Hence, by permutating rows and columns, we may assume that $\operatorname{det} B_{\bar{l}, \bar{l}} \neq 0$. Then, the desired equalities follow from

$$
A_{\bar{m}, \bar{l}^{c}} \sim E_{i j}(r) A_{\bar{m}, \bar{c} c}, \quad A_{\bar{m}, \bar{l}^{c}} \sim\binom{A_{\bar{m}, \overline{c^{c}}}}{\mathbf{0}}, \quad A_{\bar{m}, \overline{l^{c}}} \sim\left(\begin{array}{ll}
A_{\bar{m}}, \overline{l^{c}} & \mathbf{0} \\
\boldsymbol{a}_{(1), \overline{l_{c}}} & 1
\end{array}\right),
$$

where $\bar{l}^{c}=(l+1, \ldots, n)$.

Remark 2.9. Let A_{1}, A_{2} be matrices over $M(k, k ; R)$, and let B_{1}, B_{2} be column relation matrices of A_{1}, A_{2}, respectively. Here, we denote by \bar{A} the flat matrix of a matrix A. If $\left(A_{1}, B_{1}\right) \sim_{T}\left(A_{2}, B_{2}\right)$, then $\left(\overline{A_{1}}, \overline{B_{1}}\right) \sim_{T}\left(\overline{A_{2}}, \overline{B_{2}}\right)$, which implies $E\left(\overline{A_{1}}, \overline{B_{1}}\right)=E\left(\overline{A_{2}}, \overline{B_{2}}\right)$ and $\Delta\left(\overline{A_{1}}, \overline{B_{1}}\right) \doteq \Delta\left(\overline{A_{2}}, \overline{B_{2}}\right)$.

3. Quandles and their presentations

A quandle $[6,10]$ is a set Q equipped with a binary operation $\triangleleft: Q \times Q \rightarrow Q$ satisfying the following axioms:
(Q1) For any $a \in Q, a \triangleleft a=a$.
(Q2) For any $a \in Q$, the map $\triangleleft a: Q \rightarrow Q$ defined by $\triangleleft a(x)=x \triangleleft a$ is bijective.
(Q3) For any $a, b, c \in Q,(a \triangleleft b) \triangleleft c=(a \triangleleft c) \triangleleft(b \triangleleft c)$.
We denote the map $(\triangleleft a)^{n}: Q \rightarrow Q$ by $\triangleleft^{n} a$ for $n \in \mathbb{Z}$.
For quandles $\left(X_{1}, \triangleleft_{1}\right)$ and $\left(X_{2}, \triangleleft_{2}\right)$, a quandle homomorphism $f: X_{1} \rightarrow X_{2}$ is a map satisfying $f\left(a \triangleleft_{1} b\right)=f(a) \triangleleft_{2} f(b)$ for any $a, b \in X_{1}$. We call a bijective quandle homomorphism

Fig. 1.
a quandle isomorphism. A quandle homomorphism $\rho: X \rightarrow Q$ is also called a quandle representation of X to Q. A quandle representation is trivial if it is a constant map. Let $\rho_{1}: X_{1} \rightarrow Q$ and $\rho_{2}: X_{2} \rightarrow Q$ be quandle representations. We say that $\left(X_{1}, \rho_{1}\right)$ and $\left(X_{2}, \rho_{2}\right)$ are isomorphic if there exists a quandle isomorphism $f: X_{1} \rightarrow X_{2}$ such that $\rho_{1}=\rho_{2} \circ f$.

For a group G, the n-fold conjugation quandle, denoted by $\operatorname{Conj}_{n} G$, is the quandle (G, \triangleleft) defined by $a \triangleleft b=b^{-n} a b^{n}$. The quandle $\operatorname{Conj}_{1} G$ is called the conjugation quandle and denoted by Conj G. The dihedral quandle, denoted by R_{n}, is the quandle $\left(\mathbb{Z}_{n}, \triangleleft\right)$ defined by $a \triangleleft b=2 b-a$, where \mathbb{Z}_{n} stands for $\mathbb{Z} / n \mathbb{Z}$. For a group G, the core quandle, denoted by Core G, is the quandle (G, \triangleleft) defined by $a \triangleleft b=b a^{-1} b$. Let $R\left[t^{ \pm 1}\right]$ be the Laurent polynomial ring over a commutative ring R and M an $R\left[t^{ \pm 1}\right]$-module. The Alexander quandle (M, \triangleleft) is defined by $a \triangleleft b=t a+(1-t) b$.

We denote by $F_{\text {Qnd }}(S)$ the free quandle on a set S. A presentation $\langle S \mid R\rangle$ of a quandle can be used to represent a quandle, where $R \subset F_{\text {Qnd }}(S) \times F_{\text {Qnd }}(S)$. We call the elements of S the generators of $\langle S \mid R\rangle$ and call the elements of R the relators of $\langle S \mid R\rangle$. A relator (a, b) is also written as $a=b$. A presentation $\langle S \mid R\rangle$ is finite if S and R are finite. For a finitely presented quandle, we often write

$$
\left\langle x_{1}, \ldots, x_{n} \mid r_{1}, \ldots, r_{m}\right\rangle:=\left\langle\left\{x_{1}, \ldots, x_{n}\right\} \mid\left\{r_{1}, \ldots, r_{m}\right\}\right\rangle .
$$

See [2] for details of a presentation of a quandle.
Let L be an oriented link represented by a diagram D. A normal orientation is often used to represent an orientation of a link on its diagram. The normal orientation is obtained by rotating the usual orientation counterclockwise by $\pi / 2$ on the diagram. We denote by $C(D)$ and $\mathcal{A}(D)$ the sets of crossings and arcs of D, respectively. For a crossing c of D, we denote the relator $\left(u_{c} \triangleleft v_{c}, w_{c}\right)$ by r_{c}, where v_{c} is the over-arc of c and u_{c}, w_{c} are the under-arcs of c such that the normal orientation of v_{c} points from u_{c} to w_{c} (see Figure 1). The fundamental quandle $Q(L)$ of L is the quandle whose presentation given by

$$
\begin{equation*}
\left\langle x(x \in \mathcal{A}(D)) \mid r_{c}(c \in C(D))\right\rangle . \tag{1}
\end{equation*}
$$

This is called the Wirtinger presentation of $Q(L)$ with respect to D. We denote by $E(L)$ the exterior of L. We remark that we obtain a presentation of the fundamental group $G(L):=$ $\pi_{1}(E(L))$ by replacing r_{c} by $v_{c}^{-1} u_{c} v_{c} w_{c}^{-1}$ in (1), which is the Wirtinger presentation of $G(L)$ with respect to D.

Let L_{i} be an oriented link and $\rho_{i}: Q\left(L_{i}\right) \rightarrow Q$ a quandle representation for $i \in\{1,2\}$. We say that $\left(L_{1}, \rho_{1}\right)$ and $\left(L_{2}, \rho_{2}\right)$ are isomorphic if there exists an orientation-preserving homeomorphism $f: S^{3} \rightarrow S^{3}$ such that $f\left(L_{1}\right)=L_{2}$ and $\rho_{1}=\rho_{2} \circ f_{*}$, where $f_{*}: Q\left(L_{1}\right) \rightarrow$ $Q\left(L_{2}\right)$ is the induced isomorphism.

Let $\left\langle S_{1} \mid R_{1}\right\rangle$ and $\left\langle S_{2} \mid R_{2}\right\rangle$ be finite presentations of quandles. Let $\rho_{1}:\left\langle S_{1} \mid R_{1}\right\rangle \rightarrow Q$ and $\rho_{2}:\left\langle S_{2} \mid R_{2}\right\rangle \rightarrow Q$ be quandle representations. Then $\left(\left\langle S_{1} \mid R_{1}\right\rangle, \rho_{1}\right)$ and $\left(\left\langle S_{2} \mid R_{2}\right\rangle, \rho_{2}\right)$ are
isomorphic if and only if they can be transformed into each other by a finite sequence of the following transformations:
(T1-1) $(\langle S \mid R\rangle, \rho) \leftrightarrow(\langle S \mid R \cup\{(x, x)\}\rangle, \rho)\left(x \in F_{\text {Qnd }}(S)\right)$,
(T1-2) $(\langle S \mid R \cup\{(a, b)\}\rangle, \rho) \leftrightarrow(\langle S \mid R \cup\{(a, b),(b, a)\}\rangle, \rho)$,
(T1-3) $(\langle S \mid R \cup\{(a, b),(b, c)\}\rangle, \rho) \leftrightarrow(\langle S \mid R \cup\{(a, b),(b, c),(a, c)\}\rangle, \rho)$,
(T1-4) $\left(\left\langle S \mid R \cup\left\{\left(a_{1}, a_{2}\right),\left(b_{1}, b_{2}\right)\right\}\right\rangle, \rho\right)$
$\leftrightarrow\left(\left\langle S \mid R \cup\left\{\left(a_{1}, a_{2}\right),\left(b_{1}, b_{2}\right),\left(a_{1} \triangleleft b_{1}, a_{2} \triangleleft b_{2}\right)\right\}\right\rangle, \rho\right)$,
(T1-5) $\left(\left\langle S \mid R \cup\left\{\left(a_{1}, a_{2}\right),\left(b_{1}, b_{2}\right)\right\}\right\rangle, \rho\right)$
$\leftrightarrow\left(\left\langle S \mid R \cup\left\{\left(a_{1}, a_{2}\right),\left(b_{1}, b_{2}\right),\left(a_{1} \triangleleft^{-1} b_{1}, a_{2} \triangleleft^{-1} b_{2}\right)\right\}\right\rangle, \rho\right)$,
(T2) $(\langle S \mid R\rangle, \rho) \leftrightarrow\left(\left\langle S \cup\{y\} \mid R \cup\left\{\left(y, w_{y}\right)\right\}\right\rangle, \rho\right)\left(y \notin F_{\text {Qnd }}(S), w_{y} \in F_{\text {Qnd }}(S)\right)$,
where we use the same symbol ρ to represent quandle representations which coincide on S.
See [5, Lemma 3.3] for more details.

4. Derivatives and column relation maps

In [5], we introduced the notion of a derivative with an Alexander pair and defined a quandle twisted Alexander matrix, which yields an Alexander type invariant. In this section, we recall the definition of the derivative with an Alexander pair and introduce the notion of a column relation map, which will be used to define a column relation matrix of the quandle twisted Alexander matrix.

Definition 4.1. Let (Q, \triangleleft) be a quandle. Let R be a ring. The pair $\left(f_{1}, f_{2}\right)$ of maps f_{1}, f_{2} : $Q \times Q \rightarrow R$ is an Alexander pair if f_{1} and f_{2} satisfy the following conditions:

- For any $a \in Q, f_{1}(a, a)+f_{2}(a, a)=1$.
- For any $a, b \in Q, f_{1}(a, b)$ is invertible.
- For any $a, b, c \in Q$,

$$
\begin{aligned}
& f_{1}(a \triangleleft b, c) f_{1}(a, b)=f_{1}(a \triangleleft c, b \triangleleft c) f_{1}(a, c), \\
& f_{1}(a \triangleleft b, c) f_{2}(a, b)=f_{2}(a \triangleleft c, b \triangleleft c) f_{1}(b, c), \text { and } \\
& f_{2}(a \triangleleft b, c)=f_{1}(a \triangleleft c, b \triangleleft c) f_{2}(a, c)+f_{2}(a \triangleleft c, b \triangleleft c) f_{2}(b, c) .
\end{aligned}
$$

Let $Q=\left\langle x_{1}, \ldots, x_{n} \mid r_{1}, \ldots, r_{m}\right\rangle$ be a finitely presented quandle. Put $S:=\left\{x_{1}, \ldots, x_{n}\right\}$. Let $\mathrm{pr}: F_{\mathrm{Qnd}}(S) \rightarrow Q$ be the canonical projection. We often omit "pr" to represent $\operatorname{pr}(a)$ as a. Let $f=\left(f_{1}, f_{2}\right)$ be an Alexander pair of maps $f_{1}, f_{2}: Q \times Q \rightarrow R$. The f-derivative with respect to x_{j} is the unique map $\frac{\partial_{f}}{\partial x_{j}}: F_{\mathrm{Qnd}}(S) \rightarrow R$ satisfying

$$
\frac{\partial_{f}}{\partial x_{j}}(a \triangleleft b)=f_{1}(a, b) \frac{\partial_{f}}{\partial x_{j}}(a)+f_{2}(a, b) \frac{\partial_{f}}{\partial x_{j}}(b), \quad \frac{\partial_{f}}{\partial x_{j}}\left(x_{i}\right)=\delta_{i j}
$$

for any $a, b \in F_{\mathrm{Qnd}}(S)$ and $i \in\{1, \ldots, n\}$, where $\delta_{i j}$ is the Kronecker delta. For a relator $r=\left(r_{1}, r_{2}\right)$, we define

$$
\frac{\partial_{f}}{\partial x_{j}}(r):=\frac{\partial_{f}}{\partial x_{j}}\left(r_{1}\right)-\frac{\partial_{f}}{\partial x_{j}}\left(r_{2}\right) .
$$

Definition 4.2. Let $\left(f_{1}, f_{2}\right)$ be an Alexander pair of maps $f_{1}, f_{2}: Q \times Q \rightarrow R$. A column relation map $f_{\text {col }}: Q \rightarrow R$ is a map satisfying

$$
f_{\mathrm{col}}(a \triangleleft b)=f_{1}(a, b) f_{\mathrm{col}}(a)+f_{2}(a, b) f_{\mathrm{col}}(b)
$$

for any $a, b \in Q$.
Proposition 4.3. For each $c \in Q$, the map $f_{\text {col }}: Q \rightarrow R$ defined by $f_{\text {col }}(x)=f_{2}\left(x \triangleleft^{-1} c, c\right)$ is a column relation map.

Proof. As we have

$$
\begin{aligned}
f_{\mathrm{col}}(a \triangleleft b) & =f_{2}\left((a \triangleleft b) \triangleleft^{-1} c, c\right) \\
& =f_{2}\left(\left(a \triangleleft^{-1} c\right) \triangleleft\left(b \triangleleft^{-1} c\right), c\right) \\
& =f_{1}(a, b) f_{2}\left(a \triangleleft^{-1} c, c\right)+f_{2}(a, b) f_{2}\left(b \triangleleft^{-1} c, c\right) \\
& =f_{1}(a, b) f_{\mathrm{col}}(a)+f_{2}(a, b) f_{\mathrm{col}}(b),
\end{aligned}
$$

the map $f_{\text {col }}$ is a column relation map.
Lemma 4.4. Let $Q=\left\langle x_{1}, \ldots, x_{n} \mid r_{1}, \ldots, r_{m}\right\rangle$ be a finitely presented quandle. Put $S:=$ $\left\{x_{1}, \ldots, x_{n}\right\}$. Let $f=\left(f_{1}, f_{2}\right)$ be an Alexander pair of maps $f_{1}, f_{2}: Q \times Q \rightarrow$ R. Let $f_{\text {col }}: Q \rightarrow R$ be a column relation map. For $w \in F_{\mathrm{Qnd}}(S)$, we have

$$
f_{\mathrm{col}}(w)=\sum_{j=1}^{n} \frac{\partial_{f}}{\partial x_{j}}(w) f_{\mathrm{col}}\left(x_{j}\right) .
$$

Proof. It is sufficient to show that

$$
\begin{aligned}
& f_{\text {col }}\left(\left(\cdots\left(\left(x_{i_{0}} \triangleleft^{\varepsilon_{1}} x_{i_{1}}\right) \triangleleft^{\varepsilon_{2}} x_{i_{2}}\right) \cdots\right) \triangleleft^{\varepsilon_{k}} x_{i_{k}}\right) \\
& =\sum_{j=1}^{n} \frac{\partial_{f}}{\partial x_{j}}\left(\left(\cdots\left(\left(x_{i_{0}} \triangleleft^{\varepsilon_{1}} x_{i_{1}}\right) \triangleleft^{\varepsilon_{2}} x_{i_{2}}\right) \cdots\right) \triangleleft^{\varepsilon_{k}} x_{i_{k}}\right) f_{\text {col }}\left(x_{j}\right)
\end{aligned}
$$

for any $i_{0}, \ldots, i_{k} \in\{1, \ldots, n\}$ and $\varepsilon_{1}, \ldots, \varepsilon_{k} \in\{ \pm 1\}$. We show this equality by induction on the length k. When $k=0$, we have

$$
f_{\mathrm{col}}\left(x_{i}\right)=\sum_{j=1}^{n} \delta_{i j} f_{\mathrm{col}}\left(x_{j}\right)=\sum_{j=1}^{n} \frac{\partial_{f}}{\partial x_{j}}\left(x_{i}\right) f_{\mathrm{col}}\left(x_{j}\right) .
$$

We suppose that the equality holds for any length less than k. Put $w:=\left(\cdots\left(\left(x_{i_{0}} \varangle^{\varepsilon_{1}} x_{i_{1}}\right) \triangleleft^{\varepsilon_{2}}\right.\right.$ $\left.\left.x_{i_{2}}\right) \cdots\right) \triangleleft^{\varepsilon_{k-1}} x_{i_{k-1}}$. We then have

$$
\begin{aligned}
& \sum_{j=1}^{n} \frac{\partial_{f}}{\partial x_{j}}\left(w \triangleleft x_{i}\right) f_{\mathrm{col}}\left(x_{j}\right) \\
& =\sum_{j=1}^{n}\left(f_{1}\left(w, x_{i}\right) \frac{\partial_{f}}{\partial x_{j}}(w)+f_{2}\left(w, x_{i}\right) \frac{\partial_{f}}{\partial x_{j}}\left(x_{i}\right)\right) f_{\mathrm{col}}\left(x_{j}\right) \\
& =f_{1}\left(w, x_{i}\right) \sum_{j=1}^{n} \frac{\partial_{f}}{\partial x_{j}}(w) f_{\mathrm{col}}\left(x_{j}\right)+f_{2}\left(w, x_{i}\right) \sum_{j=1}^{n} \delta_{i j} f_{\mathrm{col}}\left(x_{j}\right) \\
& =f_{1}\left(w, x_{i}\right) f_{\mathrm{col}}(w)+f_{2}\left(w, x_{i}\right) f_{\mathrm{col}}\left(x_{i}\right) \\
& =f_{\mathrm{col}}\left(w \triangleleft x_{i}\right) .
\end{aligned}
$$

In a similar manner, by using

$$
\frac{\partial_{f}}{\partial x_{j}}\left(a \triangleleft^{-1} b\right)=f_{1}\left(a \triangleleft^{-1} b, b\right)^{-1} \frac{\partial_{f}}{\partial x_{j}}(a)-f_{1}\left(a \triangleleft^{-1} b, b\right)^{-1} f_{2}\left(a \triangleleft^{-1} b, b\right) \frac{\partial_{f}}{\partial x_{j}}(b)
$$

and

$$
f_{\mathrm{col}}\left(a \triangleleft^{-1} b\right)=f_{1}\left(a \triangleleft^{-1} b, b\right)^{-1} f_{\mathrm{col}}(a)-f_{1}\left(a \triangleleft^{-1} b, b\right)^{-1} f_{2}\left(a \triangleleft^{-1} b, b\right) f_{\mathrm{col}}(b),
$$

we have

$$
\sum_{j=1}^{n} \frac{\partial_{f}}{\partial x_{j}}\left(w \triangleleft^{-1} x_{i}\right) f_{\mathrm{col}}\left(x_{j}\right)=f_{\mathrm{col}}\left(w \triangleleft^{-1} x_{i}\right),
$$

which completes the proof.
We give examples of Alexander pairs and column relation maps.
Example 4.5. Let Q be a quandle, R a ring, and $f: Q \rightarrow \operatorname{Conj} R^{\times}$a quandle homomorphism.
(1) The maps $f_{1}, f_{2}: Q \times Q \rightarrow R$ defined by $f_{1}(a, b)=f(b)^{-1}$ and $f_{2}(a, b)=f(b)^{-1} f(a)-$ $f(b)^{-1}$ form an Alexander pair, and the map $f_{\text {col }}: Q \rightarrow R$ defined by $f_{\text {col }}(x)=$ $f(x)-1$ is a column relation map.
(2) The maps $f_{1}, f_{2}: Q \times Q \rightarrow R$ defined by $f_{1}(a, b)=f(b)^{-1}$ and $f_{2}(a, b)=1-f(b)^{-1}$ form an Alexander pair, and the map $f_{\text {col }}: Q \rightarrow R$ defined by $f_{\text {col }}(x)=1$ is a column relation map.

By setting $f(x)=t^{-1} x^{n}$, we have the following:
Example 4.6. Let G be a group, and R a commutative ring. Let $R\left[t^{ \pm 1}\right][G]$ be the group ring of G over the Laurent polynomial ring $R\left[t^{ \pm 1}\right]$. Let $Q:=\operatorname{Conj}_{n} G$.
(1) The maps $f_{1}, f_{2}: Q \times Q \rightarrow R\left[t^{ \pm 1}\right][G]$ defined by $f_{1}(a, b)=t b^{-n}$ and $f_{2}(a, b)=$ $b^{-n} a^{n}-t b^{-n}$ form an Alexander pair, and the map $f_{\text {col }}: Q \rightarrow R\left[t^{ \pm 1}\right][G]$ defined by $f_{\text {col }}(x)=t^{-1} x^{n}-1$ is a column relation map.
(2) The maps $f_{1}, f_{2}: Q \times Q \rightarrow R\left[t^{ \pm 1}\right][G]$ defined by $f_{1}(a, b)=t b^{-n}$ and $f_{2}(a, b)=1-t b^{-n}$ form an Alexander pair, and the map $f_{\text {col }}: Q \rightarrow R\left[t^{ \pm 1}\right][G]$ defined by $f_{\text {col }}(x)=1$ is a column relation map.

Example 4.7. Let G be a group, and $R[G]$ the group ring of G over a commutative ring R. Let $Q:=$ Core G. The maps $f_{1}, f_{2}: Q \times Q \rightarrow R[G]$ defined by $f_{1}(a, b)=-b a^{-1}$ and $f_{2}(a, b)=1+b a^{-1}$ form an Alexander pair, and the maps $f_{\text {col }, 1}, f_{\text {col }, 2}: Q \rightarrow R[G]$ defined by $f_{\text {col }, 1}(x)=1$ and $f_{\text {col }, 2}(x)=x$ are column relation maps.

Example 4.8. Let R be a commutative ring with $t \in R^{\times}$. Let Q be the Alexander quandle R with $a \triangleleft b=t a+(1-t) b$. The maps $f_{1}, f_{2}: Q \times Q \rightarrow R$ defined by $f_{1}(a, b)=t$ and $f_{2}(a, b)=1-t$ form an Alexander pair, and the maps $f_{\text {col }, 1}, f_{\text {col, } 2}: Q \rightarrow R$ defined by $f_{\text {col }, 1}(x)=1$ and $f_{\text {col }, 2}(x)=x$ are column relation maps.

For $n \in \mathbb{Z}$, we define $P_{n} \in \mathbb{Z}[t]$ by

Table 1. P_{n} and Q_{n}

n	P_{n}	Q_{n}
0	2	0
1	t	$t-2$
2	$t^{2}-2$	$t^{2}-4$
3	$t^{3}-3 t$	$t^{2}-t-2$
4	$t^{4}-4 t^{2}+2$	$t^{3}-4 t$
5	$t^{5}-5 t^{3}+5 t$	$t^{3}-t^{2}-3 t+2$
6	$t^{6}-6 t^{4}+9 t^{2}-2$	$t^{4}-5 t^{2}+4$
7	$t^{7}-7 t^{5}+14 t^{3}-7 t$	$t^{4}-t^{3}-4 t^{2}+3 t+2$
8	$t^{8}-8 t^{6}+20 t^{4}-16 t^{2}+2$	$t^{5}-6 t^{3}+8 t$
9	$t^{9}-9 t^{7}+27 t^{5}-30 t^{3}+9 t$	$t^{5}-t^{4}-5 t^{3}+4 t^{2}+5 t-2$
	$P_{n}=\frac{\left(t+\sqrt{t^{2}-4}\right)^{n}}{2^{n}}+\frac{2^{n}}{\left(t+\sqrt{t^{2}-4}\right)^{n}}$.	

We then have $P_{n}=P_{-n}$ and

$$
\begin{equation*}
P_{n+1}-t P_{n}+P_{n-1}=0 \tag{2}
\end{equation*}
$$

for any $n \in \mathbb{Z}$. For $n \in \mathbb{Z}$, we define $Q_{n} \in \mathbb{Z}[t]$ by

$$
Q_{2 n+1}=P_{n+1}-P_{n} \quad \text { and } \quad Q_{2 n}=P_{n+1}-P_{n-1}
$$

In Table 1, we list P_{n} and Q_{n} for $0 \leq n \leq 9$.
Lemma 4.9. We have $P_{k+n}=P_{k}$ in $\mathbb{Z}[t] /\left(Q_{n}\right)$ for any $k \in \mathbb{Z}$.
Proof. We write $x \equiv y$ if $x-y=z Q_{n}$ for some $z \in \mathbb{Z}[t]$. It is sufficient to show that $P_{n} \equiv P_{0}$ and $P_{1+n} \equiv P_{1}$, since we have $P_{k+n} \equiv P_{k}$ by using

$$
\begin{aligned}
P_{i+n}-P_{i} & =t P_{i+n-1}-P_{i+n-2}-t P_{i-1}+P_{i-2} \\
& =t\left(P_{(i-1)+n}-P_{i-1}\right)-\left(P_{(i-2)+n}-P_{i-2}\right), \text { or } \\
P_{i+n}-P_{i} & =t P_{i+n+1}-P_{i+n+2}-t P_{i+1}+P_{i+2} \\
& =t\left(P_{(i+1)+n}-P_{i+1}\right)-\left(P_{(i+2)+n}-P_{i+2}\right)
\end{aligned}
$$

inductively, where the first and third equalities follow from (2).
Suppose $n=2 m+1$. We show that $P_{m+j} \equiv P_{m+1-j}$ for any $j \geq 0$. By the definition of $Q_{2 m+1}$, we have $P_{m}-P_{m+1}=-Q_{n}$ and $P_{m+1}-P_{m}=Q_{n}$ for $j=0,1$. We have $P_{m+j} \equiv P_{m+1-j}$ by using

$$
\begin{aligned}
P_{m+i}-P_{m+1-i} & =t P_{m+i-1}-P_{m+i-2}-t P_{m+2-i}+P_{m+3-i} \\
& =t\left(P_{m+(i-1)}-P_{m+1-(i-1)}\right)-\left(P_{m+(i-2)}-P_{m+1-(i-2)}\right)
\end{aligned}
$$

inductively, where the first equality follows from (2). Putting $j=m+1, m+2$, we have $P_{n}=P_{2 m+1} \equiv P_{0}$ and $P_{1+n}=P_{2 m+2} \equiv P_{-1}=P_{1}$.

Suppose $n=2 m$. We show that $P_{m+j} \equiv P_{m-j}$ for any $j \geq 0$. By the definition of $Q_{2 m}$, we have $P_{m}-P_{m}=0$ and $P_{m+1}-P_{m-1}=Q_{n}$ for $j=0,1$. We have $P_{m+j} \equiv P_{m-j}$ by using

$$
\begin{aligned}
P_{m+i}-P_{m-i} & =t P_{m+i-1}-P_{m+i-2}-t P_{m-i+1}+P_{m-i+2} \\
& =t\left(P_{m+(i-1)}-P_{m-(i-1)}\right)-\left(P_{m+(i-2)}-P_{m-(i-2)}\right)
\end{aligned}
$$

inductively, where the first equality follows from (2). Putting $j=m, m+1$, we have $P_{n}=$ $P_{2 m} \equiv P_{0}$ and $P_{1+n}=P_{2 m+1} \equiv P_{-1}=P_{1}$.

Proposition 4.10. Let Q be the dihedral quandle R_{n} of order n. The maps $f_{1}, f_{2}: Q \times Q \rightarrow$ $\mathbb{Z}[t] /\left(Q_{n}\right)$ defined by

$$
f_{1}(a, b)=-1 \quad \text { and } \quad f_{2}(a, b)=P_{a-b}
$$

form an Alexander pair.
We remark that P_{a-b} is well-defined for $a, b \in R_{n}$ by Lemma 4.9.
Proof. Since $f_{1}(a, b)=-1$ and $f_{2}(a, a)=2$, it is sufficient to show

$$
\begin{aligned}
f_{2}(a, b) & =f_{2}(a \triangleleft c, b \triangleleft c), \\
f_{2}(a \triangleleft b, c) & =-f_{2}(a, c)+f_{2}(a \triangleleft c, b \triangleleft c) f_{2}(b, c)
\end{aligned}
$$

for $a, b, c \in R_{n}$. The first equality follows from $P_{a-b}=P_{b-a}$. The second equality follows from

$$
P_{2 b-a-c}=-P_{a-c}+P_{b-a} P_{b-c},
$$

which can be obtained by direct calculation.

Since we have

$$
\begin{aligned}
& Q_{2 n+3}-t Q_{2 n+1}+Q_{2 n-1}=0, \\
& Q_{2 n+2}-t Q_{2 n}+Q_{2 n-2}=0,
\end{aligned}
$$

it is easy to see that Q_{n} is divisible by $t-2$ for any $n \in \mathbb{Z}$. From Proposition 4.10, we have the following corollary.

Corollary 4.11. Let Q be the dihedral quandle R_{3} of order 3 . The maps $f_{1}, f_{2}: Q \times Q \rightarrow \mathbb{Z}$ defined by $f_{1}(a, b)=-1$ and $f_{2}(a, b)=3 \delta_{a b}-1$ form an Alexander pair, and the map $f_{\text {col }, c}: Q \rightarrow \mathbb{Z}$ defined by $f_{\text {col }, c}(x)=3 \delta_{x c}-1$ is a column relation map for $c \in Q$.

5. Quandle twisted Alexander invariants

Let $X=\left\langle x_{1}, \ldots, x_{n} \mid r_{1}, \ldots, r_{m}\right\rangle$ be a finitely presented quandle. Let $\rho: X \rightarrow Q$ be a quandle representation. Let $f=\left(f_{1}, f_{2}\right)$ be an Alexander pair of maps $f_{1}, f_{2}: Q \times Q \rightarrow R$. Then $f \circ \rho^{2}=\left(f_{1} \circ \rho^{2}, f_{2} \circ \rho^{2}\right)$ is an Alexander pair of maps $f_{1} \circ \rho^{2}, f_{2} \circ \rho^{2}: X \times X \rightarrow R$. The f-twisted Alexander matrix of (X, ρ) is

$$
A\left(X, \rho ; f_{1}, f_{2}\right)=\left(\begin{array}{ccc}
\frac{\partial_{f \circ \rho^{2}}}{\partial x_{1}}\left(r_{1}\right) & \cdots & \frac{\partial_{f \rho \rho^{2}}}{\partial x_{n}}\left(r_{1}\right) \\
\vdots & \ddots & \vdots \\
\frac{\partial_{f \rho \rho^{2}}}{\partial x_{1}}\left(r_{m}\right) & \cdots & \frac{\partial_{f \rho \rho^{2}}}{\partial x_{n}}\left(r_{m}\right)
\end{array}\right) .
$$

Let $f_{\text {col }, 1}, \ldots, f_{\text {col }, l}: Q \rightarrow R$ be column relation maps. Then $f_{\text {col }, 1} \circ \rho, \ldots, f_{\text {col }, l} \circ \rho: X \rightarrow R$
are column relation maps. We define

$$
R_{\mathrm{col}}\left(X, \rho ; f_{\mathrm{col}, 1}, \ldots, f_{\mathrm{col}, l}\right):=\left(\begin{array}{ccc}
\left(f_{\mathrm{col}, 1} \circ \rho\right)\left(x_{1}\right) & \cdots & \left(f_{\mathrm{col}, l} \circ \rho\right)\left(x_{1}\right) \\
\vdots & \ddots & \vdots \\
\left(f_{\mathrm{col}, 1} \circ \rho\right)\left(x_{n}\right) & \cdots & \left(f_{\mathrm{col}, l} \circ \rho\right)\left(x_{n}\right)
\end{array}\right)
$$

We denote $R_{\text {col }}\left(X, \rho ; f_{\text {col }, 1}, \ldots, f_{\text {coll } l}\right)$ by $R_{\text {col }}\left(X, \rho ; f_{\text {col }}\right)$ for short, where $f_{\text {col }}$ indicates $\left(f_{\text {col }, 1}, \ldots, f_{\text {col }, l}\right)$.

Proposition 5.1. The matrix $R_{\text {col }}\left(X, \rho ; f_{\text {col }}\right)$ is a column relation matrix of $A\left(X, \rho ; f_{1}, f_{2}\right)$.
Proof. We may assume that $\boldsymbol{f}_{\text {col }}=\left(f_{\text {col }}\right)$, since $A B_{1}=O$ and $A B_{2}=O$ imply $A\left(\begin{array}{ll}B_{1} & B_{2}\end{array}\right)=$ O. For a relator $r=\left(r_{1}, r_{2}\right)$, we have

$$
\begin{aligned}
& \sum_{j=1}^{n} \frac{\partial_{f \circ \rho^{2}}}{\partial x_{j}}(r)\left(f_{\mathrm{col}} \circ \rho\right)\left(x_{j}\right) \\
& =\sum_{j=1}^{n} \frac{\partial_{f \circ \rho^{2}}}{\partial x_{j}}\left(r_{1}\right)\left(f_{\mathrm{col}} \circ \rho\right)\left(x_{j}\right)-\sum_{j=1}^{n} \frac{\partial_{f \circ \rho^{2}}}{\partial x_{j}}\left(r_{2}\right)\left(f_{\mathrm{col}} \circ \rho\right)\left(x_{j}\right) \\
& =\left(f_{\mathrm{col}} \circ \rho\right)\left(r_{1}\right)-\left(f_{\mathrm{col}} \circ \rho\right)\left(r_{2}\right)=0,
\end{aligned}
$$

where the second equality follows from Lemma 4.4. This completes the proof.
When R is an integral domain, we define

$$
\begin{aligned}
& E\left(X, \rho ; f_{1}, f_{2} ; \boldsymbol{f}_{\text {col }}\right):=E\left(A\left(X, \rho ; f_{1}, f_{2}\right), R_{\mathrm{col}}\left(X, \rho ; \boldsymbol{f}_{\mathrm{col}}\right)\right), \\
& \Delta\left(X, \rho ; f_{1}, f_{2} ; f_{\mathrm{col}}\right):=\Delta\left(A\left(X, \rho ; f_{1}, f_{2}\right), R_{\mathrm{col}}\left(X, \rho ; \boldsymbol{f}_{\mathrm{col}}\right)\right) .
\end{aligned}
$$

When R is a matrix ring consisting of $k \times k$ matrices over an integral domain, we define

$$
\begin{aligned}
& E\left(X, \rho ; f_{1}, f_{2} ; f_{\mathrm{col}}\right):=E\left(\overline{A\left(X, \rho ; f_{1}, f_{2}\right)}, \overline{R_{\mathrm{col}}\left(X, \rho ; f_{\mathrm{col}}\right)}\right), \\
& \Delta\left(X, \rho ; f_{1}, f_{2} ; f_{\mathrm{col}}\right):=\Delta\left(\overline{A\left(X, \rho ; f_{1}, f_{2}\right)}, \overline{R_{\mathrm{col}}\left(X, \rho ; f_{\mathrm{col}}\right)}\right) .
\end{aligned}
$$

The following theorem shows that they are invariants.
Theorem 5.2. Let $X=\langle\boldsymbol{x} \mid \boldsymbol{r}\rangle$ and $X^{\prime}=\left\langle\boldsymbol{x}^{\prime} \mid \boldsymbol{r}^{\prime}\right\rangle$ be finitely presented quandles, and let $\rho: X \rightarrow Q$ and $\rho^{\prime}: X^{\prime} \rightarrow Q$ be quandle representations. Let $\left(f_{1}, f_{2}\right)$ be an Alexander pair of maps $f_{1}, f_{2}: Q \times Q \rightarrow R$. Let $f_{\mathrm{col}, 1}, \ldots, f_{\mathrm{col}, l}: Q \rightarrow R$ be column relation maps. If $(X, \rho) \cong\left(X^{\prime}, \rho^{\prime}\right)$, then we have

$$
\left(A\left(X, \rho ; f_{1}, f_{2}\right), R_{\mathrm{col}}\left(X, \rho ; f_{\mathrm{col}}\right)\right) \sim_{T}\left(A\left(X^{\prime}, \rho^{\prime} ; f_{1}, f_{2}\right), R_{\mathrm{col}}\left(X^{\prime}, \rho^{\prime} ; f_{\mathrm{col}}\right)\right)
$$

Furthermore, we have the following.

- If R is an integral domain and $R_{\mathrm{col}}\left(X, \rho ; f_{\mathrm{col}}\right)$ is regular, then we have

$$
\begin{aligned}
& E\left(A\left(X, \rho ; f_{1}, f_{2}\right), R_{\mathrm{col}}\left(X, \rho ; \boldsymbol{f}_{\mathrm{col}}\right)\right)=E\left(A\left(X^{\prime}, \rho^{\prime} ; f_{1}, f_{2}\right), R_{\mathrm{col}}\left(X^{\prime}, \rho^{\prime} ; \boldsymbol{f}_{\mathrm{col}}\right)\right) \\
& \Delta\left(A\left(X, \rho ; f_{1}, f_{2}\right), R_{\mathrm{col}}\left(X, \rho ; \boldsymbol{f}_{\mathrm{col}}\right)\right) \doteq \Delta\left(A\left(X^{\prime}, \rho^{\prime} ; f_{1}, f_{2}\right), R_{\mathrm{col}}\left(X^{\prime}, \rho^{\prime} ; \boldsymbol{f}_{\mathrm{col}}\right)\right) .
\end{aligned}
$$

- If R is a matrix ring consisting of $k \times k$ matrices over an integral domain and $\overline{R_{\text {col }}\left(X, \rho ; \boldsymbol{f}_{\text {col }}\right)}$ is regular, then we have

$$
\begin{aligned}
& E\left(\overline{A\left(X, \rho ; f_{1}, f_{2}\right)}, \overline{R_{\mathrm{col}}\left(X, \rho ; f_{\mathrm{col}}\right)}\right)=E\left(\overline{A\left(X^{\prime}, \rho^{\prime} ; f_{1}, f_{2}\right)}, \overline{R_{\mathrm{col}}\left(X^{\prime}, \rho^{\prime} ; f_{\mathrm{col}}\right)}\right), \\
& \Delta\left(\overline{A\left(X, \rho ; f_{1}, f_{2}\right)}, \overline{R_{\mathrm{col}}\left(X, \rho ; \boldsymbol{f}_{\mathrm{col}}\right)}\right) \doteq \Delta\left(\overline{A\left(X^{\prime}, \rho^{\prime} ; f_{1}, f_{2}\right)}, \overline{R_{\mathrm{col}}\left(X^{\prime}, \rho^{\prime} ; f_{\mathrm{col}}\right)}\right) .
\end{aligned}
$$

The twisted Alexander polynomial $[9,11]$ can be realized as the invariant $\Delta\left(X, \rho ; f_{1}\right.$, $\left.f_{2} ; f_{\text {col }}\right)$ for some Alexander pair $\left(f_{1}, f_{2}\right)$ and column relation map $f_{\text {col }}$.

Let L be an oriented link, and D a diagram of L. Let

$$
\begin{aligned}
& Q(L)=\left\langle x_{1}, \ldots, x_{n} \mid u_{1} \triangleleft v_{1}=w_{1}, \ldots, u_{m} \triangleleft v_{m}=w_{m}\right\rangle, \\
& G(L)=\left\langle x_{1}, \ldots, x_{n} \mid v_{1}^{-1} u_{1} v_{1} w_{1}^{-1}, \ldots, v_{m}^{-1} u_{m} v_{m} w_{m}^{-1}\right\rangle
\end{aligned}
$$

be the Wirtinger presentations of the fundamental quandle $Q(L)$ and the fundamental group $G(L)$ with respect to D, respectively. See Section 3. Let R be a commutative ring. Set $G:=$ $G L(k ; R)$. Let $\rho: G(L) \rightarrow G$ be a group representation. The induced quandle representation of ρ is a quandle homomorphism from $Q(L)$ to $\operatorname{Conj} G$ that sends x_{i} to $\rho\left(x_{i}\right)$, and we denote it by the same symbol $\rho: Q(L) \rightarrow \operatorname{Conj} G$.

Proposition 5.3. Let $\Delta_{L, \rho}(t)$ be the twisted Alexander polynomial of (L, ρ) with the abelianization $\alpha: G(L) \rightarrow\langle t\rangle$ that sends every meridian to t^{-1}. Let $f_{1}, f_{2}: Q(L) \times Q(L) \rightarrow$ $R\left[t^{ \pm 1}\right][G]$ be the maps defined by $f_{1}(a, b)=t b^{-1}$ and $f_{2}(a, b)=b^{-1} a-t b^{-1}$. Let $f_{\mathrm{col}}: Q(L) \rightarrow$ $R\left[t^{ \pm 1}\right][G]$ be the map defined by $f_{\mathrm{col}}(x)=t^{-1} x-1$. Then we have

$$
\Delta_{L, \rho}(t) \doteq \Delta\left(\overline{A\left(Q(L), \rho ; f_{1}, f_{2}\right)}, \overline{R_{\mathrm{col}}\left(Q(L), \rho ; f_{\mathrm{col}}\right)}\right)
$$

Proof. We note that $\left(f_{1}, f_{2}\right)$ and $f_{\text {col }}$ are an Alexander pair and column relation map. See Example 4.6 (1) with $n=1$. In [5], we showed that the twisted Alexander matrix of (L, ρ) coincides with $\overline{A\left(Q(L), \rho ; f_{1}, f_{2}\right)}$. Then, the twisted Alexander polynomial (L, ρ) is defined by

$$
\Delta_{L, \rho}(t) \doteq \Delta\left(A\left(Q(L), \rho ; f_{1}, f_{2}\right)_{\bar{m},(j)^{c}}\right) / \operatorname{det}\left(t^{-1} \rho\left(x_{j}\right)-E_{k}\right),
$$

which coincides with $\Delta\left(\overline{A\left(Q(L), \rho ; f_{1}, f_{2}\right)}, \overline{R_{\mathrm{col}}\left(Q(L), \rho ; f_{\text {col }}\right)}\right)$.
In a similar manner, we have the following proposition:
Proposition 5.4. Let $\Delta_{L}(t)$ be the Alexander polynomial of L with the abelianization $\alpha: G(L) \rightarrow\langle t\rangle$ that sends every meridian to t^{-1}. Let $f_{1}, f_{2}: Q(L) \times Q(L) \rightarrow R\left[t^{ \pm 1}\right]$ be the maps defined by $f_{1}(a, b)=t$ and $f_{2}(a, b)=1-t$. Let $f_{\text {col }}: Q(L) \rightarrow R\left[t^{ \pm 1}\right]$ be the map defined by $f_{\text {col }}(x)=t^{-1}-1$. Then we have

$$
\frac{\Delta_{L}(t)}{t^{-1}-1} \doteq \Delta\left(A\left(Q(L), \rho ; f_{1}, f_{2}\right), R_{\mathrm{col}}\left(Q(L), \rho ; f_{\mathrm{col}}\right)\right)
$$

Furthermore, setting $f_{\text {col }}(x)=1$, we have

$$
\Delta_{L}(t) \doteq \Delta\left(A\left(Q(L), \rho ; f_{1}, f_{2}\right), R_{\mathrm{col}}\left(Q(L), \rho ; f_{\mathrm{col}}\right)\right)
$$

Remark 5.5. We note that the (twisted) Alexander polynomials with the abelianization α that sends every meridian to t can be obtained by setting

$$
\begin{array}{lll}
f_{1}(a, b)=t^{-1} b^{-1}, & f_{2}(a, b)=b^{-1} a-t^{-1} b^{-1}, & f_{\mathrm{col}}(x)=t x-1, \\
f_{1}(a, b)=t^{-1}, & f_{2}(a, b)=1-t^{-1}, & f_{\mathrm{col}}(x)=t-1
\end{array}
$$

Fig.2. The knots $11 n 38$ and 11 n 102
in Propositions 5.3 and 5.4, respectively.

6. Examples

In this section, we investigate our invariant with the Alexander pair and the two column relation maps given in Corollary 4.11.

Let Q be the dihedral quandle R_{3} of order 3 . Let $f_{1}, f_{2}: Q \times Q \rightarrow \mathbb{Z}$ be the Alexander pair defined by $f_{1}(a, b)=-1$ and $f_{2}(a, b)=3 \delta_{a b}-1$. Let $f_{\text {col }, c}: Q \rightarrow \mathbb{Z}$ be the column relation map defined by $f_{\text {col, }, c}(x)=3 \delta_{x c}-1$ for $c \in Q$. See Corollary 4.11. Let L be an oriented link. Let $\rho: Q(L) \rightarrow Q$ be a quandle representation.

First, we see that, for a trivial representation ρ,

$$
\Delta\left(Q(L), \rho ; f_{1}, f_{2} ; f_{\mathrm{col}, c}\right) \doteq \begin{cases}\operatorname{Det} L / 2 & \text { if } \operatorname{Im} \rho=\{c\} \tag{3}\\ \operatorname{Det} L & \text { if } \operatorname{Im} \rho \neq\{c\}\end{cases}
$$

where $\operatorname{Det} L$ is the determinant of L. We remark that $\operatorname{Det} L=\left|\Delta_{L}(-1)\right|$. Let $g_{1}, g_{2}: Q \times Q \rightarrow$ \mathbb{Z} be the Alexander pair defined by $g_{1}(a, b)=-1$ and $g_{2}(a, b)=2$. Let $g_{\text {col }}: Q \rightarrow \mathbb{Z}$ be the column relation map defined by $g_{\mathrm{col}}(x)=1$. By Proposition 5.4, we have

$$
\Delta\left(Q(L), \rho ; g_{1}, g_{2} ; g_{\mathrm{col}}\right) \doteq \Delta_{L}(-1) .
$$

Since $f_{1} \circ \rho^{2}=g_{1} \circ \rho^{2}$ and $f_{2} \circ \rho^{2}=g_{2} \circ \rho^{2}$, we have $A\left(Q(L), \rho ; f_{1}, f_{2}\right)=A\left(Q(L), \rho ; g_{1}, g_{2}\right)$. Since $\left(f_{\text {col }, c} \circ \rho\right)(x)=\left(3 \delta_{x c}-1\right)\left(g_{\text {col }} \circ \rho\right)(x)$, we have

$$
R_{\mathrm{col}}\left(Q(L), \rho ; f_{\mathrm{col}, c}\right)= \begin{cases}2 R_{\mathrm{col}}\left(Q(L), \rho ; g_{\mathrm{col}}\right) & \text { if } \operatorname{Im} \rho=\{c\}, \\ R_{\mathrm{col}}\left(Q(L), \rho ; g_{\mathrm{col}}\right) & \text { if } \operatorname{Im} \rho \neq\{c\} .\end{cases}
$$

Thus we have (3).
Let K_{1} be the knot $11 n 38$, and let K_{2} be the knot $11 n 102$. Let D_{1} and D_{2} be their diagrams depicted in Figure 2. Then, we see that

$$
\begin{aligned}
& \Delta\left(Q\left(K_{1}\right), \rho_{1} ; f_{1}, f_{2} ; f_{\mathrm{col}, 0}, f_{\mathrm{col}, 1}\right) \doteq 2 / 3 \\
& \Delta\left(Q\left(K_{2}\right), \rho_{2} ; f_{1}, f_{2} ; f_{\mathrm{col}, 0}, f_{\mathrm{col}, 1}\right) \doteq 7 / 3
\end{aligned}
$$

for any nontrivial quandle representation $\rho_{i}: Q\left(K_{i}\right) \rightarrow Q$. We note that both $Q\left(K_{1}\right)$ and
$Q\left(K_{2}\right)$ have 6 nontrivial quandle representations. We also note that $\Delta_{K_{1}}(t) \doteq \Delta_{K_{2}}(t)$ and $E_{d}\left(K_{1}\right)=E_{d}\left(K_{2}\right)$ for any d, where $E_{d}(K)$ is the d th Alexander ideal of a knot K.

The Wirtinger presentation of $Q\left(K_{1}\right)$ with respect to D_{1} is

$$
Q\left(K_{1}\right)=\left|\begin{array}{l|l}
x_{1}, \ldots, x_{11} \left\lvert\, \begin{array}{l}
x_{1} \triangleleft x_{3}=x_{11}, x_{1} \triangleleft x_{9}=x_{2}, x_{3} \triangleleft x_{1}=x_{2}, \\
x_{4} \triangleleft x_{11}=x_{3}, x_{4} \triangleleft x_{7}=x_{5}, x_{5} \triangleleft x_{4}=x_{6}, \\
x_{7} \triangleleft x_{10}=x_{6}, x_{7} \triangleleft x_{5}=x_{8}, x_{8} \triangleleft x_{2}=x_{9}, \\
x_{10} \triangleleft x_{7}=x_{9}, x_{11} \triangleleft x_{4}=x_{10}
\end{array}\right.
\end{array}\right| .
$$

Putting $a=\rho_{1}\left(x_{1}\right), b=\rho_{1}\left(x_{2}\right)$ and $c=\rho_{1}\left(x_{3}\right)$, we have $a \neq b, c=2 a+2 b$ and

$$
\begin{aligned}
& \rho_{1}\left(x_{4}\right)=\rho_{1}\left(x_{8}\right)=a, \quad \rho_{1}\left(x_{5}\right)=\rho_{1}\left(x_{11}\right)=b, \\
& \rho_{1}\left(x_{6}\right)=\rho_{1}\left(x_{7}\right)=\rho_{1}\left(x_{9}\right)=\rho_{1}\left(x_{10}\right)=c .
\end{aligned}
$$

Then, $A\left(Q\left(K_{1}\right), \rho_{1} ; f_{1}, f_{2}\right)$ is

$$
\left(\begin{array}{ccccccccccc}
f_{1}^{\bullet} & 0 & f_{2}^{\neq} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 \\
f_{1}^{\bullet} & -1 & 0 & 0 & 0 & 0 & 0 & 0 & f_{2}^{\neq} & 0 & 0 \\
f_{2}^{\neq} & -1 & f_{1}^{\bullet} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & f_{1}^{\bullet} & 0 & 0 & 0 & 0 & 0 & 0 & f_{2}^{\neq} \\
0 & 0 & 0 & f_{1}^{\bullet} & -1 & 0 & f_{2}^{\neq} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & f_{2}^{\neq} & f_{1}^{\bullet} & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -1 & f_{1}^{\bullet} & 0 & 0 & f_{2}^{=} & 0 \\
0 & 0 & 0 & 0 & f_{2}^{\neq} & 0 & f_{1}^{\bullet} & -1 & 0 & 0 & 0 \\
0 & f_{2}^{\neq} & 0 & 0 & 0 & 0 & 0 & f_{1}^{\bullet} & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & f_{2}^{=} & 0 & -1 & f_{1}^{\bullet} & 0 \\
0 & 0 & 0 & f_{2}^{\neq} & 0 & 0 & 0 & 0 & 0 & -1 & f_{1}^{\bullet}
\end{array}\right),
$$

where $f_{1}^{\bullet}=-1, f_{2}^{=}=2$ and $f_{2}^{\neq}=-1$. The matrix $A\left(Q\left(K_{1}\right), \rho_{1} ; f_{1}, f_{2}\right)_{\overline{11},(1,2)^{c}}$ is equivalent to the 1×1 matrix (2). We have

$$
R_{\mathrm{col}}\left(Q\left(K_{1}\right), \rho_{1} ; f_{\mathrm{col}, 0}, f_{\mathrm{col}, 1}\right)=\left(\begin{array}{ll}
f_{\mathrm{col}, 0}(a) & f_{\mathrm{col}, 1}(a) \\
f_{\mathrm{col}, 0}(b) & f_{\mathrm{col}, 1}(b) \\
f_{\mathrm{col}, 0}(c) & f_{\mathrm{col}, 1}(c) \\
f_{\mathrm{col}, 0}(a) & f_{\mathrm{col}, 1}(a) \\
f_{\mathrm{col}, 0}(b) & f_{\mathrm{col}, 1}(b) \\
f_{\mathrm{col}, 0}(c) & f_{\mathrm{col}, 1}(c) \\
f_{\mathrm{col}, 0}(c) & f_{\mathrm{col}, 1}(c) \\
f_{\mathrm{col}, 0}(a) & f_{\mathrm{col}, 1}(a) \\
f_{\mathrm{col}, 0}(c) & f_{\mathrm{col}, 1}(c) \\
f_{\mathrm{col}, 0}(c) & f_{\mathrm{col}, 1}(c) \\
f_{\mathrm{col}, 0}(b) & f_{\mathrm{col}, 1}(b)
\end{array}\right)=\left(\begin{array}{ll}
3 \delta_{a 0}-1 & 3 \delta_{a 1}-1 \\
3 \delta_{b 0}-1 & 3 \delta_{b 1}-1 \\
3 \delta_{c 0}-1 & 3 \delta_{c 1}-1 \\
3 \delta_{a 0}-1 & 3 \delta_{a 1}-1 \\
3 \delta_{b 0}-1 & 3 \delta_{b 1}-1 \\
3 \delta_{c 0}-1 & 3 \delta_{c 1}-1 \\
3 \delta_{c 0}-1 & 3 \delta_{c 1}-1 \\
3 \delta_{a 0}-1 & 3 \delta_{a 1}-1 \\
3 \delta_{c 0}-1 & 3 \delta_{c 1}-1 \\
3 \delta_{c 0}-1 & 3 \delta_{c 1}-1 \\
3 \delta_{b 0}-1 & 3 \delta_{b 1}-1
\end{array}\right) .
$$

Since $R_{\text {col }}\left(Q\left(K_{1}\right), \rho_{1} ; f_{\text {col }, 0}, f_{\mathrm{col}, 1}\right)_{(1,2), \overline{2}}$ is

$$
\left(\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right),\left(\begin{array}{cc}
-1 & 2 \\
2 & -1
\end{array}\right),\left(\begin{array}{cc}
2 & -1 \\
-1 & -1
\end{array}\right),\left(\begin{array}{cc}
-1 & -1 \\
2 & -1
\end{array}\right),\left(\begin{array}{cc}
-1 & 2 \\
-1 & -1
\end{array}\right) \text { or }\left(\begin{array}{cc}
-1 & -1 \\
-1 & 2
\end{array}\right),
$$

we have $\operatorname{det} R_{\mathrm{col}}\left(Q\left(K_{1}\right), \rho_{1} ; f_{\text {col }, 0}, f_{\text {col }, 1}\right)_{(1,2), \overline{2}} \doteq 3$. Thus we have

$$
\begin{aligned}
& \Delta\left(Q\left(K_{1}\right), \rho_{1} ; f_{1}, f_{2} ; f_{\mathrm{col}, 0}, f_{\mathrm{col}, 1}\right) \\
& =\Delta\left(A\left(Q\left(K_{1}\right), \rho_{1} ; f_{1}, f_{2}\right)_{\overline{11,(1,2)}} / \operatorname{det} R_{\mathrm{col}}\left(Q\left(K_{1}\right), \rho_{1} ; f_{\mathrm{col}, 0}, f_{\mathrm{col}, 1}\right)_{(1,2), \overline{2}}\right. \\
& \doteq 2 / 3
\end{aligned}
$$

The Wirtinger presentation of $Q\left(K_{2}\right)$ with respect to D_{2} is

$$
Q\left(K_{2}\right)=\left|\begin{array}{l|l}
x_{1}, \ldots, x_{11} & \begin{array}{l}
x_{11} \triangleleft x_{5}=x_{1}, x_{2} \triangleleft x_{8}=x_{1}, x_{3} \triangleleft x_{10}=x_{2}, \\
x_{4} \triangleleft x_{7}=x_{3}, x_{5} \triangleleft x_{6}=x_{4}, x_{5} \triangleleft x_{11}=x_{6}, \\
x_{7} \triangleleft x_{4}=x_{6}, x_{8} \triangleleft x_{2}=x_{7}, x_{8} \triangleleft x_{7}=x_{9}, \\
x_{10} \triangleleft x_{3}=x_{9}, x_{11} \triangleleft x_{2}=x_{10}
\end{array}
\end{array}\right| .
$$

Putting $a=\rho_{2}\left(x_{1}\right), b=\rho_{2}\left(x_{2}\right)$ and $c=\rho_{2}\left(x_{8}\right)$, we have $a \neq b, c=2 a+2 b$ and

$$
\begin{aligned}
& \rho_{2}\left(x_{3}\right)=\rho_{2}\left(x_{4}\right)=\rho_{2}\left(x_{5}\right)=\rho_{2}\left(x_{6}\right)=\rho_{2}\left(x_{7}\right)=\rho_{2}\left(x_{11}\right)=a, \\
& \rho_{2}\left(x_{9}\right)=b, \quad \rho_{2}\left(x_{10}\right)=c .
\end{aligned}
$$

Then, $A\left(Q\left(K_{2}\right), \rho_{2} ; f_{1}, f_{2}\right)$ is

$$
\left(\begin{array}{ccccccccccc}
-1 & 0 & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 0 & -1 \\
-1 & -1 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 \\
0 & -1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 \\
0 & 0 & -1 & -1 & 0 & 0 & 2 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & -1 & 2 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & -1 & 0 & 0 & 0 & 0 & 2 \\
0 & 0 & 0 & 2 & 0 & -1 & -1 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 0 & -1 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & -1 & -1 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & -1 & -1 & 0 \\
0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & -1
\end{array}\right) .
$$

The matrix $A\left(Q\left(K_{2}\right), \rho_{2} ; f_{1}, f_{2}\right)_{\overline{11,(1,2)^{c}}}$ is equivalent to the 1×1 matrix (7). In the same manner as $\operatorname{det} R_{\text {col }}\left(Q\left(K_{1}\right), \rho_{1} ; f_{\text {col }, 0}, f_{\text {col }, 1}\right)_{(1,2), \overline{2}}$, we have

$$
\operatorname{det} R_{\mathrm{col}}\left(Q\left(K_{2}\right), \rho_{2} ; f_{\mathrm{col}, 0}, f_{\mathrm{col}, 1}\right)_{(1,2), \overline{2}} \doteq 3
$$

Thus we have

$$
\begin{aligned}
& \Delta\left(Q\left(K_{2}\right), \rho_{2} ; f_{1}, f_{2} ; f_{\mathrm{col}, 0}, f_{\mathrm{col}, 1}\right) \\
& =\Delta\left(A\left(Q\left(K_{2}\right), \rho_{2} ; f_{1}, f_{2}\right)_{\overline{\overline{1},(1,2)^{c}}} / \operatorname{det} R_{\mathrm{col}}\left(Q\left(K_{2}\right), \rho_{2} ; f_{\mathrm{col}, 0}, f_{\mathrm{col}, 1}\right)_{(1,2), \overline{2}}\right. \\
& \doteq 7 / 3
\end{aligned}
$$

7. Proof of Theorem 5.2

We show

$$
\left(A\left(X, \rho ; f_{1}, f_{2}\right), R_{\mathrm{col}}\left(X, \rho ; \boldsymbol{f}_{\mathrm{col}}\right)\right) \sim_{T}\left(A\left(X^{\prime}, \rho^{\prime} ; f_{1}, f_{2}\right), R_{\mathrm{col}}\left(X^{\prime}, \rho^{\prime} ; f_{\mathrm{col}}\right)\right)
$$

It is sufficient to show this equivalence for the transformations (T1-1)-(T1-5) and (T2) in Section 3. We set

$$
\begin{aligned}
A & :=A\left(\langle\boldsymbol{x} \mid \boldsymbol{r}\rangle, \rho ; f_{1}, f_{2}\right), & B & :=R_{\text {col }}\left(\langle\boldsymbol{x} \mid \boldsymbol{r}\rangle, \rho ; \boldsymbol{f}_{\text {col }}\right), \\
A^{\prime} & :=A\left(\left\langle\boldsymbol{x}^{\prime} \mid \boldsymbol{r}^{\prime}\right\rangle, \rho^{\prime} ; f_{1}, f_{2}\right), & B^{\prime} & :=R_{\text {col }}\left(\left\langle\boldsymbol{x}^{\prime} \mid \boldsymbol{r}^{\prime}\right\rangle, \rho^{\prime} ; \boldsymbol{f}_{\text {col }}\right) .
\end{aligned}
$$

We denote by \boldsymbol{a}_{i} the i-th row vector of A and denote by $a_{i j}$ the (i, j) entry of A.
For (T1-1), we suppose

$$
\begin{aligned}
& \langle\boldsymbol{x} \mid \boldsymbol{r}\rangle=\left\langle x_{1}, \ldots, x_{n} \mid r_{1}, \ldots, r_{m}\right\rangle, \\
& \left\langle\boldsymbol{x}^{\prime} \mid \boldsymbol{r}^{\prime}\right\rangle=\left\langle x_{1}, \ldots, x_{n} \mid r_{1}, \ldots, r_{m}, x=x\right\rangle\left(x \in F_{\mathrm{Qnd}}(\boldsymbol{x})\right) .
\end{aligned}
$$

We then have

$$
(A, B) \sim_{T}\left(\binom{A}{\mathbf{0}}, B\right)=\left(A^{\prime}, B^{\prime}\right)
$$

For (T1-2), we suppose

$$
\begin{aligned}
& \langle\boldsymbol{x} \mid \boldsymbol{r}\rangle=\left\langle x_{1}, \ldots, x_{n} \mid r_{1}, \ldots, r_{m}, a=b\right\rangle, \\
& \left\langle\boldsymbol{x}^{\prime} \mid \boldsymbol{r}^{\prime}\right\rangle=\left\langle x_{1}, \ldots, x_{n} \mid r_{1}, \ldots, r_{m}, a=b, b=a\right\rangle .
\end{aligned}
$$

We then have

$$
(A, B)=\left(\left(\begin{array}{c}
\boldsymbol{a}_{1} \\
\vdots \\
\boldsymbol{a}_{m+1}
\end{array}\right), B\right) \sim_{T}\left(\left(\begin{array}{c}
\boldsymbol{a}_{1} \\
\vdots \\
\boldsymbol{a}_{m+1} \\
\mathbf{0}
\end{array}\right), B\right) \sim_{T}\left(\left(\begin{array}{c}
\boldsymbol{a}_{1} \\
\vdots \\
\boldsymbol{a}_{m+1} \\
-\boldsymbol{a}_{m+1}
\end{array}\right), B\right)=\left(A^{\prime}, B^{\prime}\right)
$$

For (T1-3), we suppose

$$
\begin{aligned}
& \langle\boldsymbol{x} \mid \boldsymbol{r}\rangle=\left\langle x_{1}, \ldots, x_{n} \mid r_{1}, \ldots, r_{m}, a=b, b=c\right\rangle \\
& \left\langle\boldsymbol{x}^{\prime} \mid \boldsymbol{r}^{\prime}\right\rangle=\left\langle x_{1}, \ldots, x_{n} \mid r_{1}, \ldots, r_{m}, a=b, b=c, a=c\right\rangle .
\end{aligned}
$$

We then have

$$
(A, B)=\left(\left(\begin{array}{c}
\boldsymbol{a}_{1} \\
\vdots \\
\boldsymbol{a}_{m+1} \\
\boldsymbol{a}_{m+2}
\end{array}\right), B\right) \sim_{T}\left(\left(\begin{array}{c}
\boldsymbol{a}_{1} \\
\vdots \\
\boldsymbol{a}_{m+1} \\
\boldsymbol{a}_{m+2} \\
\mathbf{0}
\end{array}\right), B\right) \sim_{T}\left(\left(\begin{array}{c}
\boldsymbol{a}_{1} \\
\vdots \\
\boldsymbol{a}_{m+1} \\
\boldsymbol{a}_{m+2} \\
\boldsymbol{a}^{\prime}
\end{array}\right), B\right)=\left(A^{\prime}, B^{\prime}\right)
$$

where $\boldsymbol{a}^{\prime}=\boldsymbol{a}_{m+1}+\boldsymbol{a}_{m+2}$.
For (T1-4), we suppose

$$
\begin{aligned}
& \langle\boldsymbol{x} \mid \boldsymbol{r}\rangle=\left\langle x_{1}, \ldots, x_{n} \mid r_{1}, \ldots, r_{m}, a_{1}=a_{2}, b_{1}=b_{2}\right\rangle, \\
& \left\langle\boldsymbol{x}^{\prime} \mid \boldsymbol{r}^{\prime}\right\rangle=\left\langle x_{1}, \ldots, x_{n} \mid r_{1}, \ldots, r_{m}, a_{1}=a_{2}, b_{1}=b_{2}, a_{1} \triangleleft b_{1}=a_{2} \triangleleft b_{2}\right\rangle .
\end{aligned}
$$

We then have

$$
(A, B)=\left(\left(\begin{array}{c}
\boldsymbol{a}_{1} \\
\vdots \\
\boldsymbol{a}_{m+1} \\
\boldsymbol{a}_{m+2}
\end{array}\right), B\right) \sim_{T}\left(\left(\begin{array}{c}
\boldsymbol{a}_{1} \\
\vdots \\
\boldsymbol{a}_{m+1} \\
\boldsymbol{a}_{m+2} \\
\mathbf{0}
\end{array}\right), B\right) \sim_{T}\left(\left(\begin{array}{c}
\boldsymbol{a}_{1} \\
\vdots \\
\boldsymbol{a}_{m+1} \\
\boldsymbol{a}_{m+2} \\
\boldsymbol{a}^{\prime}
\end{array}\right), B\right)=\left(A^{\prime}, B^{\prime}\right)
$$

where $\boldsymbol{a}^{\prime}=\left(f_{1} \circ \rho^{2}\right)\left(a_{1}, b_{1}\right) \boldsymbol{a}_{m+1}+\left(f_{2} \circ \rho^{2}\right)\left(a_{1}, b_{1}\right) \boldsymbol{a}_{m+2}$.
For (T1-5), we suppose

$$
\begin{aligned}
& \langle\boldsymbol{x} \mid \boldsymbol{r}\rangle=\left\langle x_{1}, \ldots, x_{n} \mid r_{1}, \ldots, r_{m}, a_{1}=a_{2}, b_{1}=b_{2}\right\rangle, \\
& \left\langle\boldsymbol{x}^{\prime} \mid \boldsymbol{r}^{\prime}\right\rangle=\left\langle x_{1}, \ldots, x_{n} \mid r_{1}, \ldots, r_{m}, a_{1}=a_{2}, b_{1}=b_{2}, a_{1} \triangleleft^{-1} b_{1}=a_{2} \triangleleft^{-1} b_{2}\right\rangle .
\end{aligned}
$$

We then have

$$
(A, B)=\left(\left(\begin{array}{c}
\boldsymbol{a}_{1} \\
\vdots \\
\boldsymbol{a}_{m+1} \\
\boldsymbol{a}_{m+2}
\end{array}\right), B\right) \sim_{T}\left(\left(\begin{array}{c}
\boldsymbol{a}_{1} \\
\vdots \\
\boldsymbol{a}_{m+1} \\
\boldsymbol{a}_{m+2} \\
\mathbf{0}
\end{array}\right), B\right) \sim_{T}\left(\left(\begin{array}{c}
\boldsymbol{a}_{1} \\
\vdots \\
\boldsymbol{a}_{m+1} \\
\boldsymbol{a}_{m+2} \\
\boldsymbol{a}^{\prime}
\end{array}\right), B\right)=\left(A^{\prime}, B^{\prime}\right)
$$

where $\boldsymbol{a}^{\prime}=\left(f_{1} \circ \rho^{2}\right)\left(a_{1} \triangleleft^{-1} b_{1}, b_{1}\right)^{-1} \boldsymbol{a}_{m+1}-\left(f_{1} \circ \rho^{2}\right)\left(a_{1} \triangleleft^{-1} b_{1}, b_{1}\right)^{-1}\left(f_{2} \circ \rho^{2}\right)\left(a_{1} \triangleleft^{-1} b_{1}, b_{1}\right) \boldsymbol{a}_{m+2}$.
For (T2), we suppose

$$
\begin{aligned}
& \langle\boldsymbol{x} \mid \boldsymbol{r}\rangle=\left\langle x_{1}, \ldots, x_{n} \mid r_{1}, \ldots, r_{m}\right\rangle \\
& \left\langle\boldsymbol{x}^{\prime} \mid \boldsymbol{r}^{\prime}\right\rangle=\left\langle x_{1}, \ldots, x_{n}, y \mid r_{1}, \ldots, r_{m}, y=w\right\rangle\left(y \notin F_{\mathrm{Qnd}}(\boldsymbol{x}), w \in F_{\mathrm{Qnd}}(\boldsymbol{x})\right) .
\end{aligned}
$$

We then have

$$
(A, B)=\left(\left(\begin{array}{ccc}
\frac{\partial_{f \rho} p^{2}}{\partial x_{1}}\left(r_{1}\right) & \cdots & \frac{\partial_{f o p^{2}}}{\partial x_{n}}\left(r_{1}\right) \\
\vdots & \ddots & \vdots \\
\frac{\partial_{f o p^{2}}}{\partial x_{1}}\left(r_{m}\right) & \cdots & \frac{\partial_{f \circ p^{2}}}{\partial x_{n}}\left(r_{m}\right)
\end{array}\right), B\right) \sim_{T}\left(\left(\begin{array}{cc}
A & \mathbf{0} \\
\boldsymbol{a}^{\prime} & 1
\end{array}\right),\binom{B}{\boldsymbol{b}^{\prime}}\right)=\left(A^{\prime}, B^{\prime}\right)
$$

where

$$
\begin{aligned}
\boldsymbol{a}^{\prime} & =\left(-\frac{\partial_{f \circ \rho^{2}}}{\partial x_{1}}(w), \ldots,-\frac{\partial_{f \circ \rho^{2}}}{\partial x_{n}}(w)\right), \\
\boldsymbol{b}^{\prime} & =\left(f_{\mathrm{col}, 1}(\rho(y)), \ldots, f_{\mathrm{col}, l}(\rho(y))\right) \\
& =\left(\sum_{i=1}^{n} \frac{\partial_{f \circ \rho^{2}}}{\partial x_{i}}(w) f_{\text {col }, 1}\left(\rho\left(x_{i}\right)\right), \ldots, \sum_{i=1}^{n} \frac{\partial_{f \circ \rho^{2}}}{\partial x_{i}}(w) f_{\text {coll,1 }}\left(\rho\left(x_{i}\right)\right)\right) .
\end{aligned}
$$

The rest follows from Proposition 2.8 and Remark 2.9.

8. Cohomologous Alexander pairs and column relation maps

Let $\left(f_{1}, f_{2}\right)$ and $\left(g_{1}, g_{2}\right)$ be Alexander pairs of maps $f_{1}, f_{2}, g_{1}, g_{2}: Q \times Q \rightarrow R$. Let $f_{\text {col }}: Q \rightarrow R$ and $g_{\text {col }}: Q \rightarrow R$ be column relation maps with respect to $\left(f_{1}, f_{2}\right)$ and $\left(g_{1}, g_{2}\right)$, respectively. Two triples $\left(f_{1}, f_{2}, f_{\text {col }}\right)$ and $\left(g_{1}, g_{2}, g_{\mathrm{col}}\right)$ are cohomologous if there exists a map $h: Q \rightarrow R$ satisfying the following conditions:

- For any $a \in Q, h(a)$ is invertible in R.
- For any $a, b \in Q, h(a \triangleleft b) f_{1}(a, b)=g_{1}(a, b) h(a)$.
- For any $a, b \in Q, h(a \triangleleft b) f_{2}(a, b)=g_{2}(a, b) h(b)$.
- For any $a \in Q, h(a) f_{\text {col }}(a)=g_{\text {col }}(a)$.

We then write $\left(f_{1}, f_{2}, f_{\text {col }}\right) \sim_{h}\left(g_{1}, g_{2}, g_{\text {col }}\right)$ to specify h. Let $f_{\text {col }, 1}, \ldots, f_{\text {col }, l}: Q \rightarrow R$ and $g_{\text {col }, 1}, \ldots, g_{\text {coll } l}: Q \rightarrow R$ be column relation maps with respect to $\left(f_{1}, f_{2}\right)$ and $\left(g_{1}, g_{2}\right)$, respectively. When $\left(f_{1}, f_{2}, f_{\text {col }, i}\right) \sim_{h}\left(g_{1}, g_{2}, g_{\text {col }, i}\right)$ for any i, we write $\left(f_{1}, f_{2}, f_{\text {col }}\right) \sim_{h}\left(g_{1}, g_{2}, g_{\text {col }}\right)$.

Example 8.1. For an Alexander pair $\left(f_{1}, f_{2}\right)$ and $a \in Q$, we define $f_{1} \triangleleft a$ and $f_{2} \triangleleft a$ by

$$
\left(f_{1} \triangleleft a\right)(x, y)=f_{1}(x \triangleleft a, y \triangleleft a), \quad\left(f_{2} \triangleleft a\right)(x, y)=f_{2}(x \triangleleft a, y \triangleleft a) .
$$

For a column relation map $f_{\text {col }}$ and $a \in Q$, we define $f_{\text {col }} \triangleleft a$ by

$$
\left(f_{\mathrm{col}} \triangleleft a\right)(x)=f_{1}(x, a) f_{\mathrm{col}}(x)
$$

Putting $h(x):=f_{1}(x, a)$, we have

$$
\left(f_{1}, f_{2}, f_{\mathrm{col}}\right) \sim_{h}\left(f_{1} \triangleleft a, f_{2} \triangleleft a, f_{\mathrm{col}} \triangleleft a\right) .
$$

Proposition 8.2. Let $X=\left\langle x_{1}, \ldots, x_{n} \mid r_{1}, \ldots, r_{m}\right\rangle$ be a finitely presented quandle, and let $\rho: X \rightarrow Q$ be a quandle representation. Let $\left(f_{1}, f_{2}\right)$ and $\left(g_{1}, g_{2}\right)$ be Alexander pairs of maps $f_{1}, f_{2}, g_{1}, g_{2}: Q \times Q \rightarrow R$. Let $f_{\text {col }, 1}, \ldots, f_{\text {col }, l}: Q \rightarrow R$ and $g_{\mathrm{col}, 1}, \ldots, g_{\mathrm{col}, l}:$ $Q \rightarrow R$ be column relation maps with respect to $\left(f_{1}, f_{2}\right)$ and $\left(g_{1}, g_{2}\right)$, respectively. Suppose $\left(f_{1}, f_{2}, \boldsymbol{f}_{\text {col }}\right) \sim_{h}\left(g_{1}, g_{2}, \boldsymbol{g}_{\text {col }}\right)$.

- If R is an integral domain and $R_{\mathrm{col}}\left(X, \rho ; \boldsymbol{f}_{\mathrm{col}}\right)$ is regular, then we have

$$
\begin{aligned}
& E\left(A\left(X, \rho ; f_{1}, f_{2}\right), R_{\mathrm{col}}\left(X, \rho ; \boldsymbol{f}_{\mathrm{col}}\right)\right)=E\left(A\left(X, \rho ; g_{1}, g_{2}\right), R_{\mathrm{col}}\left(X, \rho ; \boldsymbol{g}_{\mathrm{col}}\right)\right), \\
& \Delta\left(A\left(X, \rho ; f_{1}, f_{2}\right), R_{\mathrm{col}}\left(X, \rho ; \boldsymbol{f}_{\mathrm{col}}\right)\right) \doteq \Delta\left(A\left(X, \rho ; g_{1}, g_{2}\right), R_{\mathrm{col}}\left(X, \rho ; \boldsymbol{g}_{\mathrm{col}}\right)\right) .
\end{aligned}
$$

- If R is a matrix ring consisting of $k \times k$ matrices over an integral domain and $\overline{R_{\mathrm{col}}\left(X, \rho ; f_{\mathrm{col}}\right)}$ is regular, then we have

$$
\begin{aligned}
& E\left(\overline{A\left(X, \rho ; f_{1}, f_{2}\right)}, \overline{R_{\mathrm{col}}\left(X, \rho ; \boldsymbol{f}_{\mathrm{col}}\right)}\right)=E\left(\overline{A\left(X, \rho ; g_{1}, g_{2}\right)}, \overline{R_{\mathrm{col}}\left(X, \rho ; \boldsymbol{g}_{\mathrm{col}}\right)}\right), \\
& \Delta\left(\overline{A\left(X, \rho ; f_{1}, f_{2}\right)}, \overline{R_{\mathrm{col}}\left(X, \rho ; f_{\mathrm{col}}\right)}\right) \doteq \Delta\left(\overline{A\left(X, \rho ; g_{1}, g_{2}\right)}, \overline{R_{\mathrm{col}}\left(X, \rho ; \boldsymbol{g}_{\mathrm{col}}\right)}\right) .
\end{aligned}
$$

Proof. We assume that

$$
X=\left\langle x_{1}, \ldots, x_{n} \mid u_{1} \triangleleft v_{1}=w_{1}, \ldots, u_{m} \triangleleft v_{m}=w_{m}\right\rangle
$$

for some $u_{1}, \ldots, u_{m}, v_{1}, \ldots, v_{m}, w_{1}, \ldots, w_{m} \in\left\{x_{1}, \ldots, x_{n}\right\}$, where we note that any finitely presented quandle can be presented in this form. By the proof of Theorem 9.3 in [5], we have

$$
\operatorname{diag}\left(h\left(\rho\left(w_{1}\right)\right), \ldots, h\left(\rho\left(w_{m}\right)\right)\right) A\left(X, \rho ; f_{1}, f_{2}\right)=A\left(X, \rho ; g_{1}, g_{2}\right) \operatorname{diag}\left(h\left(\rho\left(x_{1}\right)\right), \ldots, h\left(\rho\left(x_{n}\right)\right)\right) .
$$

Since $h\left(\rho\left(x_{i}\right)\right) f_{\text {col }, j}\left(\rho\left(x_{i}\right)\right)=g_{\text {col }, j}\left(\rho\left(x_{i}\right)\right)$, we have

$$
\operatorname{diag}\left(h\left(\rho\left(x_{1}\right)\right), \ldots, h\left(\rho\left(x_{n}\right)\right)\right) R_{\mathrm{col}}\left(X, \rho ; \boldsymbol{f}_{\mathrm{col}}\right)=R_{\mathrm{col}}\left(X, \rho ; \boldsymbol{g}_{\mathrm{col}}\right)
$$

We choose $\boldsymbol{j} \in S_{n}(l)$ so that $\operatorname{det} R_{\text {col }}\left(X, \rho ; \boldsymbol{f}_{\text {col }}\right)_{j, \bar{l}} \neq 0$. Then we have

$$
\begin{aligned}
& \operatorname{diag}\left(h\left(\rho\left(w_{1}\right)\right), \ldots, h\left(\rho\left(w_{m}\right)\right)\right) A\left(X, \rho ; f_{1}, f_{2}\right)_{\bar{m}, j^{c}} \\
& =A\left(X, \rho ; g_{1}, g_{2}\right)_{\bar{m}, j^{c}} \operatorname{diag}\left(h\left(\rho\left(x_{1}\right)\right), \ldots, h\left(\rho\left(x_{n}\right)\right)\right)_{j^{c}, \boldsymbol{j}^{c}} \\
& \operatorname{diag}\left(h\left(\rho\left(x_{1}\right)\right), \ldots, h\left(\rho\left(x_{n}\right)\right)\right)_{j, j} R_{\mathrm{col}}\left(X, \rho ; \boldsymbol{f}_{\mathbf{c o l}}\right)_{j, \bar{l}}=R_{\mathrm{col}}\left(X, \rho ; \boldsymbol{g}_{\mathrm{col}}\right)_{\boldsymbol{j}, \bar{l}}
\end{aligned}
$$

which imply

$$
\begin{aligned}
& A\left(X, \rho ; f_{1}, f_{2}\right)_{\bar{m}, j^{c}} \sim A\left(X, \rho ; g_{1}, g_{2}\right)_{\bar{m}, j^{c}}, \\
& R_{\mathrm{col}}\left(X, \rho ; \boldsymbol{f}_{\mathrm{col}}\right)_{j, \bar{l}} \sim R_{\mathrm{col}}\left(X, \rho ; \boldsymbol{g}_{\mathrm{col}}\right)_{j, \bar{l}},
\end{aligned}
$$

respectively. The desired equalities follow from these equivalences.

Acknowledgements. The first author was supported by JSPS KAKENHI Grant Number 18K03292. The second author was supported by JSPS KAKENHI Grant Number 21K03233.

References

[1] J.C. Cha: Fibred knots and twisted Alexander invariants, Trans. Amer. Math. Soc. 355 (2003), 4187-4200.
[2] R. Fenn and C. Rourke: Racks and links in codimension two, J. Knot Theory Ramifications 1 (1992), 343-406.
[3] R.H. Fox: Free differential calculus. II. The isomorphism problem of groups, Ann. of Math. (2) 59 (1954), 196-210.
[4] S. Friedl and T. Kim: The Thurston norm, fibered manifolds and twisted Alexander polynomials, Topology 45 (2006), 929-953.
[5] A. Ishii and K. Oshiro: Derivatives with Alexander pairs for quandles, to appear in Fund. Math.
[6] D. Joyce: A classifying invariant of knots, the knot quandle, J. Pure Appl. Algebra 23 (1982), 37-65.
[7] H. Goda, T. Kitano and T. Morifuji: Reidemeister torsion, twisted Alexander polynomial and fibered knots, Comment. Math. Helv. 80 (2005), 51-61.
[8] H. Goda and T. Morifuji: Twisted Alexander polynomial for $S L(s, \mathbb{C})$-representations and fibered knots, C. R. Math. Acad. Sci. Soc. R. Can. 25 (2003), 97-101.
[9] X.S. Lin: Representations of knot groups and twisted Alexander polynomials, Acta Math. Sin. (Engl. Ser.) 17 (2001), 361-380.
[10] S.V. Matveev: Distributive groupoids in knot theory, Mat. Sb. (N.S.) 119(161) (1982), 78-88.
[11] M. Wada: Twisted Alexander polynomial for finitely presentable groups, Topology 33 (1994), 241-256.

Atsushi Ishii
Institute of Mathematics, University of Tsukuba
Ibaraki 305-8571
Japan
e-mail: aishii@ math.tsukuba.ac.jp
Kanako Oshiro
Department of Information and Communication Sciences
Sophia University
Tokyo 102-8554
Japan
e-mail: oshirok@sophia.ac.jp

