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Abstract
We establish a quandle version of the twisted Alexander polynomial. We also develop a theory

that reduces the size of a twisted Alexander matrix with column relations. The reduced matrix
can be used to refine invariants derived from the twisted Alexander matrix.

1. Introduction

1. Introduction
The twisted Alexander polynomial [9, 11] is a twisted version of the Alexander polyno-

mial, which is twisted by a group representation. The twisted Alexander polynomial is an
invariant for a pair of a (knot) group and its group representation. Behavior of the twisted
Alexander polynomial for topological properties of knots such as the genus and fiberedness
has been studied (e.g. [1, 4, 7, 8]). A quandle [6, 10] is an algebra whose axioms correspond
to the Reidemeister moves on link diagrams. A knot quandle is known as a complete knot
invariant, although it is not easy to distinguish two knot quandles. In this paper, we introduce
a quandle version of the twisted Alexander polynomial, which is an invariant for a pair of
a (knot) quandle and its quandle representation. It can be used to extract information from
knot quandles.

The usual (twisted) Alexander polynomial is defined through a reduced (twisted) Alexan-
der matrix, which is obtained by using one relation between columns of the (twisted) Alexan-
der matrix. In this paper, we also develop a theory that reduces the size of a quandle twisted
Alexander matrix with column relations, where the quandle twisted Alexander matrix is a
matrix obtained by using the derivative with an Alexander pair introduced in [5]. We empha-
size that our theory covers multiple relations between columns of a matrix. We introduce
a notion of a column relation map, which controls a relation between columns. We then
construct an invariant through the reduced quandle twisted Alexander matrix.

This paper is organized as follows. In Section 2, we introduce a column relation matrix
of a matrix and define an equivalence relation on pairs of matrices and their column relation
matrices. We introduce two invariants for the equivalence classes. In Section 3, we recall
quandle presentations and Tietze transformations on them. In Section 4, we recall a quandle
derivative and introduce a column relation map, which yields a column relation matrix. In
Section 5, we see that an Alexander pair and a column relation map give an invariant of (link)
quandles, whose invariance is proven in Section 7. We also see that the twisted Alexander
polynomial is recoverable as an invariant in our framework. In Section 6, we give calcu-
lation examples of our invariant. In Section 8, we introduce the notion of cohomologous
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for Alexander pairs and column relation maps and show that cohomologous Alexander pairs
and column relation maps induce the same invariant.

2. Relation matrices

2. Relation matrices
In this section, we introduce a column relation matrix of a matrix and define an equiv-

alence relation on pairs of matrices and their column relation matrices. We introduce two
invariants for the equivalence classes.

Let R be a ring. We denote by M(m, n; R) the set of m×n matrices over R. We say that two
matrices A1 and A2 over R are equivalent (A1 ∼ A2) if they are related by a finite sequence
of the following transformations:

• (a1, . . . , ai, . . . , a j, . . . , an)↔ (a1, . . . , ai + a jr, . . . , a j, . . . , an) (r ∈ R),

•

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1
...

ai
...

a j
...

an

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

↔

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1
...

ai + ra j
...

a j
...

an

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(r ∈ R), • A↔
(
A
0

)
, • A↔

(
A 0
0 1

)
.

We denote the n× n identity matrix by En or simply E. Let e1, . . . , en be the standard unit
column vectors in Rn, that is, (e1, . . . , en) = En. We set

Ei j(r) := (e1, . . . , e j−1, e j + rei, e j+1, . . . , en),

whose (i, j)-entry is r. Then, the first and second transformations are written as A↔ AE ji(r)
and A↔ Ei j(r)A, respectively. We also set

Pi j := (e1, . . . , e j, . . . , ei, . . . , en),

which is a permutation matrix. We denote by R× the group of units of R.

Proposition 2.1 (c.f. [5]). We have the following equivalences:

(1) (a1, . . . , ai, . . . , a j, . . . , an) ∼ (a1, . . . , a j, . . . ,−ai, . . . , an),
(2) (a1, . . . , ai, . . . , an) ∼ (a1, . . . , aiu, . . . , an) (u ∈ R×),

(3)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1
...

ai
...

a j
...

an

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∼

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1
...

a j
...

−ai
...

an

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (4)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1
...

ai
...

an

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∼

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1
...

uai
...

an

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(u ∈ R×).

Let R be a commutative ring, and let A ∈ M(m, n; R). A k-minor of A is the determinant
of a k × k submatrix of A. The (0th) elementary ideal E(A) of A is the ideal of R generated
by all n-minors of A if n ≤ m; otherwise E(A) = 0. Suppose that R is a GCD domain.
Then, the (0th) Alexander invariant Δ(A) of A is the greatest common divisor of all n-
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minors of A if n ≤ m; otherwise Δ(A) = 0. We remark that Δ(A) coincides with the greatest
common divisor of generators of E(A) and is determined up to unit multiple. If A ∼ B, then
E(A) = E(B) and Δ(A) � Δ(B), where the symbol � indicates equality up to a unit factor.
See [3] for more details.

Remark 2.2. We may regard a matrix in M(m, n; M(k, k; R)) as a matrix in M(km, kn; R).
We call such matrices flat matrices, and emphasize that equivalent matrices are equivalent
as flat matrices. The twisted Alexander polynomial is defined through this process.

Lemma 2.3. Let R be a commutative ring. For A ∈ M(m, n; R) and B ∈ M(n, n; R), we
have E(AB) = (det B)E(A). Let R be a GCD domain. For A ∈ M(m, n; R) and B ∈ M(n, n; R),
we have Δ(AB) � (det B)Δ(A).

Proof. If n ≤ m, we have

E(AB) = I({det A′B | A′ is an n × n submatrix of A})
= (det B)I({det A′ | A′ is an n × n submatrix of A})
= (det B)E(A);

otherwise E(AB) = 0 = (det B)E(A), where I(S) denotes the ideal generated by a set S. Then
Δ(AB) � (det B)Δ(A) follows from E(AB) = (det B)E(A). �

Let R be a ring. For A = (ai j) ∈ M(m, n; R), i = (i1, . . . , is) and j = ( j1, . . . , jt), we define

Ai, j :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ai1 j1 ai1 j2 · · · ai1 jt
ai2 j1 ai2 j2 · · · ai2 jt
...

...
. . .

...

ais j1 ais j2 · · · ais jt

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

For example,

A(3,2),(1,4) =

(
a31 a34

a21 a24

)

for A = (ai j) ∈ M(4, 4; R). We further note that

Ai, j =
t(ei1 , . . . , eis)A(e j1 , . . . , e jt ).

Put n̄ := (1, . . . , n). For l ≤ n, we set Sn(l) := {(σ(1), . . . , σ(l)) |σ ∈ Sn}. For j =
( j1, . . . , jl) ∈ Sn(l), we denote by jc the vector obtained by removing j1, . . . , jl from n̄.

Definition 2.4. Let A ∈ M(m, n; R). We call B ∈ M(n, l; R) a column relation matrix of
A if AB = O. A column relation matrix B ∈ M(n, l; R) is regular if det B j,l̄ � 0 for some
j ∈ Sn(l).

Let R be an integral domain. For a, b ∈ R \ {0} and ideals I, J of R, we write I/a = J/b
if bI = aJ, where aI := {ax | x ∈ I}. For a, b ∈ R \ {0} and x, y ∈ R, we write x/a � y/b if
bx � ay. We remark that these are equivalence relations.
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Definition 2.5. Let A ∈ M(m, n; R). Let B ∈ M(n, l; R) be a regular column relation
matrix of A. We choose j ∈ Sn(l) so that det B j,l̄ � 0. When R is an integral domain, we
define

E(A, B) := E(Am̄, jc)/ det B j,l̄.

When R is a GCD domain, we define

Δ(A, B) := Δ(Am̄, jc)/ det B j,l̄.

When we consider E(A, B), we implicitly assume that the base ring is an integral domain.
When we consider Δ(A, B), we implicitly assume that the base ring is a GCD domain. The
following proposition implies that E(A, B) and Δ(A, B) are independent of the choices of j.

Proposition 2.6. Let A ∈ M(m, n; R). Let B ∈ M(n, l; R) be a regular column relation
matrix of A. We choose j, k ∈ Sn(l) so that det B j,l̄ � 0 and det Bk,l̄ � 0. When R is an
integral domain, we have

E(Am̄, jc)/ det B j,l̄ = E(Am̄,kc)/ det Bk,l̄.

When R is a GCD domain, we have

Δ(Am̄, jc)/ det B j,l̄ � Δ(Am̄,kc)/ det Bk,l̄.

Proof. By permutating rows and columns, we may assume that

A =
(
A1 A2 A3 A4

)
, Am̄, jc =

(
A3 A4

)
, Am̄,kc =

(
A2 A4

)
,

B =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

B1

B2

B3

B4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, B j,l̄ =

(
B1

B2

)
, Bk,l̄ =

(
B1

B3

)
.

Since we have A1B1 + · · · + A4B4 = O, we then have

(
En1 O O
O A3 A4

) ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
B1 O
B3 O
O En4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
(

B1 O
A3B3 A4

)

=

(
B1 O

−A1B1 − A2B2 − A4B4 A4

)

∼
(

B1 O
−A2B2 A4

)

∼
(

B1 O
A2B2 A4

)

=

(
En1 O O
O A2 A4

) ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
B1 O
B2 O
O En4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,

where ni is the number of columns of Ai, which coincides with that of rows of Bi. Then we
have



Quandle Twisted Alexander Invariants 687

E
((

En1 O
O Am̄, jc

) (
Bk,l̄ O
O En4

))
= E

((
En1 O
O Am̄,kc

) (
B j,l̄ O
O En4

))
.

By Lemma 2.3, we have (det Bk,l̄)E(Am̄, jc) = (det B j,l̄)E(Am̄,kc), which implies that
E(Am̄, jc)/ det B j,l̄ = E(Am̄,kc)/ det Bk,l̄. From this equality, we have Δ(Am̄, jc)/ det B j,l̄ �
Δ(Am̄,kc)/ det Bk,l̄. �

Definition 2.7. For matrices A1, A2 over a ring R and their column relation matrices
B1, B2, we write (A1, B1) ∼T (A2, B2) if they are related by a finite sequence of the following
transformations:

(A, B)↔ (APi j, Pi jB), (A, B)↔ (Ei j(r)A, B),

(A, B)↔
((

A
0

)
, B

)
, (A, B)↔

((
A 0
a 1

)
,

(
B
−aB

))
.

We note that (A1, B1) ∼T (A2, B2) implies A1 ∼ A2.

Suppose that R is an integral domain. Then B1 is regular if and only if B2 is regular, since
their ranks coincide when we regard B1, B2 as matrices over the field of fractions of R.

Proposition 2.8. Let B1, B2 be regular column relation matrices of matrices A1, A2, re-
spectively. If (A1, B1) ∼T (A2, B2), then E(A1, B1) = E(A2, B2) and Δ(A1, B1) � Δ(A2, B2).

Proof. It is sufficient to show E(A1, B1) = E(A2, B2) for each transformation in Defini-
tion 2.7. Let B ∈ M(n, l; R) be a regular column relation matrix of A ∈ M(m, n; R). It is
easy to see that E(A, B) = E(APi j, Pi jB). Hence, by permutating rows and columns, we may
assume that det Bl̄,l̄ � 0. Then, the desired equalities follow from

Am̄,l̄c ∼ Ei j(r)Am̄,l̄c , Am̄,l̄c ∼
(
Am̄,l̄c

0

)
, Am̄,l̄c ∼

(
Am̄,l̄c 0
a(1),l̄c 1

)
,

where l̄c = (l + 1, . . . , n). �

Remark 2.9. Let A1, A2 be matrices over M(k, k; R), and let B1, B2 be column relation
matrices of A1, A2, respectively. Here, we denote by A the flat matrix of a matrix A. If
(A1, B1) ∼T (A2, B2), then (A1, B1) ∼T (A2, B2), which implies E(A1, B1) = E(A2, B2) and
Δ(A1, B1) � Δ(A2, B2).

3. Quandles and their presentations

3. Quandles and their presentations
A quandle [6, 10] is a set Q equipped with a binary operation � : Q × Q → Q satisfying

the following axioms:
(Q1) For any a ∈ Q, a � a = a.
(Q2) For any a ∈ Q, the map �a : Q→ Q defined by �a(x) = x � a is bijective.
(Q3) For any a, b, c ∈ Q, (a � b) � c = (a � c) � (b � c).

We denote the map (�a)n : Q→ Q by �na for n ∈ Z.
For quandles (X1, �1) and (X2, �2), a quandle homomorphism f : X1 → X2 is a map satis-

fying f (a �1 b) = f (a) �2 f (b) for any a, b ∈ X1. We call a bijective quandle homomorphism
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Fig.1.

a quandle isomorphism. A quandle homomorphism ρ : X → Q is also called a quandle
representation of X to Q. A quandle representation is trivial if it is a constant map. Let
ρ1 : X1 → Q and ρ2 : X2 → Q be quandle representations. We say that (X1, ρ1) and (X2, ρ2)
are isomorphic if there exists a quandle isomorphism f : X1 → X2 such that ρ1 = ρ2 ◦ f .

For a group G, the n-fold conjugation quandle, denoted by Conjn G, is the quandle (G, �)
defined by a � b = b−nabn. The quandle Conj1 G is called the conjugation quandle and
denoted by Conj G. The dihedral quandle, denoted by Rn, is the quandle (Zn, �) defined by
a � b = 2b − a, where Zn stands for Z/nZ. For a group G, the core quandle, denoted by
Core G, is the quandle (G, �) defined by a � b = ba−1b. Let R[t±1] be the Laurent polynomial
ring over a commutative ring R and M an R[t±1]-module. The Alexander quandle (M, �) is
defined by a � b = ta + (1 − t)b.

We denote by FQnd(S) the free quandle on a set S. A presentation 〈S |R〉 of a quandle can
be used to represent a quandle, where R ⊂ FQnd(S) × FQnd(S). We call the elements of S the
generators of 〈S |R〉 and call the elements of R the relators of 〈S |R〉. A relator (a, b) is also
written as a = b. A presentation 〈S |R〉 is finite if S and R are finite. For a finitely presented
quandle, we often write

〈x1, . . . , xn | r1, . . . , rm〉 := 〈{x1, . . . , xn} | {r1, . . . , rm}〉.
See [2] for details of a presentation of a quandle.

Let L be an oriented link represented by a diagram D. A normal orientation is often used
to represent an orientation of a link on its diagram. The normal orientation is obtained by
rotating the usual orientation counterclockwise by π/2 on the diagram. We denote by C(D)
and (D) the sets of crossings and arcs of D, respectively. For a crossing c of D, we denote
the relator (uc � vc, wc) by rc, where vc is the over-arc of c and uc, wc are the under-arcs of c
such that the normal orientation of vc points from uc to wc (see Figure 1). The fundamental
quandle Q(L) of L is the quandle whose presentation given by

〈x (x ∈ (D)) | rc (c ∈ C(D))〉.(1)

This is called the Wirtinger presentation of Q(L) with respect to D. We denote by E(L) the
exterior of L. We remark that we obtain a presentation of the fundamental group G(L) :=
π1(E(L)) by replacing rc by v−1

c ucvcw
−1
c in (1), which is the Wirtinger presentation of G(L)

with respect to D.
Let Li be an oriented link and ρi : Q(Li) → Q a quandle representation for i ∈ {1, 2}.

We say that (L1, ρ1) and (L2, ρ2) are isomorphic if there exists an orientation-preserving
homeomorphism f : S3 → S3 such that f (L1) = L2 and ρ1 = ρ2 ◦ f∗, where f∗ : Q(L1) →
Q(L2) is the induced isomorphism.

Let 〈S1 |R1〉 and 〈S2 |R2〉 be finite presentations of quandles. Let ρ1 : 〈S1 |R1〉 → Q and
ρ2 : 〈S2 |R2〉 → Q be quandle representations. Then (〈S1 |R1〉, ρ1) and (〈S2 |R2〉, ρ2) are
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isomorphic if and only if they can be transformed into each other by a finite sequence of the
following transformations:
(T1-1) (〈S |R〉, ρ)↔ (〈S |R ∪ {(x, x)}〉, ρ) (x ∈ FQnd(S)),
(T1-2) (〈S |R ∪ {(a, b)}〉, ρ)↔ (〈S |R ∪ {(a, b), (b, a)}〉, ρ),
(T1-3) (〈S |R ∪ {(a, b), (b, c)}〉, ρ)↔ (〈S |R ∪ {(a, b), (b, c), (a, c)}〉, ρ),
(T1-4) (〈S |R ∪ {(a1, a2), (b1, b2)}〉, ρ)

↔ (〈S |R ∪ {(a1, a2), (b1, b2), (a1 � b1, a2 � b2)}〉, ρ),
(T1-5) (〈S |R ∪ {(a1, a2), (b1, b2)}〉, ρ)

↔ (〈S |R ∪ {(a1, a2), (b1, b2), (a1 �
−1 b1, a2 �

−1 b2)}〉, ρ),
(T2) (〈S |R〉, ρ)↔ (〈S ∪ {y} |R ∪ {(y, wy)}〉, ρ) (y � FQnd(S), wy ∈ FQnd(S)),

where we use the same symbol ρ to represent quandle representations which coincide on S.
See [5, Lemma 3.3] for more details.

4. Derivatives and column relation maps

4. Derivatives and column relation maps
In [5], we introduced the notion of a derivative with an Alexander pair and defined a

quandle twisted Alexander matrix, which yields an Alexander type invariant. In this section,
we recall the definition of the derivative with an Alexander pair and introduce the notion of
a column relation map, which will be used to define a column relation matrix of the quandle
twisted Alexander matrix.

Definition 4.1. Let (Q, �) be a quandle. Let R be a ring. The pair ( f1, f2) of maps f1, f2 :
Q × Q→ R is an Alexander pair if f1 and f2 satisfy the following conditions:

• For any a ∈ Q, f1(a, a) + f2(a, a) = 1.
• For any a, b ∈ Q, f1(a, b) is invertible.
• For any a, b, c ∈ Q,

f1(a � b, c) f1(a, b) = f1(a � c, b � c) f1(a, c),

f1(a � b, c) f2(a, b) = f2(a � c, b � c) f1(b, c), and

f2(a � b, c) = f1(a � c, b � c) f2(a, c) + f2(a � c, b � c) f2(b, c).

Let Q = 〈x1, . . . , xn | r1, . . . , rm〉 be a finitely presented quandle. Put S := {x1, . . . , xn}. Let
pr : FQnd(S) → Q be the canonical projection. We often omit “pr” to represent pr(a) as a.
Let f = ( f1, f2) be an Alexander pair of maps f1, f2 : Q × Q → R. The f -derivative with
respect to x j is the unique map ∂ f

∂x j
: FQnd(S)→ R satisfying

∂ f

∂x j
(a � b) = f1(a, b)

∂ f

∂x j
(a) + f2(a, b)

∂ f

∂x j
(b),

∂ f

∂x j
(xi) = δi j

for any a, b ∈ FQnd(S) and i ∈ {1, . . . , n}, where δi j is the Kronecker delta. For a relator
r = (r1, r2), we define

∂ f

∂x j
(r) :=

∂ f

∂x j
(r1) − ∂ f

∂x j
(r2).

Definition 4.2. Let ( f1, f2) be an Alexander pair of maps f1, f2 : Q × Q → R. A column
relation map fcol : Q→ R is a map satisfying
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fcol(a � b) = f1(a, b) fcol(a) + f2(a, b) fcol(b)

for any a, b ∈ Q.

Proposition 4.3. For each c ∈ Q, the map fcol : Q→ R defined by fcol(x) = f2(x �−1 c, c)
is a column relation map.

Proof. As we have

fcol(a � b) = f2((a � b) �−1 c, c)

= f2((a �−1 c) � (b �−1 c), c)

= f1(a, b) f2(a �−1 c, c) + f2(a, b) f2(b �−1 c, c)

= f1(a, b) fcol(a) + f2(a, b) fcol(b),

the map fcol is a column relation map. �

Lemma 4.4. Let Q = 〈x1, . . . , xn | r1, . . . , rm〉 be a finitely presented quandle. Put S :=
{x1, . . . , xn}. Let f = ( f1, f2) be an Alexander pair of maps f1, f2 : Q × Q → R. Let
fcol : Q→ R be a column relation map. For w ∈ FQnd(S), we have

fcol(w) =
n∑

j=1

∂ f

∂x j
(w) fcol(x j).

Proof. It is sufficient to show that

fcol((· · · ((xi0 �
ε1 xi1 ) �

ε2 xi2 ) · · · ) �εk xik )

=

n∑
j=1

∂ f

∂x j
((· · · ((xi0 �

ε1 xi1 ) �
ε2 xi2 ) · · · ) �εk xik ) fcol(x j)

for any i0, . . . , ik ∈ {1, . . . , n} and ε1, . . . , εk ∈ {±1}. We show this equality by induction on
the length k. When k = 0, we have

fcol(xi) =
n∑

j=1

δi j fcol(x j) =
n∑

j=1

∂ f

∂x j
(xi) fcol(x j).

We suppose that the equality holds for any length less than k. Put w := (· · · ((xi0 �
ε1 xi1 ) �

ε2

xi2 ) · · · ) �εk−1 xik−1 . We then have
n∑

j=1

∂ f

∂x j
(w � xi) fcol(x j)

=

n∑
j=1

(
f1(w, xi)

∂ f

∂x j
(w) + f2(w, xi)

∂ f

∂x j
(xi)

)
fcol(x j)

= f1(w, xi)
n∑

j=1

∂ f

∂x j
(w) fcol(x j) + f2(w, xi)

n∑
j=1

δi j fcol(x j)

= f1(w, xi) fcol(w) + f2(w, xi) fcol(xi)

= fcol(w � xi).
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In a similar manner, by using

∂ f

∂x j
(a �−1 b) = f1(a �−1 b, b)−1 ∂ f

∂x j
(a) − f1(a �−1 b, b)−1 f2(a �−1 b, b)

∂ f

∂x j
(b)

and

fcol(a �−1 b) = f1(a �−1 b, b)−1 fcol(a) − f1(a �−1 b, b)−1 f2(a �−1 b, b) fcol(b),

we have
n∑

j=1

∂ f

∂x j
(w �−1 xi) fcol(x j) = fcol(w �−1 xi),

which completes the proof. �

We give examples of Alexander pairs and column relation maps.

Example 4.5. Let Q be a quandle, R a ring, and f : Q → Conj R× a quandle homomor-
phism.

(1) The maps f1, f2 : Q×Q→ R defined by f1(a, b) = f (b)−1 and f2(a, b) = f (b)−1 f (a)−
f (b)−1 form an Alexander pair, and the map fcol : Q → R defined by fcol(x) =
f (x) − 1 is a column relation map.

(2) The maps f1, f2 : Q × Q→ R defined by f1(a, b) = f (b)−1 and f2(a, b) = 1 − f (b)−1

form an Alexander pair, and the map fcol : Q→ R defined by fcol(x) = 1 is a column
relation map.

By setting f (x) = t−1xn, we have the following:

Example 4.6. Let G be a group, and R a commutative ring. Let R[t±1][G] be the group
ring of G over the Laurent polynomial ring R[t±1]. Let Q := Conjn G.

(1) The maps f1, f2 : Q × Q → R[t±1][G] defined by f1(a, b) = tb−n and f2(a, b) =
b−nan − tb−n form an Alexander pair, and the map fcol : Q → R[t±1][G] defined by
fcol(x) = t−1xn − 1 is a column relation map.

(2) The maps f1, f2 : Q×Q→ R[t±1][G] defined by f1(a, b) = tb−n and f2(a, b) = 1−tb−n

form an Alexander pair, and the map fcol : Q → R[t±1][G] defined by fcol(x) = 1 is
a column relation map.

Example 4.7. Let G be a group, and R[G] the group ring of G over a commutative ring
R. Let Q := Core G. The maps f1, f2 : Q × Q → R[G] defined by f1(a, b) = −ba−1 and
f2(a, b) = 1+ ba−1 form an Alexander pair, and the maps fcol,1, fcol,2 : Q→ R[G] defined by
fcol,1(x) = 1 and fcol,2(x) = x are column relation maps.

Example 4.8. Let R be a commutative ring with t ∈ R×. Let Q be the Alexander quandle
R with a � b = ta + (1 − t)b. The maps f1, f2 : Q × Q → R defined by f1(a, b) = t and
f2(a, b) = 1 − t form an Alexander pair, and the maps fcol,1, fcol,2 : Q → R defined by
fcol,1(x) = 1 and fcol,2(x) = x are column relation maps.

For n ∈ Z, we define Pn ∈ Z[t] by
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Table 1. Pn and Qn

n Pn Qn

0 2 0
1 t t − 2
2 t2 − 2 t2 − 4
3 t3 − 3t t2 − t − 2
4 t4 − 4t2 + 2 t3 − 4t
5 t5 − 5t3 + 5t t3 − t2 − 3t + 2
6 t6 − 6t4 + 9t2 − 2 t4 − 5t2 + 4
7 t7 − 7t5 + 14t3 − 7t t4 − t3 − 4t2 + 3t + 2
8 t8 − 8t6 + 20t4 − 16t2 + 2 t5 − 6t3 + 8t
9 t9 − 9t7 + 27t5 − 30t3 + 9t t5 − t4 − 5t3 + 4t2 + 5t − 2

Pn =
(t +
√

t2 − 4)n

2n +
2n

(t +
√

t2 − 4)n
.

We then have Pn = P−n and

Pn+1 − tPn + Pn−1 = 0(2)

for any n ∈ Z. For n ∈ Z, we define Qn ∈ Z[t] by

Q2n+1 = Pn+1 − Pn and Q2n = Pn+1 − Pn−1.

In Table 1, we list Pn and Qn for 0 ≤ n ≤ 9.

Lemma 4.9. We have Pk+n = Pk in Z[t]/(Qn) for any k ∈ Z.

Proof. We write x ≡ y if x − y = zQn for some z ∈ Z[t]. It is sufficient to show that
Pn ≡ P0 and P1+n ≡ P1, since we have Pk+n ≡ Pk by using

Pi+n − Pi = tPi+n−1 − Pi+n−2 − tPi−1 + Pi−2

= t(P(i−1)+n − Pi−1) − (P(i−2)+n − Pi−2), or

Pi+n − Pi = tPi+n+1 − Pi+n+2 − tPi+1 + Pi+2

= t(P(i+1)+n − Pi+1) − (P(i+2)+n − Pi+2)

inductively, where the first and third equalities follow from (2).
Suppose n = 2m + 1. We show that Pm+ j ≡ Pm+1− j for any j ≥ 0. By the definition of

Q2m+1, we have Pm −Pm+1 = −Qn and Pm+1 −Pm = Qn for j = 0, 1. We have Pm+ j ≡ Pm+1− j

by using

Pm+i − Pm+1−i = tPm+i−1 − Pm+i−2 − tPm+2−i + Pm+3−i

= t(Pm+(i−1) − Pm+1−(i−1)) − (Pm+(i−2) − Pm+1−(i−2))

inductively, where the first equality follows from (2). Putting j = m + 1,m + 2, we have
Pn = P2m+1 ≡ P0 and P1+n = P2m+2 ≡ P−1 = P1.

Suppose n = 2m. We show that Pm+ j ≡ Pm− j for any j ≥ 0. By the definition of Q2m, we
have Pm − Pm = 0 and Pm+1 − Pm−1 = Qn for j = 0, 1. We have Pm+ j ≡ Pm− j by using
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Pm+i − Pm−i = tPm+i−1 − Pm+i−2 − tPm−i+1 + Pm−i+2

= t(Pm+(i−1) − Pm−(i−1)) − (Pm+(i−2) − Pm−(i−2))

inductively, where the first equality follows from (2). Putting j = m,m + 1, we have Pn =

P2m ≡ P0 and P1+n = P2m+1 ≡ P−1 = P1. �

Proposition 4.10. Let Q be the dihedral quandle Rn of order n. The maps f1, f2 : Q×Q→
Z[t]/(Qn) defined by

f1(a, b) = −1 and f2(a, b) = Pa−b

form an Alexander pair.

We remark that Pa−b is well-defined for a, b ∈ Rn by Lemma 4.9.
Proof. Since f1(a, b) = −1 and f2(a, a) = 2, it is sufficient to show

f2(a, b) = f2(a � c, b � c),

f2(a � b, c) = − f2(a, c) + f2(a � c, b � c) f2(b, c)

for a, b, c ∈ Rn. The first equality follows from Pa−b = Pb−a. The second equality follows
from

P2b−a−c = −Pa−c + Pb−aPb−c,

which can be obtained by direct calculation. �

Since we have

Q2n+3 − tQ2n+1 + Q2n−1 = 0,

Q2n+2 − tQ2n + Q2n−2 = 0,

it is easy to see that Qn is divisible by t − 2 for any n ∈ Z. From Proposition 4.10, we have
the following corollary.

Corollary 4.11. Let Q be the dihedral quandle R3 of order 3. The maps f1, f2 : Q×Q→ Z
defined by f1(a, b) = −1 and f2(a, b) = 3δab − 1 form an Alexander pair, and the map
fcol,c : Q→ Z defined by fcol,c(x) = 3δxc − 1 is a column relation map for c ∈ Q.

5. Quandle twisted Alexander invariants

5. Quandle twisted Alexander invariants
Let X = 〈x1, . . . , xn | r1, . . . , rm〉 be a finitely presented quandle. Let ρ : X → Q be a

quandle representation. Let f = ( f1, f2) be an Alexander pair of maps f1, f2 : Q × Q → R.
Then f ◦ ρ2 = ( f1 ◦ ρ2, f2 ◦ ρ2) is an Alexander pair of maps f1 ◦ ρ2, f2 ◦ ρ2 : X × X → R.
The f -twisted Alexander matrix of (X, ρ) is

A(X, ρ; f1, f2) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂ f◦ρ2
∂x1

(r1) · · · ∂ f◦ρ2
∂xn

(r1)
...

. . .
...

∂ f◦ρ2
∂x1

(rm) · · · ∂ f◦ρ2
∂xn

(rm)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .

Let fcol,1, . . . , fcol,l : Q → R be column relation maps. Then fcol,1 ◦ ρ, . . . , fcol,l ◦ ρ : X → R
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are column relation maps. We define

Rcol(X, ρ; fcol,1, . . . , fcol,l) :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
( fcol,1 ◦ ρ)(x1) · · · ( fcol,l ◦ ρ)(x1)

...
. . .

...

( fcol,1 ◦ ρ)(xn) · · · ( fcol,l ◦ ρ)(xn)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .

We denote Rcol(X, ρ; fcol,1, . . . , fcol,l) by Rcol(X, ρ; fcol) for short, where fcol indicates
( fcol,1, . . . , fcol,l).

Proposition 5.1. The matrix Rcol(X, ρ; fcol) is a column relation matrix of A(X, ρ; f1, f2).

Proof. We may assume that fcol = ( fcol), since AB1 = O and AB2 = O imply A
(
B1 B2

)
=

O. For a relator r = (r1, r2), we have
n∑

j=1

∂ f◦ρ2

∂x j
(r)( fcol ◦ ρ)(x j)

=

n∑
j=1

∂ f◦ρ2

∂x j
(r1)( fcol ◦ ρ)(x j) −

n∑
j=1

∂ f◦ρ2

∂x j
(r2)( fcol ◦ ρ)(x j)

= ( fcol ◦ ρ)(r1) − ( fcol ◦ ρ)(r2) = 0,

where the second equality follows from Lemma 4.4. This completes the proof. �

When R is an integral domain, we define

E(X, ρ; f1, f2; fcol) := E(A(X, ρ; f1, f2),Rcol(X, ρ; fcol)),

Δ(X, ρ; f1, f2; fcol) := Δ(A(X, ρ; f1, f2),Rcol(X, ρ; fcol)).

When R is a matrix ring consisting of k × k matrices over an integral domain, we define

E(X, ρ; f1, f2; fcol) := E(A(X, ρ; f1, f2),Rcol(X, ρ; fcol)),

Δ(X, ρ; f1, f2; fcol) := Δ(A(X, ρ; f1, f2),Rcol(X, ρ; fcol)).

The following theorem shows that they are invariants.

Theorem 5.2. Let X = 〈x | r〉 and X′ = 〈x′ | r′〉 be finitely presented quandles, and let
ρ : X → Q and ρ′ : X′ → Q be quandle representations. Let ( f1, f2) be an Alexander pair
of maps f1, f2 : Q × Q → R. Let fcol,1, . . . , fcol,l : Q → R be column relation maps. If
(X, ρ) � (X′, ρ′), then we have

(A(X, ρ; f1, f2),Rcol(X, ρ; fcol)) ∼T (A(X′, ρ′; f1, f2),Rcol(X′, ρ′; fcol)).

Furthermore, we have the following.

• If R is an integral domain and Rcol(X, ρ; fcol) is regular, then we have

E(A(X, ρ; f1, f2),Rcol(X, ρ; fcol)) = E(A(X′, ρ′; f1, f2),Rcol(X′, ρ′; fcol)),

Δ(A(X, ρ; f1, f2),Rcol(X, ρ; fcol)) � Δ(A(X′, ρ′; f1, f2),Rcol(X′, ρ′; fcol)).

• If R is a matrix ring consisting of k × k matrices over an integral domain and
Rcol(X, ρ; fcol) is regular, then we have
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E(A(X, ρ; f1, f2),Rcol(X, ρ; fcol)) = E(A(X′, ρ′; f1, f2),Rcol(X′, ρ′; fcol)),

Δ(A(X, ρ; f1, f2),Rcol(X, ρ; fcol)) � Δ(A(X′, ρ′; f1, f2),Rcol(X′, ρ′; fcol)).

The twisted Alexander polynomial [9, 11] can be realized as the invariant Δ(X, ρ; f1,
f2; fcol) for some Alexander pair ( f1, f2) and column relation map fcol.

Let L be an oriented link, and D a diagram of L. Let

Q(L) = 〈x1, . . . , xn | u1 � v1 = w1, . . . , um � vm = wm〉,
G(L) = 〈x1, . . . , xn | v−1

1 u1v1w
−1
1 , . . . , v

−1
m umvmw

−1
m 〉

be the Wirtinger presentations of the fundamental quandle Q(L) and the fundamental group
G(L) with respect to D, respectively. See Section 3. Let R be a commutative ring. Set G :=
GL(k; R). Let ρ : G(L)→ G be a group representation. The induced quandle representation
of ρ is a quandle homomorphism from Q(L) to Conj G that sends xi to ρ(xi), and we denote
it by the same symbol ρ : Q(L)→ Conj G.

Proposition 5.3. Let ΔL,ρ(t) be the twisted Alexander polynomial of (L, ρ) with the
abelianization α : G(L) → 〈t〉 that sends every meridian to t−1. Let f1, f2 : Q(L) × Q(L) →
R[t±1][G] be the maps defined by f1(a, b) = tb−1 and f2(a, b) = b−1a−tb−1. Let fcol : Q(L)→
R[t±1][G] be the map defined by fcol(x) = t−1x − 1. Then we have

ΔL,ρ(t) � Δ(A(Q(L), ρ; f1, f2),Rcol(Q(L), ρ; fcol)).

Proof. We note that ( f1, f2) and fcol are an Alexander pair and column relation map. See
Example 4.6 (1) with n = 1. In [5], we showed that the twisted Alexander matrix of (L, ρ)
coincides with A(Q(L), ρ; f1, f2). Then, the twisted Alexander polynomial (L, ρ) is defined
by

ΔL,ρ(t) � Δ(A(Q(L), ρ; f1, f2)m̄,( j)c)/ det(t−1ρ(x j) − Ek),

which coincides with Δ(A(Q(L), ρ; f1, f2),Rcol(Q(L), ρ; fcol)). �

In a similar manner, we have the following proposition:

Proposition 5.4. Let ΔL(t) be the Alexander polynomial of L with the abelianization
α : G(L) → 〈t〉 that sends every meridian to t−1. Let f1, f2 : Q(L) × Q(L) → R[t±1] be the
maps defined by f1(a, b) = t and f2(a, b) = 1− t. Let fcol : Q(L)→ R[t±1] be the map defined
by fcol(x) = t−1 − 1. Then we have

ΔL(t)
t−1 − 1

� Δ(A(Q(L), ρ; f1, f2),Rcol(Q(L), ρ; fcol)).

Furthermore, setting fcol(x) = 1, we have

ΔL(t) � Δ(A(Q(L), ρ; f1, f2),Rcol(Q(L), ρ; fcol)).

Remark 5.5. We note that the (twisted) Alexander polynomials with the abelianization α
that sends every meridian to t can be obtained by setting

f1(a, b) = t−1b−1, f2(a, b) = b−1a − t−1b−1, fcol(x) = tx − 1,

f1(a, b) = t−1, f2(a, b) = 1 − t−1, fcol(x) = t − 1
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Fig.2. The knots 11n38 and 11n102

in Propositions 5.3 and 5.4, respectively.

6. Examples

6. Examples
In this section, we investigate our invariant with the Alexander pair and the two column

relation maps given in Corollary 4.11.
Let Q be the dihedral quandle R3 of order 3. Let f1, f2 : Q×Q→ Z be the Alexander pair

defined by f1(a, b) = −1 and f2(a, b) = 3δab − 1. Let fcol,c : Q → Z be the column relation
map defined by fcol,c(x) = 3δxc − 1 for c ∈ Q. See Corollary 4.11. Let L be an oriented link.
Let ρ : Q(L)→ Q be a quandle representation.

First, we see that, for a trivial representation ρ,

Δ(Q(L), ρ; f1, f2; fcol,c) �

⎧⎪⎪⎨⎪⎪⎩
Det L/2 if Im ρ = {c},
Det L if Im ρ � {c},(3)

where Det L is the determinant of L. We remark that Det L = |ΔL(−1)|. Let g1, g2 : Q×Q→
Z be the Alexander pair defined by g1(a, b) = −1 and g2(a, b) = 2. Let gcol : Q → Z be the
column relation map defined by gcol(x) = 1. By Proposition 5.4, we have

Δ(Q(L), ρ; g1, g2; gcol) � ΔL(−1).

Since f1 ◦ ρ2 = g1 ◦ ρ2 and f2 ◦ ρ2 = g2 ◦ ρ2, we have A(Q(L), ρ; f1, f2) = A(Q(L), ρ; g1, g2).
Since ( fcol,c ◦ ρ)(x) = (3δxc − 1)(gcol ◦ ρ)(x), we have

Rcol(Q(L), ρ; fcol,c) =

⎧⎪⎪⎨⎪⎪⎩
2Rcol(Q(L), ρ; gcol) if Im ρ = {c},
Rcol(Q(L), ρ; gcol) if Im ρ � {c}.

Thus we have (3).
Let K1 be the knot 11n38, and let K2 be the knot 11n102. Let D1 and D2 be their diagrams

depicted in Figure 2. Then, we see that

Δ(Q(K1), ρ1; f1, f2; fcol,0, fcol,1) � 2/3,

Δ(Q(K2), ρ2; f1, f2; fcol,0, fcol,1) � 7/3

for any nontrivial quandle representation ρi : Q(Ki) → Q. We note that both Q(K1) and
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Q(K2) have 6 nontrivial quandle representations. We also note that ΔK1 (t) � ΔK2 (t) and
Ed(K1) = Ed(K2) for any d, where Ed(K) is the dth Alexander ideal of a knot K.

The Wirtinger presentation of Q(K1) with respect to D1 is

Q(K1) =

〈
x1, . . . , x11

∣∣∣∣∣∣∣∣∣∣∣∣

x1 � x3 = x11, x1 � x9 = x2, x3 � x1 = x2,

x4 � x11 = x3, x4 � x7 = x5, x5 � x4 = x6,

x7 � x10 = x6, x7 � x5 = x8, x8 � x2 = x9,

x10 � x7 = x9, x11 � x4 = x10

〉
.

Putting a = ρ1(x1), b = ρ1(x2) and c = ρ1(x3), we have a � b, c = 2a + 2b and

ρ1(x4) = ρ1(x8) = a, ρ1(x5) = ρ1(x11) = b,

ρ1(x6) = ρ1(x7) = ρ1(x9) = ρ1(x10) = c.

Then, A(Q(K1), ρ1; f1, f2) is⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f •1 0 f �2 0 0 0 0 0 0 0 −1
f •1 −1 0 0 0 0 0 0 f �2 0 0
f �2 −1 f •1 0 0 0 0 0 0 0 0
0 0 −1 f •1 0 0 0 0 0 0 f �2
0 0 0 f •1 −1 0 f �2 0 0 0 0
0 0 0 f �2 f •1 −1 0 0 0 0 0
0 0 0 0 0 −1 f •1 0 0 f =2 0
0 0 0 0 f �2 0 f •1 −1 0 0 0
0 f �2 0 0 0 0 0 f •1 −1 0 0
0 0 0 0 0 0 f =2 0 −1 f •1 0
0 0 0 f �2 0 0 0 0 0 −1 f •1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where f •1 = −1, f =2 = 2 and f �2 = −1. The matrix A(Q(K1), ρ1; f1, f2)11,(1,2)c is equivalent to

the 1 × 1 matrix
(
2
)
. We have

Rcol(Q(K1), ρ1; fcol,0, fcol,1) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

fcol,0(a) fcol,1(a)
fcol,0(b) fcol,1(b)
fcol,0(c) fcol,1(c)
fcol,0(a) fcol,1(a)
fcol,0(b) fcol,1(b)
fcol,0(c) fcol,1(c)
fcol,0(c) fcol,1(c)
fcol,0(a) fcol,1(a)
fcol,0(c) fcol,1(c)
fcol,0(c) fcol,1(c)
fcol,0(b) fcol,1(b)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3δa0 − 1 3δa1 − 1
3δb0 − 1 3δb1 − 1
3δc0 − 1 3δc1 − 1
3δa0 − 1 3δa1 − 1
3δb0 − 1 3δb1 − 1
3δc0 − 1 3δc1 − 1
3δc0 − 1 3δc1 − 1
3δa0 − 1 3δa1 − 1
3δc0 − 1 3δc1 − 1
3δc0 − 1 3δc1 − 1
3δb0 − 1 3δb1 − 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Since Rcol(Q(K1), ρ1; fcol,0, fcol,1)(1,2),2̄ is(
2 −1
−1 2

)
,
(−1 2

2 −1

)
,
(

2 −1
−1 −1

)
,
(−1 −1

2 −1

)
,
(−1 2
−1 −1

)
or

(−1 −1
−1 2

)
,

we have det Rcol(Q(K1), ρ1; fcol,0, fcol,1)(1,2),2̄ � 3. Thus we have
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Δ(Q(K1), ρ1; f1, f2; fcol,0, fcol,1)

= Δ(A(Q(K1), ρ1; f1, f2)11,(1,2)c/ det Rcol(Q(K1), ρ1; fcol,0, fcol,1)(1,2),2̄

� 2/3.

The Wirtinger presentation of Q(K2) with respect to D2 is

Q(K2) =

〈
x1, . . . , x11

∣∣∣∣∣∣∣∣∣∣∣∣

x11 � x5 = x1, x2 � x8 = x1, x3 � x10 = x2,

x4 � x7 = x3, x5 � x6 = x4, x5 � x11 = x6,

x7 � x4 = x6, x8 � x2 = x7, x8 � x7 = x9,

x10 � x3 = x9, x11 � x2 = x10

〉
.

Putting a = ρ2(x1), b = ρ2(x2) and c = ρ2(x8), we have a � b, c = 2a + 2b and

ρ2(x3) = ρ2(x4) = ρ2(x5) = ρ2(x6) = ρ2(x7) = ρ2(x11) = a,

ρ2(x9) = b, ρ2(x10) = c.

Then, A(Q(K2), ρ2; f1, f2) is⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 0 0 0 2 0 0 0 0 0 −1
−1 −1 0 0 0 0 0 −1 0 0 0
0 −1 −1 0 0 0 0 0 0 −1 0
0 0 −1 −1 0 0 2 0 0 0 0
0 0 0 −1 −1 2 0 0 0 0 0
0 0 0 0 −1 −1 0 0 0 0 2
0 0 0 2 0 −1 −1 0 0 0 0
0 −1 0 0 0 0 −1 −1 0 0 0
0 0 0 0 0 0 −1 −1 −1 0 0
0 0 −1 0 0 0 0 0 −1 −1 0
0 −1 0 0 0 0 0 0 0 −1 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The matrix A(Q(K2), ρ2; f1, f2)11,(1,2)c is equivalent to the 1 × 1 matrix
(
7
)
. In the same

manner as det Rcol(Q(K1), ρ1; fcol,0, fcol,1)(1,2),2̄, we have

det Rcol(Q(K2), ρ2; fcol,0, fcol,1)(1,2),2̄ � 3.

Thus we have

Δ(Q(K2), ρ2; f1, f2; fcol,0, fcol,1)

= Δ(A(Q(K2), ρ2; f1, f2)11,(1,2)c/ det Rcol(Q(K2), ρ2; fcol,0, fcol,1)(1,2),2̄

� 7/3.

7. Proof of Theorem 5.2

7. Proof of Theorem 5.2
We show

(A(X, ρ; f1, f2),Rcol(X, ρ; fcol)) ∼T (A(X′, ρ′; f1, f2),Rcol(X′, ρ′; fcol)).

It is sufficient to show this equivalence for the transformations (T1-1)–(T1-5) and (T2) in
Section 3. We set
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A := A(〈x | r〉, ρ; f1, f2), B := Rcol(〈x | r〉, ρ; fcol),

A′ := A(〈x′ | r′〉, ρ′; f1, f2), B′ := Rcol(〈x′ | r′〉, ρ′; fcol).

We denote by ai the i-th row vector of A and denote by ai j the (i, j) entry of A.
For (T1-1), we suppose

〈x | r〉 = 〈x1, . . . , xn | r1, . . . , rm〉,
〈x′ | r′〉 = 〈x1, . . . , xn | r1, . . . , rm, x = x〉 (x ∈ FQnd(x)).

We then have

(A, B) ∼T

((
A
0

)
, B

)
= (A′, B′).

For (T1-2), we suppose

〈x | r〉 = 〈x1, . . . , xn | r1, . . . , rm, a = b〉,
〈x′ | r′〉 = 〈x1, . . . , xn | r1, . . . , rm, a = b, b = a〉.

We then have

(A, B) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
a1
...

am+1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , B
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ∼T

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1
...

am+1

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, B

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∼T

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1
...

am+1

−am+1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, B

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= (A′, B′).

For (T1-3), we suppose

〈x | r〉 = 〈x1, . . . , xn | r1, . . . , rm, a = b, b = c〉,
〈x′ | r′〉 = 〈x1, . . . , xn | r1, . . . , rm, a = b, b = c, a = c〉.

We then have

(A, B) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1
...

am+1

am+2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, B

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∼T

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1
...

am+1

am+2

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, B

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∼T

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1
...

am+1

am+2

a′

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, B

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= (A′, B′),

where a′ = am+1 + am+2.
For (T1-4), we suppose

〈x | r〉 = 〈x1, . . . , xn | r1, . . . , rm, a1 = a2, b1 = b2〉,
〈x′ | r′〉 = 〈x1, . . . , xn | r1, . . . , rm, a1 = a2, b1 = b2, a1 � b1 = a2 � b2〉.

We then have



700 A. Ishii and K. Oshiro

(A, B) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1
...

am+1

am+2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, B

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∼T

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1
...

am+1

am+2

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, B

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∼T

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1
...

am+1

am+2

a′

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, B

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= (A′, B′),

where a′ = ( f1 ◦ ρ2)(a1, b1)am+1 + ( f2 ◦ ρ2)(a1, b1)am+2.
For (T1-5), we suppose

〈x | r〉 = 〈x1, . . . , xn | r1, . . . , rm, a1 = a2, b1 = b2〉,
〈x′ | r′〉 = 〈x1, . . . , xn | r1, . . . , rm, a1 = a2, b1 = b2, a1 �

−1 b1 = a2 �
−1 b2〉.

We then have

(A, B) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1
...

am+1

am+2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, B

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∼T

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1
...

am+1

am+2

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, B

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∼T

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1
...

am+1

am+2

a′

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, B

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= (A′, B′),

where a′ = ( f1 ◦ρ2)(a1 �
−1 b1, b1)−1am+1− ( f1 ◦ρ2)(a1 �

−1 b1, b1)−1( f2 ◦ρ2)(a1 �
−1 b1, b1)am+2.

For (T2), we suppose

〈x | r〉 = 〈x1, . . . , xn | r1, . . . , rm〉,
〈x′ | r′〉 = 〈x1, . . . , xn, y | r1, . . . , rm, y = w〉 (y � FQnd(x), w ∈ FQnd(x)).

We then have

(A, B) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂ f◦ρ2
∂x1

(r1) · · · ∂ f◦ρ2
∂xn

(r1)
...

. . .
...

∂ f◦ρ2
∂x1

(rm) · · · ∂ f◦ρ2
∂xn

(rm)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , B
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ∼T

((
A 0
a′ 1

)
,

(
B
b′

))
= (A′, B′),

where

a′ =
(
−∂ f◦ρ2

∂x1
(w), . . . ,−∂ f◦ρ2

∂xn
(w)

)
,

b′ =
(
fcol,1(ρ(y)), . . . , fcol,l(ρ(y))

)

=

⎛⎜⎜⎜⎜⎜⎝
n∑

i=1

∂ f◦ρ2

∂xi
(w) fcol,1(ρ(xi)), . . . ,

n∑
i=1

∂ f◦ρ2

∂xi
(w) fcol,l(ρ(xi))

⎞⎟⎟⎟⎟⎟⎠ .
The rest follows from Proposition 2.8 and Remark 2.9.

8. Cohomologous Alexander pairs and column relation maps

8. Cohomologous Alexander pairs and column relation maps
Let ( f1, f2) and (g1, g2) be Alexander pairs of maps f1, f2, g1, g2 : Q × Q → R. Let

fcol : Q → R and gcol : Q → R be column relation maps with respect to ( f1, f2) and (g1, g2),
respectively. Two triples ( f1, f2, fcol) and (g1, g2, gcol) are cohomologous if there exists a map
h : Q→ R satisfying the following conditions:
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• For any a ∈ Q, h(a) is invertible in R.
• For any a, b ∈ Q, h(a � b) f1(a, b) = g1(a, b)h(a).
• For any a, b ∈ Q, h(a � b) f2(a, b) = g2(a, b)h(b).
• For any a ∈ Q, h(a) fcol(a) = gcol(a).

We then write ( f1, f2, fcol) ∼h (g1, g2, gcol) to specify h. Let fcol,1, . . . , fcol,l : Q → R and
gcol,1, . . . , gcol,l : Q→ R be column relation maps with respect to ( f1, f2) and (g1, g2), respec-
tively. When ( f1, f2, fcol,i) ∼h (g1, g2, gcol,i) for any i, we write ( f1, f2, fcol) ∼h (g1, g2, gcol).

Example 8.1. For an Alexander pair ( f1, f2) and a ∈ Q, we define f1 � a and f2 � a by

( f1 � a)(x, y) = f1(x � a, y � a), ( f2 � a)(x, y) = f2(x � a, y � a).

For a column relation map fcol and a ∈ Q, we define fcol � a by

( fcol � a)(x) = f1(x, a) fcol(x).

Putting h(x) := f1(x, a), we have

( f1, f2, fcol) ∼h ( f1 � a, f2 � a, fcol � a).

Proposition 8.2. Let X = 〈x1, . . . , xn | r1, . . . , rm〉 be a finitely presented quandle, and
let ρ : X → Q be a quandle representation. Let ( f1, f2) and (g1, g2) be Alexander pairs
of maps f1, f2, g1, g2 : Q × Q → R. Let fcol,1, . . . , fcol,l : Q → R and gcol,1, . . . , gcol,l :
Q → R be column relation maps with respect to ( f1, f2) and (g1, g2), respectively. Suppose
( f1, f2, fcol) ∼h (g1, g2, gcol).

• If R is an integral domain and Rcol(X, ρ; fcol) is regular, then we have

E(A(X, ρ; f1, f2),Rcol(X, ρ; fcol)) = E(A(X, ρ; g1, g2),Rcol(X, ρ; gcol)),

Δ(A(X, ρ; f1, f2),Rcol(X, ρ; fcol)) � Δ(A(X, ρ; g1, g2),Rcol(X, ρ; gcol)).

• If R is a matrix ring consisting of k × k matrices over an integral domain and
Rcol(X, ρ; fcol) is regular, then we have

E(A(X, ρ; f1, f2),Rcol(X, ρ; fcol)) = E(A(X, ρ; g1, g2),Rcol(X, ρ; gcol)),

Δ(A(X, ρ; f1, f2),Rcol(X, ρ; fcol)) � Δ(A(X, ρ; g1, g2),Rcol(X, ρ; gcol)).

Proof. We assume that

X = 〈x1, . . . , xn | u1 � v1 = w1, . . . , um � vm = wm〉
for some u1, . . . , um, v1, . . . , vm, w1, . . . , wm ∈ {x1, . . . , xn}, where we note that any finitely
presented quandle can be presented in this form. By the proof of Theorem 9.3 in [5], we
have

diag(h(ρ(w1)), . . . , h(ρ(wm)))A(X, ρ; f1, f2) = A(X, ρ; g1, g2) diag(h(ρ(x1)), . . . , h(ρ(xn))).

Since h(ρ(xi)) fcol, j(ρ(xi)) = gcol, j(ρ(xi)), we have

diag(h(ρ(x1)), . . . , h(ρ(xn)))Rcol(X, ρ; fcol) = Rcol(X, ρ; gcol).

We choose j ∈ Sn(l) so that det Rcol(X, ρ; fcol) j,l̄ � 0. Then we have



702 A. Ishii and K. Oshiro

diag(h(ρ(w1)), . . . , h(ρ(wm)))A(X, ρ; f1, f2)m̄, jc

= A(X, ρ; g1, g2)m̄, jc diag(h(ρ(x1)), . . . , h(ρ(xn))) jc, jc ,

diag(h(ρ(x1)), . . . , h(ρ(xn))) j, jRcol(X, ρ; fcol) j,l̄ = Rcol(X, ρ; gcol) j,l̄

which imply

A(X, ρ; f1, f2)m̄, jc ∼ A(X, ρ; g1, g2)m̄, jc ,

Rcol(X, ρ; fcol) j,l̄ ∼ Rcol(X, ρ; gcol) j,l̄,

respectively. The desired equalities follow from these equivalences. �
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