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Abstract
Given a quaternionic manifold M with a certain U(1)-symmetry, we construct a hypercomplex

manifold M′ of the same dimension. This construction generalizes the quaternionic Kähler/
hyper-Kähler-correspondence. As an example of this construction, we obtain a compact homo-
geneous hypercomplex manifold which does not admit any hyper-Kähler structure. Therefore
our construction is a proper generalization of the quaternionic Kähler/hyper-Kähler-
correspondence.

1. Introduction

1. Introduction
Let us recall that there exist constructions due to Andriy Haydys, called the QK/HK-

correspondence and the HK/QK-correspondence, which relate quaternionic Kähler mani-
folds to hyper-Kähler manifolds of the same dimension [12]. These constructions have been
generalized to include possibly indefinite metrics [2, 1]. In this way the supergravity c-map
metric and a one-parameter deformation thereof have been described as an application of the
HK/QK-correspondence with indefinite initial hyper-Kähler data. Many complete quater-
nionic Kähler manifolds can be obtained in this way, see for instance [8] for co-homogeneity
one examples.

The main result of this paper, see Theorem 6.4, is a construction of a hypercomplex man-
ifold from a quaternionic manifold with a U(1)-action, which we may call the quaternionic/
hypercomplex-correspondence (Q/H-correspondence for short). This construction general-
izes the QK/HK-correspondence.

In [22, 14, 21], it is shown that with every quaternionic manifold M one can associate an
H
∗/{±1}-bundle over M and a hypercomplex structure on the total space of the bundle. More

precisely [21], there exists a one-parameter family of H∗/{±1}-bundles such that, given a
quaternionic connection on M, each of the bundles is endowed with an almost hypercomplex
structure. For a particular choice of the parameter, the almost hypercomplex structure is
integrable and independent of the connection. Here we will adopt a different point of view.
Instead of a one-parameter family of bundles, we will define a single principal H∗/{±1}-
bundle, which we call the Swann bundle, endowed with a one-parameter family of almost
hypercomplex structures (still depending on a quaternionic connection). Again we find that,
for a particular choice of the parameter, namely c = −4(n + 1), the almost hypercomplex
structure is always integrable and independent of the connection, see Proposition 3.3. Here
4n = dim M. For all other values of the parameter, we show that the almost hypercomplex
structure is integrable if and only if all I ∈ Q, where Q denotes the quaternionic structure,
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are skew-symmetric with respect to the skew-symmetric part of the Ricci-curvature, see
Theorem 3.6.

Now we briefly explain how we obtain the Q/H-correspondence. Given an infinitesimal
automorphism X of a quaternionic manifold (M,Q,∇) endowed with a quaternionic connec-
tion ∇, we show that the natural lift X̂ of X to the Swann bundle M̂ preserves each member
of the one-parameter family of almost hypercomplex structures. The next step is to perform
a hypercomplex reduction with respect to X̂. Recall that hypercomplex reduction was intro-
duced by Dominic Joyce in [14]. It is defined as the quotient of a level set of a moment map
by the group action. The construction is based on the notion of a moment map in this context
as defined in [14]. Here we define the moment map for the infinitesimal automorphism X̂ by
the equation (5.4) and analyse Joyce’s conditions in Proposition 5.8. Assuming that X̂ gen-
erates a free U(1)-action, we can finally perform the reduction obtaining a hypercomplex
manifold M′. Otherwise, we can construct the hypercomplex structure on a submanifold
transversal to the foliation defined by X̂ (on some open submanifold of M̂).

Note that one can find a related construction of a hypercomplex manifold from a quater-
nionic manifold (endowed in addition with a complex structure and a compatible S 1-action)
in Proposition 5.5 in [6], in which the authors study the quaternionic Feix-Kaledin (qFK)
construction. The qFK construction is a generalization of the original one in [16, 9]. In
Theorem 5 of [7], it is shown that a quaternionic Kähler manifold obtained from the qFK
construction and a hyper-Kähler manifold from the original Feix-Kaledin construction are
related by the HK/QK-correspondence. This is analogous to the relation between the super-
gravity c-map and the rigid c-map [2, 1].

Examples of our Q/H-correspondence include compact homogeneous hypercomplex
manifolds. Indeed, starting with a homogeneous quaternionic Hopf manifold

(R>0/〈λ〉) × Sp(n)U(1)
Sp(n − 1)�U(1)

,

we obtain a homogeneous hypercomplex Hopf manifold

(R>0/〈λ〉) × Sp(n)
Sp(n − 1)

by the Q/H-correspondence, see Example 7.8. Note that this hypercomplex manifold does
not admit any hyper-Kähler structure for topological reasons. Therefore our construction is
a proper generalization of the QK/HK-correspondence.

2. Preliminaries

2. Preliminaries
Throughout this paper, all manifolds are assumed to be smooth and without boundary

and maps are assumed to be smooth unless otherwise mentioned. The space of sections of a
vector bundle E → M is denoted by Γ(E).

We say that M is a quaternionic manifold with the quaternionic structure Q if Q is a
subbundle of End(T M) of rank 3 which at every point x ∈ M is spanned by endomorphisms
I1, I2, I3 ∈ End(TxM) satisfying

I2
1 = I2

2 = I2
3 = −id, I1I2 = −I2I1 = I3,(2.1)

and there exists a torsion-free connection ∇ on M such that ∇ preserves Q, that is, ∇XΓ(Q) ⊂
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Γ(Q) for all X ∈ Γ(T M). Note that we use the same letter ∇ for the connection on End(T M)
induced by ∇ if there is no confusion. Such a torsion-free connection ∇ is called a quater-
nionic connection and the triplet (I1, I2, I3) is called an admissible frame of Q at x. The
dimension of a quaternionic manifold M is denoted by 4n. Note that a quaternionic connec-
tion is not unique, in fact, there is the following result [10, 5].

Lemma 2.1. Let ∇1 and ∇2 be quaternionic connections on (M,Q). Then there exists a
1-form ξ on M such that

∇2
XY = ∇1

XY + S ξXY(2.2)

for all X, Y ∈ Γ(T M), where S ξ is defined by

S ξXY = ξ(X)Y + ξ(Y)X − ξ(I1X)I1Y − ξ(I1Y)I1X

− ξ(I2X)I2Y − ξ(I2Y)I2X − ξ(I3X)I3Y − ξ(I3Y)I3X.

Conversely, for a given quaternionic connection ∇1, the connection ∇2 given by the equation
above is also a quaternionic connection.

An almost hypercomplex manifold is defined to be a manifold M endowed with 3 al-
most complex structures I1, I2, I3 satisfying the quaternionic relations (2.1). If I1, I2, I3 are
integrable, then M is called a hypercomplex manifold. There exists a unique torsion-free
connection on a hypercomplex manifold for which the hypercomplex structures are parallel.
It is called the Obata connection [18]. Obviously, hypercomplex manifolds are quaternionic
manifolds with Q = 〈I1, I2, I3〉.

3. The canonical family of almost hypercomplex structures on the Swann bundle M̂

3. The canonical family of almost hypercomplex structures on the Swann bundle M̂
In this section we will define a principal R>0 × SO(3)-bundle M̂ → M over a quater-

nionic manifold (M,Q) equipped with a quaternionic connection ∇ and endow M̂ with a
one-parameter family of almost hypercomplex structures depending on the quaternionic
connection ∇. Then we will study the integrability of the hypercomplex structure and its
dependence (or independence) on the choice of ∇ for different values of the parameter.

3.1. The principal bundle M̂ → M.
3.1. The principal bundle M̂ → M. Let S be the principal SO(3)-bundle of admissible

frames (I1, I2, I3) over a quaternionic manifold (M,Q). The principal action τ of g ∈ SO(3)
is given by τ(s, g) = sgε for s = (I1, I2, I3) ∈ S , where ε = 1 (resp. ε = −1) if S is considered
as a right (resp. left)-principal bundle. The bundle projection of S is denoted by πS . We
take a basis (e1, e2, e3) of R3 � ImH � sp(1) � so(3) so that

[eα, eβ] = 2eγ

for any cyclic permutation (α, β, γ). Hereafter (α, β, γ) will be always a cyclic permutation,
whenever the three letters appear in an expression. A quaternionic connection induces a
principal connection θ : TS → so(3) and we denote θ =

∑
θαeα. Moreover we consider the

principal R>0-bundle S 0 := (Λ4n(T ∗M)\{0})/{±1} over M, where R>0 = {a ∈ R | a > 0}.
The principal R>0-action τ0 on S 0 is given by scalar multiplication τ0(ρ, a) := ρaε (ε = ±1)
for ρ ∈ S 0 and a ∈ R>0. The bundle projection of S 0 is denoted by πS 0 . A quaternionic
connection induces also a principal connection θ0 : TS 0 → R = Lie (R>0). The product
S 0 × S is a principal R>0 × SO(3)-bundle over M × M whose principal action is τ0 × τ. The
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R
4 (� R⊕ so(3))-valued 1-form (θ0 ◦ prTS 0 , θ ◦ prTS ) = (θ0 ◦ prTS 0 , θ1 ◦ prTS , θ2 ◦ prTS , θ3 ◦

prTS ) is a principal connection on S 0 × S , where prTS 0 (resp. prTS ) is the projection from
T (S 0×S ) � TS 0×TS onto TS 0 (resp. TS ). Note that the Lie group R>0×SO(3) = H∗/{±1}.

Let � : M → M × M be the diagonal map defined by �(x) = (x, x) for each x ∈ M. The
pullback bundle

M̂ := �∗(S 0 × S ) = {(x, (ρ, s)) ∈ M × (S 0 × S ) | x = πS 0 (ρ) = πS (s)}
is a principal R>0 × SO(3)-bundle over M and θ̄ := �∗#(θ0 ◦ prTS 0 , θ ◦ prTS ) is a principal
connection on M̂, where �# : M̂ → S 0 × S is the canonical bundle map. The bundle
projection of M̂ onto M is denoted by π̂. Using the bundle projections π̂, πS 0 , πS and the
principal connections θ̄, θ0, θ, we have the decomposition

(3.1) T M̂ = ̄ ⊕ ̄, TS 0 = 0 ⊕0, TS =  ⊕,
where ̄ = Ker π̂∗, ̄ = Ker θ̄ and so on. It holds that (�#)∗(̄(x,(ρ,s))) = (0)ρ × s and
(�#)∗(̄(x,(ρ,s))) ⊂ (0)ρ × s for each (x, (ρ, s)) ∈ M̂. Set �S := prTS ◦ (�#)∗ and �S 0 :=
prTS 0 ◦(�#)∗. The principal actions on M̂, S 0×S , S 0 and S induce fundamental vector fields.
We denote by Ã the fundamental vector field corresponding to a Lie algebra element A,
irrespective of the manifold on which the vector field is defined, and set Zα = ẽα (α = 1, 2, 3).
Note that [Zα, Zβ] = 2εZγ.

3.2. The canonical family of almost hypercomplex structures.
3.2. The canonical family of almost hypercomplex structures. Let (M,Q) be a quater-

nionic manifold, ∇ a quaternionic connection and π̂ : M̂ → M the principal R>0 × SO(3)-
bundle with connection θ̄ constructed in the previous subsection. In this subsection, we
define a canonical family of almost hypercomplex structures on M̂ and consider their inte-
grability.

Set e0 := 1 ∈ R (� T1R
>0) and Zc

0 := c ẽ0 for a nonzero real number c. We denote the
horizontal lifts relative to the connections θ̄, θ, θ0 by ( · )h̄, ( · )h, ( · )h0 , respectively. An
almost hypercomplex structure (Î θ̄,c1 , Î

θ̄,c
2 , Î

θ̄,c
3 ) on M̂ is defined by

Î θ̄,cα Zc
0 = −Zα, Î θ̄,cα Zα = Zc

0, Î θ̄,cα Zβ = Zγ, Î θ̄,cα Zγ = −Zβ

and

(Î θ̄,cα )(x,(ρ,s))(X) = (Iα(π̂∗X))h̄
(x,(ρ,s))

for all horizontal vector X at (x, (ρ, s)) ∈ M̂, where s = (I1, I2, I3). Note that the triple
(Î θ̄,c1 , Î

θ̄,c
2 , Î

θ̄,c
3 ) depends on the connection form θ̄ and c.

Lemma 3.1. For any horizontal lift Xh̄ ∈ ̄(x,(ρ,s)) at (x, (ρ, s)) ∈ M̂, we have (�#)∗Xh̄

= (Xh0
ρ , Xh

s ). In particular, it holds (�#)∗((Î θ̄,cα )(x,(ρ,s))(Xh̄)) = ((IαX)h0
ρ , (IαX)h

s), where s =
(I1, I2, I3). As a consequence, the horizontal lift Xh̄ of a vector field X on M is �#-related to
the vector field (Xh0 , Xh), which is the horizontal lift of (X, X):

(�#)∗Xh̄ = (Xh0 , Xh) ◦ �#.

Proof. (�#)∗Xh̄ and (Xh0 , Xh) are horizontal vectors of S 0 × S , since applying the con-
nection form (θ0 ◦ prTS 0 , θ ◦ prTS ) on both vectors gives zero. On the other hand, applying
(πS 0 × πS )∗ on both vectors gives (X, X) because (πS 0 × πS ) ◦ �# = � ◦ π̂. This proves
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(�#)∗Xh̄ = (Xh0 , Xh) ◦ �#. Now it is easy to obtain (�#)∗((Î θ̄,cα )(x,(ρ,s))(Xh̄)) = ((IαX)h0
ρ , (IαX)h

s)
using that (Î θ̄,cα )(x,(ρ,s))(Xh̄) = (IαX)h̄. �

Lemma 3.2. Let ∇1 and ∇2 = ∇1 + S ξ be quaternionic connections on (M,Q), where
ξ ∈ Γ(T ∗M). We denote the almost hypercomplex structure defined above with respect to ∇i

(i = 1, 2) and c � 0 by Îi,c
α (α = 1, 2, 3). Then we have

Î1,c
α − Î2,c

α = ε

(
1 +

4(n + 1)
c

) (
(π̂∗ξ) ⊗ Zα + ((π̂∗(ξ ◦ Iα)) ⊗ Zc

0

)
at each point (x, (ρ, s)) ∈ M̂, where s = (I1, I2, I3).

Proof. We consider any point (x, (ρ, s)) ∈ M̂, s = (I1, I2, I3), and omit the reference
point in the proof. The corresponding connection forms induced by ∇i are denoted by θ̄i,
θi = (θi1, θ

i
2, θ

i
3), θi0 (i = 1, 2), respectively. The tangent bundle T M̂ is decomposed into

T M̂ = ̄ ⊕ ̄1 = ̄ ⊕ ̄2, where ̄ i = Ker θ̄i. We express any tangent vector X of M̂ as

X = Yh̄i +

3∑
δ=1

ai
δZδ + biZc

0,

where Y ∈ T M. By the definition of Îi,c
α , we see

Îi,c
α (X) = (IαY)h̄i + ai

αZ
c
0 + ai

βZγ − ai
γZβ − biZα.

Since

θ̄1(X) =
3∑
δ=1

a1
δeδ + cb1e0 = θ̄

1(Yh̄2 ) +
3∑
δ=1

a2
δeδ + cb2e0

=

3∑
δ=1

θ1δ(�S Yh̄2 )eδ + θ10(�S 0Y
h̄2 )e0 +

3∑
δ=1

a2
δeδ + cb2e0,

we have b1 = b2 + (1/c)θ10(�S 0Y
h̄2 ) and a1

δ = a2
δ + θ

1
δ(�S Yh̄2 ) (δ = 1, 2, 3). Therefore it holds

Î1,c
α (X) = (IαY)h̄1 + a1

αZ
c
0 + a1

βZγ − a1
γZβ − b1Zα

= (IαY)h̄1 + (a2
α + θ

1
α(�S Yh̄2 ))Zc

0 + (a2
β + θ

1
β(�S Yh̄2 ))Zγ

− (a2
γ + θ

1
γ(�S Yh̄2 ))Zβ − (b2 + (1/c)θ10(�S 0Y

h̄2 ))Zα

= (IαY)h̄1 − (IαY)h̄2 + Î2,c
α (X)

+ θ1α(�S Yh̄2 )Zc
0 + θ

1
β(�S Yh̄2 )Zγ − θ1γ(�S Yh̄2 )Zβ − (1/c)θ10(�S 0Y

h̄2 )Zα.

Let s0 : U → S 0 and s : U → S be local sections defined on an open set U in M. Then
s̄ := (s0, s) ◦ � is a local section of M̂. The pull backs of θi, θi0 to U are denoted by θi,U and
θi,U0 . If we define the one forms θi,Uα by θi,U = s∗θi = (1/2)

∑
(θi,Uα )eα. From Lemma 2.1 and

∇iIα = ε(θi,Uγ ⊗ Iβ − θi,Uβ ⊗ Iγ) (i = 1, 2),

one can check that

θ2,Uδ − θ1,Uδ = −2ε(ξ ◦ Iδ) (δ = 1, 2, 3),(3.2)
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θ2,U0 − θ1,U0 = 4ε(n + 1)ξ.

It is easy to see that

Yh̄1 − Yh̄2 = s̄∗(Y) − v1(s̄∗(Y)) − s̄∗(Y) + v2(s̄∗(Y))

= −
3∑
δ=1

(θ1δ(s∗Y) − θ2δ(s∗Y))Zδ − (1/c)(θ10(s0∗Y) − θ20(s0∗Y))Zc
0

= −1
2

3∑
δ=1

(θ1,Uδ (Y) − θ2,Uδ (Y))Zδ − (1/c)(θ1,U0 (Y) − θ2,U0 (Y))Zc
0

(3.2)
= −ε

3∑
δ=1

ξ(IδY)Zδ +
4ε(n + 1)

c
ξ(Y)Zc

0,(3.3)

where vi : T M̂ → ̄ is the projection with respect to θ̄i (i = 1, 2). Finally we obtain

Î1,c
α (X) − Î2,c

α (X)

= − ε
3∑
δ=1

ξ(IδIαY)Zδ +
4ε(n + 1)

c
ξ(IαY)Zc

0

+ θ1α(�S Yh̄2 )Zc
0 + θ

1
β(�S Yh̄2 )Zγ − θ1γ(�S Yh̄2 )Zβ − (1/c)θ10(�S 0Y

h̄2 )Zα

(∗)
= − ε

3∑
δ=1

ξ(IδIαY)Zδ +
4ε(n + 1)

c
ξ(IαY)Zc

0

+ εξ(IαY)Zc
0 + εξ(IβY)Zγ − εξ(IγY)Zβ +

4ε(n + 1)
c

ξ(Y)Zα

=

(
εξ(Y) +

4(n + 1)ε
c

ξ(Y)
)

Zα +
(
εξ(IαY) +

4(n + 1)ε
c

ξ(IαY)
)

Zc
0,

where in the step (∗) of the calculation we have computed

θ1α(�S Yh̄2 ) = θ1α(Y
h2 ) = θ1α(Y

h2 − Yh1 )
(3.3)
= εξ(IαY)

and similarly for the other terms. �

The following proposition is an immediate consequence of Lemma 3.2, cf. the result with
[21, Proposition 3.3].

Proposition 3.3. The almost hypercomplex structure is independent of the choice of
quaternionic connection if and only if c = −4(n + 1).

Next we investigate transformation properties of the structures Î θ̄,cα (α = 1, 2, 3) under the
principal action.

Lemma 3.4. We have LZ0 Î θ̄,cα = LZα Î
θ̄,c
α = 0, LZα Î

θ̄,c
β = 2εÎ θ̄,cγ and LZα Î

θ̄,c
γ = −2εÎ θ̄,cβ .

Proof. Note first that the principal action generated by the vector fields Za, a = 0, . . . , 3,
preserves the horizontal and vertical distributions. Moreover, the central vector field Z0

commutes with the principal action and thus preserves the three canonical almost complex
structures Î θ̄,cα .

Next we observe that it is easy to check the above equations on the vertical distribution
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by evaluating them on Zc
0, . . . , Z3. So it only remains to check them on the horizontal distri-

bution. Let {φt}t∈R be the flow of Z1. Since

φt((x, (ρ, s))) = (x, (ρ, (I1, (cos 2εt)I2 + (sin 2εt)I3, (− sin 2εt)I2 + (cos 2εt)I3)))

for (x, (ρ, s)) ∈ M̂, where s = (I1, I2, I3) and the horizontal lift of any vector field or tangent
vector of M is invariant under φt, we have

(LZ1 Î θ̄,c2 )(x,(ρ,s))(Yh) = [Z1, Î
θ̄,c
2 Yh](x,(ρ,s))

=
d
dt
φ−1

t∗ ((Î θ̄,c2 Yh)φt((x,(ρ,s))))
∣∣∣∣∣
t=0

=
d
dt
φ−1

t∗ ((cos 2εt)(I2Y)h
φt((x,(ρ,s))) + (sin 2εt)(I3Y)h

φt((x,(ρ,s))))
∣∣∣∣∣
t=0

=
d
dt

(
(cos 2εt)(I2Y)h

(x,(ρ,s)) + (sin 2εt)(I3Y)h
(x,(ρ,s))

)∣∣∣∣∣
t=0

= 2ε(I3Y)h
(x,(ρ,s)) = 2ε(Î θ̄,c3 )(x,(ρ,s))Yh

and similarly LZ1 Î θ̄,c1 = 0, which imply LZ1 Î θ̄,c3 = −2εÎ θ̄,c2 . �

The Nijenhuis tensor for Î θ̄,cα is given by

Nα(U,V) = [U,V] + Î θ̄,cα [Î θ̄,cα U,V] + Î θ̄,cα [U, Î θ̄,cα V] − [Î θ̄,cα U, Î θ̄,cα V]

for U, V ∈ Γ(T M̂). Let Ω̄ (resp. Ω) be the curvature form of θ̄ (resp. θ). Take a local section
s : U → S defined on an open set U of M. The pull back of Ω =

∑3
α=1Ωαeα by s is denoted

by ΩU . Since the curvature form is horizontal, we have

εΩ|s(U) = π
∗
SΩ

U |s(U).(3.4)

If we define the two-forms ΩU
α by ΩU = (1/2)

∑
ΩU
α eα and denote by ∇̄ the connection on

Q induced by ∇, then we have

R∇̄X,Y Iα = [R∇X,Y , Iα] =
[
1
2

∑
ΩU
δ (X, Y)Iδ, Iα

]
= ΩU

γ (X, Y)Iβ −ΩU
β (X, Y)Iγ,

which implies

ΩU
α (X, Y) = − 1

2n
TrIαR∇X,Y(3.5)

for X, Y ∈ T M. In fact, multiplying the equation R∇X,Y ◦ Iα − Iα ◦ R∇X,Y = Ω
U
γ (X, Y)Iβ −

ΩU
β (X, Y)Iγ with Iβ, we obtain

Iβ ◦ R∇X,Y ◦ Iα + Iγ ◦ R∇X,Y = −ΩU
γ (X, Y)id −ΩU

β (X, Y)Iα.

Taking the trace proves (3.5). Let Ric∇ be the Ricci curvature of ∇ and its symmetric
(resp. anti-symmetric) part is denoted by (Ric∇)s (resp. (Ric∇)a). The Nijenhuis tensors
of the canonical almost complex structures on the bundle M̂ over the quaternionic manifold
(M,Q,∇) are computed in the next lemma.

Lemma 3.5. If n > 1 or Q is anti-self-dual provided n = 1, we have

Nα(Zc
0, Zi) = 0 for 1 ≤ i ≤ 3,(3.6)
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Nα(Zi, Zj) = 0 for 1 ≤ i, j ≤ 3,(3.7)

Nα(Zc
0, X

h̄) = 0,(3.8)

Nα(Zi, Xh̄) = 0 for 1 ≤ i ≤ 3,(3.9)

θ̄(Nα(Xh̄,Yh̄)(x,(ρ,s)))(3.10)

=
4ε(n + 1) + εc

2(n + 1)

(
(Ric∇)a(X, Y) − (Ric∇)a(IαX, IαY)

)
e0

− 4ε(n + 1) + εc
2c(n + 1)

(
(Ric∇)a(X, IαY) + (Ric∇)a(IαX, Y)

)
eα and

π̂∗(Nα(Xh̄, Yh̄)) = 0 for X, Y ∈ Γ(T M),(3.11)

where (x, (ρ, s)) ∈ M̂ (s = (I1, I2, I3)).

Proof. We write Îα = Î θ̄,cα for simplicity in the proof of this lemma. It is easy to see
that (3.6–3.9) hold by the definition of the almost hypercomplex structure on M̂ and Lemma
3.4. In fact, for example, we have Nα(Zβ, Zγ) = [Zβ, Zγ] + [Zγ, Zβ] = 0 and Nα(Zβ, Xh̄) =
Îα[Zβ, ÎαXh̄] − [ÎαZβ, ÎαXh̄] = Îα(−2εÎγ)(Xh̄) − 2εÎβ(Xh̄) = 0. The other equations are proved
similarly. Next we show (3.10). It holds (θi◦ Îα)(Zc

0) = −δiα, (θi◦ Îα)(Zα) = cδi0, (θi◦ Îα)(Zβ) =
δiγ, (θi ◦ Îα)(Zγ) = −δiβ. Using this and Lemma 3.1, we have

θ̄(Îα[ÎαXh̄, Yh̄])

=(θ̄ ◦ Îα)(
3∑

i=1

θi(�S [ÎαXh̄, Yh̄])Zi +
1
c
θ0(�S 0 [ÎαX

h̄, Yh̄])Zc
0)

=

3∑
j=0

(
3∑

i=1

θi(�S [ÎαXh̄, Yh̄])(θ j ◦ Îα)(Zi)e j +
1
c
θ0(�S 0 [ÎαX

h̄, Yh̄])(θ j ◦ Îα)(Zc
0)e j)

=

3∑
j=0

(θα(�S [ÎαXh̄, Yh̄])cδ j0e j + θβ(�S [ÎαXh̄, Yh̄])δ jγe j

− θγ(�S [ÎαXh̄, Yh̄])δ jβe j +
1
c
θ0(�S 0 [ÎαX

h̄, Yh̄])(−δ jα)e j)

As a consequence of Lemma 3.1, we have �S 0 [ÎαX
h̄, Yh̄] = [(IαX)h0 , Yh0 ]|�#(M̂) and �S [ÎαXh̄,

Yh̄] = [(IαX)h, Yh]|�#(M̂). By Ω̄ = Ω + dθ0 =
∑3
δ=1Ωδeδ + (dθ0)e0, it holds

θ̄(Îα[ÎαXh̄, Yh̄]) = − cΩα((IαX)h, Yh)e0 −Ωβ((IαX)h, Yh)eγ

+ Ωγ((IαX)h, Yh)eβ +
1
c

dθ0((IαX)h0 , Yh0 )eα.

Defining

Aα(Xh̄, Yh̄) = −Ωβ(�S Xh̄,�S Yh̄) + Ωβ(�S ÎαXh̄,�S ÎαYh̄)

+ Ωγ(�S ÎαXh̄,�S Yh̄) + Ωγ(�S Xh̄,�S ÎαYh̄)

for X, Y ∈ T M, we obtain
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　 θ̄(Nα(Xh̄, Yh̄))

=(−dθ0(Xh0 , Yh0 ) + dθ0((IαX)h0 , (IαY)h0 ) − cΩα(Xh, (IαY)h) − cΩα((IαX)h, Yh)e0

(−Ωα(Xh, Yh) + Ωα((IαX)h, (IαY)h) +
1
c

dθ0((IαX)h0 , Yh0 ) +
1
c

dθ0(Xh0 , (IαY)h0 ))eα

+ Aα(Xh̄, Yh̄)eβ + Aα((IαX)h̄, Yh̄)eγ.

Next we show that the coefficients of e0 and eα can be described by the Ricci tensor of ∇ and
that the other components vanish thanks to the integrability of the almost complex structure
on the twistor space of M [22]. Set

B :=
1

4(n + 1)
(Ric∇)a +

1
4n

(Ric∇)s − 1
2n(n + 2)

Πh(Ric∇)s,(3.12)

where Πh(Ric∇)s is the Q-hermitian (0, 2)-tensor defined by

(Πh(Ric∇)s)(X, Y) =
1
4

⎛⎜⎜⎜⎜⎜⎜⎝(Ric∇)s(X, Y) +
3∑

i=1

(Ric∇)s(IiX, IiY)

⎞⎟⎟⎟⎟⎟⎟⎠
for X, Y ∈ T M. By [5], we have

ΩU
α (X, Y) = 2(B(X, IαY) − B(Y, IαX)).(3.13)

Then it holds

ΩU
α (IαX, Y) + ΩU

α (X, IαY) = − 1
n + 1

(
(Ric∇)a(X, Y) − (Ric∇)a(IαX, IαY)

)
.

Since εdθU0 (X, Y) = TrR∇X,Y = −Ric∇(X, Y)+ Ric∇(Y, X) = −2(Ric∇)a(X, Y) and Ωα(Xh, Yh) =
(1/2)εΩU

α (X, Y) for all tangent vector X, Y on M, to prove (3.10), it is sufficient to check
Aα = 0. This is related to the integrability of the almost complex structure on the twistor
space  of the quaternionic manifold (M,Q) as we explain now. Recall that  = {A ∈ Q |
A2 = −id}. We set

R∇(0,2)I
X,Y :=

1
4

(R∇X,Y + IR∇IX,Y + IR∇X,IY − R∇IX,IY)

for X, Y ∈ T M and I ∈ . Then

[R∇(0,2)I
X,Y , I] = 0(3.14)

for any I ∈  if n > 1. In the case of dim M = 4, (3.14) holds if and only if Q is anti-self-
dual. See [3] for example. By (3.5) and (3.14), we have [R∇(0,2)Iα

X,Y , Iα]Iγ = 0 and thus

0 =2Tr[R∇(0,2)Iα
X,Y , Iα]Iγ

=Tr(−IβR∇X,Y + IβR∇IαX,IαY + IγR∇IαX,Y + IγR∇X,IαY)

=2n(ΩU
β (X, Y) −ΩU

β (IαX, IαY) −ΩU
γ (IαX, Y) −ΩU

γ (X, IαY))

= − 4nεAα(Xh̄, Yh̄)

for all X, Y ∈ T M. This proves that Aα = 0.
Since ∇ is torsion-free, we have (3.11) by the similar calculation for the Nijenhuis tensor

of the almost complex structure on the twistor space. �
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From Lemma 3.5 (and Proposition 3.3) we obtain the following result.

Theorem 3.6. Let (M,Q) be a quaternionic manifold and ∇ a quaternionic connection.
Let (Î θ̄,c1 , Î

θ̄,c
2 , Î

θ̄,c
3 ) be the almost hypercomplex structure on M̂. We assume that Q is anti-self-

dual when n = 1. If c = −4(n+1), then the almost hypercomplex structure is integrable (and
independent of ∇). When c � −4(n + 1), the almost hypercomplex structure is integrable
if and only if (Ric∇)a is Q-hermitian, that is, it is hermitian with respect to I for all I ∈ ,
where  is the twistor space of (M,Q).

We call M̂ the Swann bundle of M, although the terminology “Swann bundle” is also used
for the quotient space M̂/Z with c = −4(n + 1) in [20]. From now on we will only consider
the case that (Î θ̄,c1 , Î

θ̄,c
2 , Î

θ̄,c
3 ) is a hypercomplex structure, i.e. integrable. We note that, for

each fixed quaternionic connection, (Î θ̄,c1 , Î
θ̄,c
2 , Î

θ̄,c
3 ) � (Î θ̄,c

′
1 , Î

θ̄,c′
2 , Î

θ̄,c′
3 ) if c � c′. Although it is

obvious from the definition, we can also see it by considering the Obata connection. From
Lemma 3.4, it follows that ∇̂c

ẽ0
ẽ0 = (1/c)∇̂1

ẽ0
ẽ0, where ∇̂c is the Obata connection for the

hypercomplex structure (Î θ̄,c1 , Î
θ̄,c
2 , Î

θ̄,c
3 ).

4. A quaternionic vector field and its natural lift

4. A quaternionic vector field and its natural lift
A vector field X on (M,Q) is called quaternionic if its (local) flow ϕt satisfies

ϕ∗−t I := ϕt∗ ◦ I ◦ ϕ−1
t∗ ∈ Q

for all I ∈ Q and for all t. For a connection ∇ and X ∈ Γ(T M), we define

(LX∇)YZ := LX(∇YZ) − ∇LXYZ − ∇Y(LXZ),(4.1)

where Y , Z ∈ Γ(T M). Note that LX∇ is a tensor. In this paper, we study (M,Q) with a
quaternionic vector field X which is also affine, that is LX∇ = 0. So we start by studying the
condition LX∇ = 0. We define the Hessian H∇ with respect to ∇ by

H∇Y,ZX = ∇Y∇ZX − ∇∇Y ZX

for X, Y , Z ∈ Γ(T M). By similar arguments as in [4], we have the following.

Lemma 4.1. Let ∇ be a quaternionic connection of (M,Q) and X a quaternionic vector
field. Then the following conditions are equivalent each other.
(1) LX∇ = 0,
(2) R∇X,YZ = −H∇Y,ZX for all Y, Z ∈ T M,
(3) Ric∇(X, Z) = TrH∇( · ),ZX for all Z ∈ T M.

Proof. Since X is a quaternionic vector field, ϕ∗−t∇ is a quaternionic connection with
respect to Q, where ϕ∗−t∇ is the connection defined by

(ϕ∗−t∇)YZ = ϕt∗(∇ϕ−1
t∗ Yϕ

−1
t∗ Z)

for Y , Z ∈ Γ(T M). Therefore there exists a one form ξt such that ϕ∗t∇ − ∇ = S ξt by Lemma
2.1. Then we have

LX∇ = d
dt
ϕ∗t∇

∣∣∣∣∣
t=0
=

d
dt

S ξt
∣∣∣∣∣
t=0
= S ξX ,(4.2)

where ξX = (d/dt)ξt|t=0. On the other hand, by a straightforward calculation, we have
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(LX∇)YZ = R∇X,YZ + H∇Y,ZX for all Y , Z ∈ T M. Therefore, we have

(LX∇)YZ = R∇X,YZ + H∇Y,ZX = S ξXZ Y.

It follows that (1) ⇒ (2). It is also easy to see that (2) ⇒ (3) by taking a trace. Since
TrS ξXZ = 4(n + 1)ξX(Z), we have

−Ric∇(X, Z) + TrH∇( · ),ZX = TrS ξXZ = 4(n + 1)ξX(Z).

If (3) holds, then we have (1). �

We consider the normalizer

N(Q) := {A ∈ End(T M) | [A, I] ∈ Q for all I ∈ Q}
and the centralizer

Z(Q) := {A ∈ End(T M) | [A, I] = 0 for all I ∈ Q}.
Then we see N(Q) = Q+Z(Q) = Q+R · id+Z0(Q), where Z0(Q) is the subspace of Z(Q) of
trace-free tensors [5]. Let ∇ be a quaternionic connection and X a quaternionic vector field.
Since LXIα = ∇XIα + [Iα, (∇X)], ∇X is an element of N(Q). We write ∇X = T + T0, where
T ∈ Γ(Q + R · id) and T0 ∈ Γ(Z0(Q)). Note that, by [5], we have explicitly

∇X = − 1
4n

3∑
α=1

Tr((∇X) ◦ Iα)Iα (∈ Γ(Q))

+
1
4n

(Tr∇X)id (∈ C∞(M)id)

+
1
4

((∇X) −
3∑
α=1

Iα(∇X)Iα) − 1
4n

(Tr∇X)id (∈ Γ(Z0(Q))).

So it holds

T =
1

4n

3∑
α=0

εαTr((∇X) ◦ Iα)Iα,(4.3)

where I0 = id and ε0 = 1, ε1 = ε2 = ε3 = −1.

Proposition 4.2. Let ∇ be a quaternionic connection and X a quaternionic vector field.
Then LX∇ = 0 if and only if 2(Ric∇)a(X, · ) = d(Tr(∇X)).

Proof. By the Bianchi identity, it holds

R∇X,YZ = −R∇Z,XY − R∇Y,ZX

= −R∇Z,XY − H∇Y,ZX + H∇Z,Y X

= −R∇Z,XY − H∇Y,ZX + (∇ZT )(Y) + (∇ZT0)(Y)

for all Y , Z ∈ T M. Then we have −Ric∇(X, Z) = −TrR∇Z,X − TrH∇( · ),ZX + Tr(∇ZT ), since
T0 and ∇ZT0 are trace-free. Therefore, by Lemma 4.1, we see that LX∇ = 0 if and only if
2(Ric∇)a(Z, X) + Tr(∇ZT ) = 0. Finally, because T ∈ Γ(Q + R · id), we obtain Tr(∇ZT ) =
ZTr(∇X) by (4.3). This implies the conclusion. �
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Recall that every Killing vector field is affine with respect to the Levi-Civita connection.
This means that every quaternionic Killing vector field X on a quaternionic Kähler manifold
(M, g,Q) is an example of an affine quaternionic vector field. This can be seen also by
Proposition 4.2.

Corollary 4.3. Let X be a quaternionic vector field on a quaternionic manifold (M,Q).
If there exists a volume element ν on M such that LXν = 0, then there exists a quaternionic
connection ∇ such that LX∇ = 0.

Proof. We can find a quaternionic connection ∇ such that ∇ν = 0 by [5, Theorem 2.4].
Then Ric∇ is symmetric. Because LX = ∇X − (∇X) and LXν = 0, we have Tr(∇X) = 0. Now
the conclusion follows from Proposition 4.2. �
If X is a quaternionic vector field with the flow {ϕt}, then X can be lifted to X̂ on M̂ as

follows. We define ϕ̂t : M̂ → M̂ by

ϕ̂t((x, (ρ, s))) = (ϕt(x), (ϕ∗−tρ, (ϕ
∗
−t I1, ϕ

∗
−t I2, ϕ

∗
−t I3)))

for (x, (ρ, s)) ∈ M̂, where s = (I1, I2, I3) and define

X̂(x,(ρ,s)) =
d
dt
ϕ̂t((x, (ρ, s)))

∣∣∣∣∣
t=0
.

The vector field X̂ on M̂ is called the natural lift of X. Since X̂ is invariant by the principal
R
>0 × SO(3)-action, we have the following.

Lemma 4.4. Let X̂ be the natural lift of a quaternionic vector field X. We have [X̂, B̃] = 0
for B ∈ R ⊕ so(3).

Existence of ν ∈ Γ(S 0) such that LXν = 0 (see Corollary 4.3) is related to the following
condition for X̂.

Lemma 4.5. Let X be a quaternionic vector field X on (M,Q). The following conditions
are equivalent :
(1) there exists ν ∈ Γ(S 0) such that LXν = 0,
(2) there exists a trivialization S 0 � M × R>0 such that X̂p ∈ TsS ⊂ TpM̂ � TsS ⊕ R for all
p = (x, (ρ, s)) ∈ M̂.

Proof. At first, assume that (1) holds. Then ν gives a trivialization S 0 � M × R>0 and
M̂ = S × R>0. We denote the component of X̂ tangent to the second factor by X̂R. For any
point (x, (ρ, s)) ∈ M̂, we see that X̂R(x,(ρ,s)) = 0 ⇐⇒ X̂R(x,(ν(x),s)) = 0 ⇐⇒ (LXν)x = 0 by
Lemma 4.4. Conversely, we can obtain the desired section ν ∈ Γ(S 0) by ν(x) = Φ−1(x, 1) for
each x ∈ M, where Φ : S 0 → M × R>0 is a trivialization satisfying (2). �

If there exists ν ∈ Γ(S 0) such that LXν = 0, we may assume that X̂ is a tangent vector
field on S by Lemma 4.5. From now on we will assume that the quaternionic vector field X
generates a free U(1)-action. Since U(1) is compact, there exists a volume form ν invariant
under the group action. This also implies that there exists a quaternionic connection ∇ such
that LX∇ = 0 by Corollary 4.3.
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5. The hypercomplex moment map

5. The hypercomplex moment map
In this section, we consider a hypercomplex moment map on the Swann bundle. In [14],

a hypercomplex moment map is defined as follows.

Definition 5.1 [14]. Let M be a hypercomplex manifold with hypercomplex structure I1,
I2, I3 and F a compact Lie group acting smoothly and freely on M preserving Ii (i = 1, 2, 3).
F acts on F = Lie F by the adjoint action. A vector field on M induced by f ∈ F is denoted
by Xf . If a triple μ = (μ1, μ2, μ3) of F-equivariant maps μi : M → F∗ (i = 1, 2, 3) satisfies

dμ1 ◦ I1 = dμ2 ◦ I2 = dμ3 ◦ I3(5.1)

and

(dμ1 ◦ I1)(Xf ) does not vanish on M for any non-zero f ∈ F,(5.2)

then μ is called the hypercomplex moment map of F. The equations (5.1) are called the CR
(Cauchy-Riemann) equations and the condition (5.2) is called the transversality condition.

A hypercomplex moment map produces another hypercomplex manifold by a quotient
(Proposition 3.1 in [14]). Let (M,Q) be a quaternionic manifold with a quaternionic con-
nection ∇ and an affine quaternionic vector field X. The following lemmas hold.

Lemma 5.2. If X is an affine quaternionic vector field on (M,Q,∇) and θ̄ is the principal
R
>0 × SO(3)-connection on M̂ induced by ∇, then LX̂ θ̄ = 0 and LX̂ Î θ̄,cα = 0.

Proof. The first equation follows from the fact that ϕ̂t preserves the horizontal distribution,
because ϕ̂t is induced by a local flow ϕt of affine transformations preserving the quaternionic
structure. Since the almost hypercomplex structure (Î θ̄,c1 , Î

θ̄,c
2 , Î

θ̄,c
3 ) is canonically associated

with the data (Q,∇) on M, it is also invariant under ϕ̂t, which implies the second equation.
�

From now on we assume that there exists ν ∈ Γ(S 0) such that LXν = 0. Then we can
identify S 0 = M ×R>0, M̂ = S ×R>0 and X̂ is a tangent vector field on S by Lemma 4.5. In
the next lemma, we identify S with the ϕ̂t-invariant submanifold S × {1} ⊂ M̂ = S × R>0.

Lemma 5.3. Under the above assumption, LX̂θ = 0. Moreover ̄|S =  if and only if
∇ν = 0.

Proof. The projection from R ⊕ so(3) onto R (resp. so(3)) is denoted by prR (resp.
prso(3)). The first statement follows from the previous lemma, since prso(3)θ̄|S = θ. The
second statement follows from prRθ̄|S = (ν ◦ πS )∗θ0, since ∇ν = (ν∗θ0) ⊗ ν. �

For 1 ∈ R � T1R
>0, at ρ ∈ S 0, we have

(ẽ0)ρ = 1̃ρ =
d
dr
ρ exp(εt)

∣∣∣∣∣
t=0
= ερ = εr

∂

∂r

∣∣∣∣∣
ρ
,

where r is the standard coordinate on R>0. Let ∇ be a quaternionic connection on (M,Q).
We define 1-forms θ̂cα on M̂ (α = 1, 2, 3) by

θ̂cα|TS := Ar
2
c θα and θ̂cα(Z

c
0) = 0
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where A ∈ R is a constant. A symmetric tensor 〈θ, θ〉 is defined by

〈θ, θ〉(Y, Z) =
3∑

i=1

θi(Y)θi(Z)

for Y and Z ∈ TS and we set

Gc
α := −Ar

2
cΩα( · , Î θ̄,cα · ) + 2εAr

2
c 〈θ, θ〉 + 2εA

c2 r
2
c−2(dr ⊗ dr).(5.3)

Note that Gc
1|× = Gc

2|× = Gc
3|× , that is, the vertical components of Gc

α are independent
of α.

Lemma 5.4. We have dθ̂cα(Y, Z) = Gc
α(Y, Î

θ̄,c
α Z) for Y, Z ∈ T M̂.

Proof. Put f (r) = Ar
2
c . Then

Gc
α(Y, Z) = − f (r)Ωα(Y, Î θ̄,cα Z) + 2ε f (r)〈θ, θ〉(Y, Z) +

2ε
c2

f (r)
r2 (dr ⊗ dr)(Y, Z)

for Y , Z ∈ T M̂. Since Zc
0 = εcr ∂

∂r , we obtain

dθ̂cα(Z
c
0, Zα) = εcr f ′(r) = εcr · 2A

c
r

2
c−1 = 2ε f (r),

Gc
α(Z

c
0, Î
θ̄,c
α (Zα)) = Gc

α(Z
c
0, Z

c
0) = c2r2 · 2ε

c2

f (r)
r2 = 2ε f (r)

and

Gc
α(Zα, Î

θ̄,c
α (Zc

0)) = −Gc
α(Zα, Zα) = −2ε f (r).

Moreover we have

dθ̂cα(Zβ, Zγ) = −θ̂cα([Zβ, Zγ]) = −2ε f (r)

and

Gc
α(Zβ, Î

θ̂,c
α (Zγ)) = −Gc

α(Zβ, Zβ) = −2ε f (r),

similarly Gc
α(Zγ, Î

θ̄,c
α (Zβ)) = 2ε f (r). Finally, we see

dθ̂cα(Y
h, Zh) = f (r)(dθcα)(Y

h, Zh) = f (r)Ωα(Yh, Zh)

and

Gc
α(Y

h, Î θ̄,cα Zh) = f (r)Ωα(Yh, Zh).

For other combinations of tangent vectors on M̂, both tensors dθ̂α, Gα vanish. �

We define μc : M̂ → R3 by

(5.4) μc(x) = θ̂c(X̂x) = (θ̂c1(X̂x), θ̂c2(X̂x), θ̂c3(X̂x))

for x ∈ M̂. We calculate some formulae which will be used later to determine sufficient
conditions for μc to be a hypercomplex moment map.
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Lemma 5.5. If X is an affine quaternionic vector field on (M,Q,∇), then we have

dμc
α = −ιX̂dθ̂cα.

Proof. By Lemmas 4.4 and 5.3, LX̂θα = 0 and [X̂, Zc
0] = 0. It follows LX̂ θ̂

c
α = 0 and

dμc
α = dιX̂ θ̂

c
α = LX̂ θ̂

c
α − ιX̂dθ̂cα = −ιX̂dθ̂cα. �

For the CR-condition for μc, we have

Lemma 5.6. If X is an affine quaternionic vector field on (M,Q,∇), then we have

(dμc
α ◦ Î θ̄,cα )(Zc

0) = 0,(5.5)

(dμc
1 ◦ Î θ̄,c1 )(B̃) = (dμc

2 ◦ Î θ̄,c2 )(B̃) = (dμc
3 ◦ Î θ̄,c3 )(B̃) for any B ∈ so(3),(5.6)

(dμc
α ◦ Î θ̄,cα )(Y) = −Ar

2
cΩα(X̂, Î θ̂,cα Y),(5.7)

for all horizontal vector Y.

Proof. By Lemmas 5.4 and 5.5, we have dμc
α ◦ Î θ̄,cα = Gc

α(X̂, · ). Then it is easy to see
(dμc
α ◦ Î θ̄,cα )(Zc

0) = Gc
α(X̂, Z

c
0) = 0. Since Gc

1 = Gc
2 = Gc

3 on ̄ × T M̂, we obtain (5.6). Finally
for horizontal vector Y we have (dμc

α ◦ Î θ̄,cα )(Y) = Gc
α(X̂, Y) = −Ar

2
cΩα(X̂, Î θ̄,cα Y). �

For the transversality condition for μc, we state the next lemma, which follows from the
equation dμc

α ◦ Î θ̄,cα = Gc
α(X̂, · ).

Lemma 5.7. We have

(dμc
α ◦ Î θ̄,cα )(X̂) = Gc

α(X̂, X̂) = −Ar
2
cΩα(X̂, Î θ̄,cα X̂) + 2εAr

2
c 〈θ, θ〉(X̂, X̂).

By Lemma 5.6, μc satisfies CR equations (5.1) if and only if

Ω1(X̂, Î θ̄,c1 Y) = Ω2(X̂, Î θ̄,c2 Y) = Ω3(X̂, Î θ̄,c3 Y)

holds for all horizontal vector Y . On the other hand, from the equations (3.12) and (3.13),
Ωα satisfies

2εΩα(Yh, Î θ̄,cα Zh) = ΩU
α (Y, IαZ)(5.8)

=
1

2(n + 1)

(
(Ric∇)a(IαY, IαZ) − (Ric∇)a(Y, Z)

)
− 1

2n

(
(Ric∇)s(IαY, IαZ) + (Ric∇)s(Y, Z)

)
+

2
n(n + 2)

(Πh(Ric∇)s)(Y, Z)

for tangent vectors Y and Z on M. In particular, if Ric∇ is Q-hermitian, thenΩα( · , Î θ̄,cα · ) does
not depend on α. We see that μc satisfies the CR equations (5.1) if Ric∇(X, Y) = Ric∇(IX, IY)
for all Y ∈ T M and I ∈ . Moreover if the vector field X on M is affine quaternionic and μc

satisfies the CR equations, then

Ωα(X̂, Î θ̄,cα X̂)(= Ωβ(X̂, Î θ̄,cβ X̂) = Ωγ(X̂, Î θ̄,cγ X̂)) = − ε

2(n + 2)
(Ric∇)(X, X) ◦ π̂.

The following statements can be obtained for the CR equations and the transversality con-



228 V. Cortés and K. Hasegawa

dition.

Proposition 5.8. Let M be a quaternionic manifold with a quaternionic connection ∇
and X an affine quaternionic vector field on (M,Q,∇). Assume that there exists ν ∈ Γ(S 0)
such that LXν = 0. If

Ric∇(X, Y) = Ric∇(IX, IY)

for all Y ∈ T M, I ∈  and

(Ric∇)(X, X) ◦ π̂ + 4(n + 2)〈θ, θ〉(X̂, X̂)

does not vanish on M̂, then the map μc = Ar
2
c θ(X̂) : M̂ → R3 (A � 0) satisfies the CR

equations and the transversality condition for any c � 0.

Also we have

Corollary 5.9. Let M be a quaternionic manifold with a quaternionic connection ∇ and
X an affine quaternionic vector field on (M,Q,∇). Assume that there exists ν ∈ Γ(S 0) such
that LXν = 0. If Ric∇ is Q-hermitian and

(Ric∇)(X, X) ◦ π̂ + 4(n + 2)〈θ, θ〉(X̂, X̂)

does not vanish on M̂, then the map μc = Ar
2
c θ(X̂) : M̂ → R3 (A � 0) satisfies the CR

equations and the transversality condition for any c � 0.

6. The proof of the main result

6. The proof of the main result
In this section, we give the proof of our main result. Using the hypercomplex quotient

in [14], we can obtain a hypercomplex manifold M′ with certain properties. To show it, the
following lemmas are needed.

Lemma 6.1. We have LB̃θ = −ε[B, θ]. Moreover LZαθα = 0, LZαθβ = 2εθγ and LZαθγ =

−2εθβ.

Proof. We see that (LB̃θ)(C̃) = −θ([B̃, C̃]) = −ε[B,C] = −ε[B, θ(C̃)] and (LB̃θ)(Y
h) =

−θ([B̃, Yh]) = 0(= −[B, θ(Yh)]). For the latter statements, we compute∑
(LZαθi)ei = LZαθ = −ε[eα,

∑
θiei] = −ε[eα, θβeβ] − ε[eα, θγeγ] = −2εθβeγ + 2εθγeβ.

　
�

By Lemma 6.1, we have

Lemma 6.2. It holds that LZα θ̂
c
α = 0, LZα θ̂

c
β = 2εθ̂cγ and LZα θ̂

c
γ = −2εθ̂cβ.

From Lemma 5.3, it holds

Lemma 6.3. If LX∇ = 0, then LX̂dθ̂cα = 0 for α = 1, 2, 3.

We can now prove the main theorems in this paper.

Theorem 6.4. Let (M,Q) be a quaternionic manifold. We assume that Q is anti-self-dual
when n = 1. Moreover assume that U(1) acts freely on M preserving Q. We denote by X the
vector field generating the U(1)-action. If Q admits a quaternionic connection ∇ such that
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LX∇ = 0,

Ric∇(X, Y) = Ric∇(IX, IY)(6.1)

for all Y ∈ T M, I ∈  and

(Ric∇)(X, X) ◦ π̂ + 4(n + 2)〈θ, θ〉(X̂, X̂)(6.2)

does not vanish on M̂, then the natural lift X̂ generates a free U(1)-action with the moment
map μc defined by (5.4), where c = −4(n+1). Then the corresponding hypercomplex quotient
is a hypercomplex manifold (M′,H = (I′1, I

′
2, I
′
3)) with an I′1-holomorphic vector field Z such

that LZI′2 = 2εI′3, LZI′3 = −2εI′2. Moreover the exact 2-forms dθ̂cα on M̂ induce closed
2-forms Θ′α on M′ which satisfy LZΘ

′
1 = 0, LZΘ

′
2 = 2εΘ′3, LZΘ

′
3 = −2εΘ′2.

Proof. Choose c = −4(n + 1). Then M̂ is a hypercomplex manifold by Theorem 3.6.
We can choose a U(1)-invariant volume form ν on M. Then the condition (2) in Lemma
4.5 holds, so X̂ is tangent to S , which means that the results in the previous section can
be applied. Since Proposition 5.8 and the second statement of Lemma 5.2 hold, M′ =
P/U(1) is a hypercomplex manifold with the induced hypercomplex structure I′1, I′2, I′3 by
[14, Proposition 3.1], where P is the level set (μc)−1((1, 0, 0)). Based on the proof of [14,
Proposition 3.1], take V = {v ∈ T P | (dμc

α ◦ Î θ̂,cα )(v) = 0}. Then we see that T P = V ⊕ 〈X̂〉. In
particular, π∗PT M′ � V , where πP : P→ M′ is the quotient map. The vector field Î θ̂,c1 Zc

0 = Z1

is tangent to P, since

Z1μ
c
α|P = (2εδ2αμc

3 − 2εδ3αμc
2)|P

by Lemma 6.2. By Lemma 4.4, Z1 is a projectable vector field, that is, Z := πP∗(Z1) is
a vector field on M′. The vector field Z satisfies (LZI′α)(U) = πP∗((LZ1 Î θ̂,cα )(UP)), where
UP ∈ Γ(V) is any projectable vector field and U = πP∗(UP) is its projection. In fact, this can
be obtained from I′α ◦ πP∗ ◦ prV = πP∗ ◦ prV ◦ Î θ̂,cα , where prV : T M̂|P → V is the projection
with respect to the Î θ̂,cα -invariant decomposition

(T M̂)|P = V ⊕ 〈X̂, Î θ̂,c1 X̂, Î θ̂,c2 X̂, Î θ̂,c3 X̂〉.
Therefore, by Lemmas 3.4 and 4.4, we see that Z is a I′1-holomorphic vector field such that
LZI′2 = 2εI′3 and LZI′3 = −2εI′2. Finally, by Lemma 6.3, we can define 2-forms Θ′1, Θ′2, Θ′3
on M′ by Θ′α(U,W) = (dθ̂cα)(UP,WP) for U = πP∗(UP) and W = πP∗(WP). It is clear that
these forms are closed. Finally we see that these forms satisfy the desired conditions by
Lemma 6.2. �

Remark 6.5. In Theorem 6.4, the same conclusion can be obtained under the assumption
that the action induced by X̂ is free instead of the assumption that the action induced by X
is free.

In the case that Ric∇ is Q-hermitian, we have the following theorem.

Theorem 6.6. Let (M,Q) be a quaternionic manifold. We assume that Q is anti-self-dual
when n = 1. Moreover assume that U(1) acts freely on M preserving Q. We denote by X the
vector field generating the U(1)-action. If Q admits a quaternionic connection ∇ such that
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LX∇ = 0, Ric∇ is Q-hermitian and

(Ric∇)(X, X) ◦ π̂ + 4(n + 2)〈θ, θ〉(X̂, X̂)(6.3)

does not vanish on M̂, then there exists a 1-parameter family {(M′c,Hc = (I′c1 , I
′c
2 , I

′c
3 ))}c�0 of

hypercomplex manifolds with an I′c1 -holomorphic vector field Zc on M′c such that LZc I′c2 =

2εI′c3 , LZc I′c3 = −2εI′c2 . Moreover the exact 2-forms dθ̂cα on M̂ give a 1-parameter family
{(Θ′c1 ,Θ′c2 ,Θ′c3 )}c�0 of triplets of closed 2-forms on M′c such that LZcΘ′c1 = 0, LZcΘ′c2 = 2εΘ′c3 ,
LZcΘ′c3 = −2εΘ′c2 and

Θ′c1 ( · , I′c1 · ) = Θ′c2 ( · , I′c2 · ) = Θ′c3 ( · , I′c3 · ).(6.4)

Proof. Since Ric∇ is Q-hermitian, the almost hypercomplex structures (Î θ̂,c1 , Î
θ̂,c
2 , Î

θ̂,c
3 ) on M̂

are integrable for all c � 0 by Theorem 3.6. Following the same procedure as in the proof of
Theorem 6.4, we obtain the claims with exception of the equation (6.4). The latter equation
follows from Q-hermitian assumption for Ric∇ using Lemma 5.4 and (5.8). �

The assumption (6.2) is formulated in terms of objects on the Swann bundle M̂. We have
the following corollary under assumptions formulated directly on M.

Corollary 6.7. Let (M,Q) be a quaternionic manifold. We assume that Q is anti-self-dual
when n = 1. Moreover assume that U(1) acts freely on M preserving Q. We denote by X the
vector field generating the U(1)-action. If Q admits a quaternionic connection ∇ such that
LX∇ = 0, Ric∇(X, X) > 0 and (6.1) is satisfied (resp. Ric∇ is Q-hermitian), then we have the
same conclusion as Theorem 6.4 (resp. Theorem 6.6).

We call the correspondence from (M,Q, X) to (M′,H,Z) or to {(M′c,Hc, Zc)}c�0 de-
scribed in Theorems 6.4 and 6.6 the Quaternionic/Hypercomplex-correspondence (Q/H-
correspondence for short).

A relation with Swann’s twist construction. Now we explain how M′ considered just
as a smooth manifold can be related to M by Swann’s twist construction. Consider the
Lie subgroup U(1)Z1 := {g ∈ SO(3) | Adge1 = e1} of SO(3), which can be identified with
U(1). Notice this group is different from the group 〈X̂〉 � U(1) generated by X̂. Then
P = (μc)−1((1, 0, 0)) = (μc)−1(e1) is a principal U(1)Z1 -bundle over π̂(P) with a connection
ι∗P(θ1), where ιP : P→ M̂ is the inclusion map from P. In fact, the calculation

μc(pg) = θ̂(X̂pg) = θ̂(Rg∗X̂p) = Adg−1 θ̂(X̂p) = Adg−1e1 = e1

for p ∈ P and g ∈ U(1)Z1 shows that P is invariant under U(1)Z1 . In particular, P ∩ π̂−1(x)
is a union of circles (U(1)Z1 -orbits). Since the functions θα(X̂)|π̂−1(x) on π̂−1(x) � H∗/{±1}
are linear in the natural coordinates on H � R4 and θ̂α(X̂) = Ar

2
c θα(X̂), we see that the

above intersection P ∩ π̂−1(x) is a single circle. Recall [24] that Swann’s twist construction
produces a new manifold M′ from a manifold M with the following twist data: a vector field
ξ, a two form F and a function a on M. More precisely, ξ generates a U(1)-action, F is
an invariant closed 2-form which is the curvature form of a connection form on a principal
U(1)-bundle, and a is non-vanishing and satisfies da = −ιξF. It was shown in [17] that
the HK/QK-correspondence can be described using the twist construction and a so-called
elementary deformation of the metric.

In the setting of the Q/H-correspondence, let s : U → P, U ⊂ π̂(P) be a local section.
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Then we define a two form F and a function a on π̂(P) by

F := s∗(d(ι∗Pθ1)) = s∗(dθ1) = s∗Ω1,

a := s∗(θ1(X̂) ◦ ιP)) = θ1(X̂) ◦ s,= s∗(θ1(X̂)).

Note that both F and a are independent of the choice of s. Then we have

Proposition 6.8. As a smooth manifold, M′ obtained by the Q/H-correspondence is a
twist of π̂(P) in the sense of [24] with the twist data (ξ = X, F, a) as above.

Proof. Since LX∇ = 0, we have

da = s∗(dιX̂θ1) = −s∗(dθ1(X̂, · )) = −Ω1(X̂, s∗( · ))

= −Ω1(Xh, s∗( · )) = −Ω1(s∗(X), s∗( · )) = −F(X, · ).

Also we obtain LXF = (ιXd + dιX)F = −dda = 0. �

Note that the complex structures I′α are not -related to Iα in the sense of [24], because
the invariant subbundle V ⊂ T M̂ does not coincides with  in general.

7. Examples

7. Examples
In this section, we give examples.

QK/HK-correspondence: When M is a possibly indefinite quaternionic Kähler manifold with
non zero scalar curvature, we can take the Levi-Civita connection ∇ as a quaternionic con-
nection and if there exists a non-zero quaternionic Killing vector field X on M, then we can
take X as the affine quaternionic vector field in the Q/H-correspondence. The tensor field
(5.3) gives a (pseudo-)hyper-Kähler metric on M̂ and (6.4) gives a (pseudo-)hyper-Kähler
metric on M′ if X̂ is time-like or space-like (see [1]). Therefore our Q/H-correspondence is
a generalization of the QK/HK-correspondence. The following example is well-known (see
[13, 11, 23] for example).

Example 7.1 The cotangent bundle T ∗CPn as a hyper-Kähler manifold. Consider the
quaternionic (right-)projective space M = HPn with the standard quaternionic structure. We
can choose the Levi-Civita connection ∇ of the standard quaternionic Kähler metric on M
as a quaternionic connection. Then we see the Swann bundle M̂ = (Hn+1\{0})/{±1} → M
as a hypercomplex manifold with the hypercomplex structure (Î θ̄,c1 , Î

θ̄,c
2 , Î

θ̄,c
3 ), where θ̄ is the

principal connection associated with the Levi-Civita connection. Let X be the vector field
on M which generates the U(1)-action on M by quaternionic affine transformations defined
by eiθ · [z0, . . . , zn] := [eiθz0, . . . , eiθzn] for eiθ ∈ U(1) and [z0, . . . , zn] ∈ M. It holds that the
Ricci tensor Ric∇ is Q-hermitian and Ric∇(X, X) > 0. Then we can apply Corollary 6.7.
Note that the action induces the well-known hyper-Kähler moment map on M̂ when c = 1.
The hyper-Kähler metric G1

α = G1
β = G1

γ is given by a constant multiple of the standard
Euclidean flat metric on Hn+1\{0}. Applying the QK/HK-correspondence (which amounts
to taking the hyper-Kähler quotient of M̂ with respect to the vector field X̂) to this example
yields Calabi’s hyper-Kähler structure on T ∗CPn.
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Hypercomplex manifold with the Obata connection: Let (M, (I1, I2, I3)) be a hypercomplex
manifold and ∇ its Obata connection on M. We recall the Obata connection is a canonical
torsion-free connection preserving the hypercomplex structure [18]. In particular, it is a
quaternionic connection with respect to the quaternionic structure Q = 〈I1, I2, I3〉. Assume
that a vector field X with the flow {ϕt}t∈R on M is given, which generates a free action of
U(1) = R/2πZ on M such that

(7.1) LXI1 = 0, LXI2 = 2εI3 and LXI3 = −2εI2.

Then it holds

ϕ∗−t I1 = I1, ϕ
∗
−t I2 = (cos(2εt))I2 + (sin(2εt))I3, ϕ

∗
−t I3 = (− sin(2εt))I2 + (cos(2εt))I3.

This shows that X is a quaternionic vector field for the quaternionic structure Q = 〈I1, I2, I3〉.
Since (ϕ∗−t∇) is the Obata connection for the hypercomplex structure
(ϕ∗−t I1, ϕ

∗−t I2, ϕ
∗−t I3), (ϕ∗−t∇) is again a quaternionic connection for Q. By the explicit ex-

pression of the Obata connection in [5], we have

d
dt

(ϕ∗−t∇) = 0,

and hence ϕ∗−t∇ = ∇ for all t. It follows that LX∇ = 0. Because the Ricci curvature of
the Obata connection is skew symmetric and Q-hermitian by Corollary 1.6 in [5], we can
apply the Q/H-correspondence to (M,Q,∇) obtaining a hypercomplex manifold M′. The
manifolds M and M′ are related as follows.

Proposition 7.2. M is a double covering space of M′.

Proof. The hypercomplex structure is a global section s : M → S

x �→ s(x) = (I1(x), I2(x), I3(x)),

and defines a global trivialization of the principal SO(3)-bundle S . Take a U(1)-invariant
volume form. Since

M̂ = {(x, s(x)g, r) | x ∈ M, g ∈ SO(3), r > 0}
� M × SO(3) × R>0 ⊃ M × SO(3) × {1} � M × SO(3) = S

and (I1, ϕ
∗−t I2, ϕ

∗−t I3) = (I1, I2, I3)gεt = (I1, I2, I3)gεt , where

(7.2) gt =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 0 0
0 cos(2t) − sin(2t)
0 sin(2t) cos(2t)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,
we can write ϕ̂t(x, (I1, I2, I3), r) = (ϕt(x), (I1, I2, I3)gεt, r) and hence X̂s(x) = Xh

s(x) + (̃e1)s(x).
Therefore we see that X̂s(x)gε = Xh

x +
˜(Adg−εe1)s(x)gε , where g ∈ SO(3). Then the moment map

μc : M̂ → so(3)(= R3) on M̂ is given by

μc(p) = Ar
2
c θ(X̂p) = Ar

2
c g−εe1g

ε

at any point p = (x, s(x)gε, r) ∈ M̂. The level set P := (μc)−1(e1) = (μc)−1((1, 0, 0)) is given
by
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{(x, s(x)gε, r) ∈ M̂ | x ∈ M, Ar
2
c g−εe1g

ε = e1}.
Hence we have

(7.3) P = {(x, s(x)gε, A−
c
2 ) ∈ M̂ | x ∈ M, g ∈ U(1)} � M × U(1).

We obtain a hypercomplex manifold M′ = P/〈X̂〉, where 〈X̂〉 � U(1). Define a map k :
M → M′ by k(x) = πP((x, s(x), A−

c
2 )) for each x ∈ M, where πP : P → M′ = P/〈X̂〉 is

the quotient map. Since k−1(y) = π−1
P (y) ∩ (s(M) × {A− c

2 })) consists of exactly two points
for each y ∈ M′ by (7.2), k is a double covering map. By (5.7) in Lemma 5.6, it holds
Vp = {v ∈ TpP | (dμc

α ◦ Î θ̂,cα )(v) = 0} = p. It follows that π∗P(T M′) � |P, where  is the
horizontal subbundle with respect to the Obata connection. Since s∗(Y) = Yh for Y ∈ T M,
we have

k∗(IαY) = πP∗(s∗IαY) = πP∗((IαY)h) = I′α(πP∗(Yh)) = I′α(πP∗s∗Y) = I′α(k∗Y).

Therefore k : M → M′ is a double covering map satisfying k∗ ◦ Iα = I′α ◦ k∗. �

Note that M′ is obtained by the twist data (X, F = 0, a = 1).

Example 7.3. For the Swann bundle M̂ of a quaternionic manifold (M,Q), we see that
Z1 = −Î θ̄,c1 Zc

0 satisfies the conditions required above by Lemma 3.4. So M̂ is a double
covering space of (M̂)′.

Quaternionic Hopf manifold: Consider Hn � R4n as a right-vector space over the quater-
nions. Set M̃ := Hn\{0}. The standard hypercomplex structure H̃ = (Ĩ1, Ĩ2, Ĩ3) on M̃ is
defined by Ĩ1 = Ri, Ĩ2 = Rj, Ĩ3 = −Rk, where Rq is the right-multiplication by q ∈ H. The
hypercomplex structure H̃ gives a global section s : M̃ → S (� M̃ × SO(3)) as in the previ-
ous example. The corresponding quaternionic structure is denoted by Q̃ = 〈Ĩ1, Ĩ2, Ĩ3〉. Let g̃
be the standard flat hyper-Kähler metric on M̃,  ∈ Sp(n)Sp(1) and λ > 1. Then γ := λ
generates a group Γ = 〈γ〉 of homotheties which acts freely and properly discontinuously
on the simply connected manifold (M̃, g̃). We can identify M̃ with R × S 4n−1 by means of
the diffeomorphism v �→ (t, v/‖v‖), where t = log ‖v‖/ log λ. Under this identification, γ
corresponds to the transformation

T : R × S 4n−1 → R × S 4n−1, (t, v) �→ (t + 1,v).(7.4)

The quotient M̃/Γ � (R × S 4n−1)/〈T〉 is diffeomorphic to S 1 × S 4n−1 and inherits a quater-
nionic structure Q and a quaternionic connection ∇, both invariant under the centralizer
GQ := ZGL(n,H)Sp(1)(γ) of γ in GL(n,H)Sp(1). (In particular, if  ∈ Sp(n), then M̃/Γ inherits
a hypercomplex structure H and its Obata connection ∇, both invariant under the central-
izer GH := ZGL(n,H)(γ) of γ in GL(n,H).) In fact, the quaternionic structure Q̃ on M̃ is
GL(n,H)Sp(1)-invariant and induces therefore an almost quaternionic structure Q on M̃/Γ,
since Γ ⊂ GL(n,H)Sp(1). Moreover, the Levi-Civita connection ∇̃ on (M̃, g̃), which coin-
cides with the Obata connection with respect to H̃, is invariant under all homotheties of M̃.
Since Γ acts by homotheties, we see that ∇̃ induces a torsion-free connection ∇ on M̃/Γ,
which preserves Q. This means that Q is a quaternionic structure on M̃/Γ. The group GQ

acts on M̃/Γ preserving the data (Q,∇). If  ∈ Sp(n), then Γ preserves the hypercomplex
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structure H̃ on M̃ and thus induces a hypercomplex structure H and ∇̃ induces the Obata con-
nection ∇ on (M̃/Γ,H). The centralizer GH of γ = λ in GL(n,H) acts on M̃/Γ preserving
(H,∇). We say that (M̃/Γ,Q) (resp. (M̃/Γ,H)) is a quaternionic (resp. hypercomplex) Hopf
manifold. Note that the hypercomplex Hopf manifolds are sometimes called quaternionic
Hopf manifolds (see [19] for example).

Now taking  = Rq for some unit quaternion q � ±1, we have a quaternionic Hopf
manifold M = M̃/Γ. Then we see GQ = GL(n,H)U(1) = R>0 × SL(n,H)U(1), where U(1)
denotes the centralizer of q in Sp(1). Up to an automorphism of Sp(1), we can assume that

U(1) = {eiθ | θ ∈ R}.
We take a subgroup R>0 × Sp(n)U(1) of GQ, which acts on M transitively. The isotropy
subgroup is given by 〈λ〉 × Sp(n − 1)�U(1), where �U(1) is a diagonally embedded subgroup
of Sp(n)U(1) ⊂ Sp(n)Sp(1) which is isomorphic to U(1). This has an expression as

Sp(n − 1)�U(1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
eiθ 0 · · · 0
0
... A
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , eiθ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∣∣∣∣∣∣ A ∈ Sp(n − 1), eiθ ∈ U(1)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
.

As described above, we obtain an invariant quaternionic structure on the homogeneous space

M = (R>0/〈λ〉) × Sp(n)U(1)
Sp(n − 1)�U(1)

.

Remark 7.4. In particular, for n = 1, this yields a left invariant quaternionic structure on
U(1) × Sp(1). For n = 2, we obtain an invariant quaternionic structure on the homogeneous
space

U(1) × Sp(2)U(1)
Sp(1)�U(1)

=
T 2 · Sp(2)

U(2)
.

Note that the homogeneous quaternionic space T 2 · Sp(2)/U(2) has a finite covering of the
form (T 2 × G)/U(2), where G is a compact semisimple Lie group, namely Sp(2). This
presentation is of the form (T k ×G)/U(2) as considered in [15].

Consider the U(1)-action on M̃ defined by the right-multiplication by elements of U(1) (⊂
R
>0 × Sp(n)U(1) ⊂ GQ) : z �→ z · eεit (z ∈ M̃). Then the corresponding vector field X̃

satisfies X̃z = εzi = εĨ1z for z ∈ M̃. Moreover we see that the relations (7.1) in the previous
example hold, that is, LX̃ Ĩ1 = 0, LX̃ Ĩ2 = 2εĨ3, LX̃ Ĩ3 = −2εĨ2. The U(1)-action preserving the
quaternionic structure induces one on M and X̃ induces the vector field X on M generating
the latter U(1)-action on M. Considering the hypercomplex moment map on the Swann
bundle ˆ̃M (resp. M̂) of M̃ (resp. M) and the level set P̃ ⊂ ˆ̃M (resp. P ⊂ M̂) of the
corresponding moment map, we can obtain a hypercomplex manifold M̃′ (resp. M′). In fact,
since Ric∇̃ = 0 (resp. Ric∇ = 0) and ˆ̃X (resp. X̂) is not horizontal, the Q/H-correspondence
can be applied to M̃ (resp. M), cf (6.2).

Now we consider M̃+ := M̃/{±1} and M+ := M/{±1}. The quotient maps by the action
of the group {±1} � Z2 on the manifolds are denoted by π̃+ : M̃ → M̃+ and π+ : M → M+,
respectively. The induced objects on M̃+ and M+ are denoted by the same letter. We obtain
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a hypercomplex isomorphism between M̃′ and M̃+ as follows. Define f̃ : M̃′ → M̃+ by
f̃ (x) = π̃+( ˆ̃π(u)) for any x ∈ M̃′, where ˆ̃π : ˆ̃M → M̃ is the bundle projection and u ∈
π−1

P̃
(x)∩ (s(M̃)× {A− c

2 }). Since π−1
P̃

(x)∩ (s(M̃)× {A− c
2 }) consists of exactly two points of the

form {(±p, H̃, A−
c
2 )} as we observed in the proof of Proposition 7.2, f̃ is well-defined. It is

easy to see

f̃ ◦ πP̃ = π̃+ ◦ ˆ̃π(7.5)

on s(M̃) × {A− c
2 } by the definition of f̃ . Furthermore we have

f̃ ◦ k̃ = π̃+,(7.6)

where k̃ : M̃ → M̃′ is the double covering as in Proposition 7.2 for M̃. In fact, from (7.5), it
follows that f̃ (k̃(x)) = f̃ (πP̃(s(x), A−

c
2 )) = π̃+( ˆ̃π(s(x), A−

c
2 )) = π̃+(x) for all x ∈ M̃.

Lemma 7.5. The map f̃ : M̃′ → M̃+ is an isomorphism of hypercomplex manifolds.

Proof. To prove that f̃ is injective, let x1, x2 ∈ M̃′ such that f̃ (x1) = f̃ (x2). There exists
ya ∈ M̃ such that xa = πP̃(s(ya), A−

c
2 ) (a = 1, 2). Since f̃ (x1) = f̃ (x2) and (7.5), we have

ˆ̃π(s(y1), A−
c
2 ) = ± ˆ̃π(s(y2), A−

c
2 ), that is, y1 = ±y2, or equivalently y1 = ϕ0(y2) or y1 = ϕπ(y2).

Therefore, we see that (s(y1), A−
c
2 ) = (s(ϕδ(y2)), A−

c
2 ), where δ = 0 or π. Then we have

x1 = πP̃(s(y1), A−
c
2 ) = πP̃(s(y2), A−

c
2 ) = x2, which means f̃ is injective. To show that f̃

is surjective, let z ∈ M̃+ and choose y ∈ M̃ such that z = π̃+(y). By (7.6), we obtain
z = π̃+(y) = f̃ (k̃(y)). Hence f̃ is surjective. The lift of v ∈ T M̃′ to  is denoted by vh

′
. By

(I′α)x(v) = πP̃∗u((Î θ̄,cα )u(vh
′
)) = πP̃∗u(((Iα) f̃ (x)( ˆ̃π∗u(vh

′
)))h),

then

f̃∗x((I′α)x(v))
(7.5)
= π̃+∗( ˆ̃π∗u(((Iα) f̃ (x)(( ˆ̃π∗u)(vh

′
)))h))

= (Iα) f̃ (x)(π̃+∗( ˆ̃π∗u(vh
′
)))

(7.5)
= (Iα) f̃ (x)( f̃∗x(v))

at each point x ∈ M̃′, where u ∈ π−1
P̃

(x)∩ (s(M̃)× {A− c
2 }). This shows that the hypercomplex

manifolds M′ and M are isomorphic. �

Set F := f̃ ◦ πP̃ : P̃ → M̃+. Hereafter we will denote the equivalence class with respect
to the action of a group K by [ · ]K .

Lemma 7.6. We have F(γ · y) = λ · F(y) for all y ∈ P̃.

Proof. For any point y = (p, H̃g, A−
c
2 ) (p ∈ M̃ and g ∈ U(1)) of P̃, we have γ · y =

(λpi, H̃gρ(i), A−
c
2 ) by (7.3), where ρ : Sp(1) → SO(3) is the standard double covering.

Therefore we obtain

γ · [y]〈 ˆ̃X〉 = [(λpi, H̃gρ(i), A−
c
2 )]〈 ˆ̃X〉 = [(±λpĝ−1, H̃, A−

c
2 )]〈 ˆ̃X〉,

where ĝ ∈ Sp(1) such that ρ(ĝ) = g. Then it holds

F(γ · y) = f̃ (γ · [y]〈 ˆ̃X〉) = f̃ ([(±λpĝ−1, H̃,A−
c
2 )]〈 ˆ̃X〉) = π̃+(±λpĝ−1) = λ f̃ ([y]〈 ˆ̃X〉) = λF(y)

from (7.5). �
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Note that M′ has an induced {±1}-action, since the lifted action of {±1} to the Swann
bundle ˆ̃M commutes with Γ and U(1). Let π′+ : M′ → M′+ be the quotient map of the action
by {±1} on M′. We can define a map

Φ : M′+(= π′+(M′))→ M̃+/〈λ〉
as follows. Take any x ∈ M′+. Then there exists y ∈ P̃ such that x = π′+(πP([y]Γ)) and
we set Φ(x) := [F(y)]〈λ〉. We shall show that [F(y)]〈λ〉 is independent of the choice of y.
If (x =)π′+(πP([y1]Γ)) = π′+(πP([y2]Γ)), there exist δ ∈ {±1}, g ∈ U(1) and l ∈ Z such that
y1 = δ · g · γl · y2. By Lemma 7.6 and the definitions of f̃ and πP̃, we see

F(y1) = F(δ · g · γl · y2) = λlF(y2),

which implies [F(y1)]〈λ〉 = [F(y2)]〈λ〉. Moreover we have

Lemma 7.7. The map Φ : M′+ → M̃+/〈λ〉 is an isomorphism.

Proof. To prove that Φ is injective, let x1, x2 ∈ M′+ = π′+(M′) such that Φ(x1) = Φ(x2).
There exists y1, y2 ∈ P̃ such that xa = π

′
+(πP([ya]Γ)) (a = 1, 2). Since [F(y1)]〈λ〉 = [F(y2)]〈λ〉,

there exists l ∈ Z such that F(y1) = λl · F(y2) = F(γl · y2). Then we have f̃ (πP̃(y1)) =
f̃ (πP̃(γl · y2)), so there exists g ∈ U(1) such that y1 = g · γl · y2. Therefore we obtain

x1 = π
′
+(πP([y1]Γ)) = π′+(πP([g · γl · y2]Γ)) = π′+(πP([y2]Γ)) = x2.

SoΦ is injective. Next we shall show thatΦ is surjective. Take any z ∈ M̃+/〈λ〉. There exists
y ∈ P̃ such that z = [F(y)]〈λ〉. Setting x = π′+(πP([y]Γ)), we have Φ(x) = z, which means
Φ is surjective. Since the hypercomplex structures are invariant under actions of all groups
U(1) = 〈X̂〉 = 〈 ˆ̃X〉, Γ, 〈λ〉 and {±1} in the argument, Φ is a hypercomplex isomorphism. �

P̃ P

M̃′ M̃ M = M̃/Γ M′ � M̃/〈λ〉

M̃+ M+ = M̃+/Γ M′+ = π
′
+(M′)

M̃+/〈λ〉

�/ Γ

�
�

�
�

�
�

���

πP̃

�
�

�
�

�
�

���

πP

�
�

�
�

�
�

���

f̃

�

s×A−c/2

� k̃
(as in Lemma 7.5)

�/ Γ

	

π̃+

� � � � � � � � ��
Q/H-corresp.

	

π+

	

π′+

�/ Γ

�
�

�
�

�
���

/ 〈λ〉

� � � � � � ��
Q/H-corresp.

�
�

�
�

�
���

Φ

�

Therefore, by Lemma 7.7, the hypercomplex manifold M′+ obtained from M+ by the Q/H-
correspondence is identified with M̃+/〈λ〉. Since M′ is the double covering space of M′+, we
have

M′ � M̃/〈λ〉.
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The centralizer GH of λ is GL(n,H) = R>0 × SL(n,H) and take a subgroup R>0 × Sp(n) of
GH . As we explained, M̃/〈λ〉 can be expressed by the homogeneous space

M̃/〈λ〉 = (R>0/〈λ〉) × Sp(n)
Sp(n − 1)

.

Finally, we summarize the discussion as follows.

Example 7.8. The hypercomplex manifold

M′ = (R>0/〈λ〉) × Sp(n)
Sp(n − 1)

is obtained by the Q/H-correspondence from the quaternionic manifold

M = (R>0/〈λ〉) × Sp(n)U(1)
Sp(n − 1)�U(1)

.

(Note that we are considering the invariant quaternionic (resp. hypercomplex) structure on
M (resp. M′) described above.)

We remark that M′ does not admit any hyper-Kähler structure for topological reasons,
since M′ is diffeomorphic to S 1×S 4n−1. Therefore our Q/H-correspondence yields examples
which can not appear in the QK/HK-correspondence.
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