ON THE MACKEY FORMULAS FOR CYCLOTOMIC HECKE ALGEBRAS AND CATEGORIES \mathcal{O} OF RATIONAL CHEREDNIK ALGEBRAS

Dedicated to Toshiaki Shoji on the occasion of his 70th birthday.
Toshiro KUWABARA, Hyohe MIYACHI and Kentaro WADA

(Received November 2, 2018, revised September 13, 2019)

Abstract

In this paper, we shall establish the Mackey formulas in the following two setups: (i) on the tensor induction and restriction functors on the modules over cyclotomic Hecke algebras (Ariki-Koike algebras) and their standard subalgebras of parabolic subgroups; (ii) on the Bezrukavnikov-Etingof induction and restriction functors [3] among categories \mathcal{O} [11] of rational Cherednik algebras for the complex reflection group of type $G(r, 1, n)$ and their parabolic subgroups.

0. Introduction

The Mackey formula [17], [7, p.273] plays a very important role in representation theory :

$$
\begin{equation*}
\operatorname{Res}_{L} \circ \operatorname{Ind}^{G}(M) \cong \bigoplus_{w \in L \backslash G / H} \operatorname{Ind}^{L} \circ \operatorname{Res}_{L \cap w H w^{-1}}(w \otimes M) \tag{0.0.1}
\end{equation*}
$$

for a finite group G, its subgroups H, L and H-module M. In modular representation theory of finite groups, Green's vertex theory is based on this formula [loc.cit].

In finite reductive groups, Dipper and Fleischmann [9, (1.14) Theorem] established the Mackey formula on the Harish-Chandra induction and restriction for Levi subgroups, and used it as an important base for their modular Harish-Chandra theory. And, also in finite reductive groups, the Mackey formula on the Deligne-Lusztig induction and restriction has a very important implication for the Lusztig conjecture on the characters on these groups which is developed by C. Bonnafé (see [4]). This is an extension of Mackey formula on the Harish-Chandra induction and restriction, although it is at the level of characters. So, the Mackey formula is subject to a subgroup lattice Λ and a family of two kinds of functors $\operatorname{Ind}_{A}^{B}$ and $\operatorname{Res}_{A}^{B}$ labeled by the pairs (A, B) with $A \subset B$ in this lattice Λ.

In this paper we shall report yet another Mackey formula for the case where Λ is a set of parabolic subgroups of a complex reflection group. More precisely, we shall tackle proving the following conjecture:

Conjecture 0.1 (The Mackey formula for \mathcal{O}). For any finite complex reflection group W, and its parabolic subgroups W_{a} and W_{b}, the Mackey formula with respect to the

[^0]Bezrukavnikov-Etingof induction and restriction holds. More precisely, at the level of representation categories, we have the following isomorphism of functors:

$$
{ }^{\mathcal{G}} \operatorname{Res}_{W_{a}}^{W} \circ{ }^{\mathcal{O}} \operatorname{Ind}_{W_{b}}^{W} \cong \bigoplus_{u \in^{a} W^{b}}{ }^{\mathcal{G}} \operatorname{Ind}_{W_{a} \cap u W_{b} u^{-1}}^{W_{a}} \circ u(-) \circ{ }^{\mathcal{G}} \operatorname{Res}_{u^{-1} W_{a} u \cap W_{b}}^{W_{b}},
$$

where ${ }^{a} W^{b}$ is a complete set of double coset representatives of $W_{a} \backslash W / W_{b}$.
Here, ${ }^{\boldsymbol{G}} \operatorname{Res}_{W^{\prime}}^{W}$ (resp. ${ }^{\boldsymbol{G}} \operatorname{Ind} W_{W^{\prime}}^{W}$) is the Bezrukavnikov-Etingof restriction (resp. induction) functor [3] and $u(-)$ is the functor naturally induced by a conjugation (automorphism) by $u \in W$.

We write $W_{n, r}$ for the complex reflection group of type $G(r, 1, n)$ in Shephard-Todd notation. In this paper, we shall study the Mackey formula for the cyclotomic Hecke algebra $\mathscr{H}_{n, r}=\left\langle T_{0}, T_{1}, \ldots, T_{n-1}\right\rangle$ of type $G(r, 1, n)$, also known as the Ariki-Koike algebra (see 3.1 for the precise definition) * and the categories \mathcal{O} of cyclotomic rational Cherednik algebras associated with $W_{n, r}$ (in so-called $t=1$ case) and establish the Mackey formulas in the following two set ups:
(i) Λ is the set of standard parabolic subgroups of $W_{n, r}$ and $\operatorname{Ind}_{A}^{B}$ is the tensor induction functor and $\operatorname{Res}_{A}^{B}$ is the restriction functor between Hecke algebras associated with A and B in Λ.
(ii) Λ is the set of parabolic subgroups of $W_{n, r}$. The induction and restriction are the Bezrukavnikov-Etingof induction ${ }^{\mathcal{G}}$ Ind and restriction ${ }^{9}$ Res [3] respectively among categories \mathcal{O} of cyclotomic rational Cherednik algebras for the complex reflection group $W_{n, r}$ and their parabolic subgroups.
The precise statement of (i) is Theorem 3.12. The precise statement of (ii) is Theorem 4.10, which supports Conjecture 0.1 . The part (i) is given in a characteristic-free manner, even holds over $\mathbb{Z}\left[q, q^{-1}, Q_{1}, \ldots, Q_{r}\right]$, where q, Q_{1}, \ldots, Q_{r} are indeterminate over \mathbb{Z}. On the contrary, the part (ii) heavily depends on the coefficient field \mathbb{C}, due to the use of KZ-functor, Riemann-Hilbert correspondence. In particular, the Mackey formulas for \mathcal{O} do not imply the Mackey formulas for the Ariki-Koike algebras over the field with a positive characteristic. Rather, we use (i) to prove (ii). So, the statement of (i) is stronger than the statement of (ii) in this sense. Also, nowadays, the representation theory of Ariki-Koike algebras is an independent research area (e.g. [1]). So, if one is only interested in Ariki-Koike algebras, one may only read the proof for the statement of (i), which has not been known since the birth of Ariki-Koike algebras. It is well known that Ariki-Koike algebras is very strongly related to affine Hecke algebras of type $G L$ as cyclotomic quotients. Indeed, any finite dimensional indecomposable module over a fixed affine Hecke algebra of type $G L$ is a module for some Ariki-Koike algebra. So, via affine Hecke algebras, our result also goes to the representation theory of p-adic groups. So, we have an application to classical subjects. Next, we make remarks on the subgroup lattice Λ : Let W be a complex reflection group, and let \mathfrak{h} be the reflection \mathbb{C}-representation of W. By a parabolic subgroup of W, we mean a stabilizer, in W, of some point in \mathfrak{y}. We mean by a standard parabolic subgroup of W a special parabolic subgroup $\langle I\rangle$ of W for some subset I of the set of simple reflections.

Very briefly we remark some known results related to the above (i) and (ii): In [15, 2.29], the Mackey formula on the 1-parameter Iwahori-Hecke algebras can be found. In

[^1][23], the Mackey formula on the cyclotomic Hecke algebras for the maximal co-rank 1 cases are treated, namely, it is with respect to two identical subgroups $W_{a}=W_{n-1, r}$ and $W_{b}=W_{n-1, r}$ of $W_{n, r}$. Since in our set up we can take any two standard parabolic subgroups, the part (i) is a strong generalization of her result. In [21, Lemma 2.5], at the level of the Grothendieck group the part (ii) is considered. However, this is a consequence of Mackey's original formula (0.0.1). Indeed, the KZ functor commutes with inductions and restriction in \mathcal{O} and cyclotomic Hecke algebras. So, at the level of Grothendieck groups, the branching rule for (co)standard modules in \mathcal{O} in terms of (co)standard modules is identical with the rule for Specht modules over (tensor products of) Ariki-Koike algebras in terms of Specht modules. And, moreover, at the level of Grothendieck groups, the rule on Ariki-Koike algebras depends only on the choices of parabolic subgroups. Therefore, one may take group algebras of complex reflection groups to detect the rule in question. ${ }^{\dagger}$ In [16, Theorem 2.7.2], they established Mackey formula for the categories \mathcal{O} of rational Cherednik algebras of Coxeter groups.

In the case where W is a finite Coxeter group, to obtain the Mackey formula for corresponding Hecke algebras, we discuss by using reduced expressions of group elements, the distinguished minimal coset representatives and their properties. However, in the case where W is a complex reflection group which is not a Coxeter group, we do not have enough properties for reduced expressions of group elements, and we do not know a good choice of coset representatives. These lacks of theory for complex reflection groups cause difficulty to obtain the Mackey formula for cyclotomic Hecke algebras. In this paper, we give a solution of this problem for complex reflection groups of type $G(r, 1, n)$.

Regarding applications, as in first paragraph, the role of the Mackey formula in rational Cherednik algebras similar to the one in $[9,10]$ is expected. And, as the BezrukavnikovEtingof induction functor sends projective resolutions in \mathcal{O} to projective resolutions, an obvious application is for a study of cohomology groups $\operatorname{Ext}^{\mathcal{O}_{(W)}}\left({ }^{\mathcal{O}} \operatorname{Ind}_{W_{a}}^{W}(M),{ }^{\mathcal{O}} \operatorname{Ind}_{W_{b}}^{W}(N)\right)$ via Eckmann-Shapiro lemma

$$
\begin{align*}
\operatorname{Ext}_{\mathcal{O}(W)}^{i}\left({ }^{\mathcal{O}} \operatorname{Ind}_{W_{a}}^{W}(M)\right. & \left.,{ }^{\mathcal{O}} \operatorname{Ind}_{W_{b}}^{W}(N)\right) \tag{0.1.1}\\
& \cong \bigoplus_{u \in^{a} W^{b}} \operatorname{Ext}_{\mathcal{O}\left(W_{a}\right)}^{i}\left(M,{ }^{\mathcal{O}} \operatorname{Ind}_{W_{a} \cap u W_{b} u^{-1}}^{W_{a}} \circ u(-) \circ{ }^{\mathcal{O}} \operatorname{Res}_{u^{-1} W_{a} u \cap W_{b}}^{W_{b}} N\right)
\end{align*}
$$

Here, $\mathcal{O}\left(W^{\prime}\right)$ is the category \mathcal{O} for a complex reflection group W^{\prime} defined in [11]. Especially, it is useful to study the endomorphism ring of an induced module. When $i=0, W_{a}=W_{b} \neq$ W at (0.1.1), finding a basis of the right hand side of $(0.1 .1)$ is easier than that of the left hand side of (0.1.1). For a parabolic subgroup W_{b} of W with X being finite dimensional simple in $\mathcal{O}\left(W_{b}\right)$, the endomorphism ring $\operatorname{End}_{\mathcal{O}(W)}\left({ }^{\mathcal{O}} \operatorname{Ind}_{W_{b}}^{W}(X)\right)$ is studied in [16]. They call it a generalized Hecke algebra (see [16, Theorem 3.2.4, Definition 3.2.5]). Their strategy is very traditional like [12, 13], Harish-Chandra philosophy, inducing cuspidals and decompose them by the endomorphism rings, but tactics is new, such as geometrical properties of the categories $\mathcal{\mathcal { O }}$. In the case where W is a Coxeter group, they obtained an explicit description of the generalized Hecke algebra. In their argument, Mackey formula has an important role to detect the explicit rank of endomorphism ring of an induced cuspidal module: For

[^2]$i=0, a=b, X=M=N$, on the right hand side of (0.1.1) one may only need to take the sum over $u \in{ }^{b} W^{b} \cap N_{W}\left(W_{b}\right)$ since the restriction of X to \mathcal{O} on any proper parabolic subgroup of W_{b} is zero. We may follow their arguments to calculate the rank of a generalized Hecke algebra for a complex reflection group $W_{n, r}$.

This paper is organized as follows.
In §1, we review some known facts on symmetric groups, and also give a technical result (Lemma 1.3) which shall be used in $\S 2$.

In $\S 2$, we shall determine a complete set of representatives of double cosets $W_{1} \backslash W_{n, r} / W_{2}$ over two standard parabolic subgroups W_{1}, W_{2} of $W_{n, r}$. Throughout this paper, we use a expression of elements of $W_{n, r}$ being along the semidirect product $W_{n, r}=\Xi_{n} \ltimes(\mathbb{Z} / r \mathbb{Z})^{n}$. This expression will be used in $\S 3$ to construct a basis of the cyclotomic Hecke algebra associated with $W_{n, r}$, so called Ariki-Koike basis. This basis is not standard. (By a standard basis, we mean a basis which are labeled by a group W and does not depend on the choice of reduced expressions in terms of a specific set of generator of W.) Our coset representatives are compatible with this expression, and they have a good behavior in the arguments for Hecke algebras. One of important properties of our coset representatives appears in Proposition 2.13. In this proposition, for each our representative u of $W_{1} \backslash W_{n, r} / W_{2}$, we prove that the subgroup $W_{1} \cap u W_{2} u^{-1}$ is a standard parabolic subgroup of $W_{n, r}$. An advantage for taking a not only parabolic but also standard one is that we can find the associated subalgebra in the cyclotomic Hecke algebra. As another important property of our coset representatives, we may construct a slightly new basis $\left\{\widetilde{T}_{w}\right\}$ of the Ariki-Koike algebra by multiplying the Ariki-Koike basis $\left\{T_{w}\right\}$. This basis, a priori, depends on two standard parabolic subgroups W_{1} and W_{2}. We remark that our coset representatives are not the distinguished minimal coset representatives in the case where $r=2$ (i.e. $W_{n, r}$ is Weyl group of type B_{n}). Thus, our representatives are not a generalization of the distinguished minimal coset representatives for finite Coxeter groups.

In §3, we shall establish the Mackey formula for Ariki-Koike algebras (cyclotomic Hecke algebras of type $G(r, 1, n)$) in Theorem 3.12.

In $\S 4$, we discuss the Mackey formula for the categories \mathcal{O} of rational Cherednik algebras associated with parabolic subgroups of $W_{n, r}$. By using lifting argument which has been employed in [16, Theorem 2.7.2] for Coxeter group case, one can lift the Mackey formula for the Hecke algebras to the Mackey formula for the categories \mathcal{O}. The Mackey formula for the categories \mathcal{O} is given in Proposition 4.8 and Theorem 4.10. We remark that although we lack standard basis in the Ariki-Koike algebra, we may make the desired lifting thanks to a good property of our coset representatives.

In Appendix B, we compare known results on the coset representatives in [20] with the ones in $\S 2$ for some special cases (i.e. the case where $\mu=\left(1^{n-l}\right)$ and $v=\left(1^{n-m}\right)$) as a sort of independent interest. We remark that the coset representatives in [20] follows from notion of root systems of type $G(r, 1, n)$. However, in [20], they give the coset representatives only for special cases where $\mu=\left(1^{n-l}\right)$ and $v=\left(1^{n-m}\right)$, and we do not know whether we can obtain the coset representatives by using root systems in general. We also remark that our coset representatives are not generalization of ones in [20] (see Remark B.9). For the reader being only interested in the Mackey formula, he or she can skip this appendix.

1. The symmetric groups

In this section, we review some known results on symmetric groups which follow from the general theory of Coxeter groups (see e.g. [14], [8, Chapter 4]) except (1.2.1) and Lemma 1.3.
1.1. Let \Im_{n} be the symmetric group on n letters. We consider the natural left action of \Im_{n} on $\{1,2, \ldots, n\}$. So, when $x \in \mathbb{S}_{n}$ sends i to j, we denote it by $x(i)=j$. For $i=1,2, \ldots, n-1$, let $s_{i}=(i, i+1)$ be the adjacent transposition. Then $S=\left\{s_{1}, s_{2}, \ldots, s_{n-1}\right\}$ is a set of simple reflections of \mathbb{S}_{n}. For $x \in \mathfrak{\Im}_{n}$, we denote the length of x by $\ell(x)$. We denote the Bruhat order on \mathfrak{S}_{n} by \geq.
For integers $k_{1} \leq k_{2} \in \mathbb{Z}$, we denote the interval $\left\{k_{1}, k_{1}+1, \ldots, k_{2}\right\}$ in \mathbb{Z} by $\left[k_{1}, k_{2}\right]$. For $1 \leq k_{1} \leq k_{2} \leq n$, we denote by $\Im_{\left[k_{1}, k_{2}\right]}$ the subgroup of \Im_{n} generated by $\left\{s_{k_{1}}, s_{k_{1}+1}, \ldots, s_{k_{2}-1}\right\}$, namely $\Im_{\left[k_{1}, k_{2}\right]}$ is the subgroup permuting the set $\left\{k_{1}, k_{1}+1, \ldots, k_{2}\right\}$.

A composition of n is a sequence of non-negative integers $\mu=\left(\mu_{1}, \mu_{2}, \ldots\right)$ such that $\sum_{i} \mu_{i}=n$, and we denote it by $\mu \vDash n$. We also denote $|\mu|=\sum_{i} \mu_{i}$.
For $\mu=\left(\mu_{1}, \mu_{2}, \ldots, \mu_{l}\right) \vDash n$, let \mathbb{S}_{μ} be the standard parabolic subgroup of \mathbb{S}_{n} associated with μ, namely $\mathfrak{\Im}_{\mu}$ is the subgroup of $\mathfrak{\Im}_{n}$ generated by the reflections

$$
S_{\mu}:=S \backslash\left\{s_{j} \mid j=\sum_{i=1}^{k} \mu_{i} \text { for some } k \geq 1\right\} .
$$

We have $\mathfrak{S}_{\mu} \cong \mathfrak{S}_{\mu_{1}} \times \cdots \times \mathfrak{S}_{\mu_{1}}$. For $\mu \vDash n$, put

$$
\begin{aligned}
& \mathfrak{S}^{\mu}=\left\{x \in \mathbb{S}_{n} \mid \ell(x s)>\ell(x) \text { for all } s \in S_{\mu}\right\}, \\
& { }^{\mu} \mathfrak{S}=\left\{x \in \mathbb{S}_{n} \mid \ell(s x)>\ell(x) \text { for all } s \in S_{\mu}\right\},
\end{aligned}
$$

then \Im^{μ} (resp. ${ }^{\mu} \subseteq$) is the set of distinguished coset representatives of the coset $\Im_{n} / \varsigma_{\mu}$ (resp. $\mathfrak{S}_{\mu} \backslash \Im_{n}$). In particular, we have

$$
\begin{align*}
& \ell(x y)=\ell(x)+\ell(y) \text { for } x \in \mathbb{E}^{\mu}, y \in \mathbb{S}_{\mu}, \tag{1.1.1}\\
& \ell(x y)=\ell(x)+\ell(y) \text { for } y \in \mathbb{S}^{\mu}, x \in \mathbb{S}_{\mu} .
\end{align*}
$$

For $\mu, v \vDash n$, put ${ }^{\mu} \mathfrak{G}^{\nu}={ }^{\mu} \mathfrak{G} \cap \mathbb{S}^{\nu}$, then ${ }^{\mu} \mathbb{G}^{\nu}$ is a complete set of representatives of the double cosets $\Im_{\mu} \backslash \varsigma_{n} / \Im_{\nu}$.

For $x \in{ }^{\mu} \mathcal{G}^{\nu}$, let $\tau(x) \vDash n$ be the composition determined by the equation $S_{\tau(x)}=S_{\mu} \cap$ $x S_{\nu} x^{-1}$. Then it is known that $\mathfrak{\Im}_{\mu} \cap x \Im_{\nu} x^{-1}$ is generated by $S_{\tau(x)}$. In particular, we have $\mathfrak{\Im}_{\mu} \cap x \Im_{\nu} x^{-1}=\Im_{\tau(x)}$. By the general theory of Coxeter groups, we see that $w \in \Im_{n}$ is uniquely written as $w=y x z\left(x \in{ }^{\mu} \mathbb{S}^{\nu}, y \in\left(\Im_{\mu}\right)^{\tau(x)}, z \in \mathbb{\Im}_{\nu}\right)$, and we have

$$
\begin{equation*}
\ell(y x z)=\ell(y)+\ell(x)+\ell(z) \quad\left(x \in \mathcal{A}^{\nu}, y \in\left(\mathbb{S}_{\mu}\right)^{\tau(x)}, z \in \mathbb{S}_{\nu}\right) \tag{1.1.2}
\end{equation*}
$$

1.2. The distinguished coset representatives $\mathfrak{\Im}^{\mu}$ (resp. ${ }^{\mu} \mathfrak{\Im}$) is described by a standard combinatorics as follows. For $\mu \vDash n$, the diagram of μ is the set $[\mu]=\left\{(i, j) \in \mathbb{Z}_{\geq 0}^{2} \mid i \geq 1,1 \leq j \leq\right.$ $\left.\mu_{i}\right\}$. Here, we take the English fashion for treating the element of $[\mu]$, for example, we say that there are μ_{i} boxes in the i-th row of $[\mu]$, we also say that $(i, 1)$ is the left most box of the i-th row if $(i, 1) \in[\mu]$, etc. For $\mu \vDash n$, a μ-tableau is a bijection $t:[\mu] \rightarrow\{1,2, \ldots, n\}$. The symmetric group $\mathfrak{\Im}_{n}$ acts on the set of μ-tableaux from left by permuting the entries inside a given tableau, namely, for $x \in \mathfrak{S}_{n}$ and μ-tableau t,

$$
(x \cdot \mathrm{t})(i, j)=x(\mathrm{t}(i, j)) \quad((i, j) \in[\mu])
$$

We say that a μ-tableau t is row-standard if $\mathrm{t}(i, j)<\mathrm{t}(i, j+1)$ for all $(i, j) \in[\mu]$ such that $(i, j+1) \in[\mu]$, namely if the entries in t increase from left to right in each row.

For $\mu \vDash n$, let \dagger^{μ} be the μ-tableau such that the bijection $[\mu] \rightarrow\{1, \ldots, n\}$ is given by

$$
\mathrm{t}^{\mu}(i, j)=\sum_{k=1}^{i-1} \mu_{k}+j \quad((i, j) \in[\mu])
$$

Then, we have

$$
\begin{align*}
\mathbb{S}^{\mu} & =\left\{x \in \mathbb{S}_{n} \mid x \cdot t^{\mu} \text { is row-standard }\right\} \tag{1.2.1}\\
\mu_{\mathbb{S}} & =\left\{x \in \mathbb{S}_{n} \mid x^{-1} \cdot t^{\mu} \text { is row-standard }\right\}
\end{align*}
$$

(see [18, Proposition 3.3]).
For a convenience in later arguments, for $0 \leq l \leq n$ and $\mu \vDash n-l$, we put $(l, \mu)=$ $\left(l, \mu_{1}, \mu_{2}, \ldots\right) \vDash n$. Then, we have the following lemma:

Lemma 1.3. For $x \in{ }^{(l, \mu)} \mathbb{S}^{(m, v)}$ for some $0 \leq l, m \leq n, \mu \vDash n-l, v \vDash n-m$, put

$$
c=\min \{i \geq 0 \mid x(i+1) \neq i+1 \text { or } i=n\} \text { and } k=\min \{c, l, m\} .
$$

Then we have $x \in \mathbb{S}_{[k+1, n]}$ and $[1, l] \cap\{x(1), x(2), \ldots, x(m)\}=[1, k]$.
Proof. If $c \geq \min \{l, m\}$, it is clear. Suppose $c<\min \{l, m\}$ (note that $k=c$ in this case), we have

$$
\begin{equation*}
x(c)=c<c+1<x(c+1)<x(c+2)<\cdots<x(m) \tag{1.3.1}
\end{equation*}
$$

and there exists $b>m$ such that $x(b)=c+1$ since $x \cdot \mathrm{t}^{(m, v)}$ is row-standard by (1.2.1).
If $x(c+1)>l$, then $x \in \mathfrak{S}_{[c+1, n]}$ and $[1, l] \cap\{x(1), \ldots, x(m)\}=[1, c]$ by (1.3.1).
If $x(c+1) \leq l$, we have $c+1<x(c+1) \leq l$. Then we deduce that both $c+1$ and $x(c+1)$ appear in the first row of $\mathrm{t}^{(l, \mu)}$. On the other hand, we have

$$
x^{-1}(c+1)=b>m \geq c+1=x^{-1}(x(c+1))
$$

This contradicts that $x^{-1} \cdot \mathrm{t}^{(l, \mu)}$ is row-standard. Thus this case does not occur.

2. The complex reflection group of type $G(r, 1, n)$

In this section, we study the complex reflection group $W_{n, r}$ of type $G(r, 1, n)$. For standard parabolic subgroups $W_{(l, \mu)}$ and $W_{(m, v)}$ of $W_{n, r}$, we shall find a complete set of representatives of the cosets $W_{n, r} / W_{(l, \mu)}$ and the double cosets $W_{(l, \mu)} \backslash W_{n, r} / W_{(m, v)}$. These representatives will be used in the next section to obtain the Mackey formula for cyclotomic Hecke algebras.
2.1. The complex reflection group of type $G(r, 1, n)$ is the semidirect product $W_{n, r}=\mathfrak{S}_{n} \ltimes$ $(\mathbb{Z} / r \mathbb{Z})^{n}$, where \mathbb{S}_{n} acts on $(\mathbb{Z} / r \mathbb{Z})^{n}$ via the permutation of factors. The group $W_{n, r}$ has a presentation such that $W_{n, r}$ is generated by $s_{0}, s_{1}, \ldots, s_{n-1}$ subject to the defining relations

$$
\begin{aligned}
& s_{0}^{r}=1, s_{i}^{2}=1(1 \leq i \leq n-1) \\
& s_{0} s_{1} s_{0} s_{1}=s_{1} s_{0} s_{1} s_{0}, s_{i} s_{i+1} s_{i}=s_{i+1} s_{i} s_{i+1}(1 \leq i \leq n-2), s_{i} s_{j}=s_{j} s_{i}(|i-j|>1)
\end{aligned}
$$

The relations in the second row are called the braid relations. Put

$$
t_{i}=s_{i-1} s_{i-2} \ldots s_{1} s_{0} s_{1} \ldots s_{i-2} s_{i-1}
$$

for $i=1,2, \ldots, n$. Then $S=\left\{s_{1}, s_{2}, \ldots, s_{n-1}\right\}$ generates \mathbb{S}_{n}, and t_{i} generates $\mathbb{Z} / r \mathbb{Z}$, the i-th factor of $(\mathbb{Z} / r \mathbb{Z})^{n}$. Then we have

$$
W_{n, r}=\left\{x t_{1}^{a_{1}} t_{2}^{a_{2}} \ldots t_{n}^{a_{n}} \mid x \in \mathfrak{\Im}_{n}, a_{1}, a_{2}, \ldots, a_{n} \in[0, r-1]\right\}
$$

From the definitions, we have the following relations

$$
\begin{align*}
& t_{i} t_{j}=t_{j} t_{i} \quad(1 \leq i, j \leq n) \tag{2.1.1}\\
& x t_{i} x^{-1}=t_{x(i)} \quad\left(x \in \mathbb{S}_{n}, 1 \leq i \leq n\right)
\end{align*}
$$

2.2. For $0 \leq l \leq n$ and $\mu \vDash n-l$, let $W_{(l, \mu)}$ be the subgroup of $W_{n, r}$ generated by

$$
X_{(l, \mu)}=\left\{s_{0}, s_{1}, \ldots, s_{n-1}\right\} \backslash\left\{s_{j} \mid j=l+\sum_{i=0}^{k} \mu_{i} \text { for some } k \geq 0\right\}
$$

where we put $\mu_{0}=0$. It is well-known that any parabolic subgroup of $W_{n, r}$ is conjugate to $W_{(l, \mu)}$ for some $0 \leq l \leq n$ and $\mu \vDash n-l$.

Set

$$
S_{(l, \mu)}=X_{(l, \mu)} \cap S, \quad S_{(l)}=\left\{s_{1}, \ldots, s_{l-1}\right\}, \quad S_{\mu}^{[l]}=S_{(l, \mu)} \backslash S_{(l)}
$$

where we put $S_{(l)}=\emptyset$ if $l \leq 1$. We easily see that

- the subgroup generated by $\left\{s_{0}, s_{1}, \ldots, s_{l-1}\right\}$ is $W_{l, r}$, where we put $W_{l, r}=1$ if $l=0$,
- the subgroup generated by $S_{(l, \mu)}$ (resp. $S_{(l)}$) is the parabolic subgroup $\mathbb{S}_{(l, \mu)}$ (resp. $\Im_{(l)}$ of $\Im_{n} \subset W_{n, r}$ associated with (l, μ) (resp. (l)),
- the subgroup generated by $S_{\mu}^{[l]}$ is the parabolic subgroup $\Im_{\mu}^{[l]}$ of $\Im_{[l+1, n]}$ associated with μ.
Note that $\Im_{\mu}^{[l]}$ is contained in the centralizer of $W_{l, r}$, we have

$$
W_{(l, \mu)}=W_{l, r} \times \Im_{\mu}^{[l]} \cong\left(\Im_{l} \ltimes(\mathbb{Z} / r \mathbb{Z})^{l}\right) \times \Im_{\mu},
$$

and

$$
W_{(l, \mu)}=\left\{x t_{1}^{a_{1}} t_{2}^{a_{2}} \ldots t_{l}^{a_{l}} \mid x \in \mathbb{S}_{(l, \mu)}, a_{1}, a_{2}, \ldots, a_{l} \in[0, r-1]\right\}
$$

Set

$$
\begin{aligned}
W^{(l, \mu)} & =\left\{x t_{l+1}^{a_{l+1}} t_{l+2}^{a_{l+2}} \ldots t_{n}^{a_{n}} \mid x \in \mathbb{S}^{(l, \mu)}, a_{l+1}, a_{l+2}, \ldots, a_{n} \in[0, r-1]\right\}, \\
{ }^{(l, \mu)} W & =\left\{t_{n}^{a_{n}} \ldots t_{l+2}^{a_{l+2}} t_{l+1}^{a_{l+1}} x \mid x \in{ }^{(l, \mu)} \mathfrak{S}, a_{l+1}, a_{l+2}, \ldots, a_{n} \in[0, r-1]\right\}
\end{aligned}
$$

Lemma 2.3. The set $W^{(l, \mu)}$ (resp. $\left.{ }^{(l, \mu)} W\right)$ is a complete set of representatives of the coset $W_{n, r} / W_{(l, \mu)}\left(\operatorname{resp} . W_{(l, \mu)} \backslash W_{n, r}\right)$.

Proof. We prove only the claim for $W^{(l, \mu)}$ since the claim for ${ }^{(l, \mu)} W$ is proven in a similar way.

For $w=x t_{1}^{a_{1}} t_{2}^{a_{2}} \ldots t_{n}^{a_{n}} \in W_{n, r}\left(x \in \mathfrak{\Im}_{n}, a_{1}, \ldots, a_{n} \in[0, r-1]\right)$, we can write

$$
x=x_{1} x_{2} \quad\left(x_{1} \in \mathbb{S}^{(l, \mu)}, x_{2} \in \mathfrak{S}_{(l, \mu)}\right) \text { and } x_{2}=y_{1} y_{2} \quad\left(y_{1} \in \mathfrak{S}_{(l)}, y_{2} \in \mathbb{S}_{\mu}^{[l]}\right)
$$

Note that $y_{1} \in \Im_{[1, l]}$ and $y_{2} \in \Im_{[l+1, n]}$, the relations (2.1.1) imply that

$$
\begin{aligned}
w & =x t_{1}^{a_{1}} t_{2}^{a_{2}} \ldots t_{n}^{a_{n}} \\
& =x_{1} y_{1} y_{2} t_{1}^{a_{1}} t_{2}^{a_{2}} \ldots t_{n}^{a_{n}} \\
& =x_{1}\left(t_{y_{1}(1)}^{a_{1}} \ldots t_{y_{1}(l)}^{a_{l}}\right)\left(t_{y_{2}(l+1)}^{a_{l+1}} \ldots t_{y_{2}(n)}^{a_{n}}\right) y_{1} y_{2} \\
& =x_{1}\left(t_{y_{l+1}(l+1)}^{a_{l+1}} \ldots t_{y_{n}(n)}^{a_{n}}\right)\left(t_{y_{1}(1)}^{a_{1}} \ldots t_{y_{1}(l)}^{a_{1}}\right) y_{1} y_{2} \\
& =x_{1}\left(t_{y_{2}(l+1)}^{a_{l+1}} \ldots t_{y_{n}(n)}^{a_{n}}\right) y_{1} y_{2}\left(t_{1}^{a_{1}} \ldots t_{l}^{a_{l}}\right) \\
& =x_{1}\left(t_{y_{2}(l+1)}^{a_{l+1}} \ldots t_{y_{2}(n)}^{a_{n}}\right) x_{2}\left(t_{1}^{a_{1}} \ldots t_{l}^{a_{l}}\right)
\end{aligned}
$$

and we see that $x_{1}\left(t_{y_{2}(l+1)}^{a_{l+1}} \ldots t_{y_{2}(n)}^{a_{n}}\right) \in W^{(l, \mu)}$ and $x_{2}\left(t_{1}^{a_{1}} \ldots t_{l}^{a_{l}}\right) \in W_{(l, \mu)}$. Thus, we have

$$
\begin{equation*}
W_{n, r}=\bigcup_{u \in W^{(l, \mu)}} u W_{(l, \mu)} \tag{2.3.1}
\end{equation*}
$$

On the other hand, note that $\left|W_{n, r}\right|=\left|\Im_{n}\right| r^{n},\left|W_{(l, \mu)}\right|=\left|\Im_{(l, \mu)}\right| r^{l}$ and $\left|W^{(l, \mu)}\right|=\left|\mathbb{S}^{(l, \mu)}\right| r^{n-l}$, and thus

$$
\begin{equation*}
\left[W_{n, r}: W_{(l, \mu)}\right]=\left|W_{n, r}\right| /\left|W_{(l, \mu)}\right|=\left(\left|\Im_{n}\right| /\left|\Im_{(l, \mu)}\right|\right) r^{n-l}=\left|\mathbb{S}^{(l, \mu)}\right| r^{n-l}=\left|W^{(l, \mu)}\right| \tag{2.3.2}
\end{equation*}
$$

Then, (2.3.1) and (2.3.2) imply the desired result for $W^{(l, \mu)}$.

Remark 2.4. In the case where $r=2$, the group $W_{n, 2}$ is the Weyl group of type B_{n}. In this case, $W^{(l, \mu)}$ (resp. ${ }^{(l, \mu)} W$) is not the set of distinguished coset representatives in general. For example, take $l=0$ and $\mu \vDash n$ such that $\mu_{1}>2$. Then $W_{(0, \mu)}$ is generated by S_{μ}. In this case, $s_{1} \in S_{\mu}$, and $t_{2} \in W^{(l, \mu)}$. However, we have $\ell\left(t_{2}\right)=\ell\left(s_{1} s_{0} s_{1}\right)=3$ and $\ell\left(t_{2} s_{1}\right)=\ell\left(s_{1} s_{0}\right)=2$. Thus, t_{2} is not a distinguished coset representative.
2.5. For $x \in{ }^{(l, \mu)} \mathbb{S}^{(m, v)}(0 \leq l, m \leq n, \mu \vDash n-l, v \vDash n-m)$, put

$$
I(x)=[m+1, n] \cap\left\{x^{-1}(l+1), x^{-1}(l+2), \ldots, x^{-1}(n)\right\}
$$

For $x t_{m+1}^{a_{m+1}} \ldots t_{n}^{a_{n}} \in W^{(m, v)}\left(x \in \mathbb{S}^{(m, v)}\right)$, we have $x t_{m+1}^{a_{m+1}} \ldots t_{n}^{a_{n}}=t_{x(m+1)}^{a_{m+1}} \ldots t_{x(n)}^{a_{n}} x$ by (2.1.1). Thus we deduce that $x t_{m+1}^{a_{m+1}} \ldots t_{n}^{a_{n}} \in{ }^{(l, \mu)} W \cap W^{(m, v)}$ if and only if $x \in{ }^{(l, \mu)} \Im^{(m, v)}$ and $x(k) \in$ $[l+1, n]$ for $k \in[m+1, n]$ whenever $a_{k} \neq 0$. This implies that

$$
{ }^{(l, \mu)} W \cap W^{(m, v)}=\left\{x \prod_{i \in I(x)} t_{i}^{a_{i}} \mid x \in{ }^{(l, \mu)} \mathfrak{S}^{(m, v)}, a_{i} \in[0, r-1]\right\}
$$

For $x \in{ }^{(l, \mu)} \mathfrak{S}^{(m, v)}$, recall that $\tau(x)$ is the composition such that

$$
\begin{equation*}
S_{\tau(x)}=S_{(l, \mu)} \cap x S_{(m, v)} x^{-1} \tag{2.5.1}
\end{equation*}
$$

and we have $\Im_{\tau(x)}=\Im_{(l, \mu)} \cap x \Im_{(m, v)} x^{-1}$.
For $z=x y x^{-1} \in \mathbb{S}_{\tau(x)}\left(z \in \mathbb{S}_{(l, \mu)}, y \in \mathbb{S}_{(m, v)}\right)$, we see that $y(i) \in[m+1, n]$ if $i \in[m+1, n]$ since $y \in \mathfrak{\Im}_{(m, v)}$. We also obtain

$$
y(i) \in\left\{x^{-1}(l+1), \ldots, x^{-1}(n)\right\} \text { if } i \in\left\{x^{-1}(l+1), \ldots, x^{-1}(n)\right\}
$$

since $y x^{-1}(l+j)=x^{-1} z(l+j)$ and $z \in \Im_{(l, \mu)}$. These imply that

$$
\begin{equation*}
y(i) \in I(x) \text { if } i \in I(x) \tag{2.5.2}
\end{equation*}
$$

for $z=x y x^{-1} \in \mathfrak{S}_{\tau(x)}$. For $x \in{ }^{(l, \mu)} \mathfrak{S}^{(m, v)}$, put

$$
{ }^{(l, \mu)} W \cap W^{(m, v)}(x)=\left\{x \prod_{i \in I(x)} t_{i}^{a_{i}} \mid a_{i} \in[0, r-1]\right\}
$$

Then, we have

$$
{ }^{(l, \mu)} W \cap W^{(m, \mu)}=\bigcup_{x \in(l, \mu) \Im^{(m, \nu)}}{ }^{(l, \mu)} W \cap W^{(m, \mu)}(x) .
$$

Thanks to (2.5.2), we can define an action of $\Im_{\tau(x)}$ on ${ }^{(l, \mu)} W \cap W^{(m, v)}(x)$ by

$$
\begin{equation*}
z \odot\left(x \prod_{i \in I(x)} t_{i}^{a_{i}}\right)=x \prod_{i \in I(x)} t_{y(i)}^{a_{i}} \tag{2.5.3}
\end{equation*}
$$

for $z=x y x^{-1} \in \mathcal{S}_{\tau(x)}$. We remark that, for $z=x y x^{-1} \in \mathcal{S}_{\tau(x)}$, we have

$$
\begin{equation*}
z \odot\left(x \prod_{i \in I(x)} t_{i}^{a_{i}}\right)=x \prod_{i \in I(x)} t_{y(i)}^{a_{i}}=z\left(x \prod_{i \in I(x)} t_{i}^{a_{i}}\right) y^{-1} \tag{2.5.4}
\end{equation*}
$$

where $z \in \mathbb{S}_{(l, \mu)}$ and $y \in \mathbb{S}_{(m, v)}$. Thus, for $z \in \mathbb{S}_{\tau(x)}$ and $u \in{ }^{(l, \mu)} W \cap W^{(m, v)}(x)$, the elements u and $z \odot u$ belong to the same $\left(W_{(l, \mu)}, W_{(m, v)}\right)$-double coset.

For $u \in{ }^{(l, \mu)} W \cap W^{(m, \mu)}(x)$, let $O(u)=\left\{z \odot u \mid z \in \Im_{\tau(x)}\right\}$ be the $\Im_{\tau(x)}$-orbit under the action (2.5.3).

For $u=x \prod_{i \in I(x)} t_{i}^{a_{i}} \in{ }^{(l, \mu)} W \cap W^{(m, \mu)}$, set $\mathbf{a}(u)=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in[0, r-1]^{n}$, where we put $a_{i}=0$ if $i \notin I(x)$. Let \geq be the lexicographic order on \mathbb{Z}^{n}. We define a partial order \geq on ${ }^{(l, \mu)} W \cap W^{(m, v)}$ by

$$
\begin{equation*}
u \geq u^{\prime} \Leftrightarrow x=x^{\prime} \text { and } \mathbf{a}(u) \geq \mathbf{a}\left(u^{\prime}\right) \tag{2.5.5}
\end{equation*}
$$

for $u=x \prod_{i \in I(x)} t_{i}^{a_{i}}, u^{\prime}=x^{\prime} \prod_{i \in I\left(x^{\prime}\right)} t_{i}^{a_{i}^{\prime}} \in{ }^{(l, \mu)} W \cap W^{(m, v)}$.
Now we introduce a set ${ }^{(l, \mu)} W^{(m, v)}$ turning out to be a complete set of double coset representatives in Proposition 2.8. It plays a key role to establish the Mackey formula for the Hecke algebra associated with $W_{n, r}$, and it is a main new ingredient in this paper.

Definition 2.6. We define

$$
{ }^{(l, \mu)} W^{(m, v)}=\left\{u \in{ }^{(l, \mu)} W \cap W^{(m, v)} \mid u \text { is minimal in } O(u)\right\} .
$$

From the definition, any element of ${ }^{(l, \mu)} W \cap W^{(m, v)}$ is obtained from ${ }^{(l, \mu)} W^{(m . v)}$ by the action of $\mathfrak{S}_{\tau(x)}$ for $x \in{ }^{(l, \mu)} \mathfrak{S}^{(m, v)}$.

Lemma 2.7. If $v=\left(1^{n-m}\right)$, we have ${ }^{(l, \mu)} W^{(m, v)}={ }^{(l, \mu)} W \cap W^{(m, v)}$.
Proof. For any $z=x y x^{-1} \in \Im_{\tau(x)}\left(x \in{ }^{(l, \mu)} \mathfrak{S}^{(m, v)}\right)$, we have

$$
z \odot\left(x \prod_{i \in I(x)} t_{i}^{a_{i}}\right)=x \prod_{i \in I(x)} t_{y(i)}^{a_{i}}=x \prod_{i \in I(x)} t_{i}^{a_{i}}
$$

since $y \in \mathbb{S}_{(m, v)}$ and $I(x) \subset[m+1, n]$ together with $v=\left(1^{n-m}\right)$. This implies that $O(u)=\{u\}$ for any $u \in{ }^{(l, \mu)} W \cap W^{(m, v)}$, and we have the lemma.

Proposition 2.8. The set ${ }^{(l, \mu)} W^{(m, v)}$ is a complete set of representatives of the double cosets $W_{(l, \mu)} \backslash W_{n, r} / W_{(m, v)}$.

Proof. For $w=x t_{1}^{a_{1}} t_{2}^{a_{2}} \ldots t_{n}^{a_{n}} \in W_{n, r}$ where $x \in \mathbb{G}_{n}$ and $a_{1}, \ldots, a_{n} \in[0, r-1]$, we can write

$$
x=x_{1} x_{2} x_{3} \quad\left(x_{1} \in \Im_{(l, \mu)}, x_{2} \in{ }^{(l, \mu)} \mathbb{S}^{(m, v)}, x_{3} \in \Im_{(m, v)}\right)
$$

The relations (2.1.1) imply that

$$
w=x_{1} x_{2} x_{3} t_{1}^{a_{1}} t_{2}^{a_{2}} \ldots t_{n}^{a_{n}}=x_{1} x_{2}\left(t_{x_{3}(m+1)}^{a_{m+1}} t_{x_{3}(m+2)}^{a_{m+2}} \ldots t_{x_{3}(n)}^{a_{n}}\right) x_{3} t_{1}^{a_{1}} t_{2}^{a_{2}} \ldots t_{m}^{a_{m}}
$$

where we have $\left\{x_{3}(m+1), x_{3}(m+2), \ldots, x_{3}(n)\right\}=[m+1, n]$ since $x_{3} \in \mathbb{S}_{(m, v)}$. Put $I\left(x_{2}\right)^{c}=$ $[m+1, n] \backslash I\left(x_{2}\right)$. Then, we obtain

$$
\begin{align*}
w & =x_{1} x_{2}\left(t_{x_{3}(m+1)}^{a_{m+1}} t_{x_{3}(m+2)}^{a_{m+2}} \ldots t_{x_{3}(n)}^{a_{n}}\right) x_{3} t_{1}^{a_{1}} t_{2}^{a_{2}} \ldots t_{m}^{a_{m}} \tag{2.8.1}\\
& =x_{1} x_{2}\left(\prod_{x_{3}(i) \in I\left(x_{2}\right)^{c}} t_{x_{3}(i)}^{a_{i}}\right)\left(\prod_{x_{3}(i) \in I\left(x_{2}\right)} t_{x_{3}(i)}^{a_{i}}\right) x_{3} t_{1}^{a_{1}} t_{2}^{a_{2}} \ldots t_{m}^{a_{m}} \\
& =\left(x_{1} \prod_{x_{3}(i) \in I\left(x_{2}\right)^{c}} t_{x_{2} x_{3}(i)}^{a_{i}}\right)\left(x_{2} \prod_{x_{3}(i) \in I\left(x_{2}\right)} t_{x_{3}(i)}^{a_{i}}\right)\left(x_{3} t_{1}^{a_{1}} t_{2}^{a_{2}} \ldots t_{m}^{a_{m}}\right)
\end{align*}
$$

and

$$
\begin{equation*}
\left\{x_{2} x_{3}(i) \mid x_{3}(i) \in I\left(x_{2}\right)^{c}, m+1 \leq i \leq n\right\} \subset[1, l] \tag{2.8.2}
\end{equation*}
$$

from the definition of $I\left(x_{2}\right)^{c}$.
Take $z=x_{2} y x_{2}^{-1} \in \mathfrak{\Im}_{\tau\left(x_{2}\right)}$ such that $z \odot\left(x_{2} \prod t_{x_{3}(i)}^{a_{i}}\right)$ is minimal in $O\left(x_{2} \prod t_{x_{3}(i)}^{a_{i}}\right)$, then (2.8.1) and (2.5.4) imply

$$
\begin{align*}
w & =\left(x_{1} \prod_{x_{3}(i) \in I\left(x_{2}\right)^{c}} t_{x_{2} x_{3}(i)}^{a_{i}}\right)\left(x_{2} \prod_{x_{3}(i) \in I\left(x_{2}\right)} t_{x_{3}(i)}^{a_{i}}\right)\left(x_{3} t_{1}^{a_{1}} t_{2}^{a_{2}} \ldots t_{m}^{a_{m}}\right) \tag{2.8.3}\\
& =\left(x_{1} \prod_{x_{3}(i) \in I\left(x_{2}\right)^{c}} t_{x_{2} x_{3}(i)}^{a_{i}} z^{-1}\left(z \odot\left(x_{2} \prod_{x_{3}(i) \in I\left(x_{2}\right)} t_{x_{3}(i)}^{a_{i}}\right)\right) y\left(x_{3} t_{1}^{a_{1}} t_{2}^{a_{2}} \ldots t_{m}^{a_{m}}\right)\right. \\
& =\left(x_{1} z^{-1} \prod_{x_{3}(i) \in I\left(x_{2}\right)^{c}} t_{z x_{2} x_{3}(i)}^{a_{i}}\right)\left(z \odot\left(x_{2} \prod_{x_{3}(i) \in I\left(x_{2}\right)} t_{x_{3}(i)}^{a_{i}}\right)\right)\left(y x_{3} t_{1}^{a_{1}} t_{2}^{a_{2}} \ldots t_{m}^{a_{m}}\right),
\end{align*}
$$

where we have $\left\{z x_{2} x_{3}(i) \mid x_{3}(i) \in I\left(x_{2}\right)^{c}\right\} \subset[1, l]$ by (2.8.2) and $z \in \mathbb{S}_{(l, \mu)}$. From the above argument, we conclude that

$$
\begin{align*}
& z \odot\left(x_{2} \prod_{x_{3}(i) \in I\left(x_{2}\right)} t_{x_{3}(i)}^{a_{i}}\right) \in{ }^{(l, \mu)} W^{(m, v)} \tag{2.8.4}\\
& \left(x_{1} z^{-1} \prod_{x_{3}(i) \in I\left(x_{2}\right)^{c}} t_{z x_{2} x_{3}(i)}^{a_{a_{2}}}\right) \in W_{(l, \mu)} \text { and }\left(y x_{3} t_{1}^{a_{1}} t_{2}^{a_{2}} \ldots t_{m}^{a_{m}}\right) \in W_{(m, v)}
\end{align*}
$$

The equations (2.8.3) and (2.8.4) imply that

$$
\begin{equation*}
W_{n, r}=\bigcup_{u \in(\mathrm{f}, \mu)} W^{(m, v)} \text { } W_{(l, \mu)} u W_{(m, v)} \tag{2.8.5}
\end{equation*}
$$

Finally, we prove that distinct elements of ${ }^{(l, \mu)} W^{(m, v)}$ belong to distinct $\left(W_{(l, \mu)}, W_{(m, v)}\right)$ double cosets.

For $u=x \prod_{i \in I(x)} t_{i}^{a_{i}} \in{ }^{(l, \mu)} W^{(m, v)}$ and $u^{\prime}=x^{\prime} \prod_{i \in I\left(x^{\prime}\right)} t_{i}^{a_{i}^{\prime}} \in{ }^{(l, \mu)} W^{(m, v)}$, suppose that u and u^{\prime} belong to the same $\left(W_{(l, \mu)}, W_{(m, v)}\right)$-double coset, namely $u^{\prime}=w_{1} u w_{2}$ for some $w_{1}=$
$z \prod_{i=1}^{l} t_{i}^{b_{i}} \in W_{(l, \mu)}\left(z \in \Xi_{(l, \mu)}\right)$ and $w_{2}=y \prod_{i=1}^{m} t_{i}^{c_{i}} \in W_{(m, \mu)}\left(y \in \Xi_{(m, \nu)}\right)$. Then we see that

$$
x^{\prime} \prod_{i \in I\left(x^{\prime}\right)} t_{i}^{a_{i}^{\prime}}=\left(z \prod_{i=1}^{l} t_{i}^{b_{i}}\right)\left(x \prod_{i \in I(x)} t_{i}^{a_{i}}\right)\left(y \prod_{i=1}^{m} t_{i}^{c_{i}}\right)=z x y \prod_{i=1}^{l} t_{y^{-1} x^{-1}(i)}^{b_{i}} \prod_{i \in I(x)} t_{y^{-1}(i)}^{a_{i}} \prod_{i=1}^{m} t_{i}^{c_{i}} .
$$

This implies that

$$
\begin{equation*}
x^{\prime}=z x y \text { and } \prod_{i \in I\left(x^{\prime}\right)} t_{i}^{a_{i}^{\prime}}=\prod_{i=1}^{l} t_{y_{i} b_{i}}^{x^{-1}(i)} \prod_{i \in I(x)} t_{y^{-1}(i)}^{a_{i}} \prod_{i=1}^{m} t_{i}^{c_{i}} . \tag{2.8.6}
\end{equation*}
$$

Note that $z \in \Theta_{(l, \mu)}$ and $y \in \mathcal{S}_{(m, v)}$, and thus x and x^{\prime} belong to the same $\left(\Im_{(l, \mu)}, \mathcal{S}_{(m, \nu)}\right)$ double coset. Then we have $x=x^{\prime}$ since $x, x^{\prime} \in{ }^{(l, \mu)} \mathbb{S}^{(m, \mu)}$. We also have $[1, m] \cap I(x)=\emptyset$ and $y^{-1} x^{-1}(i)=x^{-1} z(i) \in[m+1, n] \backslash I(x)$ for $i \in[1, l]$ by $z \in \mathbb{S}_{(l, \mu)}$ and the definition of $I(x)$. Thus (2.8.6) implies that

$$
x^{\prime}=x=z x y, \quad \prod_{i \in I(x)} t_{i}^{a_{i}^{\prime}}=\prod_{i \in I(x)} t_{y^{-1}(i)}^{a_{i}} \text { and } \prod_{i=1}^{l} t_{y^{-1} x^{-1}(i)}^{b_{i}} \prod_{i=1}^{m} t_{i}^{c_{i}}=1,
$$

and we deduce

$$
u^{\prime}=x \prod_{i \in I I(x)} t_{i}^{a_{i}^{\prime}}=x \prod_{i \in I(x)} t_{y^{-1}(i)}^{a_{i}}=z \odot\left(x \prod_{i \in I(x)} t_{i}^{a_{i}}\right)=z \odot u
$$

since $z=x y^{-1} x^{-1} \in \Xi_{\tau(x)}=\Im_{(l, \mu)} \cap x \varsigma_{(m, v)} x^{-1}$. Thus we obtain $u^{\prime} \in O(u)$. On the other hand, both of u and u^{\prime} are minimal in $O(u)$ since $u, u^{\prime} \in{ }^{(l, \mu)} W^{(m, v)}$, and we conclude that $u=u^{\prime}$ since a minimal element in $O(u)$ is unique by the definition.

Lemma 2.9. For $u=x \prod_{i=1}^{n} t_{i}^{a_{i}} \in{ }^{(l, \mu)} W^{(m, v)}\left(a_{i}=0\right.$ if $\left.i \notin I(x)\right)$ and $y \in \mathbb{S}_{(m, v)}$, we have the following.
(i) $u y u^{-1}=x y x^{-1} \prod_{i=1}^{n} t_{x(i)}^{a_{(i)}-a_{i}}$.
(ii) $u t_{j} u^{-1}=t_{x(j)}$ for $j=1,2, \ldots, n$.
(iii) $a_{y(i)}=a_{i}=0$ if $i \in[1, m]$.
(iv) $a_{i}=0$ if $x(i) \leq l$.
(v) $a_{y(i)}=0$ if $x(i) \leq l$ and $x y x^{-1} \in \mathbb{S}_{(l, \mu)}$.

Proof. (i). Note that $u^{-1}=\prod_{i=1}^{n} t_{i}^{-a_{i}} x^{-1}=x^{-1} \prod_{i=1}^{n} t_{x(i)}^{-a_{i}}$, and we obtain

$$
\operatorname{uyu}^{-1}=\left(x \prod_{i=1}^{n} t_{i}^{a_{i}}\right) y\left(x^{-1} \prod_{i=1}^{n} t_{x(i)}^{-a_{i}}\right)=x y x^{-1}\left(\prod_{i=1}^{n} t_{x y^{-1}(i)}^{a_{i}}\right)\left(\prod_{i=1}^{n} t_{x(i)}^{-a_{i}}\right)=x y x^{-1} \prod_{i=1}^{n} t_{x(i)}^{a_{y(i)}-a_{i}} .
$$

(ii). For $j=1,2, \ldots, n$, we have

$$
u t_{j} u^{-1}=\left(x \prod_{i=1}^{n} t_{i}^{a_{i}}\right) t_{j}\left(\prod_{i=1}^{n} t_{i}^{-a_{i}} x^{-1}\right)=x t_{j} x^{-1}=t_{x(j)}
$$

(iii). Note that $y \in \mathbb{S}_{(m, v)}$ and $[1, m] \cap I(x)=\emptyset$, and thus $a_{y(i)}=a_{i}=0$ if $i \in[1, m]$.
(iv). If $a_{i} \neq 0$, we have $i \in I(x)$. Thus, we can write $i=x^{-1}(l+j)$ for some $j \geq 1$. This implies that $x(i)>l$ if $a_{i} \neq 0$.
(v). If $a_{y(i)} \neq 0$, we can write $y(i)=x^{-1}(l+j)$ for some $j \geq 1$. This implies that $x(i)=x y^{-1} x^{-1}(l+j)$. Since $x y^{-1} x^{-1}=\left(x y x^{-1}\right)^{-1} \in \Xi_{(l, \mu)}$, we conclude that $x(i)>l$ if
$a_{y(i)} \neq 0$.
2.10. For $u=x \prod_{i \in I(x)} t_{i}^{a_{i}} \in{ }^{(l, \mu)} W^{(m, v)}$, set

$$
c(u)=\min \{c \geq 0 \mid x(c+1) \neq c+1 \text { or } c=n\} \text { and } k(u)=\min \{c(u), l, m\}
$$

Define the set of elements

$$
\begin{equation*}
\Gamma(u)=\left(S_{(l, \mu)} \cap\left\{x s_{j} x^{-1} \in x S_{(m, v)} x^{-1} \mid a_{j}=a_{j+1}\right\}\right) \cup\left\{t_{1}, t_{2}, \ldots, t_{k(u)}\right\} \tag{2.10.1}
\end{equation*}
$$

where we put $a_{i}=0$ if $i \notin I(x)$.
By the definition of $I(x)$, we have $1,2, \ldots, k(u) \notin I(x)$ since $k(u) \leq m$, and thus

$$
\begin{equation*}
a_{1}=a_{2}=\cdots=a_{k(u)}=0 \tag{2.10.2}
\end{equation*}
$$

We also see that

$$
\begin{equation*}
s_{j}=x s_{j} x^{-1} \in S_{(l, \mu)} \cap x S_{(m, v)} x^{-1} \text { for } j=1,2, \ldots, k(u)-1 \tag{2.10.3}
\end{equation*}
$$

since $k(u) \leq l, m$ and $x \in \Im_{[k(u)+1, n]}$ by Lemma 1.3.
On the other hand, we have

$$
x s_{j} x^{-1}(k(u))= \begin{cases}x(k(u)+1) & \text { if } j=k(u) \\ k(u)-1 & \text { if } j=k(u)-1 \\ k(u) \text { otherwise } & \end{cases}
$$

for $j=1,2, \ldots, n$ since $x \in \mathbb{S}_{[k(u)+1, n]}$ by Lemma 1.3. This implies that

$$
\begin{equation*}
j=k(u) \text { and } x(k(u)+1)=k(u)+1 \text { if } s_{k(u)}=x s_{j} x^{-1} \tag{2.10.4}
\end{equation*}
$$

By (2.10.2), (2.10.3) and (2.10.4), we obtain that

$$
\begin{equation*}
\left\{s_{1}, s_{2}, \ldots, s_{k(u)-1}\right\} \subset \Gamma(u) \text { and } s_{k(u)} \notin \Gamma(u) \tag{2.10.5}
\end{equation*}
$$

where we note that $s_{m} \notin S_{(m, v)}, s_{l} \notin S_{(l, \mu)}$ and $x(c(u)+1) \neq c(u)+1$.
We define a composition $\pi(u)$ of $n-k(u)$ by

$$
\begin{equation*}
S_{(k(u), \pi(u))}=\Gamma(u) \cap S \tag{2.10.6}
\end{equation*}
$$

We remark that

$$
\begin{equation*}
\Im_{(k(u), \pi(u))} \subset \Im_{\tau(x)}=\mathfrak{S}_{(l, \mu)} \cap x \Im_{(m, v)} x^{-1} \tag{2.10.7}
\end{equation*}
$$

since $\mathfrak{S}_{\tau(x)}$ is generated by $S_{(l, \mu)} \cap x S_{(m, v)} x^{-1}$ (see (2.5.1)).
Thanks to (2.10.5), the subgroup of $W_{n, r}$ generated by $\Gamma(u)$ coincides with the standard parabolic subgroup $W_{(k(u), \pi(u))} \cong\left(\Im_{k(u)} \ltimes(\mathbb{Z} / r \mathbb{Z})^{k(u)}\right) \times \Im_{\pi(u)}$. We remark that $W_{(k(u), \pi(u))}$ is also a parabolic subgroup of $W_{(l, \mu)}$.
2.11. For $u=x \prod_{i=1}^{n} t_{i}^{a_{i}} \in{ }^{(l, \mu)} W^{(m, v)}$, it is clear that $u^{-1} W_{(k(u), \pi(u))} u$ is generated by $u^{-1} \Gamma(u) u$ as a subgroup of $W_{n, r}$. For $s_{j^{\prime}}=x s_{j} x^{-1} \in \Gamma(u) \cap S$, we have

$$
\begin{equation*}
u^{-1} s_{j^{\prime}} u=x^{-1} s_{j^{\prime}} x \prod_{i=1}^{n} t_{x^{-1}(i)}^{a_{x^{-1}(i)}-a_{x^{-1}}}{ }_{s_{j^{\prime}}(i)}=s_{j} \prod_{i=1}^{n} t_{x^{-1}(i)}^{a_{x^{-1}(i)}-a_{s_{j} x^{-1}(i)}}=s_{j}=x^{-1} s_{j^{\prime}} x, \tag{2.11.1}
\end{equation*}
$$

where we note that $a_{i}=a_{s_{j}(i)}$ for all $i=1,2, \ldots, n$ by $s_{j^{\prime}}=x s_{j} x^{-1} \in \Gamma(u)$. On the other hand, we see that

$$
\begin{equation*}
u^{-1} t_{i} u=t_{i} \text { for } i \in[1, k(u)] \tag{2.11.2}
\end{equation*}
$$

by Lemma 2.9 (ii) and the definition of $k(u)$. As a consequence, we have

$$
\begin{equation*}
u^{-1} \Gamma(u) u=\left(x^{-1} S_{(l, \mu)} x \cap\left\{s_{j} \in S_{(m, v)} \mid a_{j}=a_{j+1}\right\}\right) \cup\left\{t_{1}, t_{2}, \ldots, t_{k(u)}\right\} . \tag{2.11.3}
\end{equation*}
$$

Moreover, we deduce that

$$
\begin{equation*}
j^{\prime}=k(u) \text { and } x^{-1}(k(u)+1)=k(u)+1 \text { if } s_{k(u)}=x^{-1} s_{j^{\prime}} x \tag{2.11.4}
\end{equation*}
$$

in a similar way to (2.10.4). By (2.10.2), (2.10.3) and (2.11.4), we obtain that

$$
\begin{equation*}
\left\{s_{1}, s_{2}, \ldots, s_{k(u)-1}\right\} \subset u^{-1} \Gamma(u) u \text { and } s_{k(u)} \notin u^{-1} \Gamma(u) u, \tag{2.11.5}
\end{equation*}
$$

where we note that $s_{m} \notin S_{(m, v)}, s_{l} \notin S_{(l, \mu)}$ and $x^{-1}(c(u)+1) \neq c(u)+1$.
We define a composition $\pi^{\sharp}(u)$ of $n-k(u)$ by $S_{\left(k(u), \pi^{\sharp}(u)\right)}=u^{-1} \Gamma(u) u \cap S$. Then we conclude that

$$
\begin{equation*}
S_{\left(k(u), \pi^{\pi}(u)\right)}=x^{-1} S_{(k(u), \pi(u))} x \tag{2.11.6}
\end{equation*}
$$

and

$$
\begin{equation*}
u^{-1} W_{(k(u), \pi(u))} u=W_{\left(k(u), \pi^{\sharp}(u)\right)} \cong\left(\Im_{k(u)} \ltimes(\mathbb{Z} / r \mathbb{Z})^{k(u)}\right) \times \mathbb{S}_{\pi^{\sharp}(u)} \tag{2.11.7}
\end{equation*}
$$

by (2.11.3) and (2.11.5). In particular, $u^{-1} W_{(k(u) \pi(u))} u$ is a standard parabolic subgroup of $W_{(m, v)}$. Recall the definition of $X_{(l, \mu)}$, the set of generators of $W_{(l, \mu)}$, from 2.2.

Proposition 2.12. For $u=x \prod_{i \in I(X)} t_{i}^{a_{i}} \in^{(l, \mu)} W^{(m, v)}$, we have $W_{(k(u), \pi(u))}=u W_{\left(k(u) \pi^{\sharp}(u)\right)} u^{-1}$ and $X_{(k(u) \pi(u))}=u X_{\left(k(u) \pi^{*}(u)\right)} u^{-1}$. In particular, for $s_{j} \in X_{(k(u) \pi(u)),}$, there exists $s_{\psi(j)} \in$ $X_{\left(k(u), \pi^{*}(u)\right)}$ such that $s_{j}=u s_{\psi(j)} u^{-1}$.

Moreover, the identity

$$
s_{j}\left(s_{i_{1}} s_{2} \ldots s_{i_{l}} \prod_{i \in I(X)} t_{i}^{a_{i}}\right)=\left(s_{i_{1}} s_{2} \ldots s_{i_{l}} \prod_{i \in I(X)} t_{i}^{a_{i}}\right) s_{\psi(j)} \text { for } s_{j} \in X_{(k(u), \pi(u))}
$$

follows only from the braid relations associated with $W_{n, r}$, where $x=s_{i_{1}} s_{i_{2}} \ldots s_{i_{i}}$ is a reduced expression of $x \in \mathbb{S}_{n}$.

Proof. For $u=x \prod_{i \in I(X)} t_{i}^{a_{i}} \in{ }^{(l, \mu)} W^{(m, v)}$, we have already seen that $W_{(k(u), \pi(u))}=$ $u W_{\left(k(u), \pi^{\sharp}(u)\right)} u^{-1}$ and $X_{(k(u), \pi(u))}=u X_{\left(k(u), \pi^{\sharp}(u)\right)} u^{-1}$. Thus, for $s_{j} \in X_{(k(u), \pi(u))}$, there exists $s_{\psi(j)} \in X_{\left(k(u) \pi^{\sharp}(u)\right)}$ such that $s_{j}=u s_{\psi(j)} u^{-1}$. Let $x=s_{i_{1}} s_{i_{2}} \ldots s_{i l}$ be a reduced expression of $x \in \mathbb{S}_{n}$.

It is easy to check that the relations

$$
\begin{align*}
& s_{i} s_{j}=s_{j} s_{i} \text { if }|i-j|>1, \tag{2.12.1}\\
& t_{i} t_{j}=t_{j} t_{i}(1 \leq i, j \leq n), \\
& s_{i} t_{j}=t_{j} s_{i} \text { if } j \neq i, i+1 \\
& s_{i} t_{i} t_{i+1}=t_{i} t_{i+1} s_{i}
\end{align*}
$$

follow only from the braid relations associated with $W_{n, r}$ by direct calculation.

Note that $x \in \mathbb{S}_{[k(u)+1, n]}$ by Lemma 1.3 and $s_{0}=t_{1}$. So, we have

$$
s_{0}\left(s_{i_{1}} s_{i_{2}} \ldots s_{i_{l}} \prod_{i \in l(x)} t_{i}^{a_{i}}\right)=\left(s_{i_{1}} s_{i_{2}} \ldots s_{i_{i}} \prod_{i \in I(x)} t_{i}^{a_{i}}\right) s_{0}
$$

if $k(u) \neq 0$ and this identity follows only from the braid relations.
For $s_{j} \in X_{(k(u) \pi(u))} \backslash\left\{s_{0}\right\}$, we have $s_{j}=x s_{\psi(j)} x^{-1}$ and $a_{\psi(j)}=a_{\psi(j)+1}$ by (2.11.1). Moreover, we have $\ell\left(s_{j} x\right)=\ell(x)+1=\ell\left(x s_{\psi(j)}\right)$ since $s_{j} \in \mathbb{S}_{(l, \mu)}, s_{\psi(j)} \in \mathbb{S}_{(m, v)}$ (see (2.10.1) and (2.11.3)), and $x \in{ }^{(l, \mu)} \Im^{(m, \nu)}={ }^{(l, \mu)} \subseteq \cap \mathbb{\Im}^{(m, v)}$. Thus, the identity $s_{j}\left(s_{i_{1}} s_{i_{2}} \ldots s_{i_{l}}\right)=$ $\left(s_{i_{1}} s_{i_{2}} \ldots s_{i l}\right) s_{\psi(j)}$ follows only from the braid relations associated with \mathbb{S}_{n} by the general theory of Coxeter groups. So, we conclude that the identity $s_{j}\left(s_{i_{1}} s_{i_{2}} \ldots s_{i_{l}} \prod_{i \in I(X)} t_{i}^{a_{i}}\right)=$ $\left(s_{i_{1}} s_{i_{2}} \ldots s_{i_{l}} \prod_{i \in I(X)} t_{i}^{a_{i}}\right) s_{\psi(j)}$ follows only from the braid relations (by noting that $a_{\psi(j)}=$ $\left.a_{\psi(j)+1}\right)$.

Proposition 2.13. For $u=x \prod_{i \in I(x)} t_{i}^{a_{i}} \in{ }^{(, \mu)} W^{(m, v)}$, the subgroup $W_{(l, \mu)} \cap u W_{(m, v)} u^{-1}$ of $W_{n, r}$ is generated by $\Gamma(u)$. In particular, we have

$$
W_{(l, \mu)} \cap u W_{(m, v)} u^{-1}=W_{(k(u), \pi(u))} \cong\left(\subseteq_{k(u)} \ltimes(\mathbb{Z} / r \mathbb{Z})^{k(u)}\right) \times \Im_{\tau(u)} .
$$

Proof. Put $a_{j}=0$ for $j \notin I(x)$. For $w=y \prod_{i=1}^{m} t_{i}^{b_{i}} \in W_{(m, v)}\left(y \in \mathbb{S}_{(m, v)}\right)$, we have

$$
u w u^{-1}=u y u^{-1} \prod_{i=1}^{m}\left(u t_{i} u^{-1}\right)^{b_{i}}=x y x^{-1}\left(\prod_{i=1}^{n} t_{x(i)}^{a_{y(i)}-a_{i}}\right)\left(\prod_{i=1}^{m} t_{x(i)}^{b_{i}}\right)
$$

by Lemma 2.9 (i) and (ii). Note that

$$
\begin{equation*}
a_{y(i)}=a_{i}=0 \text { for } i \in[1, m] \tag{2.13.1}
\end{equation*}
$$

by Lemma 2.9 (iii), and thus we have

$$
\begin{equation*}
u w u^{-1}=x y x^{-1}\left(\prod_{i=1}^{m} t_{x(i)}^{b_{i}}\right)\left(\prod_{i=m+1}^{n} t_{x(i)}^{a_{y(i)}-a_{i}}\right) \tag{2.13.2}
\end{equation*}
$$

Suppose that $u w u^{-1} \in W_{(l, \mu)}=\left(\Theta_{l} \ltimes(\mathbb{Z} / r \mathbb{Z})^{l}\right) \times \Theta_{\mu}^{[l]}$. Then we deduce

$$
\begin{equation*}
x y x^{-1} \in \mathbb{S}_{(l, \mu)}, \quad a_{y(i)}=a_{i} \text { if } x(i)>l, \quad b_{i}=0 \text { if } x(i)>l \tag{2.13.3}
\end{equation*}
$$

by (2.13.2). Since $x y x^{-1} \in \Im_{(l, \mu)}$, we have

$$
\begin{equation*}
a_{y(i)}=a_{i}=0 \text { if } x(i) \leq l \tag{2.13.4}
\end{equation*}
$$

by Lemma 2.9 (iv) and (v). Moreover, we see that

$$
\begin{equation*}
[1, l] \cap\{x(1), \ldots, x(m)\}=[1, k(u)] \tag{2.13.5}
\end{equation*}
$$

by Lemma 1.3, where $x(i)=i$ for $i \in[1, k(u)]$. As a consequence of (2.13.1), (2.13.2), (2.13.3), (2.13.4) and (2.13.5), we conclude that

$$
\begin{equation*}
x y x^{-1} \in \Xi_{(l, \mu)}, a_{y(i)}=a_{i}(1 \leq i \leq n) \text { and } b_{j}=0(j>k(u)) \tag{2.13.6}
\end{equation*}
$$

if $u w u^{-1} \in W_{(l, \mu)}$. On the other hand, it is clear that $u w u^{-1} \in W_{(l, \mu)}$ if (2.13.6) holds for $w=y \prod_{i=1}^{m} t_{i}^{b_{i}} \in W_{(m, v)}\left(y \in \mathbb{S}_{(m, v)}\right)$. Thus, we may deduce that $W_{(l, \mu)} \cap u W_{(m, v)} u^{-1}$ is generated by

$$
\begin{aligned}
\hat{\Gamma}(u):= & \left(\mathbb{S}_{(l, \mu)} \cap\left\{x y x^{-1} \mid y \in \mathbb{S}_{(m, v)} \text { such that } a_{y(i)}=a_{i}(1 \leq i \leq n)\right\}\right) \\
& \cup\left\{t_{1}, t_{2}, \ldots, t_{k(u)}\right\} .
\end{aligned}
$$

For $z=x y x^{-1} \in \Im_{\tau(x)}=\Im_{(l, \mu)} \cap x \Im_{(m, v)} x^{-1}$, let $y=s_{i_{1}} s_{i_{2}} \ldots s_{i_{p}}$ be a reduced expression. Then, $x s_{i j} x^{-1} \in \Im_{\tau(x)}(j=1,2, \ldots, p)$ since $\Im_{\tau(x)}$ is generated by $S_{(l, \mu)} \cap x S_{(m, v)} x^{-1}$. We claim that

$$
\begin{equation*}
a_{i_{j}}=a_{i_{j+1}}(1 \leq j \leq p) \text { if } a_{y(i)}=a_{i}(1 \leq i \leq n) . \tag{2.13.7}
\end{equation*}
$$

Then (2.13.7) implies that $\hat{\Gamma}(u) \supset \Gamma(u)$, and we easily see that $W_{(l, \mu)} \cap u W_{(m, v)} u^{-1}$ is generated by $\Gamma(u)$.

We shall prove the claim (2.13.7). We have

$$
\begin{equation*}
\left\{i_{1}, i_{2}, \ldots, i_{k}\right\}=\bigcup_{i<y(i)}\{i, i+1, \ldots, y(i)-1\} \cup \bigcup_{i>y(i)}\{y(i), y(i)+1, \ldots, i-1\} . \tag{2.13.8}
\end{equation*}
$$

Suppose that $i<y(i)$ and $a_{y(i)}=a_{i}$. By (2.13.8), we see that $x s_{j} x^{-1} \in \Im_{\tau(x)}(i \leq j<y(i))$, and we obtain

$$
\left(x s_{j} x^{-1}\right) \odot u=x\left(t_{1}^{a_{1}} \ldots t_{j-1}^{a_{j-1}}\right)\left(t_{j}^{a_{j+1}} t_{j+1}^{a_{j}}\right)\left(t_{j+2}^{a_{j+2}} \ldots t_{n}^{a_{n}}\right) \in O(u)
$$

If there exists $j(i \leq j<y(i))$ such that $a_{i} \leq a_{i+1} \leq \cdots \leq a_{j}$ and $a_{j}>a_{j+1}$, we have $\mathbf{a}(u)>\mathbf{a}\left(\left(x s_{j} x^{-1}\right) \odot u\right)$. This is a contradiction since u is minimal in $O(u)$. Thus, we conclude that $a_{i} \leq a_{i+1} \leq \cdots \leq a_{y(i)}$, and $a_{i}=a_{i+1}=\cdots=a_{y(i)}$ by $a_{y(i)}=a_{i}$. Similarly, we have $a_{y(i)}=a_{y(i)+1}=\cdots=a_{i}$ if $i>y(i)$ and $a_{y(i)}=a_{i}$. Then we obtain the desired result (2.13.7).
2.14. For $u \in{ }^{(l, \mu)} W^{(m, v)}$, the group $W_{(k(u), \pi(u))}=W_{(l, \mu)} \cap u W_{(m, v)} u^{-1}$ is a standard parabolic subgroup of $W_{(l, \mu)}$ by Proposition 2.13. Put

$$
\left(W_{l, \mu)}\right)^{(k(u) \pi(u))}=\left\{x t_{k(u)+1}^{a_{k(u+1}+1} a_{k(u)+2}^{a_{k}} \cdots t_{l}^{a_{l}} \mid x \in\left(\mathbb{S}_{(l, \mu)}\right)^{(k(u) \pi(u))}, a_{k(u)+1}, \ldots, a_{l} \in[0, r-1]\right\},
$$

where $\left(\Xi_{(l, \mu)}\right)^{(k(u), \pi(u))}$ is the set of distinguished coset representatives of the cosets $\Im_{(l, \mu)} / \Im_{(k(u), \pi(u))}$. Then $\left(W_{(l, \mu)}\right)^{(k(u) \pi(u))}$ is a complete set of representatives of $W_{(l, \mu \mu} / W_{(k(u), \pi(u))}$ which is proven in a similar way to the proof of Lemma 2.3. We have the following corollary.

Corollary 2.15. For each $u \in{ }^{(l, \mu)} W^{(m, \nu)}$, the multiplication map (in W)

$$
\left(W_{(l, \mu)}\right)^{(k(u) \pi(u))} \times\{u\} \times W_{(m, v)} \rightarrow W_{(l, \mu)} u W_{(m, v)}, \quad\left(w_{1}, u, w_{2}\right) \mapsto w_{1} u w_{2}
$$

is a bijection.
Proof. By definitions, it is clear that the map is surjective. On the other hand, if $w_{1} u w_{2}=$ $w_{1}^{\prime} u w_{2}^{\prime}$ for $w_{1}, w_{1}^{\prime} \in\left(W_{(l, \mu)}\right)^{(k(u) \pi(u))}$ and $w_{2}, w_{2}^{\prime} \in W_{(m, v)}$, we have

$$
w_{1}^{-1} w_{1}^{\prime}=u w_{2} w_{2}^{\prime-1} u^{-1} \in W_{(l, \mu)} \cap u W_{(m, v)} u^{-1}=W_{(k(u), \pi(u))} .
$$

This implies that $w_{1}=w_{1}^{\prime}$ since $w_{1}, w_{1}^{\prime} \in\left(W_{(l, \mu)}\right)^{(k(u), \pi(u))}$. Thus we also have $w_{2}=w_{2}^{\prime}$, and therefore the map is injective.

3. The Mackey formula for cyclotomic Hecke algebras

In this section, we construct various R-free basis of the cyclotomic Hecke algebra $\mathscr{H}_{n, r}$ associated with $W_{n, r}$ which are compatible with the decomposition of $W_{n, r}$ to the cosets $W_{n, r} / W_{(l, \mu)}$ and the double cosets $W_{(l, \mu)} \backslash W_{n, r} / W_{(m, v)}$. Then we establish the Mackey formula for cyclotomic Hecke algebras.
3.1. Let R be a unital commutative ring, and take parameters $q, Q_{1}, Q_{2}, \ldots, Q_{r} \in R$ such that q is invertible in R. The cyclotomic Hecke algebra (Ariki-Koike algebra) $\mathscr{H}_{n, r}=\mathscr{H}\left(W_{n, r}\right)$ associated with $W_{n, r}$ is the associative algebra with 1 over R generated by $T_{0}, T_{1}, \ldots, T_{n-1}$ with the following defining relations:

$$
\begin{align*}
& \left(T_{0}-Q_{1}\right)\left(T_{0}-Q_{2}\right) \ldots\left(T_{0}-Q_{r}\right)=0, \quad\left(T_{i}+1\right)\left(T_{i}-q\right)=0 \quad(1 \leq i \leq n-1) \tag{3.1.1}\\
& T_{0} T_{1} T_{0} T_{1}=T_{1} T_{0} T_{1} T_{0}, \quad T_{i} T_{i+1} T_{i}=T_{i+1} T_{i} T_{i+1} \quad(1 \leq i \leq n-2) \\
& T_{i} T_{j}=T_{j} T_{i} \quad(|i-j|>1)
\end{align*}
$$

The subalgebra of $\mathscr{H}_{n, r}$ generated by $T_{1}, T_{2}, \ldots, T_{n-1}$ is isomorphic to the Iwahori-Hecke algebra $\mathscr{H}\left(\mathfrak{\Im}_{n}\right)$ associated with $\mathfrak{\Im}_{n}$. For $x \in \mathfrak{\Im}_{n}$, put $T_{x}=T_{i_{1}} T_{i_{2}} \ldots T_{i_{l}}$ for a reduced expres$\operatorname{sion} x=s_{i_{1}} s_{i_{2}} \ldots s_{i_{l}}$, and $\left\{T_{x} \mid x \in \mathfrak{\Im}_{n}\right\}$ is an R-free basis of $\mathscr{H}\left(\mathfrak{S}_{n}\right)$.

Set $L_{i}=q^{1-i} T_{i-1} \ldots T_{1} T_{0} T_{1} \ldots T_{i-1}$ for $i=1,2, \ldots, n$. For $w=x t_{1}^{a_{1}} \ldots t_{n}^{a_{n}} \in W_{n, r}$ where $x \in \mathbb{S}_{n}$ and $a_{1}, \ldots, a_{n} \in[0, r-1]$, put $T_{w}=T_{x} L_{1}^{a_{1}} L_{2}^{a_{2}} \ldots L_{n}^{a_{n}}$. Then we have that $\left\{T_{w} \mid w \in\right.$ $W_{n, r}$ is an R-free basis of $\mathscr{H}_{n, r}$ by [2, Theorem 3.10].

For a parabolic subgroup $W_{(l, \mu)}$ of $W_{n, r}$, we define the subalgebra $\mathscr{H}_{(l, \mu)}$ of $\mathscr{H}_{n, r}$ generated by T_{0} (in the case where $l \geq 1$) and T_{x} for $x \in \mathbb{S}_{(l, \mu)}$. It is isomorphic to the cyclotomic Hecke algebra $\mathscr{H}\left(W_{(l, \mu)}\right)$ associated with $W_{(l, \mu)}$. It is easy to see that $\left\{T_{w} \mid w \in W_{(l, \mu)}\right\}$ is an R-free basis of $\mathscr{H}_{(l, \mu)}$.

The following properties are well known, and one can check them by direct calculation using the defining relations.

Lemma 3.2. We have the following.
(i) L_{i} and L_{j} commute with each other for any $1 \leq i, j \leq n$.
(ii) T_{i} and L_{j} commute with each other if $j \neq i, i+1$.
(iii) T_{i} commutes with both $L_{i} L_{i+1}$ and $L_{i}+L_{i+1}$.
(iv) $L_{i+1}^{b} T_{i}=T_{i} L_{i}^{b}+(q-1) \sum_{c=0}^{b-1} L_{i}^{c} L_{i+1}^{b-c}$.
(v) $L_{i}^{b} T_{i}=T_{i} L_{i+1}^{b}-(q-1) \sum_{c=0}^{b-1} L_{i}^{c} L_{i+1}^{b-c}$.

Lemma 3.2 implies the following lemma:
Lemma 3.3. For $k \geq 0, x \in \mathbb{S}_{(k, n-k)}$ and $a_{k+1}, \ldots, a_{n} \in[0, r-1]$, we have

$$
\begin{aligned}
& T_{x}\left(L_{k+1}^{a_{k+1}} L_{k+2}^{a_{k+2}} \ldots L_{n}^{a_{n}}\right) \\
& =\left(L_{x(k+1)}^{a_{k+1}} L_{x(k+2)}^{a_{k+2}} \ldots L_{x(n)}^{a_{n}}\right) T_{x}+\sum_{y<x} \sum_{\left(b_{k+1}, \ldots, b_{n}\right) \in[0, r-1]^{n-k}} r_{y}^{\left(b_{k+1}, \ldots, b_{n}\right)} T_{y}\left(L_{k+1}^{b_{k+1}} L_{k+2}^{b_{k+2}} \ldots L_{n}^{b_{n}}\right)
\end{aligned}
$$

for some $r_{y}^{\left(b_{1}, \ldots, b_{n}\right)} \in R$.
Proof. We shall prove the lemma by the induction on $\ell(x)$. If $\ell(x)=0$, it is clear. Suppose that $\ell(x)>0$. Let $x=s_{i_{1}} s_{i_{2}} \ldots s_{i_{l}}$ be a reduced expression, and put $x^{\prime}=x s_{i_{l}}$. Note that $T_{x}=T_{x^{\prime}} T_{i_{l}}$, and we have

$$
\begin{aligned}
& T_{x}\left(L_{k+1}^{a_{k+1}} L_{k+2}^{a_{k+2}} \ldots L_{n}^{a_{n}}\right)
\end{aligned}
$$

by direct calculation using Lemma 3.2. Applying the assumption of the induction to $T_{x^{\prime}}\left(L_{s_{i l}(k+1)}^{a_{k+1}} L_{s_{i l}(k+2)}^{a_{k+2}} \ldots L_{s_{i_{l}}(n)}^{a_{n}}\right)$, we have the lemma.

Proposition 3.4. For $W_{(l, \mu)}$, a parabolic subgroup of $W_{n, r}$, the elements

$$
\left\{T_{w_{1}} T_{w_{2}} \mid w_{1} \in W^{(l, \mu)}, w_{2} \in W_{(l, \mu)}\right\}
$$

is an R-free basis of $\mathscr{H}_{n, r}$. Moreover $\mathscr{H}_{n, r}$ is a free right $\mathscr{H}_{(l, \mu) \text {-module with an }} \mathscr{H}_{(l, \mu)}$-free $\operatorname{basis}\left\{T_{w} \mid w \in W^{(l, \mu)}\right\}$.

Proof. For $w=x t_{1}^{a_{1}} \ldots t_{n}^{a_{n}} \in W_{n, r}$ with $x \in \mathbb{S}_{n}$, we can write $x=x_{1} x_{2}$ where $x_{1} \in \mathbb{S}^{(l, \mu)}$, $x_{2} \in \mathfrak{S}_{(l, \mu)}$, and $x_{2}=y_{1} y_{2}$ where $y_{1} \in \mathfrak{S}_{l}, y_{2} \in \mathbb{S}_{\mu}^{[l]}$. Note that $\ell(x)=\ell\left(x_{1}\right)+\ell\left(x_{2}\right)$ and $\ell\left(x_{2}\right)=\ell\left(y_{1}\right)+\ell\left(y_{2}\right)$. Then, we have

$$
\begin{aligned}
T_{w} & =T_{x} L_{1}^{a_{1}} \ldots L_{n}^{a_{n}} \\
& =T_{x_{1}} T_{x_{2}} L_{1}^{a_{1}} \ldots L_{n}^{a_{n}} \\
& =T_{x_{1}} T_{y_{1}} T_{y_{2}} L_{1}^{a_{1}} \ldots L_{n}^{a_{n}} \\
& =T_{x_{1}} T_{y_{2}}\left(L_{l+1}^{a_{l+1}} L_{l+2}^{a_{l+2}} \ldots L_{n}^{a_{n}}\right) T_{y_{1}}\left(L_{1}^{a_{1}} L_{2}^{a_{2}} \ldots L_{l}^{a_{l}}\right)
\end{aligned}
$$

where we use Lemma 3.2 (i) and (ii) in the last equation. Note that $y_{2} \in \Im_{\mu}^{[l]}$, and we obtain

$$
\begin{aligned}
& T_{y_{2}}\left(L_{l+1}^{a_{l+1}} L_{l+2}^{a_{l+2}} \ldots L_{n}^{a_{n}}\right) \\
& =L_{y_{2}(l+1)}^{a_{l+1}} L_{y_{2}(l+2)}^{a_{l+2}} \ldots L_{y_{2}(n)}^{a_{n}} T_{y_{2}}+\sum_{z<y_{2}\left(b_{l+1}, \ldots, b_{n}\right) \in[0, r-1]^{n-l}} \sum_{z} r_{l+1}^{\left(b_{l+1}, \ldots, b_{n}\right)} L_{l+1}^{b_{l+1}} \ldots L_{n}^{b_{n}} T_{z}
\end{aligned}
$$

by using Lemma 3.3 repeatedly. Thus, we have

$$
\begin{align*}
T_{w}= & T_{x_{1}} L_{y_{2}(l+1)}^{a_{l+1}} L_{y_{2}(l+2)}^{a_{l+2}} \ldots L_{y_{2}(n)}^{a_{n}} T_{y_{2}} T_{y_{1}}\left(L_{1}^{a_{1}} L_{2}^{a_{2}} \ldots L_{l}^{a_{l}}\right) \tag{3.4.1}\\
& +\sum_{z<y_{2}} \sum_{\left(b_{l+1}, \ldots, b_{n}\right) \in[0, r-1]^{n-l}} r_{z}^{\left(b_{l+1}, \ldots, b_{n}\right)} T_{x_{1}} L_{l+1}^{b_{l+1}} \ldots L_{n}^{b_{n}} T_{z} T_{y_{1}}\left(L_{1}^{a_{1}} L_{2}^{a_{2}} \ldots L_{l}^{a_{l}}\right) \\
= & \left(T_{x_{1}} L_{y_{l}(l+1)}^{a_{2}(l)} L_{y_{2}(l+2)}^{a_{l+2}} \ldots L_{y_{2}(n)}^{a_{n}}\right)\left(T_{x_{2}} L_{1}^{a_{1}} L_{2}^{a_{2}} \ldots L_{l}^{a_{l}}\right) \\
& +\sum_{z<y_{2}} \sum_{\left(b_{l+1}, \ldots, b_{n}\right) \in[0, r-1]^{n-l}} r_{z}^{\left(b_{l+1}, \ldots, b_{n}\right)}\left(T_{x_{1}} L_{l+1}^{b_{l+1}} \ldots L_{n}^{b_{n}}\right)\left(T_{y_{1} z} L_{1}^{a_{1}} L_{2}^{a_{2}} \ldots L_{l}^{a_{l}}\right),
\end{align*}
$$

where we note that $y_{1} z<x_{2}=y_{1} y_{2}$.
We define a preorder \geq on $W_{(l, \mu)}$ by $w=x t_{1}^{a_{1}} \ldots t_{l}^{a_{l}} \geq w^{\prime}=x^{\prime} t_{1}^{a_{1}^{\prime}} \ldots t_{l}^{a_{l}^{\prime}}$ if $x>x^{\prime}$. Then we have

$$
T_{w}=T_{w_{1}} T_{w_{2}}+\sum_{\substack{w_{1}^{\prime} \in W^{(l, \mu)}, w^{\prime} \in W_{(l, \mu)} \\ w_{2}^{\prime}<w_{2}}} r_{w_{1}^{\prime}, w_{2}^{\prime}} T_{w_{1}^{\prime}} T_{w_{2}^{\prime}}
$$

by the equations (3.4.1), where $w_{1}=x_{1} t_{y_{2}(l+1)}^{a_{1}+1} t_{y_{2}(l+2)}^{a_{l}+2} \ldots t_{y_{2}(n)}^{a_{n}}$ and $w_{2}=x_{2} t_{1}^{a_{1}} \ldots t_{l}^{a_{l}}$.
This implies that $\left\{T_{w_{1}} T_{w_{2}} \mid w_{1} \in W^{(l, \mu)}, w_{2} \in W_{(l, \mu)}\right\}$ is an R-free basis of $\mathscr{H}_{n, r}$, and hence $\mathscr{H}_{n, r}=\bigoplus_{w \in W^{(l, \mu)}} T_{w} \mathscr{H}_{(l, \mu)}$ as right $\mathscr{H}_{(l, \mu)^{-}}$-modules.
3.5. Recall that $W_{(k(u), \pi(u))}=W_{(l, \mu)} \cap u W_{(m, v)} u^{-1}$ for $u=x \prod_{i \in I(x)} t_{i}^{a_{i}} \in{ }^{(l, \mu)} W^{(m, v)}$, and we have

$$
W_{(k(u), \pi(u))}=\left\{z t_{1}^{a_{1}} t_{2}^{a_{2}} \ldots t_{k(u)}^{a_{k(u)}} \mid z \in \mathbb{S}_{(k(u), \pi(u))}, a_{1}, \ldots, a_{k(u)} \in[0, r-1]\right\}
$$

Then, the subalgebra $\mathscr{H}_{(k(u), \pi(u))}$ has an R-free basis

$$
\begin{equation*}
\left\{T_{z} L_{1}^{a_{1}} L_{2}^{a_{2}} \ldots L_{k(u)}^{a_{k(u)}} \mid z \in \Theta_{(k(u), \pi(u))}, a_{1}, \ldots, a_{k(u)} \in[0, r-1]\right\} \tag{3.5.1}
\end{equation*}
$$

Proposition 3.6. For each $u=x \prod_{i \in I(x)} t_{i}^{a_{i}} \in{ }^{(l, \mu)} W^{(m, v)}$, we have the following:
(i) $L_{i} T_{u}=T_{u} L_{i}$ for $i=1,2, \ldots, k(u)$.
(ii) $T_{z} T_{u}=T_{u} T_{x^{-1} z x}$ for $z \in \Theta_{(k(u), \pi(u))}$.

In particular, $T_{u} \mathscr{H}_{(m, v)}$ has an $\left(\mathscr{H}_{(k(u), \pi(u))}, \mathscr{H}_{(m, v)}\right)$-bimodule structure by multiplications in $\mathscr{H}_{n, r}$. More precisely, for $T_{u} Y \in T_{u} \mathscr{H}_{(m, v)}$, we have

$$
L_{i}\left(T_{u} Y\right)=T_{u}\left(L_{i} Y\right) \quad(1 \leq i \leq k(u)), \quad T_{z}\left(T_{u} Y\right)=T_{u}\left(T_{x^{-1} z x} Y\right) \quad\left(z \in \mathbb{S}_{(k(u), \pi(u))}\right)
$$

Proof. Recall the definition of the element $T_{w} \in \mathscr{H}_{n, r}$ for $w \in W_{n, r}$. Then, this proposition follows from Proposition 2.12 together with (2.11.1) and (2.11.2).
3.7. For $u=x \prod_{i \in I(x)} t_{i}^{a_{i}} \in{ }^{(l, \mu)} W^{(m, v)}$, recall that $W_{(k(u), \pi(u))}=W_{(l, \mu)} \cap u W_{(m, v)} u^{-1}$ and $W_{\left(k(u), \pi^{\sharp}(u)\right)}=u^{-1} W_{(k(u), \pi(u))} u$ (see (2.11.7)) are parabolic subgroups of $W_{n, r}$. Then, the subalgebra $\mathscr{H}_{(k(u), \pi(u))}\left(\right.$ resp. $\left.\mathscr{H}_{\left(k(u), \pi^{\sharp}(u)\right)}\right)$ has an R-free basis

$$
\begin{aligned}
& \left\{T_{z} L_{1}^{a_{1}} \ldots L_{k(u)}^{a_{k(u)}} \mid z \in \mathbb{S}_{(k(u), \pi(u))}, a_{1}, \ldots a_{k(u)} \in[0, z-1]\right\} \\
& \text { (resp. } \left.\left\{T_{y} L_{1}^{a_{1}} \ldots L_{k(u)}^{a_{k(u)}} \mid y \in \mathbb{S}_{\left(k(u), \pi^{\sharp}(u)\right)}, a_{1}, \ldots a_{k(u)} \in[0, z-1]\right\}\right)
\end{aligned}
$$

where we note that $\Im_{\left(k(u), \pi^{\sharp}(u)\right)}=x^{-1} \Im_{(k(u), \pi(u))} x$ by (2.11.6).
Corollary 3.8. For $u=x \prod_{i \in I(x)} t_{i}^{a_{i}} \in{ }^{(l, \mu)} W^{(m, v)}$, we have the following:
(i) $T_{u} \mathscr{H}_{\left(k(u), \pi^{\sharp}(u)\right)}$ has an $\left(\mathscr{H}_{(k(u), \pi(u))}, \mathscr{H}_{\left(k(u), \pi^{\sharp}(u)\right)}\right)$-bimodule structure by multiplications in $\mathscr{H}_{n, r}$.
(ii) We have the isomorphism of $\left(\mathscr{H}_{(k(u), \pi(u))}, \mathscr{H}_{(m, v)}\right)$-bimodules

$$
T_{u} \mathscr{H}_{(m, v)} \cong T_{u} \mathscr{H}_{\left(k(u), \pi^{\sharp}(u)\right)} \otimes_{\mathscr{H}_{\left(k(u), \pi^{\sharp}(u)\right)}} \mathscr{H}_{(m, v)} .
$$

Proof. (i) follows from Proposition 3.6 (note that $\left.\Im_{\left(k(u), \pi^{\sharp}(u)\right)}=x^{-1} \Im_{(k(u), \pi(u))} x\right)$. Note that $u \in{ }^{(l, \mu)} W^{(m, v)} \subset W^{(m, v)}$, and $\mathscr{H}_{\left(k(u), \pi^{\sharp}(u)\right)}$ is a subalgebra of $\mathscr{H}_{(m, v)}$. Then, by Proposition 3.4, we see that $T_{u} \mathscr{H}_{\left(k(u), \pi^{\sharp}(u)\right)} \cong \mathscr{H}_{\left(k(u), \pi^{\sharp}(u)\right)}$ as right $\mathscr{H}_{\left(k(u), \pi^{\sharp}(u)\right)}$-modules, and we obtain (ii).
3.9. By Corollary 2.15, any element $w \in W_{n, r}$ is uniquely written as

$$
\begin{equation*}
w=w_{1} u w_{2} \quad\left(u \in{ }^{(l, \mu)} W^{(m, v)}, w_{1} \in\left(W_{(l, \mu)}\right)^{(k(u), \pi(u))}, w_{2} \in W_{(m, v)}\right) . \tag{3.9.1}
\end{equation*}
$$

By using this decomposition, we define $\widetilde{T}_{w} \in \mathscr{H}_{n, r}$ by $\widetilde{T}_{w}=T_{w_{1}} T_{u} T_{w_{2}}$.
Proposition 3.10. We have the following.
(i) $\mathscr{H}_{n, r}=\sum_{u \in(l, \mu) W^{(m, r)}} \mathscr{H}_{(l, \mu)} T_{u} \mathscr{H}_{(m, v)}$.
(ii) $\left\{\widetilde{T}_{w} \mid w \in W_{n, r}\right\}$ is an R-free basis of $\mathscr{H}_{n, r}$.

Proof. We prove (i). First we prove that

$$
\begin{equation*}
T_{v} \in \sum_{u \in(l, v) W^{(m, v)}} \mathscr{H}_{(l, \mu)} T_{u} \mathscr{H}_{(m, v)} \text { for any } v=x \prod_{i \in I(x)} t_{i}^{a_{i}} \in{ }^{(l, \mu)} W \cap W^{(m, v)} \tag{3.10.1}
\end{equation*}
$$

by induction on the order \geq on ${ }^{(l, \mu)} W \cap W^{(m, \nu)}$.
If v is minimal in ${ }^{(l, \mu)} W \cap W^{(m, \nu)}$, it is also minimal in $O(v)$. Then we have $v \in{ }^{(l, \mu)} W^{(m, \nu)}$, and (3.10.1) is clear.
Suppose that v is not minimal in ${ }^{(l, \mu)} W \cap W^{(m, v)}$. If v is minimal in $O(v)$, we have $v \in$ ${ }^{(1, \mu)} W^{(m, v)}$, and (3.10.1) is clear. We also suppose that v is not minimal in $O(v)$. Then, there exists $s_{j^{\prime}}=x s_{j} x^{-1} \in S_{\tau(x)}=S_{(l, \mu)} \cap x S_{(m, v)} x^{-1}$ such that $a_{j}>a_{j+1}$ and $j, j+1 \in I(x)$ by definitions (see (2.5.2), (2.5.3) and (2.5.5)). Since $x \in{ }^{(l, \mu)} \mathbb{S}_{n}^{(m, \nu)}$, we have $\ell\left(s_{j^{\prime}} x\right)=$ $\ell\left(s_{j^{\prime}}\right)+\ell(x)$ and $\ell\left(x s_{j}\right)=\ell(x)+\ell\left(s_{j}\right)$, and thus $T_{j^{\prime}} T_{x}=T_{s^{\prime}, x}=T_{x s_{j}}=T_{x} T_{j}$. Put $a_{i}=0$ if $i \notin I(x)$. Then we obtain

$$
\begin{align*}
T_{j^{\prime}} T_{v}= & T_{j^{\prime}}\left(T_{x} L_{1}^{a_{1}} L_{2}^{a_{2}} \ldots L_{n}^{a_{n}}\right) \tag{3.10.2}\\
= & T_{x} T_{j}\left(L_{1}^{a_{1}} L_{2}^{a_{2}} \ldots L_{n}^{a_{n}}\right) \\
= & T_{x}\left(L_{1}^{a_{1}} \ldots L_{j-1}^{a_{j-1}}\right)\left(L_{j}^{a_{j+1}} L_{j+1}^{a_{j}}\right)\left(L_{j+2}^{a_{j+2}} \ldots L_{n}^{a_{n}}\right) T_{j} \\
& -(q-1) \sum_{c=a_{j+1}}^{a_{j}-1} T_{x}\left(L_{1}^{a_{1}} \ldots L_{j-1}^{a_{j-1}}\right)\left(L_{j}^{c} L_{j+1}^{a_{j+1}+a_{j+1}-c}\right)\left(L_{j+2}^{a_{j+2}} \ldots L_{n}^{a_{n}}\right),
\end{align*}
$$

where we use Lemma 3.2 in the last equation (note $a_{j}>a_{j+1}$). Since

$$
\begin{aligned}
& x\left(t_{1}^{a_{1}} \ldots t_{j-1}^{a_{j-1}}\right)\left(t_{j}^{a_{j+1}} t_{j+1}^{a_{j}}\right)\left(t_{j+2}^{a_{j+2}} \ldots t_{n}^{a_{n}}\right)<v, \\
& x\left(t_{1}^{a_{1}} \ldots t_{j-1}^{a_{j-1}}\right)\left(t_{j}^{c} t_{j+1}^{a_{j+1}+j_{j+1} c}\right)\left(t_{j+2}^{a_{j+2}} \ldots t_{n}^{a_{n}}\right)<v \quad\left(a_{j+1} \leq c \leq a_{j}-1\right),
\end{aligned}
$$

the assumption of the induction implies

$$
\begin{aligned}
& T_{x}\left(L_{1}^{a_{1}} \ldots L_{j-1}^{a_{j-1}}\right)\left(L_{j}^{a_{j+1}} L_{j+1}^{a_{j}}\right)\left(L_{j+2}^{a_{j+2}} \ldots L_{n}^{a_{n}}\right) \in \sum_{u \in(l, \psi)} W^{(m, n)} \\
& \mathscr{H}_{(l, \mu)} T_{u} \mathscr{H}_{(m, v)}, \\
& T_{x}\left(L_{1}^{a_{1}} \ldots L_{j-1}^{a_{j-1}}\right)\left(L_{j}^{c} L_{j+1}^{a_{j}+a_{j+1}-c}\right)\left(L_{j+2}^{a_{j+2}} \ldots L_{n}^{a_{n}}\right) \in \sum_{u \in(\mu, \mu) W^{(m, v)}} \mathscr{H}_{(, \mu \mu)} T_{u} \mathscr{H}_{(m, v)} .
\end{aligned}
$$

Combining them with (3.10.2), we conclude that

$$
T_{v} \in \sum_{u \in(l,+) W^{(m, v)}} \mathscr{H}_{(1, \mu)} T_{u} \mathscr{H}_{(m, v)},
$$

where we note that $T_{j^{\prime}}^{-1} \in \mathscr{H}_{(l, \mu)}$ and $T_{j} \in \mathscr{H}_{(m, v)}$. Thus we proved (3.10.1).
In order to prove (i), it is enough to show that

$$
\begin{equation*}
\left.T_{w} \in \sum_{u \in(l, \mu)} W^{(m, v)}\right) ~ \mathscr{H}_{(l, \mu)} T_{u} \mathscr{H}_{(m, v)} \text { for any } w=x t_{1}^{a_{1}} t_{2}^{a_{2}} \ldots t_{n}^{a_{n}} \in W_{n, r} \tag{3.10.3}
\end{equation*}
$$

We prove (3.10.3) by the induction on $\ell(x)$.
If $\ell(x)=0$, we have

$$
T_{w}=L_{1}^{a_{1}} L_{2}^{a_{2}} \ldots L_{n}^{a_{n}}= \begin{cases}\left(L_{1}^{a_{1}} L_{2}^{a_{2}} \ldots L_{l}^{a_{l}}\right)\left(L_{l+1}^{a_{l+1}} L_{l+2}^{a_{l+2}} \ldots L_{n}^{a_{n}}\right) & \text { if } l \geq m \tag{3.10.4}\\ \left(L_{m+1}^{a_{m+1}} L_{m+2}^{a_{m+2}} \ldots L_{n}^{a_{n}}\right)\left(L_{1}^{a_{1}} L_{2}^{a_{2}} \ldots L_{m}^{a_{m}}\right) & \text { if } l<m\end{cases}
$$

We see that

$$
\begin{aligned}
& \left(t_{l+1}^{a_{l+1}} t_{l+2}^{a_{l+2}} \ldots t_{n}^{a_{n}}\right) \in{ }^{(l, \mu)} W \cap W^{(m, v)} \text { if } l \geq m \\
& \left(t_{m+1}^{a_{m+1}} t_{m+2}^{a_{m+2}} \ldots t_{n}^{a_{n}}\right) \in{ }^{(l, \mu)} W \cap W^{(m, v)} \text { if } l<m
\end{aligned}
$$

where we note that $I(e)=[m+1, n] \cap\{l+1, l+2, \ldots, n\}$ for the identity element $e \in \mathbb{S}_{n}$. Thus we have

$$
\begin{aligned}
& \left(L_{1}^{a_{1}} L_{2}^{a_{2}} \ldots L_{l}^{a_{l}}\right) \in \mathscr{H}_{(l, \mu)} \\
& \left(L_{1}^{a_{1}} L_{2}^{a_{2}} \ldots L_{m}^{a_{m}}\right) \in \mathscr{H}_{(m, v)} \\
& \left(L_{l+1}^{a_{l+1}} L_{l+2}^{a_{l+2}} \ldots L_{n}^{a_{n}}\right) \in \sum_{u \in(l, \mu) W^{(m, v)}} \mathscr{H}_{(l, \mu)} T_{u} \mathscr{H}_{(m, v)} \text { if } l \geq m, \\
& \left(L_{m+1}^{a_{m+1}} L_{m+2}^{a_{m+2}} \ldots L_{n}^{a_{n}}\right) \in \sum_{u \in \sum_{(l, \mu)} W^{(m, v)}} \mathscr{H}_{(l, \mu)} T_{u} \mathscr{H}_{(m, v)} \text { if } l<m
\end{aligned}
$$

by (3.10.1). Then, using the above facts together with (3.10.4), we obtain $T_{w} \in$ $\sum_{u \in(l, \mu) W^{(m, v)}} \mathscr{H}_{(l, \mu)} T_{u} \mathscr{H}_{(m, v)}$.

Suppose that $\ell(x)>0$. We can uniquely write $x=x_{1} x_{2} x_{3}$ for some $x_{2} \in{ }^{(l, \mu)} \mathfrak{S}^{(m, v)}$, $x_{1} \in\left(\mathbb{S}_{(l, \mu)}\right)^{\tau\left(x_{2}\right)}$ and $x_{3} \in \mathbb{S}_{(m, v)}$. It implies $\ell(x)=\ell\left(x_{1}\right)+\ell\left(x_{2}\right)+\ell\left(x_{3}\right)$ by the general theory of Coxeter group. Thus we deduce

$$
T_{w}=T_{x_{1}} T_{x_{2}} T_{x_{3}} L_{1}^{a_{1}} L_{2}^{a_{2}} \ldots L_{n}^{a_{n}}=T_{x_{1}} T_{x_{2}} T_{x_{3}}\left(L_{m+1}^{a_{m+1}} L_{m+2}^{a_{m+2}} \ldots L_{n}^{a_{n}}\right)\left(L_{1}^{a_{1}} L_{2}^{a_{2}} \ldots L_{m}^{a_{m}}\right)
$$

Applying Lemma 3.3, we have
(3.10.5)

$$
\begin{aligned}
T_{w}= & T_{x_{1}} T_{x_{2}}\left(L_{x_{3}(m+1)}^{a_{m+1}} L_{x_{3}(m+2)}^{a_{m+2}} \ldots L_{x_{3}(n)}^{a_{n}}\right) T_{x_{3}}\left(L_{1}^{a_{1}} L_{2}^{a_{2}} \ldots L_{m}^{a_{m}}\right) \\
& +\sum_{y_{3}<x_{3}} \sum_{\left(b_{m+1}, \ldots b_{n}\right) \in[0, r-1]^{n-m}} r_{y_{3}}^{\left(b_{m+1}, \ldots, b_{n}\right)} T_{x_{1}} T_{x_{2}} T_{y_{3}}\left(L_{m+1}^{b_{m+1}} L_{m+2}^{b_{m+2}} \ldots L_{n}^{b_{n}}\right)\left(L_{1}^{a_{1}} L_{2}^{a_{2}} \ldots L_{m}^{a_{m}}\right) .
\end{aligned}
$$

Since $T_{x_{1}} T_{x_{2}} T_{x_{3}}=T_{x}$, we obtain

$$
\begin{gather*}
\sum_{y_{3}<x_{3}} \sum_{\left(b_{m+1}, \ldots b_{n}\right) \in[0, r-1]^{n-m}} r_{y_{3}}^{\left(b_{m+1}, \ldots, b_{n}\right)} T_{x_{1}} T_{x_{2}} T_{y_{3}}\left(L_{m+1}^{b_{m+1}} L_{m+2}^{b_{m+2}} \ldots L_{n}^{b_{n}}\right)\left(L_{1}^{a_{1}} L_{2}^{a_{2}} \ldots L_{m}^{a_{m}}\right) \tag{3.10.6}\\
\quad \in \sum_{u \in(l, \mu) W^{(m, v)}} \mathscr{H}_{(l, \mu)} T_{u} \mathscr{H}_{(m, v)}
\end{gather*}
$$

by the assumption of the induction. Note that $\left\{x_{3}(m+1), x_{3}(m+2), \ldots, x_{3}(n)\right\}=[m+1, n]$ by $x_{3} \in \widetilde{S}_{(m, v)}$. By Lemma 3.3, we have

$$
T_{x_{1}} T_{x_{2}}\left(L_{x_{3}(m+1)}^{a_{m+1}} L_{x_{3}(m+2)}^{a_{m+2}} \ldots L_{x_{3}(n)}^{a_{n}}\right)=T_{x_{1}} T_{x_{2}}\left(L_{m+1}^{a_{m+1}^{\prime}} L_{m+2}^{a_{m+2}^{\prime}} \ldots L_{n}^{a_{n}^{\prime}}\right)
$$

$$
\begin{aligned}
&=T_{x_{1}}\left(L_{x_{2}(m+1)}^{a_{m+1}^{\prime}} L_{x_{2}(m+2)}^{a_{m+2}^{\prime}} \ldots L_{x_{2}(n)}^{a_{n}^{\prime}}\right) T_{x_{2}} \\
&+\sum_{y_{2}<x_{2}\left(b_{1}, \ldots, b_{n}\right) \in[0, r-1]^{n}} \sum_{y_{2}}^{\left(x_{1}, \ldots, b_{n}\right)} T_{x_{1}} T_{y_{2}}\left(L_{1}^{b_{1}} L_{2}^{b_{2}} \ldots L_{n}^{b_{n}}\right),
\end{aligned}
$$

where we put $a_{i}^{\prime}=a_{x_{3}^{-1}(i)}$ for $i=m+1, \ldots, n$. By the assumption of the induction, we deduce

$$
\sum_{y_{2}<x_{2}} \sum_{\left(b_{1}, \ldots, b_{n}\right) \in[0, r-1]^{n}} r_{y_{2}}^{\left(b_{1}, \ldots, b_{n}\right)} T_{x_{1}} T_{y_{2}}\left(L_{1}^{b_{1}} L_{2}^{b_{2}} \ldots L_{n}^{b_{n}}\right) \in \sum_{u \in{ }^{(l, \mu)} W^{(m, v)}} \mathscr{H}_{(l, \mu)} T_{u} \mathscr{H}_{(m, v)}
$$

By Lemma 3.3, we also have

$$
\begin{aligned}
& T_{x_{1}}\left(L_{x_{2}(m+1)}^{a_{m+1}^{\prime}} L_{x_{2}(m+2)}^{a_{m+2}^{\prime}} \ldots L_{x_{2}(n)}^{a_{n}^{\prime}}\right) T_{x_{2}}=T_{x_{1}}\left(\prod_{\substack{m+1 \leq i \leq n \\
x_{2}(i) \leq 1}} L_{x_{2}(i)}^{a_{i}^{\prime}}\right)\left(\prod_{\substack{m+1 \leq i \leq n \\
x_{2}(i)>l}} L_{x_{2}(i)}^{a_{i}^{\prime}}\right) T_{x_{2}} \\
& =T_{x_{1}}\left(\prod_{\substack{m+1 \leq i \leq n \\
x_{2}(i) \leq 1}} L_{x_{2}(i)}^{a_{i}^{\prime}}\right) T_{x_{2}}\left(\prod_{i \in I\left(x_{2}\right)} L_{i}^{a_{i}^{\prime}}\right) \\
& \quad-T_{x_{1}}\left(\prod_{\substack{m+1 \leq i \leq n \\
x_{2}(i) \leq 1}} L_{x_{2}(i)}^{a_{i}^{\prime}}\right)\left(\sum_{y_{2}<x_{2}\left(b_{1}, \ldots, b_{n}\right) \in[0, r-1]^{n}} \sum_{y_{2}} \sum_{\left.u \in{ }^{\left(b_{1}, \ldots, b_{n}\right)} T_{y_{2}}\left(L_{1}^{b_{1}} L_{2}^{b_{2}} \ldots L_{n}^{b_{n}}\right)\right)} \quad \in \sum_{\substack{(l, \mu) \\
W^{(m, v)}}} \mathscr{H}_{(l, \mu)} T_{u} \mathscr{H}_{(m, v)}\right.
\end{aligned}
$$

since $T_{x_{1}}\left(\prod_{\substack{m+1 \leq i \leq n \\ x_{2}(i) \leq l}} L_{x_{2}(i)}^{a_{i}^{\prime}}\right) \in \mathscr{H}_{(l, \mu)}, T_{x_{2}}\left(\prod_{i \in I\left(x_{2}\right)} L_{i}^{a_{i}^{\prime}}\right) \in \sum_{u \in{ }^{(l, \mu)} W^{(m, v)}} \mathscr{H}_{(l, \mu)} T_{u} \mathscr{H}_{(m, v)}$ by (3.10.1), and $T_{y_{2}}\left(L_{1}^{b_{1}} L_{2}^{b_{2}} \ldots L_{n}^{b_{n}}\right) \in \sum_{u \in(l, \mu) W^{(n, v)}} \mathscr{H}_{(l, \mu)} T_{u} \mathscr{H}_{(m, v)}$ for $y_{2}<x_{2}$ again by the assumption of the induction. As a consequence, we obtain

$$
T_{x_{1}} T_{x_{2}}\left(L_{x_{3}(m+1)}^{a_{m+1}} L_{x_{3}(m+2)}^{a_{m+2}} \ldots L_{x_{3}(n)}^{a_{n}}\right) \in \sum_{u \in(l, \mu) W^{(m, v)}} \mathscr{H}_{(l, \mu)} T_{u} \mathscr{H}_{(m, v)}
$$

and this implies that

$$
\begin{equation*}
T_{x_{1}} T_{x_{2}}\left(L_{x_{3}(m+1)}^{a_{m+1}} L_{x_{3}(m+2)}^{a_{m+2}} \ldots L_{x_{3}(n)}^{a_{n}}\right) T_{x_{3}}\left(L_{1}^{a_{1}} L_{2}^{a_{2}} \ldots L_{m}^{a_{m}}\right) \in \sum_{u \in(l, \mu) W^{(m, v)}} \mathscr{H}_{(l, \mu)} T_{u} \mathscr{H}_{(m, v)} \tag{3.10.7}
\end{equation*}
$$

since $T_{x_{3}}\left(L_{1}^{a_{1}} L_{2}^{a_{2}} \ldots L_{m}^{a_{m}}\right) \in \mathscr{H}_{(m, v)}$. Thanks to (3.10.5), (3.10.6) and (3.10.7), we obtain (3.10.3), and hence we proved (i).

We prove (ii). For each $u \in{ }^{(l, \mu)} W^{(m, v)}$, the set of elements

$$
\left\{T_{w_{1}} T_{v} \mid w_{1} \in\left(W_{(l, \mu)}\right)^{(k(u), \pi(u))}, v \in W_{(k(u), \pi(u))}\right\}
$$

is an R-free basis of $\mathscr{H}_{(l, \mu)}$ by Proposition 3.4. Note that $T_{u} \mathscr{H}_{(m, v)}$ is a left $\mathscr{H}_{(k(u), \pi(u))}$-module by Proposition 3.6, then (i) implies that $\mathscr{H}_{n, r}$ is spanned by

$$
\left\{T_{w_{1}} T_{u} T_{w_{2}} \mid u \in{ }^{(l, \mu)} W^{(m, v)}, w_{1} \in\left(W_{(l, \mu)}\right)^{(k(u), \pi(u))}, w_{2} \in W_{(m, v)}\right\}=\left\{\widetilde{T}_{w} \mid w \in W_{n, r}\right\}
$$

as an R-module. Then we can define the surjective homomorphism of R-modules $\phi: \mathscr{H}_{n, r} \rightarrow$ $\mathscr{H}_{n, r}$ such that $\phi\left(T_{w}\right)=\widetilde{T}_{w}\left(w \in W_{n, r}\right)$, and ϕ is an isomorphism by [19, Theorem 2.4]. Therefore, $\left\{\widetilde{T}_{w} \mid w \in W_{n, r}\right\}$ is an R-free basis of $\mathscr{H}_{n, r}$.
3.11. For a parabolic subgroup $W_{(l, \mu)}$ of $W_{n, r}$ (resp. $W_{\left(k(u), \pi^{\sharp}(u)\right)}$ of $\left.W_{(m, v)}\right)$, we define the restriction functor

$$
\begin{aligned}
& \mathscr{H}_{\operatorname{Res}_{W_{(l, \mu)}}^{W_{n, r}}: \mathscr{H}_{n, r}-\bmod \rightarrow \mathscr{H}_{(l, \mu)}-\bmod } \\
& \left(\operatorname{resp} .{ }^{\mathscr{H}} \operatorname{Res}_{W_{\left(k(u), \pi^{\sharp}(u)\right)}}^{W_{(m, v)}}: \mathscr{H}_{(m, v)}-\bmod \rightarrow \mathscr{H}_{\left(k(u), \pi^{\sharp}(u)\right)}-\bmod \right)
\end{aligned}
$$

by the restriction of the action. We also define the induction functor

$$
\mathscr{H}_{\operatorname{Ind}_{W_{(l, \mu)}}^{W_{n, r}}=\mathscr{H}_{n, r} \otimes_{\mathscr{H}_{l, \mu)}}-: \mathscr{H}_{(l, \mu)}-\bmod \rightarrow \mathscr{H}_{n, r}-\bmod , . . .}
$$

where we regard $\mathscr{H}_{n, r}$ as an $\left(\mathscr{H}_{n, r}, \mathscr{H}_{(l, \mu)}\right)$-bimodule by multiplications.
For $u \in{ }^{(l, \mu)} W^{(m, v)}$, we consider the induction functor
where we note that $\mathscr{H}_{(k(u), \pi(u))}$ is a subalgebra of $\mathscr{H}_{(l, \mu)}$. We also introduce the functor $T_{u}(-)$: $\mathscr{H}_{\left(k(u), \pi^{\sharp}(u)\right)}-\bmod \rightarrow \mathscr{H}_{(k(u), \pi(u))}-\bmod$ by

$$
T_{u}(-)=T_{u} \mathscr{H}_{\left(k(u), \pi^{\sharp}(u)\right)} \otimes_{\mathscr{H}_{\left(k(u), \pi^{\sharp}(u)\right)}}-: \mathscr{H}_{\left(k(u), \pi^{\sharp}(u)\right)}-\bmod \rightarrow \mathscr{H}_{(k(u), \pi(u))}-\bmod
$$

We see that any functor defined in the above is exact by Proposition 3.4. Then now we obtain the first main theorem of this paper.

Theorem 3.12 (The Mackey formula for cyclotomic Hecke algebras). For $0 \leq l, m \leq n$, $\mu \vDash n-l$ and $v \vDash n-m$, we have the following:
(i) There exists an isomorphism of $\left(\mathscr{H}_{(l, \mu)}, \mathscr{H}_{(m, v)}\right)$-bimodules

$$
\mathscr{H}_{n, r} \rightarrow \bigoplus_{u \in{ }^{(l, \mu)} W^{(m, v)}}\left(\mathscr{H}_{(l, \mu)} \otimes_{\mathscr{H}_{(k(u), \pi(u))}} T_{u} \mathscr{H}_{(m, v)}\right)
$$

given by $\widetilde{T}_{w}=T_{w_{1}} T_{u} T_{w_{2}} \mapsto T_{w_{1}} \otimes T_{u} T_{w_{2}}$ where $u \in{ }^{(l, \mu)} W^{(m, v)}, w_{1} \in\left(W_{(l, \mu)}\right)^{(k(u), \pi(u))}$ and $w_{2} \in W_{(m, v)}$.
(ii) For a left $\mathscr{H}_{(m, v)}$-module M, we have a natural isomorphism of left $\mathscr{H}_{(l, \mu)}$-modules

$$
\mathscr{H}_{n, r} \otimes_{\mathscr{H}_{(m, v)}} M \cong \bigoplus_{u \in(l, \mu) W^{(m, v)}}\left(\mathscr{H}_{(l, \mu)} \otimes_{\mathscr{H}_{(k(u), \pi(u))}} T_{u} \mathscr{H}_{(m, v)}\right) \otimes_{\mathscr{H}_{(m, v)}} M .
$$

(iii) We have an isomorphism of functors

$$
{ }^{\mathscr{H}} \operatorname{Res}_{W_{(l, \mu)}}^{W_{n, r}} \circ{ }^{\mathscr{H}} \operatorname{Ind}_{W_{(m, v)}}^{W_{n, r}} \cong \bigoplus_{u \in{ }^{(l, \mu)} W^{(m, v)}}{ }^{\mathscr{H}} \operatorname{Ind}_{W_{(k(u)(u) \pi(u))}}^{W_{(l, \mu)}} \circ T_{u}(-) \circ{ }^{\mathscr{H}} \operatorname{Res}_{W_{\left(k(u), \pi^{\sharp}(u)\right)}}^{W_{(m, v)}} .
$$

Proof. We prove (i). Since $\left\{\widetilde{T}_{w} \mid w \in W_{n, r}\right\}$ is an R-free basis of $\mathscr{H}_{n, r}$ by Proposition 3.10 (ii), we can define a homomorphism of R-modules

$$
\Phi: \mathscr{H}_{n, r} \rightarrow \bigoplus_{u \in \mathcal{l}^{(l, \mu)} W^{(m, v)}}\left(\mathscr{H}_{(l, \mu)} \otimes_{\mathscr{H}_{(k(u), \pi(u))}} T_{u} \mathscr{H}_{(m, v)}\right)
$$

by $\widetilde{T}_{w}=T_{w_{1}} T_{u} T_{w_{2}} \mapsto T_{w_{1}} \otimes T_{u} T_{w_{2}}\left(u \in{ }^{(l, \mu)} W^{(m, v)}, w_{1} \in\left(W_{(l, \mu)}\right)^{(k(u), \pi(u))}, w_{2} \in W_{(m, v)}\right)$. In order to define the inverse map of Φ, for $u \in{ }^{(l, \mu)} W^{(m, v)}$, let

$$
\Psi_{u}^{\prime}: \mathscr{H}_{(l, \mu)} \times T_{u} \mathscr{H}_{(m, v)} \rightarrow \mathscr{H}_{n, r}
$$

be the multiplication map in $\mathscr{H}_{n, r}$. Since $T_{u} \mathscr{H}_{(m, v)}$ (resp. $\left.\mathscr{H}_{(l, \mu)}\right)$ is a left (resp. right) $\mathscr{H}_{(k(u), \pi(u))}$-module by multiplications in $\mathscr{H}_{n, r}$ (see Proposition 3.6), it is clear that Ψ_{u}^{\prime} is a $\mathscr{H}_{(k(u), \pi(u))}$-balanced map. Thus we have the homomorphism of R-modules

$$
\Psi_{u}: \mathscr{H}_{(l, \mu)} \otimes_{\mathscr{H}_{(k(u), \pi(u)}} T_{u} \mathscr{H}_{(m, v)} \rightarrow \mathscr{H}_{n, r}, \quad X \otimes Y \mapsto X Y
$$

Then it is clear that $\Psi=\bigoplus_{u \in(l, \mu)} W^{(m, v)} \Psi_{u}$ is the inverse map of Φ, and we see that Φ is isomorphism. Obviously, Ψ is an isomorphism of $\left(\mathscr{H}_{(l, \mu)}, \mathscr{H}_{(m, v)}\right)$-bimodules since actions in both sides are given by multiplications. Thus Φ is also an isomorphism of $\left(\mathscr{H}_{(l, \mu)}, \mathscr{H}_{(m, v)}\right)$ bimodules. (ii) follows from (i), and (iii) follows from (i) together with Corollary 3.8.

4. The Mackey formula for the categories \mathcal{O} of rational Cherednik algebras of type $G(r, 1, n)$

In this section, we discuss the Mackey formula for the categories \mathcal{O} of the rational Cherednik algebras associated with the complex reflection group $W_{n, r}$.
4.1. Let W be a finite complex reflection group and let \mathfrak{b} be the \mathbb{C}-vector space on which W acts by reflections. Let \mathcal{A}_{W} be the set of reflection hyperplanes, and let $\mathfrak{h}_{W}^{\text {reg }}=\mathfrak{h} \backslash \bigcup_{H \in \mathcal{A}_{W}} H$ be its complement. We denote by S_{W} the set of reflections in W. For $s \in \mathcal{S}_{W}$, write λ_{s} for the non-trivial eigenvalue of s in \mathfrak{h}^{*}. For $s \in \mathcal{S}_{W}$, let $\alpha_{s} \in \mathfrak{b}^{*}$ be a generator of $\operatorname{Im}\left(s_{\mathfrak{h}^{*}}-1\right)$ and let α_{s}^{\vee} be the generator of $\operatorname{Im}\left(s_{\mathfrak{h}}-1\right)$ such that $\left\langle\alpha_{s}, \alpha_{s}^{\vee}\right\rangle=2$ where \langle,$\rangle is the standard$ pairing between \mathfrak{h} and \mathfrak{h}. Let $\mathcal{D}\left(\mathfrak{h}_{W}^{\text {reg }}\right)$ be the \mathbb{C}-algebra of algebraic differential operators on the smooth affine manifold $\mathfrak{h}_{W}^{\text {reg }}$. The action of the group W on \mathfrak{h} induces an action of W on the \mathbb{C}-algebra $\mathcal{D}\left(\mathfrak{h}_{W}^{\text {reg }}\right.$). We denote the smash product of the algebra $\mathcal{D}\left(\mathfrak{h}_{W}^{\text {reg }}\right)$ and the group W by $\mathcal{D}\left(\mathfrak{h}_{W}^{\text {reg }}\right) \rtimes W$. The rational Cherednik algebra $H(W)=H(W, \mathfrak{h})$ associated with W is a subalgebra of $\mathcal{D}\left(\mathfrak{h}{ }_{W}^{\text {reg }}\right) \rtimes W$ which is generated by elements of $\mathbb{C}[\mathfrak{b}]$, elements of W and the Dunkl operators D_{ξ} for $\xi \in \mathfrak{h}$:

$$
D_{\xi}=\partial_{\xi}+\sum_{s \in S_{W}} \frac{2 c_{s}}{1-\lambda_{s}} \frac{\alpha_{s}(\xi)}{\alpha_{s}}(s-1) \in \mathcal{D}\left(\mathfrak{b}_{W}^{\text {reg }}\right) \rtimes W
$$

where $\left\{c_{s}\right\}_{s \in \mathcal{S}_{W}}$ is the parameter of the algebra $H(W)$.
4.2. The category $\mathcal{O}(W)$ is a full subcategory of the category of finitely generated $H(W)$ modules on which object the Dunkl operators acts locally nilpotently. For a module $M \in$ $\mathcal{O}(W)$, we consider the localization $M^{a n}=\mathcal{O}_{\mathfrak{b}_{W}^{\text {reg }}}^{a n} \otimes_{\mathbb{C}[\mathfrak{~}]} M$ where $\mathcal{O}_{\mathfrak{b}_{W}^{\text {reg }}}^{a n}$ is the sheaf of holomorphic functions on $\mathfrak{h}_{W}^{\text {reg }}$. Since we have $\mathbb{C}\left[\mathfrak{h}_{W}^{\text {reg }}\right] \otimes_{\mathbb{C}[\mathfrak{b}]} H(W)=\mathcal{D}\left(\mathfrak{h}_{W}^{\text {reg }}\right) \rtimes W$, the algebra $\mathcal{D}\left(\mathrm{h}_{W}^{\text {reg }}\right) \rtimes W$ acts on $M^{\text {an }}$. Considering the W-equivariant local system of horizontal sections together with the monodromy action of the fundamental group $\pi_{1}\left(\mathfrak{h}_{W}^{\text {reg }} / W, \bar{p}_{0}\right)$ for a certain fixed point $\bar{p}_{0} \in \mathfrak{h}_{W}^{\text {reg }} / W$, we obtain the finite-dimensional vector space $\mathrm{KZ}_{W}(M)$. By [11], the monodromy action factors through a Hecke algebra $\mathscr{H}(W)$ associated with W with a parameter q determined by the formula in [11, Section 5.2], and we have the functor

$$
\mathrm{KZ}_{W}: \mathcal{O}(W) \rightarrow \mathscr{H}(W)-\bmod , \quad M \mapsto \mathrm{KZ}_{W}(M)
$$

4.3. For a parabolic subgroup W^{\prime} of W, Bezrukavnikov and Etingof introduced the functors of parabolic restriction ${ }^{\mathcal{O}} \operatorname{Res}_{W^{\prime}}^{W}$ and induction ${ }^{\mathcal{O}} \operatorname{Ind}_{W^{\prime}}^{W}$ for modules of the category \mathcal{O} in [3]. They are exact functors ${ }^{\mathcal{O}} \operatorname{Res}_{W^{\prime}}^{W}: \mathcal{O}(W) \longrightarrow \mathcal{O}\left(W^{\prime}\right),{ }^{\mathcal{O}} \operatorname{Ind}_{W^{\prime}}^{W}: \mathcal{O}\left(W^{\prime}\right) \longrightarrow \mathcal{O}(W)$ between the categories \mathcal{O} for the rational Cherednik algebras $H(W)$ and $H\left(W^{\prime}\right)$.
4.4. For a parabolic subgroup W^{\prime} of W and an element $x \in W$, we have a \mathbb{C}-algebra isomorphism $\theta_{W^{\prime}}^{(x)}: H\left(x W^{\prime} x^{-1}\right) \longrightarrow H\left(W^{\prime}\right)$ given by $f \mapsto x^{-1} f x$ for $f \in H\left(x W^{\prime} x^{-1}\right)$. We define a functor

$$
\Theta_{W^{\prime}}^{(x)}: \mathcal{O}\left(W^{\prime}\right) \rightarrow \mathcal{O}\left(x W^{\prime} x^{-1}\right), \quad M \mapsto M^{\theta_{W^{\prime}}^{(x)}}
$$

where $M^{\theta_{W^{\prime}}^{(x)}}=M$ as vector spaces and the action is twisted by $\theta_{W^{\prime}}^{(x)}$. We sometimes denote the functor $\Theta_{W^{\prime}}^{(u)}$ by $u(-)$ and also denote $M^{\theta_{W^{\prime}}^{(u)}}$ by $u M$ when we need not notify the subgroup W^{\prime} 。
4.5. Consider the parabolic subgroups $W_{(l, \mu)}$ and $W_{(m, v)}$ of $W_{n, r}$. For a double coset representative $u=x \prod_{i \in I(x)} t_{i}^{a_{i}} \in{ }^{(l, \mu)} W^{(m, v)}$, we have $W_{(l, \mu)} \cap u W_{(m, v)} u^{-1}=W_{(k(u), \pi(u))}$ by Proposition 2.13, and $u^{-1} W_{(k(u), \pi(u))} u=W_{\left(k(u), \pi^{\sharp}(u)\right)}$ by (2.11.7). Recall that we denote by $X_{(k(u), \pi(u))} \subset$ $\left\{s_{0}, s_{1}, \ldots, s_{n-1}\right\}\left(\right.$ resp. $\left.X_{\left(k(u), \pi^{\sharp}(u)\right)}\right)$ the set of standard generators of the parabolic subgroup $W_{(k(u), \pi(u))}\left(\operatorname{resp} . W_{\left(k(u), \pi^{\sharp}(u)\right)}\right)$.
4.6. Let $\mathfrak{h}=\mathbb{C}^{n}$ be the reflection representation of the complex reflection group $W_{n, r}$. The group $W_{n, r}$ is naturally identified with a finite quotient group of the fundamental group $B_{n, r}=$ $\pi_{1}\left(\mathfrak{h}_{W_{n, r}}^{\text {reg }} / W_{n, r}, \bar{p}_{0}\right)$ of $\mathfrak{h}_{W_{n, r}}^{\text {reg }} / W_{n, r}$ with a fixed base point $\bar{p}_{0} \in \mathfrak{h}_{W_{n, r}}^{\text {reg }} / W_{n, r}$. Similarly, the Hecke algebra $\mathscr{H}_{n, r}$ is the finite-dimensional quotient algebra of the group algebra $\mathbb{C} B_{n, r}$. For $u \in$ ${ }^{(l, \mu)} W^{(m, v)}$ and $s_{j} \in X_{(k(u), \pi(u))}$, we see that the identity $s_{j} u=u s_{\psi(j)}$ in Proposition 2.12 also holds in $B_{n, r}$ since the identity follows only from the braid relations, and so does in $\mathscr{H}_{n, r}$. The following lemma follows from the definition of KZ functors and the identity in $B_{n, r}$. Since this lemma is key to prove the Mackey formula for the category \mathcal{O} by the lifting argument and it may not so clear for non-experts, we will give the proof of the lemma later in Appendix A.

Lemma 4.7. For a double coset representative $u \in{ }^{(l, \mu)} W^{(m, v)}$ and a module $M \in$ $\mathcal{O}\left(W_{\left(k(u), \pi^{\sharp}(u)\right)}\right)$, we have the following isomorphism of functors :

$$
\mathrm{KZ}_{W_{(k(u), \pi(u))}} \circ u(-) \cong T_{u}(-) \circ \mathrm{KZ}_{W_{\left(k(u), \pi^{\sharp}(u)\right)}}
$$

By the above lemma, we obtain the Mackey formula for the categories $\mathcal{\mathcal { O }}$ as a corollary of Theorem 3.12.

Proposition 4.8. We have the following isomorphism of functors:

$$
{ }^{\mathcal{O}} \operatorname{Res}_{W_{(l, \mu)}}^{W_{n, r}} \circ{ }^{\mathcal{O}} \operatorname{Ind}_{W_{(m, v)}}^{W_{n, r}} \cong \bigoplus_{u \epsilon^{(l, \mu)} W^{(m, v)}}{ }^{\mathcal{O}} \operatorname{Ind}_{W_{(k(u), \pi(u))}}^{W_{l(\mu)}} \circ u(-) \circ{ }^{\mathcal{O}} \operatorname{Res}_{W_{\left(k(u), \pi^{\sharp}(u)\right)}}^{W_{(m, v)}} .
$$

Proof. The proof is the same with the proof of [16, Theorem 2.7.2]. By [22, Theorem 2.1] and Lemma 4.7, the KZ functors commute with the parabolic restriction functors and the twisting functors. Thus, we have the isomorphism of functors
by Theorem 3.12. By [22, Lemma 2.4], this isomorphism implies the isomorphism of the proposition.
4.9. In order to obtain the Mackey formula for Hecke algebras, we should take standard parabolic subgroups since we use explicit calculations using Ariki-Koike basis of $\mathscr{H}_{n, r}$. We also should take standard parabolic subgroups for its lifting to categories \mathcal{O} in Proposition 4.8 since we need suitable corresponding identity in $B_{n, r}$ to one in Proposition 2.12. However, once we obtain the formula for standard parabolic subgroups in categories \mathcal{O}, we can extend it to the formula for any parabolic subgroups as follows. Note that any parabolic subgroup of $W_{n, r}$ coincides with $x W_{(l, \mu)} x^{-1}$ for some $l \geq 0, \mu \vDash n-l$ and $x \in W_{n, r}$. By applying the twisting functors $\Theta_{W_{(, \mu)}}^{(x)}, \Theta_{y W_{(m, v, y} y^{-1}}^{\left(y^{-1}\right)}$ to the isomorphism of Proposition 4.8 and using the equivariance of the parabolic induction and restriction, we finally obtain the second main theorem of this paper, which supports Conjecture 0.1 :

Theorem 4.10 (The Mackey formula for \mathcal{O} over cyclotomic rational Cherednik algebras). Let W_{a}, W_{b} be parabolic subgroups of $W_{n, r}$, and ${ }^{a} W^{b}$ be a complete set of double coset representatives of $W_{a} \backslash W_{n, r} / W_{b}$. Then we have the following isomorphism of functors :

$$
{ }^{\mathcal{G}} \operatorname{Res}_{W_{a}}^{W} \circ{ }^{\mathcal{G}} \operatorname{Ind}_{W_{b}}^{W} \cong \bigoplus_{u \epsilon^{a} W^{b}}{ }^{\mathcal{G}} \operatorname{Ind}_{W_{a} \cap u W_{b} u^{-1}}^{W_{a}} \circ u(-) \circ{ }^{\mathcal{G}} \operatorname{Res}_{u^{-1} W_{a} u \cap W_{b}}^{W_{b}} .
$$

Appendix A Proof of Lemma 4.7

In this appendix, we discuss the proof of Lemma 4.7. Though the argument is straightforward from definitions, we give a proof here for readers who are not so familiar with the KZ functor. In order to give the proof, we need to review the definition of the monodromy action of the Hecke algebra on the KZ functor, so most part of this appendix is devoted to review of the results of [6] and [11].
A.1. First, we review the definition of the action of the Hecke algebra on the KZ functor.
 sheaf of holomorphic functions on $\mathfrak{G}_{W}^{\text {reg }}$. Since we have $\mathbb{C}\left[\mathfrak{b}_{W}^{\text {reg }}\right] \otimes_{\mathbb{C}[\mathfrak{~}]} H(W)=\mathcal{D}\left(\emptyset_{W}^{\text {ree }}\right) \rtimes W$, the algebra $\left.\mathcal{D}()_{W}^{\text {reg }}\right) \rtimes W$ acts on $M^{a n}$. Namely, $M^{\text {an }}$ is a vector bundle on $\mathfrak{V}_{W}^{\text {reg }}$ with a W-equivariant flat connection. Let $\left(M^{a n}\right)^{\nabla}$ be the W-equivariant local system of horizontal sections of $M^{a n}$. For any point $p \in \mathfrak{h}_{W}^{\text {reg }}$, the stalk $\left(M^{a n}\right)_{p}^{\nabla}$ at the point p is a finite-dimensional vector space over \mathbb{C}. Fix a point $p_{0} \in \mathfrak{b}_{W}^{\text {reg }}$, and then we set $\mathrm{KZ}_{W}(M)=\left(M^{a n}\right)_{p_{0}}^{\nabla}$ as a vector space. Let $\bar{p}_{0} \in \mathfrak{\zeta}_{W}^{\text {reg }} / W$ be the image of p_{0} under the projection $\mathfrak{b}_{W}^{\text {reg }} \longrightarrow \mathfrak{\zeta}_{W}^{\text {reg }} / W$, and let $\pi_{1}\left(\vdash_{W}^{\text {reg }} / W, \bar{p}_{0}\right)$ be the fundamental group of the space $\mathfrak{b}_{W}^{\text {reg }} / W$ with the base point \bar{p}_{0}. The vector space $\mathrm{KZ}_{W}(M)$ is naturally equipped with the action of the fundamental group $\pi_{1}\left(\mathrm{乌}_{W}^{\text {reg }} / W, \bar{p}_{0}\right)$ via monodromy as follows.

Let $[0,1] \subset \mathbb{R}$ be the closed interval between 0 and 1 (not an interval in \mathbb{Z}). For a path $\gamma:[0,1] \longrightarrow \mathfrak{h}_{W}^{\text {reg }}$ and a germ $v \in\left(M^{a n}\right)_{\gamma(0)}^{\nabla}$ at $\gamma(0)$, we have its analytic continuation $v^{\prime} \in\left(M^{a n}\right)_{\gamma(1)}^{\nabla}$ at $\gamma(1)$ through the path γ. Then, we define an operator of analytic continuation

$$
S_{M}(\gamma):\left(M^{a n}\right)_{\gamma(0)}^{\nabla} \longrightarrow\left(M^{a n}\right)_{\gamma(1)}^{\nabla}, \quad v \mapsto v^{\prime}
$$

Following [6, §2.B.], recall how we obtain a homomorphism of $\pi_{1}\left(丂_{W}^{\text {reg }} / W, \bar{p}_{0}\right)$ to W : Note that, for a loop $\sigma \in \pi_{1}\left(\mathrm{~h}_{W}^{\text {reg }} / W, \bar{p}_{0}\right)$ and a point $p \in W p_{0}$, we have a unique path ${ }^{p} \widetilde{\sigma}$: $[0,1] \longrightarrow \mathfrak{b}_{W}^{\text {reg }}$ such that ${ }^{p} \widetilde{\sigma}(0)=p$ and its image in $\mathfrak{b}_{W}^{\text {reg }} / W$ coincides with σ. The path ${ }^{p} \widetilde{\sigma}$ in $\mathfrak{h}_{W}^{\text {reg }}$ is called a lift of the element $\sigma \in \pi_{1}\left(\mathfrak{h}_{W}^{\text {reg }} / W, \bar{p}_{0}\right)$. As [6], we describe elements of $\left.\pi_{1}()_{W}^{\text {reg }} / W, \bar{p}_{0}\right)$ by their lifts (see [6 , Appendix A]). For the above loop σ, we set $\bar{\sigma}=w \in W$
where w is an element with ${ }^{p} \widetilde{\sigma}(1)=w(p)$.
For loops $\sigma, \sigma^{\prime} \in \pi_{1}\left(\mathfrak{h}_{W}^{\text {reg }} / W, \bar{p}_{0}\right)$, we denote the composition of loops σ and σ^{\prime} by $\sigma^{\prime} \cdot \sigma$; i.e.

$$
\left(\sigma^{\prime} \cdot \sigma\right)(t)= \begin{cases}\sigma(2 t) & (0 \leq t \leq 1 / 2) \\ \sigma^{\prime}(2 t-1) & (1 / 2 \leq t \leq 1)\end{cases}
$$

Similarly, for paths γ, γ^{\prime} in $\mathfrak{b}_{W}^{\text {reg }}$ with $\gamma(0)=p, \gamma(1)=\gamma^{\prime}(0)=p^{\prime}$ and $\gamma^{\prime}(1)=p^{\prime \prime}$, define the composite path $\gamma^{\prime} \cdot \gamma$ by

$$
\left(\gamma^{\prime} \cdot \gamma\right)(t)= \begin{cases}\gamma(2 t) & (0 \leq t \leq 1 / 2) \\ \gamma^{\prime}(2 t-1) & (1 / 2 \leq t \leq 1)\end{cases}
$$

It is a path from p to $p^{\prime \prime}$. For a path γ in $\mathfrak{h}_{W}^{\text {reg }}$ and an element $g \in W$, let $g(\gamma)$ be a path given by $(g(\gamma))(t)=g(\gamma(t))$.

For loops $\sigma, \sigma^{\prime} \in \pi_{1}\left(\mathfrak{h}_{W}^{\text {reg }} / W, \bar{p}_{0}\right)$, the path $\bar{\sigma}\left(p_{0} \widetilde{\sigma}^{\prime}\right)$ is a lift of σ^{\prime} with initial point $\bar{\sigma}\left(p_{0}\right)$, and thus the composite path $\bar{\sigma}\left({ }^{p} \widetilde{\sigma}^{\prime}\right) \cdot{ }^{p_{0}} \widetilde{\sigma}$ is a lift of the composite loop $\sigma^{\prime} \cdot \sigma$. Then, we have

$$
\left(\bar{\sigma}\left({ }^{p_{0}} \widetilde{\sigma}^{\prime}\right) \cdot{ }^{p_{0}} \widetilde{\sigma}\right)(1)=\bar{\sigma}\left(\bar{\sigma}^{\prime}\left(p_{0}\right)\right)
$$

and hence $\overline{\sigma^{\prime} \cdot \sigma}=\bar{\sigma} \bar{\sigma}^{\prime} \in W$. That is, we have a homomorphism of groups ([6, (2.10)])

$$
\overline{(-)}: \pi_{1}\left(\mathfrak{h}_{W}^{\text {reg }} / W, \bar{p}_{0}\right)^{\mathrm{opp}} \longrightarrow W
$$

Now we consider an action of the fundamental group given by monodromy

$$
\widetilde{T}_{M}: \pi_{1}\left(\mathfrak{h}_{W}^{r e g} / W, \bar{p}_{0}\right)^{\mathrm{opp}} \longrightarrow G L\left(\left(M^{a n}\right)_{p_{0}}^{\nabla}\right), \quad \sigma \mapsto S_{M}\left(\left(^{p_{0}} \widetilde{\sigma}\right)^{-1}\right) \bar{\sigma}
$$

By [6, Theorem 4.12] and [11, Theorem 5.13], the linearly extended homomorphism \widetilde{T}_{M} factors through an algebra homomorphism $\widetilde{T}_{M}: \mathscr{H}(W) \longrightarrow \operatorname{End}_{\mathbb{C}}\left(\left(M^{a n}\right)_{p_{0}}^{\nabla}\right)$. Then we obtain the functor

$$
\mathrm{KZ}_{W}: \mathcal{O}(W) \rightarrow \mathscr{H}(W)-\bmod , \quad M \mapsto \mathrm{KZ}_{W}(M)
$$

A.2. Let $W^{\prime} \subset W$ be a parabolic subgroup and let $x \in W$ be an element. Recall the functor $\Theta_{W^{\prime}}^{(x)}: H\left(x W^{\prime} x^{-1}\right) \longrightarrow H\left(W^{\prime}\right)$ introduced in 4.4. For a module $M \in \mathcal{O}\left(W^{\prime}\right)$ and a point $p \in \mathfrak{G}_{W^{\prime}}^{\text {reg }}$, the functor $\Theta_{W^{\prime}}^{(x)}$ induces an isomorphism $\widehat{\Theta}_{W^{\prime}}^{(x)}:\left(M^{a n}\right)_{p}^{\nabla} \longrightarrow\left(\Theta_{W^{\prime}}^{(x)} M^{a n}\right)_{p}^{\nabla} \simeq\left(M^{a n}\right)_{x(p)}^{\nabla}$ of vector spaces, and we have the following commutative diagram:

for a path γ in $\mathfrak{G}_{W^{\prime}}^{\text {reg }}$. Here $x(\gamma)$ is the path given by $x(\gamma)(t)=x(\gamma(t))$.
A.3. Now we consider the case of the complex reflection group $W_{n, r}$. Consider the parabolic subgroups $W_{(l, \mu)}$ and $W_{(m, v)}$ of $W_{n, r}$. For a double coset representative $u=x \prod_{i \in I(x)} t_{i}^{a_{i}} \in$ ${ }^{(l, \mu)} W^{(m, v)}$, we have $W_{(l, \mu)} \cap u W_{(m, v)} u^{-1}=W_{(k(u), \pi(u))}$ by Proposition 2.13, and $u^{-1} W_{(k(u), \pi(u))} u=$
$W_{\left(k(u), \pi^{\sharp}(u)\right)}$ by (2.11.7). Recall that we denote by $X_{(k(u) \pi(u))} \subset\left\{s_{0}, s_{1}, \ldots, s_{n-1}\right\}$ (resp. $X_{\left(k(u) \pi^{\sharp}(u)\right)}$) the set of standard generators of the parabolic subgroup $W_{(k(u) \pi(u))}$ (resp. $\left.W_{\left(k(u), \pi^{\sharp}(u)\right)}\right)$. We sometimes denote the functor $\Theta_{W_{\left.(k(u))^{\sharp}(u)\right)}^{(u)}}$ by $u(-)$ and also denote $M^{\left.\left.\theta_{W_{(k(u)}}^{(u)}\right)^{\sharp}(u)\right)}$ by $u M$ when we need not notify the subgroup $W_{\left(k(u), \pi^{*}(u)\right)}$.
A.4. Let $B_{n, r}=\pi_{1}\left(\mathfrak{b}_{W_{n, r}}^{\text {reg }} / W_{n, r}, \bar{p}_{0}\right)$ be the fundamental group of the space $\mathfrak{\zeta}_{W_{n, r}}^{\text {reg }} / W_{n, r}$. It is the braid group associated with $W_{n, r}$. For $j=0,1, \ldots, n-1$, we fix a generator $\sigma_{j} \in B_{n, r}$ of the braid group given in [6, §2B] such that $\bar{\sigma}_{j}=s_{j}$. Then the image of $\sigma_{0}, \ldots, \sigma_{n-1}$ in $\mathscr{H}_{n, r}=\mathscr{H}\left(W_{n, r}\right)$ are $T_{0}, \ldots, T_{n-1} \in \mathscr{H}_{n, r}$, the generators of the Hecke algebra $\mathscr{H}_{n, r}$ which we introduced in 3.1. For $i=1, \ldots, n$, we set $\gamma_{i}=\sigma_{i-1} \sigma_{i-2} \ldots \sigma_{1} \sigma_{0} \sigma_{1} \ldots \sigma_{i-1}$, an element in $B_{n, r}$. Then, its image in $\mathscr{H}_{n, r}$ is $q^{i-1} L_{i}$ and we have $\bar{\gamma}_{i}=t_{i}$. Note that these elements γ_{1}, \ldots, γ_{n} mutually commute since the commutativity of $t_{1}, \ldots, t_{n} \in W_{n, r}$ is obtained only by using the braid relations. For the double coset representative $u=x \prod_{i \in I(x)} t_{i}^{a_{i}} \in{ }^{(l, \mu)} W^{(m, \nu)}$, we consider an element $\omega=\left(\prod_{i \in I(x)} \gamma_{i}^{a_{i}}\right) \sigma_{i_{i}} \ldots \sigma_{i_{1}} \in B_{n, r}$ where $x=s_{i_{1}} \ldots s_{i_{l}}$ is a reduced expression of $x \in \mathbb{S}_{n}$. Then, we have $\bar{\omega}=u$. By Proposition 2.12, for $s_{j} \in X_{(k(u), \pi(u))}$, there exists $s_{\psi(j)} \in X_{\left(k(u) \pi^{\sharp}(u)\right)}$ such that $s_{j}\left(s_{i_{1}} s_{i_{2}} \ldots s_{i_{l}} \prod_{i \in I(x)} t_{i}^{a_{i}}\right)=\left(s_{i_{1}} s_{i_{2}} \ldots s_{i_{l}} \prod_{i \in I(x)} t_{i}^{a_{i}}\right) s_{\psi(j)}$, and this identity can be lifted to the identity

$$
\begin{equation*}
\omega \sigma_{j}=\sigma_{\psi(j)} \omega \tag{A.4.1}
\end{equation*}
$$

in the braid group $B_{n, r}$.
By the embedding of [6, §2D], we identify the braid group $B_{(k(u), \pi(u))}$ (resp. $\left.B_{\left(k(u), \pi^{\sharp}(u)\right)}\right)$ associated with the parabolic subgroup $W_{(k(u), \pi(u))}$ (resp. $\left.W_{\left(k(u), \pi^{\sharp}(u)\right)}\right)$ with the subgroup of $B_{n, r}$ generated by the standard generators $\left\{\sigma_{j} \mid s_{j} \in X_{(k(u), \pi(u))}\right\}$ (resp. $\left.\left\{\sigma_{j} \mid s_{j} \in X_{\left(k(u), \pi^{\sharp}(u)\right)}\right\}\right)$. See also [22, Section 2.2] for the embedding of parabolic subgroups.

Now we prove Lemma 4.7.
Lemma A. 5 (Lemma 4.7). For a double coset representative $u \in{ }^{(l, \mu)} W^{(m, v)}$ and a module $M \in \mathcal{O}\left(W_{\left(k(u), \pi^{\sharp}(u)\right)}\right)$, we have the following isomorphism of functors :

Proof. Note that an $\mathscr{H}_{(k(u), \pi(u))}$-module $T_{u} N$ for an $\mathscr{H}_{\left(k(u) \pi^{\sharp}(u)\right)}$-module N is isomorphic to N as a vector space by the map $N \longrightarrow T_{u} N, v \mapsto T_{u} v$ and the action of $T_{z} \in \mathscr{H}_{(k(u), \pi(u))}$ corresponding to $z \in W_{(k(u) \pi(u))}$ on $T_{u} N$ is given by $T_{z} T_{u} v=T_{u}\left(T_{u^{-1} z u} v\right)$ for $v \in N$. For a module $M \in \mathcal{O}\left(W_{\left(k(u), \pi^{*}(u)\right)}\right)$, we define a map

$$
\begin{aligned}
& \left.\kappa^{(u)}:\left(T_{u}(-) \circ \mathrm{KZ}_{W_{\left.(k(u))^{n}(u)\right)}}\right)(M) \longrightarrow\left(\mathrm{KZ}_{W_{k(u)}}\right) \circ \Theta_{W_{(k(u)}}^{(u)}\right)(M), \\
& T_{u} v \mapsto \widehat{\Theta}_{W_{\left.(k(u))^{n}(u)\right)}^{(u)}} \circ S_{M}\left(u^{-1}\left(\left(\left(^{p} \widetilde{\omega}\right)^{-1}\right)\right)(v)\right.
\end{aligned}
$$

for $v \in \mathrm{KZ}_{W_{\left.(k(\omega))^{n}(t)\right)}}(M)=\left(M^{a n}\right)_{p_{0}}^{\nabla}$. Here we remark that we have $\bar{\omega}=u$ and $u^{-1}\left(\left(p_{0} \widetilde{\omega}\right)^{-1}\right)$ is a path from p_{0} to $u^{-1}\left(p_{0}\right)$. Obviously $\kappa^{(u)}$ is an isomorphism of \mathbb{C}-vector spaces. We see that the map $\kappa^{(u)}$ commutes with the action of the Hecke algebra $\mathscr{H}_{(k(u) \pi(u))}$ by direct computation as follows: For $v \in \mathrm{KZ}_{W_{\left(k(u), \pi^{(t u)}\right.}}(M)=\left(M^{a n}\right)_{p_{0}}^{\nabla}$ and $T_{i} \in \mathscr{H}_{(k(u), \pi(u))}$ corresponding to the generator $s_{i} \in X_{(k(u) \pi(u))}$, we have

$$
\begin{aligned}
& \kappa^{(u)}\left(T_{i}\left(T_{u} v\right)\right)=\kappa^{(u)}\left(T_{u}\left(T_{\psi(i)} v\right)\right) \\
&=\widehat{\Theta}_{W_{\left(k(u) \pi^{\sharp}(u)\right)}(u)} \circ S_{M}\left(u^{-1}\left(\left({ }^{p_{0}} \widetilde{\omega}\right)^{-1}\right)\right)\left(S_{M}\left(\left({ }^{p_{0}} \widetilde{\sigma}_{\psi(i)}\right)^{-1}\right) s_{\psi(i)} v\right) \\
&=S_{u M}\left(\left({ }^{p_{0}} \widetilde{\omega}\right)^{-1} \cdot u\left(\left({ }^{p_{0}} \widetilde{\sigma}_{\psi(i)}\right)^{-1}\right)\right) s_{i} \circ \widehat{\Theta}_{W_{\left(k(u), \pi^{\sharp}(u)\right)}^{(u)}}(v) .
\end{aligned}
$$

Here we can deduce that the path $\left({ }^{p_{0}} \widetilde{\omega}\right)^{-1} \cdot u\left(\left({ }^{p_{0}} \widetilde{\sigma}_{\psi(i)}\right)^{-1}\right)=\left(u\left({ }^{p_{0}} \widetilde{\sigma}_{\psi(i)}\right) \cdot{ }^{p_{0}} \widetilde{\omega}\right)^{-1}=\left({ }^{p_{0}} \sigma_{\psi(i)} \cdot \omega\right)^{-1}$ is lifted from the element $\left(\sigma_{\psi(i)} \cdot \omega\right)^{-1} \in B_{n, r}$, being equal to $\left(\omega \cdot \sigma_{i}\right)^{-1} \in B_{n, r}$ by (A.4.1). Thus, by the uniqueness of lifting from the fixed initial base point $\left(u s_{\psi(i)}\right)\left(p_{0}\right)=\left(s_{i} u\right)\left(p_{0}\right)$, we have

$$
S_{u M}\left(\left({ }^{p_{0}} \sigma_{\psi(i)} \cdot \omega\right)^{-1}\right)=S_{u M}\left(\left({ }^{p_{0}} \widetilde{\omega \cdot \sigma_{i}}\right)^{-1}\right)=S_{u M}\left(\left({ }^{p_{0}} \widetilde{\sigma}_{i}\right)^{-1} \cdot s_{i}\left(\left({ }^{p_{0}} \widetilde{\omega}\right)^{-1}\right)\right)
$$

Therefore, we have

$$
\begin{aligned}
& \kappa^{(u)}\left(T_{i}\left(T_{u} v\right)\right)=S_{u M}\left(\left({ }^{p_{0}} \widetilde{\omega}\right)^{-1} \cdot u\left(\left({ }^{p_{0}} \widetilde{\sigma}_{\psi(i)}\right)^{-1}\right)\right) s_{i} \circ \widehat{\Theta}_{W_{\left(k(u), \pi^{\sharp(u))}\right.}^{(u)}}(v) \\
&=S_{u M}\left(\left({ }^{p_{0}} \widetilde{\sigma}_{i}\right)^{-1} \cdot s_{i}\left(\left({ }^{p_{0}} \widetilde{\omega}\right)^{-1}\right)\right) s_{i} \circ \widehat{\Theta}_{W_{\left(k(u), \pi^{\sharp}(u)\right)}^{(u)}}(v) \\
&=\left(S_{u M}\left(\left({ }^{p_{0}} \widetilde{\sigma}_{i}\right)^{-1}\right) s_{i}\right)\left(S_{u M}\left(\left({ }^{p_{0}} \widetilde{\omega}\right)^{-1}\right) \circ \widetilde{\Theta}_{W_{\left(k(u) \pi^{\sharp}(u)\right)}^{(u)}}(v)\right)=T_{i} \cdot \kappa^{(u)}\left(T_{u} v\right) .
\end{aligned}
$$

That is, the map $\kappa^{(u)}$ is a homomorphism of $\mathscr{H}_{(k(u), \pi(u))}$-modules. It is clear from the definition that $\kappa^{(u)}$ is functorial, and hence we have the desired isomorphism of functors.

Appendix B A root system for $G(r, 1, n)$

In this appendix, we explain some connection with a root system for the complex reflection group of type $G(r, 1, n)$ introduced in [5]. We use notation and results given in [20].
B.1. Let V be a complex vector space with a basis $\left\{\epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{n}\right\}$. Let $\zeta=\exp (2 \pi \sqrt{-1} / r)$ be the primitive r-th root of unity. Then $W_{n, r}$ acts on V by

$$
\left(x t_{1}^{a_{1}} \ldots t_{n}^{a_{n}}\right) \cdot \epsilon_{i}=\zeta^{a_{i}} \epsilon_{x(i)} \quad\left(x \in \mathfrak{S}_{n}, 0 \leq a_{1}, \ldots, a_{n} \leq r-1,1 \leq i \leq n\right)
$$

For $i=1, \ldots, n-1$, a vector $\epsilon_{i+1}-\epsilon_{i}$ is orthogonal to the reflection hyperplane corresponding the reflection s_{i}, and a vector ϵ_{1} is orthogonal to the reflection hyperplane corresponding the reflection s_{0}. Put

$$
\bar{\Delta}=\left\{\epsilon_{i+1}-\epsilon_{i} \mid 1 \leq i \leq n-1\right\} \cup\left\{\epsilon_{1}\right\}
$$

and put $\bar{\Phi}=W_{n, r} \cdot \bar{\Delta}$. Then we have

$$
\bar{\Phi}=\left\{\zeta^{a} \epsilon_{i}-\zeta^{b} \epsilon_{j} \mid 1 \leq i \neq j \leq n, 0 \leq a, b \leq r-1\right\} \cup\left\{\zeta^{a} \epsilon_{i} \mid 1 \leq i \leq n, 0 \leq a \leq r-1\right\}
$$

B.2. In this appendix, we identify elements $a \in \mathbb{Z} / r \mathbb{Z}$ with integers $0 \leq a \leq r-1$. We consider a set $X=\left\{e_{i}^{(a)} \mid 1 \leq i \leq n, a \in \mathbb{Z} / r \mathbb{Z}\right\}$, where $e_{i}^{(a)}$ is just a symbol indexed by i and a. One can define an action of $W_{n, r}$ on X by

$$
\left(x t_{1}^{a_{1}} \ldots t_{n}^{a_{n}}\right) \cdot e_{i}^{(a)}=e_{x(i)}^{\left(a+a_{i}\right)} \quad\left(x \in \mathbb{S}_{n}, 0 \leq a_{1}, \ldots, a_{n} \leq r-1,1 \leq i \leq n, a \in \mathbb{Z} / r \mathbb{Z}\right)
$$

We also define another action of $W_{n, r}$ on X by

$$
\left(x t_{1}^{a_{1}} \ldots t_{n}^{a_{n}}\right) * e_{i}^{(a)}=e_{x(i)}^{\left(a-a_{i}\right)} \quad\left(x \in \mathbb{S}_{n}, 0 \leq a_{1}, \ldots, a_{n} \leq r-1,1 \leq i \leq n, a \in \mathbb{Z} / r \mathbb{Z}\right)
$$

We express an element $\left(e_{i}^{(a)}, e_{j}^{(b)}\right) \in X \times X$ as $e_{i}^{(a)}-e_{j}^{(b)}$ in the case where $i \neq j$. Then we define a root system Φ for $W_{n, r}$ by

$$
\Phi=\left\{e_{i}^{(a)}-e_{j}^{(b)} \mid 1 \leq i \neq j \leq n, a, b \in \mathbb{Z} / r \mathbb{Z}\right\} \cup\left\{e_{i}^{(a)} \mid 1 \leq i \leq n, a \in \mathbb{Z} / r \mathbb{Z}\right\}
$$

We define subsets Φ_{0}, Ω and Δ of Φ by

$$
\begin{aligned}
& \Phi_{0}=\left\{e_{i}^{(a)}-e_{j}^{(b)} \in \Phi \mid i>j, a=0\right\} \cup\left\{e_{i}^{(a)}-e_{j}^{(b)} \mid i<j, b \neq 0\right\} \cup\left\{e_{i}^{(0)} \mid 1 \leq i \leq n\right\}, \\
& \Omega=\left\{e_{i}^{(0)}-e_{j}^{(b)} \mid 1 \leq j<i \leq n, b \in \mathbb{Z} / r \mathbb{Z}\right\} \cup\left\{e_{i}^{(0)} \mid 1 \leq i \leq n\right\}, \\
& \Delta=\left\{e_{i+1}^{(0)}-e_{i}^{(0)} \mid 1 \leq i \leq n-1\right\} \cup\left\{e_{1}^{(0)}\right\}
\end{aligned}
$$

Let $\varphi: \Phi \rightarrow V$ be a map such that $\varphi\left(e_{i}^{(a)}-e_{j}^{(b)}\right)=\zeta^{a} \epsilon_{i}-\zeta^{b} \epsilon_{j}$ and $\varphi\left(e_{i}^{(a)}\right)=\zeta^{a} \epsilon_{i}$, then we see that $\varphi(\Phi)=\bar{\Phi}$ and $\varphi(\Delta)=\bar{\Delta}$.

Remark B.3. (i). In the case where $r=2$ (in this case, $W_{n, 2}$ coincides with the Weyl group of type B_{n}), we see that $\bar{\Phi}$ (resp. $\bar{\Delta}$) coincides with a root system (resp. a set of simple roots) for the Weyl group of type B_{n}. Moreover, $\varphi(\Omega)$ coincides with the set of positive roots with respect to $\bar{\Delta}$ of the Weyl group of type B_{n}.
(ii). In general case, Ω is not a positive root in the sense of [5], but Ω plays the role of positive roots. Moreover, in this appendix, we follow notion in [20], and the definitions of Φ and Ω are different from them in [5]. See [20, Remark 1.4] for these differences.
B.4. For $0 \leq l \leq n$ and $\mu \vDash n-l$, we obtain the root system $\Phi_{(l, \mu)}$ and subsets $\Omega_{(l, \mu)}, \Delta_{(l, \mu)} \subset$ $\Phi_{(l, \mu)}$ for the parabolic subgroup $W_{(l, \mu)}$ of $W_{n, r}$ by

$$
\begin{aligned}
\Phi_{(l, \mu)}= & \left\{e_{i}^{(a)}-e_{j}^{(b)} \mid 1 \leq i \neq j \leq l, a, b \in \mathbb{Z} / r \mathbb{Z}\right\} \cup\left\{e_{i}^{(a)} \mid 1 \leq i \leq l, a \in \mathbb{Z} / r \mathbb{Z}\right\} \\
& \cup \bigcup_{p=1}^{\ell(\mu)}\left\{e_{i}^{(0)}-e_{j}^{(0)}\left|l+|\mu|_{p-1}+1 \leq i \neq j \leq l+|\mu|_{p}\right\}\right. \\
\Omega_{(l, \mu)}= & \left\{e_{i}^{(0)}-e_{j}^{(b)} \mid 1 \leq j<i \leq l, b \in \mathbb{Z} / r \mathbb{Z}\right\} \cup\left\{e_{i}^{(0)} \mid 1 \leq i \leq l\right\} \\
& \cup \bigcup_{p=1}^{\ell(\mu)}\left\{e_{i}^{(0)}-e_{j}^{(0)}\left|l+|\mu|_{p-1}+1 \leq j<i \leq l+|\mu|_{p}\right\},\right. \\
\Delta_{(l, \mu)}= & \left\{e_{i+1}^{(0)}-e_{i}^{(0)} \mid 1 \leq i \leq l-1\right\} \cup\left\{e_{1}^{(0)} \mid l \neq 0\right\} \\
& \cup \bigcup_{p=1}^{\ell(\mu)}\left\{e_{i+1}^{(0)}-e_{i}^{(0)}\left|l+|\mu|_{p-1}+1 \leq i \leq l+|\mu|_{p}-1\right\},\right.
\end{aligned}
$$

where we put $|\mu|_{p}=\sum_{k=1}^{p} \mu_{k}$ with $|\mu|_{0}=0$, and $\left\{e_{1}^{(0)} \mid l \neq 0\right\}=\left\{\begin{array}{ll}\left\{e_{i}^{(0)}\right\} & \text { if } l \neq 0, \\ \emptyset & \text { if } l=0 .\end{array}\right.$ We also define

$$
\begin{aligned}
\widetilde{\Omega}_{(l, \mu)}= & \left\{e_{i}^{(0)}-e_{j}^{(b)} \mid 1 \leq j<i \leq l, b \in \mathbb{Z} / r \mathbb{Z}\right\} \cup\left\{e_{i}^{(0)} \mid 1 \leq i \leq l\right\} \\
& \cup \bigcup_{p=1}^{\ell(\mu)}\left\{e_{i}^{(0)}-e_{j}^{(b)}\left|l+|\mu|_{p-1}+1 \leq j<i \leq l+|\mu|_{p}, b \in \mathbb{Z} / r \mathbb{Z}\right\}\right.
\end{aligned}
$$

Then we have $\Omega_{(l, \mu)} \subset \widetilde{\Omega}_{(l, \mu)}$, and we also have $\Omega_{(l, \mu)}=\widetilde{\Omega}_{(l, \mu)}$ if and only if $\mu=\left(1^{n-l}\right)$.
B.5. For $w \in W_{n, r}$, let $\ell(w)$ be the smallest number k such that w is expressed as a product $w=s_{i_{1}} \ldots s_{i_{k}}\left(s_{i_{j}} \in\left\{s_{0}, s_{1}, \ldots, s_{n-1}\right\}\right)$.

For $0 \leq l \leq n$ and $\mu \vDash n-l$, we define a subsets $\mathcal{R}_{(l, \mu)}, \mathcal{R}_{(l, \mu)}^{*}, \mathcal{R}_{(l, \mu)}^{0}$ and $\mathcal{R}_{(l, \mu)}^{* 0}$ of $W_{n, r}$ by

$$
\begin{array}{ll}
\mathcal{R}_{(l, \mu)}=\left\{w \in W \mid w\left(\Omega_{(l, \mu)}\right) \subset \Phi_{0}\right\}, & \mathcal{R}_{(l, \mu)}^{*}=\left\{w \in W \mid w^{-1} * \Omega_{(l, \mu)} \subset \Phi_{0}\right\}, \\
\mathcal{R}_{(l, \mu)}^{0}=\left\{w \in W \mid w\left(\widetilde{\Omega}_{(l, \mu)}\right) \subset \Phi_{0}\right\}, & \mathcal{R}_{(l, \mu)}^{* 0}=\left\{w \in W \mid w^{-1} * \widetilde{\Omega}_{(l, \mu)} \subset \Phi_{0}\right\} .
\end{array}
$$

Since $\Omega_{(l, \mu)} \subset \widetilde{\Omega}_{(l, \mu)}$, we have $\mathcal{R}_{(l, \mu)}^{0} \subset \mathcal{R}_{(l, \mu)}$ (resp. $\left.\mathcal{R}_{(l, \mu)}^{* 0} \subset \mathcal{R}_{(l, \mu)}^{*}\right)$. The following proposition is proven in [20, Lemma 1.27, Proposition 1.28, Corollary 1.29].

Proposition B.6. For $0 \leq l \leq n$ and $\mu \vDash n-l$, we have the following:
(i) (a) For $w \in W_{n, r}$, we have $w\left(\Omega_{(l, \mu)}\right) \subset \Phi_{0}$ if and only if $w\left(\Delta_{(l, \mu)}\right) \subset \Phi_{0}$.
(b) For $w \in W_{n, r}$, we have $w^{-1} * \Omega_{(l, \mu)} \subset \Phi_{0}$ if and only if $w^{-1} * \Delta_{(l, \mu)} \subset \Phi_{0}$.
(ii) (a) For $w \in \mathcal{R}_{(l, \mu)}^{0}$ and $w^{\prime} \in W_{(l, \mu)}$, we have $\ell\left(w w^{\prime}\right)=\ell(w)+\ell\left(w^{\prime}\right)$.
(b) For $w \in \mathcal{R}_{(l, \mu)}^{*}$ and $w^{\prime} \in W_{(l, \mu)}$, we have $\ell\left(w^{\prime} w\right)=\ell\left(w^{\prime}\right)+\ell(w)$.
(iii) (a) For $w \in W_{n, r}$, if $\ell(w)$ is minimal among all elements in $w W_{(l, \mu)}$, we have $w \in$ $\mathcal{R}_{(l, \mu)}$.
(b) For $w \in W_{n, r}$, if $\ell(w)$ is minimal among all elements in $W_{(l, \mu)} w$, we have $w \in$ $\mathcal{R}_{(l, \mu)}^{*}$.
(iv) (a) In the case where $\mathcal{R}_{(l, \mu)}=\mathcal{R}_{(l, \mu)}^{0}$, the set $\mathcal{R}_{(l, \mu)}$ is a complete set of coset representatives for $W_{n, r} / W_{(l, \mu)}$.
(b) In the case where $\mathcal{R}_{(l, \mu)}^{*}=\mathcal{R}_{(l, \mu)}^{* 0}$, the set $\mathcal{R}_{(l, \mu)}^{*}$ is a complete set of coset representatives for $W_{(l, \mu)} \backslash W_{n, r}$.
B.7. Assume that $l \neq 0$ and $\mu=\left(1^{n-l}\right)$. In this case, we have $W_{(l, \mu)}=W_{l, r}, \Omega_{(l, \mu)}=\widetilde{\Omega}_{(l, \mu)}$, $\mathcal{R}_{(l, \mu)}=\mathcal{R}_{(l, \mu)}^{0}$ and $\Delta_{(l, \mu)}=\left\{e_{i+1}^{(0)}-e_{i}^{(0)} \mid 1 \leq i \leq l-1\right\} \cup\left\{e_{1}^{(0)}\right\}$. For $x t_{l+1}^{a_{l+1} t_{l+2}^{l_{l+2}} \ldots t_{n}^{a_{n}} \in W^{(l, \mu)} \text { and }, ~}$ $e_{i+1}^{(0)}-e_{i}^{(0)}(1 \leq i \leq l-1)$, we have

$$
\left(x t_{l+1}^{a_{l+1}} t_{l+2}^{a_{l+2}} \ldots t_{n}^{a_{n}}\right) \cdot\left(e_{i+1}^{(0)}-e_{i}^{(0)}\right)=e_{x(i+1)}^{(0)}-e_{x(i)}^{(0)},
$$

and $x(i+1)>x(i)$ since $x \in \mathbb{S}^{(l, \mu)}$ and $s_{i} \in S_{(l, \mu)}$. We also have

$$
\left(x t_{l+1}^{a_{l+1}} t_{l+2}^{a_{1+2}} \ldots t_{n}^{a_{n}}\right) \cdot e_{1}^{(0)}=e_{x(1)}^{(0)} .
$$

Thus we see that $\left(x t_{l+1}^{a_{l+1}} t_{l+2}^{a_{l+2}} \ldots t_{n}^{a_{n}}\right)\left(\Delta_{(l, \mu)}\right) \subset \Phi_{0}$ for any $x t_{l+1}^{a_{+1}} t_{l+2}^{a_{l+2}} \ldots t_{n}^{a_{n}} \in W^{(l, \mu)}$. Then, by Proposition B. 6 (i), we have that $W^{(l, \mu)} \subset \mathcal{R}_{(l, \mu)}$. On the other hand, $W^{(l, \mu)}$ (resp. $\mathcal{R}_{(l, \mu)}$) is a complete set of representatives for $W / W_{(l, \mu)}$ by Lemma 2.3 (resp. Proposition B. 6 (iv)). Thus we have $W^{(l, \mu)}=\mathcal{R}_{(l, \mu)}$ if $\mu=\left(1^{n-l}\right)$. Similarly, we have ${ }^{(l, \mu)} W=\mathcal{R}_{(l, \mu)}^{*}$ if $\mu=\left(1^{n-l}\right)$. Moreover we have ${ }^{(l, \mu)} W^{(m, v)}=^{(l, \mu)} W \cap W^{(m, v)}$ if $v=\left(1^{n-m}\right)$ by Lemma 2.7. As a consequence, we have the following corollary.

Corollary B.8. Assume that $\mu=\left(1^{n-l}\right)$ and $v=\left(1^{n-m}\right)$. Then we have ${ }^{(l, \mu)} W=\mathcal{R}_{(l, \mu)}^{*}$ and $W^{(m, v)}=\mathcal{R}_{(m, v)}$. Moreover, $\mathcal{R}_{(l, \mu)}^{*} \cap \mathcal{R}_{(m, v)}={ }^{(l, \mu)} W \cap W^{(m, v)}$ is a complete set of representatives for $W_{(l, \mu)} \backslash W_{n, r} / W_{(m, v)}$.

Remark B.9. (i). In the case where $\mu \neq\left(1^{n-l}\right)$, there exists $i>l$ such that $e_{i+1}^{(0)}-e_{i}^{(0)} \in \Delta_{(l, \mu)}$. For $e_{i+1}^{(0)}-e_{i}^{(0)} \in \Delta_{(l, \mu)}$ such that $i>l$ and $x t_{l+1}^{a_{l+1}} \ldots t_{n}^{a_{n}} \in W^{(l, \mu)}$, we have

$$
\left(x t_{l+1}^{a_{l+1}} \ldots t_{n}^{a_{n}}\right) \cdot\left(e_{i+1}^{(0)}-e_{i}^{(0)}\right)=e_{x(i+1)}^{\left(a_{i+1}\right)}-e_{x(i)}^{\left(a_{i}\right)},
$$

and $x(i+1)>x(i)$ since $x \in \mathbb{S}^{(l, \mu)}$ and $s_{i} \in S_{(l, \mu)}$. Moreover, $e_{x(i+1)}^{\left(a_{i+1}\right)}-e_{x(i)}^{\left(a_{i}\right)} \notin \Phi_{0}$ if $a_{i+1} \neq 0$. Thus, we see that $W^{(l, \mu)} \not \subset \mathcal{R}_{(l, \mu)}$ if $\mu \neq\left(1^{n-l}\right)$. Similarly, we have ${ }^{(l, \mu)} W \not \subset \mathcal{R}_{(l, \mu)}^{*}$ if $\mu \neq\left(1^{n-l}\right)$.
(ii). In general case, we do not know if we can characterize the set $W^{(l, \mu)}$ (or another complete set of representatives for $\left.W / W_{(l, \mu)}\right)$ by using the root system Φ.

Acknowledgements. The authors would like to thank Seth Shelley-Abrahamson for letting us notice their paper [16]. There were some overlaps between [loc. cit.] and the original version of this paper. The authors would like to thank the referee for his or her effort to make this paper more readable. The first author was supported by JSPS KAKENHI Grant Number JP17K14151. The second author was supported by JSPS KAKENHI Grant Number JP18K03250. The third author was supported by JSPS KAKENHI Grant Number JP16K17565.

References

[1] S. Ariki: Representations of quantum algebras and combinatorics of Young tableaux, University Lecture Series 26, American Mathematical Society, Providence, RI, 2002, Translated from the 2000 Japanese edition and revised by the author.
[2] S. Ariki and K. Koike: A Hecke algebra of $(\mathbf{Z} / r \boldsymbol{Z})$ ८ \mathfrak{S}_{n} and construction of its irreducible representations, Adv. Math. 106 (1994), 216-243.
[3] R. Bezrukavnikov and P. Etingof: Parabolic induction and restriction functors for rational Cherednik algebras, Selecta Math. (N.S.) 14 (2009), 397-425.
[4] C. Bonnafé: Mackey formula in type A, Proc. London Math. Soc. (3) 80 (2000), 545-574.
[5] K. Bremke and G. Malle: Reduced words and a length function for $G(e, 1, n)$, Indag. Math. (N.S.) 8 (1997), 453-469.
[6] M. Broué, G. Malle and R. Rouquier: Complex reflection groups, braid groups, Hecke algebras, J. Reine Angew. Math. 500 (1998), 127-190.
[7] C.W. Curtis and I. Reiner: Methods of representation theory. Vol. I, Wiley Classics Library, With applications to finite groups and orders, Reprint of the 1981 original, A Wiley-Interscience Publication, John Wiley \& Sons, Inc., New York, 1990.
[8] B. Deng, J. Du, B. Parshall and J. Wang: Finite dimensional algebras and quantum groups, Mathematical Surveys and Monographs 150, American Mathematical Society, Providence, RI, 2008.
[9] R. Dipper and P. Fleischmann: Modular Harish-Chandra theory. I, Math. Z. 211 (1992), 49-71.
[10] R. Dipper and P. Fleischmann: Modular Harish-Chandra theory. II, Arch. Math. (Basel) 62 (1994), 26-32.
[11] V. Ginzburg, N. Guay, E. Opdam and R. Rouquier: On the category \mathscr{O} for rational Cherednik algebras, Invent. Math. 154 (2003), 617-651.
[12] R.B. Howlett and G.I. Lehrer: Induced cuspidal representations and generalised Hecke rings, Invent. Math. 58 (1980), 37-64.
[13] R.B. Howlett and G.I. Lehrer: Representations of generic algebras and finite groups of Lie type, Trans. Amer. Math. Soc. 280 (1983), 753-779.
[14] J.E. Humphreys: Reflection groups and Coxeter groups, Cambridge Studies in Advanced Mathematics, 29, Cambridge University Press, Cambridge, 1990.
[15] L.K. Jones: Centers of generic Hecke algebras, Trans. Amer. Math. Soc. 317 (1990), 361-392.
[16] I. Losev and S. Shelley-Abrahamson: On refined filtration by supports for rational cherednik categories \mathcal{O}, Selecta Math. (N.S.) 24 (2018), 1729-1804.
[17] G.W. Mackey: On induced representations of groups, Amer. J. Math. 73 (1951), 576-592.
[18] A. Mathas: Iwahori-Hecke algebras and Schur algebras of the symmetric group, University Lecture Series, 15, American Mathematical Society, Providence, RI, 1999.
[19] H. Matsumura: Commutative ring theory, Cambridge Studies in Advanced Mathematics 8, Cambridge University Press, Cambridge, 1986, Translated from the Japanese by M. Reid.
[20] K. Rampetas and T. Shoji: Length functions and Demazure operators for $G(e, 1, n)$. I, II, Indag. Math. (N.S.) 9 (1998), 563-580, 581-594.
[21] P. Shan and E. Vasserot: Heisenberg algebras and rational double affine Hecke algebras, J. Amer. Math. Soc. 25 (2012), 959-1031.
[22] P. Shan: Crystals of Fock spaces and cyclotomic rational double affine Hecke algebras, Ann. Sci. Éc. Norm. Supér. (4) 44 (2011), 147-182.
[23] M. Vazirani: Filtrations on the Mackey decomposition for cyclotomic Hecke algebras, J. Algebra 252 (2002), 205-227.

Toshiro Kuwabara
Department of Mathematics
Faculty of Pure and Applied Sciences
University of Tsukuba
1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571
Japan
e-mail: kuwabara@math.tsukuba.ac.jp
Hyohe Miyachi
Department of Mathematics
Osaka City University
3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585
Japan
e-mail: miyachi@sci.osaka-cu.ac.jp
Kentaro Wada
Department of Mathematics
Faculty of Science, Shinshu University
Asahi 3-1-1, Matsumoto 390-8621
Japan
e-mail: wada@math.shinshu-u.ac.jp

[^0]: 2020 Mathematics Subject Classification. Primary 20C08; Secondary 20F36, 20 G05.

[^1]: *The Ariki-Koike algebra is in an imprimitive class of the cyclotomic Hecke algebras.

[^2]: ${ }^{\dagger}$ Another way to detect the rule is to deform the Cherednik algebra in question to another algebra so that its \mathcal{O} is semisimple.

