Kobayashi, R. and Omori, G.
Osaka J. Math.
59 (2022), 269-314

AN INFINITE PRESENTATION FOR THE MAPPING CLASS
GROUP OF A NON-ORIENTABLE SURFACE
WITH BOUNDARY

Ryoma KOBAYASHI and Gexxt OMORI

(Received October 9, 2018, revised December 21, 2020)

Abstract
We give an infinite presentation for the mapping class group of a non-orientable surface with
boundary components. The presentation is a generalization of the presentation given by the
second author [16]. We also give a finite presentation for the mapping class group to obtain the
infinite presentation.

1. Introduction

Let X,, be a compact connected oriented surface of genus g > 0 with n > 0 bound-
ary components. The mapping class group M(Z, ) of X, , is the group of isotopy classes of
orientation preserving self-diffeomorphisms on X, , fixing the boundary pointwise. Hatcher-
Thurston [8] were the first to give a finite presentation for M(Z, ) in general genus cases.
By applying their method in [8] to non-empty boundary cases, Harer [7] gave a finite pre-
sentation for M(Z,) for n > 1. Wajnryb [22] simplified their presentation for n € {0, 1}.
Furthermore, for n > 0, a finite presentation for M(X,,) was given by Gervais [6] and
Labruere-Paris [12]. Gervais [5] gave an infinite presentation for M(Z,,) for arbitrary g > 0
and n > 0 by using Harer’s and Wajnryb’s finite presentations for M(Z, ) ([7, 22]). To prove
this, Gervais constructed explicit isomorphisms between the group obtained from his infi-
nite presentations and the group obtained from Harer’s and Wajnryb’s finite presentations for
M(Z,,). This Gervais’ presentation has infinitely many generators and relations, however,
the relations are simple. Luo [15] reduced relations in Gervais’ presentation into a simpler
infinite presentation (see Theorem 2.5).

Let Ny, be a compact connected non-orientable surface of genus g > 1 withn > 0
boundary components. The surface N, is a connected sum of g real projective planes. The
mapping class group M(N,,) of Ny, is the group of isotopy classes of self-diffeomorphisms
on N,, fixing the boundary pointwise. For n € {0, 1}, Paris-Szepietowski [17] were the
first to give a finite presentation for M(N, ) in general genus cases. Stukow [20] rewrote
Paris-Szepietowski’s presentation into a finite presentation with Dehn twists and one “Y-
homeomorphism” as generators (see Theorem 3.1). In low genus cases for n € {0, 1}, finite
presentations for M(N,,) were given by Lickorish [13], Birman-Chillingworth [2], and
Stukow [18]. A finite presentation for M(N,,) for n > 2 was not known.

In this paper, we give a simple infinite presentation for M(N,,) forg > 1 and n > 2
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(Theorem 4.1). The generating set consists of all Dehn twists and all “crosscap pushing
maps” along simple loops. We review the crosscap pushing map in Section 2. In the case of
n € {0, 1}, an infinite presentation for M(N,,,) was given by the second author [16]. To prove
Theorem 4.1, we construct an explicit finite presentation for M(N,,) forg > 1 andn > 2
(Proposition 3.2), and apply Gervais’ argument to the finite presentation in Proposition 3.2.
We prove Proposition 3.2 by inductively applying the forgetful exact sequence to the group
obtained from known finite presentation for M(Ny, ).

Contents of this paper are as follows. In Section 2, we prepare some elements of M(N, )
and some relations among their elements in M(N,,), and review the infinite presentation
for M(Z,,,) (Theorem 2.5) which is an improvement by Luo [15] of Gervais’ presentation
in [5]. In Section 3, we review Stukow’s finite presentation for M(N,,) when n € {0, 1}
(Theorem 3.1) and give a finite presentation for M(N,,) when n > 2 (Proposition 3.2). In
the proof of the main theorem in Section 4, we use their finite presentations for M(N, ). In
Section 4, we give the main theorem (Theorem 4.1) in this paper and a proof of the main
theorem. Finally, in Section 5, we give a proof of Proposition 3.2.

2. Preliminaries

In this section, we recall the definitions of Dehn twists and crosscap pushing maps, and
their important relations from Section 2 in [16].

2.1. Relations among Dehn twists and Gervais’ presentation. Let S be either N, or
2,0 We denote by Ns(A) a regular neighborhood of a subset A in S. We assume that
every simple closed curve on S is oriented throughout this paper, and for simple closed
curves ¢y, ¢; on S, ¢; = ¢, means ¢y is isotopic to ¢; in consideration of their orientations.
Denote by ¢! the inverse curve of a simple closed curve ¢ on S. Note that (c™)™! = c.
For a two-sided simple closed curve ¢ on S, we can take two orientations +. and —. of
Ns(c). When S is orientable, we take +. as the orientation of Ng(c) which is induced by the
orientation of S. For a two-sided simple closed curve ¢ on S and an orientation 8 € {+., —.}
of Ns(c), denote by .4 the right-handed Dehn twist along ¢ on S with respect to 6. Note that
ey, =ty = t;l, .- For some convenience, we write 7. = f..,_for a two-sided simple closed
curve ¢, where the orientation of N(c) is given explicitly (for instance, S is an oriented
surface). In particular, for a given explicit two-sided simple closed curve, an arrow on a
side of the simple closed curve indicates the direction of the Dehn twist (see Figure 1). For
elements f = [¢], h = [Y] € M(S), we define fh := [¢ o ] € M(S).

Fig. 1. The right-handed Dehn twist ¢, = f. along a two-sided simple
closed curve ¢ on S with respect to the orientation 6 € {+.,—.} of Ns(c)
as in the figure.

Recall the following relations in M(S) among Dehn twists along two-sided simple closed
curves on S.
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Lemma 2.1. Let ¢ be a two-sided simple closed curve on S and 6 € {+., —.} an orientation
of Ns(c). If ¢ bounds a disk or a Mobius band in S, then we have t.q = 1 in M(S).

For a two-sided simple closed curve ¢ on S and f € M(S), we have a bijection f, =
(flng)s = e =eb = {+ 50 —f0))-

Lemma 2.2 (The braid relation (i)). For a two-sided simple closed curve ¢ on S and
f € M(S), we have

-1
fleof ™ = treonro-

When f is a Dehn twist tg¢ along a two-sided simple closed curve d and the geometric
intersection number |c N d| of ¢ and d is m, we denote by T,, the braid relation.

Letcy, ¢, ..., ¢k be two-sided simple closed curves on S. The sequence ¢y, ¢3, ..., crisa
k-chain on Sif ¢y, ¢, ..., ¢ satisfy [c;N ¢y = 1 foreachi=1,2,...,k—1and|c;Nc;| =0
for|j—i] > 1.

Lemma 2.3 (The k-chain relation). Let ¢y, ¢3, ..., ¢k be a k-chain on S and let 6, &' (resp.
0) be distinct boundary components (resp. the boundary component) of N's(ciUc, U---Ucy)
when k is odd (resp. even). We give an orientation of Ns(ci U cy U --- U ¢y), and it induces
orientations 6; (i = 1,2,...,k), 6, and & of Ns(c;) (i = 1,2,...,k), Ns(5), and Ns(&),
respectively. Then we have

k+1 :
(t01§91 Teyiy o [Ck;gk) = Isols.o when k is odd,

2%+2 .
(tey0,8cr:0, " tere0,) = ts9 whenkiseven.

Lemma 2.4 (The lantern relation). Let £ be a subsurface of S which is diffeomorphic
to Xo4 and let 613, 023, 013, 01, 02, 03 and 64 be simple closed curves on X as in Fig-
ure 2. We give an orientation of X, and it induces orientations 6; (i = 1,2,3,4), and 6;;
((i, ) = (1,2),(2,3), (1,3)) of N(6;) (i = 1,2,3,4), and Ns(6;;) (i, j) = (1,2),(2,3),(1,3)),

respectively. Then we have

15123012 1623:003 16133613 = 15136116236, 163:63 164364 -

Fig.2. The simple closed curves 013, 023, 013, 01, 02, 03 and d4 on Z.

Luo’s presentation for M(Z, ), which is an improvement of Gervais’ one, is as follows.

Theorem 2.5 ([5], [15]). For g > 0andn >0, M(X,,) has the following presentation:
generators: {t. | ¢ : s.c.c. on X, ,}, where s.c.c. means simple closed curve.
relations:

(0") t. = 1 when c bounds a disk in X,
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(I') All the braid relations Ty and T},
(Il) All the 2-chain relations,
(IM All the lantern relations.

2.2. Relations among the crosscap pushing maps and Dehn twists. Let u be a one-
sided simple closed curve on N, , and let @ be a simple closed curve on N, , such that ¢ and
« intersect transversely at one point. Recall that « is oriented. For these simple closed curves
w1 and a, we denote by Y, , a self-diffecomorphism on N, , which is described as the result of
pushing the Mobius band N N,.(u) once along a. We call Y, , a crosscap pushing map. In
particular, if @ is two-sided, we call Y, , a Y-homeomorphism (or a crosscap slide), where a
crosscap means a Mobius band in the interior of a surface. Note that Y, = Y/;(ll,l =Y, 1,
The Y-homeomorphism was originally defined by Lickorish [13]. We have the following
fundamental relation in M(N,,) and we also call the relation the braid relation.

Lemma 2.6 (The braid relation (ii)). Let u be a one-sided simple closed curve on Ny,
and let « be simple closed curve on N, , such that u and « intersect transversely at one
point. For f € M(Ny,), we have

—1
Yol = Yrw.re-

We describe crosscap pushing maps from a different point of view. Let e : D’ < intS be
a smooth embedding of the unit disk D’ ¢ C. Put D := e(D’). Let S’ be the surface obtained
from S — intD by the identification of antipodal points of dD. We call the manipulation that
gives " from S the blowup of S on D. Note that the image M C " of Ns_inp(dD) C S—intD
with respect to the blowup of S on D is a crosscap. Conversely, the blowdown of S" on M is
the following manipulation that gives S from §’. We paste a disk on the boundary obtained by
cutting S along the center line i of M. The blowdown of §" on M is the inverse manipulation
of the blowup of S on D.

Let 2 be a one-sided simple closed curve on N, , and let S be the surface which is obtained
from N,, by the blowdown of N,, on N, N,, (). Note that S is diffeomorphic to N,_;, or
Xyn for g = 2h + 1. Denote by x,, the center point of a disk D,, that is pasted on the boundary
obtained by cutting S along u. Lete : D" < D, C S be a smooth embedding of the unit disk
D’ c Cto Ssuchthat D, = e(D’) and e(0) = x,,. Let M(S, x,,) be the group of isotopy classes
of self-diffeomorphisms on § fixing the boundary dS and the point x,,, where isotopies also
fix the boundary 0S and x,,. Then we have the blowup homomorphism

Ou t M(S, x,) = M(N,,)
that is defined as follows. For i € M(S, x,), we take a representative diffeomorphism w € h
of the mapping class & which satisfies either of the following conditions: (a) w|p, is the
identity map on D,, (b) w(x) = e(e~!(x)) for x € D,,, where e~!(x) is the complex conjugate
of e”!(x) € C. Such w is compatible with the blowup of S on D,,, thus ou(h) € M(Ny,) is

induced and well-defined (c.f. [21, Subsection 2.3]).
The point pushing map

jx“ : 7T1(S, xy) - M(S, xy)

is a homomorphism that is defined as follows. For y € m (S, x,), jy,(¥) € M(S, x,) is
described as the result of pushing the point x,, once along y. The point pushing map comes
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from the Birman exact sequence. Note that for y, y2 € m((S, x,), y1y2 means y y2(?) =
y2(20) for 0 <t < Land y1y2(t) = y1 2t - D for i <t < 1.
Following Szepietowski [21] we define the composition of the homomorphisms:

wxﬂ =@uo jxy s (S, x,u) - M(Ngn)

For each closed curve @ on N, which transversely intersects with u at one point, we take a
loop @ on § based at x,, such that @ has no self-intersection points on D, and « is the image
of @ with respect to the blowup of S on D,,. If a is simple, we take @ as a simple loop. The
next two lemmas follow from the description of the point pushing map (see [11, Lemma 2.2,
Lemma 2.3]).

Lemma 2.7. For a simple closed curve a on Ny, which transversely intersects with a
one-sided simple closed curve pt on N, at one point, we have

l//xu (5) = Yy,a-

Lemma 2.8. For a one-sided simple closed curve a on Ny, which transversely intersects
with a one-sided simple closed curve i on Ny, at one point, we take Ns(@) such that the
interior of Ns(@) contains D, and an orientation 05 € {+z,—z} of Ns(@). Denote by &;
(resp. 63) the boundary component of N's(@) on the right (resp. left) side of @, and by §;
(i = 1,2) the two-sided simple closed curve on Ny, which is the image of a with respect to
the blowup of S on D,,. Let 0; € {+5. =51 (i = 1,2) be the orientation of Ns(6;) which is
induced by 65 and 6; € {+5,,—5,} (i = 1,2) the orientation of N, N,,(6:) which is induced by 0;
(see Figure 3). Then we have

_ -1
Y/"ya - t51 ;01 t&z;@z'

Fig.3. Simple closed curves 81, 62, 61 and &,, and orientations 6y, 65, 6; and
6, of their regular neighborhoods. The x-mark means that antipodal points
of 0D, are identified.

By the definition of the homomorphism ¢, and Lemma 2.7, we have the following
lemma.

Lemma 2.9. Let a and B be simple closed curves on N, each of which transversely
intersect with a one-sided simple closed curve u on N, at one point. Suppose that the
product a3 of @ and 8 in (S, x,) is represented by a simple loop on S, and af is a simple
closed curve on N, which is the image of the representative of ap with respect to the blow-
up of S on D,,. Then we have
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Yiap = YyaYup.

3. Finite presentation for M(N,,,)

In this section, we review Stukow’s finite presentation for M(N,,) when n € {0, 1} and
give a finite presentation for M(N,,) when n > 2. We use their finite presentations for
M(Ny ) in the proof of the main theorem in Section 4.

Lete; : D" — intXy; fori =1, 2,..., g + n — 1 be smooth embeddings of the unit disk
D’ c Ctoadisk Xo i such that D; := e;(D’) and D; are disjoint for distinct 1 < i, j < g+n—1.
Forn > 1, we take a model of N, , as the surface obtained from X ; —(intDy, U- - -LintD,,_;)
by the blowups on Dy, ..., D, and we describe the identification of dD; by the x-mark as in
Figures 4. We denote by 61, ...,0,-1 and 6 boundary components of N, as in Figure 4
which are obtained from 0D, ...,0D,,_1 and 0%, respectively. Let a1,...,a41,8
and u; be simple closed curves on N, as in Figure 4 and let ;;; for 1 < i < g -1 and
I<j<n-l,p.jforl<i<gandl <j<n-lando;; 0;;forl <i<j<n-1be
simple closed curves on N, , as in Figure 5. We give orientations of regular neighborhoods
of their simple closed curves as in Figure 4 and 5. Then we define the mapping classes

a; =y forl<i<g-1,

b = 1,

y = Yy

di = 15 forl<i<n-1,
Aisj = Loy forl<i<g-landl<j<n-1,
Tij = dpy forl<i<gandl<j<n-1,
Sij = oy forl<i<j<n-1,

Sij = oy, forl<i<j<n-—1,
Siki = Aaray) o (@cgar ) i S

{aea;) o - (aimiwai) " rigd
for2<i<gandl1 <j<k<n-1.

Remark that, for2 <i <gand 1 < j <k <n-1, §j;; is the Dehn twist along the simple
closed curve & jx; on N, as in Figure 6.

Fig.4. A model of N, and simple closed curves a1, ..., @y_1, 8 and u; on N,.
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Fig.5. The simple closed curves a;.}, p;.j, 0 j and & j on N ,.

> 05 ki

Fig.6. The simple closed curve 7 jx; on N .

Epstein [3] show that M(N; ;) is trivial. For a group G and g1, g> € G, we define [g1, g2] =
91929;'g,". Stukow gave the following finite presentation for M(N,;) when g = 2 in [18],
and when g > 3 in [20] by rewriting the finite presentation in [17].

Theorem 3.1 ([3], [18], [20]). M(N.1) is the trivial group. M(N3.1) has the presentation
MN2y) = Sanylyay™ =ai).

If g > 3, then M(N,,) admits a presentation with generators ay, . ..,a4-1,Yy, and b for
g = 4. The defining relations are
(Al) [aj,ajl=1 forg=>4,]i—jl>1,
(A2) a;a;1a; = aiy1a;aisq fOl"iZ 1,...,g—2,
(A3) [a;,bl =1 forg=4,i+4,
(A4) asbay = basb  forg > 5,
(AS5) (aazash)'’ = (aaxazash)®  forg > 5,
(A6) (arazasasash)'? = (a1arazasasash)’  forg =17,
(A9a) [by,b] =1  forg =6,
(A9D) [a,-s, b%] =1 forg=>8even,
where by = a1, by = b and
biv1 = (bi—1212i4102i4202113D;)° (bi—1 4212141 A2i42a2i43) ™
forl<i< %t
B1) y(azagalazyaglaflaglagl) = (azagalazyaglaflaglagl)y forg > 4,
(B2) y(aary™'a;'yarar)y = ai(avary™'a;' yaraz)ay,
B3) [a;,yl=1 forg=>4,i=3,...,9-1,
(B4) ar(yary™) = (yary Ha,
(B5) ya = a;'y,
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(B6) byby™! = {a1a2a3(y_1a2y)a;1a;1al_l}{aglagl(yagy‘l)awz} forg >4,
(B7) [(a4a5a3a4a2a3a1azyaglal’la;laglaglaglaglail),b] =1 forg=>6,
(B8) {(ya;'ay'a;'a; b(asazarary™ (' a5 a7 a; b~ (asazaza))

= {(a;' a5 as Yy(wazalay' a3y maslay ' yarly™  forg = 5.

For n > 2, we have the following finite presentation for M(N,,) and give a proof in
Section 5.4.

Proposition 3.2. For g > 1 and n > 2, M(N,,) has the presentation which is ob-
tained from the finite presentation for M(N, ) in Theorem 3.1 by adding generators d;
@G=1....n=-1),a;; (1 <i<g-1L1<j<n-1),r;01<i<gl<j<n-1),s;
(I<i<j<n-1)and5;;(l1 <i< j<n-1), the relations

(DO) [dj,a;) = [dj,yl = [d},b] = [d},di] = [d},aix] = [dj, rva] = [d}, 1] = [dj, 51,] = 1
for1 <i<g-1,1<i<g-1,1<jk<n—-1,andl <1<t <n-1,and the following
relations for 1 < jjk<n—1,1<1[,t <k, and any possible 1 <i,m < g:

(aa; Yaipar')  form=i-1,
=1 (amxa ) Nawar')  form=i+1,
a,-;kai_l form+i—-1,i+1,
(arga; ) rogrigd ? fori=1,
(az;kagl)rl;kdlzl fori=2,
ai;kal.‘l fori>3,

(Dla) an(aixa;a

(D1b) y(aixa; Yy

(Dlc) b(aika;"b™!
{(asga;YNarxa Y N area Naspa; Naga D} fori=1,
{(asgay Narxay Y (azpay Naspa; Naga))  fori=2,
(arxa; ) Nasgpa;Yarga;")  fori=3,
(aggay Vazga; VayeaHd ' fori=4,
a,';kai_l fori>5,
(D1d) ap(aira;Ha,), =

e gl _ i e
[Csied; D)™ (mea, DT (@igea; D Csidy D™ (@)™
Jorm<i-2,
[@ira; '), Csiedy D™ Wazwa; Y (sid, Y aimra ) dy!
form=i-1,
{(seed; DN aiga; DY aia; W(sid; Naiga; )y form =1,
(aisiga )" Gsiady ) Naiga; Ddi - form =i+1,
a,-;kal._] form>i+2,
(Dle) rm;l(ai;kai_l)r;l;ll =
[(suad D)™l 1 e DICsiad D)l form <=1,
{rg (suady D) riadCsady N aigas )
Srrid; ) gl Grad DY g d? form =1,
F;rll;k(sl,kdl_l)_lri+1;k(§1,k;i+1dl_l)(fli;ka,-_l)df Jorm=i+1,
a,-;kai_l form>i+?2,
(DIf) si(aira;)sy, = aira;’,
(Dlg) Siaia;")s;) =
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[Guad; D)™ seady 17 Csurdy D @rway Y (Serd; D
(stady ) i Goady ) Grd D)7 (sad D] fori =1,
{0, (sead D) siadd; s riaGeady D™y aiga; )
{0, (seady D siadd s riaGoady Dyt fori= 2,
riktieta(@ioread ) rigaiea; di
form=1i-1,
(a,-;kal._l)_lr;rll;k(a,-;kai_l) form =1,
rix  form #i—1,i,
{(al;kafl)_lr2;krl;k}_lr1_;}({(al;kafl)_lrz;krl &}
fori=1,
(argparig(arca; ) rogridny fori =2,
rix  fori>3,
(arga;") Naswaz;) aoa; ™!
r;;}c(ag;kagl)r;;}((az;kagl)rg;}{(al;kal‘l) fori=1,
{(aswaz N area )Y (area; Y aswas o
rig(ara; ) rogasway ) ragasga; !
rag(azxa; (aspa; Yarga )y fori=2,
{(aswaz N arga; )y V;}(
(D2¢) brigb™" =1 (asxa;")ryp(anas yryg(area; Hryy
(aryay") 'rax
(azxa;") Nawa; ) (azga; NarwaH)  fori=3,
rag(arxa;’)
rig(ara; ) roglazay ) ragasgay !
rag(asga; Nagay')  fori=4,
rix  fori>5,

(D2a) a,, ri;ka;f =

(D2b) yrl-;ky_1 =

(D2d) am;lri;ka,_nzl =
T e el e e
[Csixd; )™ @ran, )T il Csuxdy D) (e, )]
form<i-2,
{(sid, Naimrxa DY N aimiwa ) (sixd Drix
Ficta(@iorka ) T i Seid, W Csedy D (aizra; )}
form=i-1,
(aiga; ) Grady D ey D Graady D™ form =i,
Fig  form>i+1,
IR | el -
(G D7 b rial(siady D™ ]
orm<i-1
(D2e) rmyrix ,;1,11 = f 1 _’1 1 .
{Csud; iy rindGsiady Drid - form =1,
fikg  form>i+1,

(D2f) syrins;) = rig
(D2g) 51,757,

[St,kdt_la (gl,kdl_l)_1][1”1;/((5[,1(61;1)1’1_;}0 (sl,kdl_l)_l]rl;k fori=1,

{051y, Csrady D)™ Wsrady s racSiady D) 1 i

{05, (sexd, D) siad; s riaGoad, DYy fori= 2,
(D3a) a,(s j,kd]‘.l)a,;l =5 j,kdj‘.l,
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(D3b) y(Sj,kd;I)!/_l = Sj,kd;1,
(D3c¢) b(sjd;b™" = sd;,
(D3d) amy(sjxd;Na,), =
Siid; ) s @mipy, )1 (Sjed OLS1kd; ") s (A, )
[Cseaed; D)7 ( D7 G DG H ™ (C D
forl> j,
(@npan, ) (sjud; Nampa,!)  forl=j,
sj,kdjfl forl =},
(D3e) rs(sjnd; Iyl =
N _ NE .
[(sl,kdl 1) 1’ rm;lk] (sj,kdj 1)[(sl,kdl 1) 1’ I"m;lk] fOl"l > Js
TSk g for 1=,
sj,kd]?l forl < j,
(D3) siu(sjud; sy} =
{(Sz,kdfl)(sj,kdfl)}_l(Sj,kdfl){(sz,kdfl)(Sj,kd}1)} Jorl=j,
[Csad; )™ G )T (s D siad ) (s )71
forl< j<t,
(Sz,kd,_l)_](Sj,kd}l)(sl,kdl_]) fort=j,
s j,kdjfl for the other cases,
(D3g) 51,(s;xd; N5, =
IS4, Csopd ) s rl;k(gt,kd;l)ilri}c]}il(Sj,kd;-l)
(S Csoady DY siadyt, riaGead )y forl>
{[Ej,kd;1 s (Sz,kdt_l)_1](Sj,kd;l)rl;k(ft,kd,_] )_1 rl_;}c}_l (Sj,kd]_-])
{[ij,kdjl, (St,kdt_l)_l](sj,kdjl)rl;k(Et,kdt_l)_lrl_;}c} Jorl=],
[(Sred; )7, Sz,kdfl]_1(Sj,kdj_~1)[(§z,kdl_l)_l, sd; 'l forl < j<it,
{Guad; s jrd D™ (s jud N Guad; s jud DY fore =,
sj,kd;l fort < j,
(D4a) an(5,0d7)ay) =
{rl_;}(rgl;}{(al;kal_l)}_l(Ej,kd/_-l){rl_;}(rz_;}{(al;kal_l)} form =1,
Sjkd;" form =2,
(D4b) y(Ej,kdfl)!/_l = {rl_;}{(al;kal_l)_z’"z;krl;k}_l(gj,kdf){rl_;}{(al;ka]_l)_zrz;krl;k},
(Ddc) b(s ;b =
{riplazay )y (asgas s (azeas s (arcay DY (fj,kdj_-l)
{riplasca; ) rpg(aspas ryg(aasay Dy (aear ),
(D44d) am;l(fj,kd;])a_] =

myl T
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rrarsanay DGdy D™ G ud Dy (anka HGid,H ™)
form=1,1<],
{(Ez,kd,_l)_1Vf;}<r§;}<(al;kafl)}_l(fj,kdj_-l){(iz,kd,—l)_1Vf;}cr§;}<(a1;kafl)}
form=1,1> ],

{(@mr@;! rmere - (az;kagl)r;;}((al;kal‘l)}‘l(ij,k;m1d;1)
{(am—l;ka;ll_l)i’m—l;k e (az;kagl)rg;}((al;kal_])} form=>21=j
{(@nora,! Vi1 - (aagay Dry(aea; )y ™!

{Graemd; )1 Graemandy DY (5 j,k;md;l)
{Griemdy )7 Griemandy )

{(am,l;ka;ll_l)rm,l;k e (az;kagl)rg;}((al;kal_])} form > 2,1> j,
3 j,kdjfl for the other cases,

(Dde) r(30d; ) =

(D4f) s

(e Grady D)™ Gsady D™ (Ej,kd}] )

(i Guady ) siady g form=1,1< j,
{(Sj,kdjl)rl;k}_l(fj,kdj_-l){(sj,kdjl)rl;k} Jorm=1,1=],
{Grad, DY Gsuady D) (5ud ) ™!
{Gad, Y g (siady D) form = 1,1>

{(@noray! Drmor - (agpaz Hryp(aeay )y

(Ej,k;mdjl)

{(am-rxa," Drmore - (az;kagl)r;;}((al;kal‘l)} form=2,1= ],
{(@noray! Drmor - (aapay Dry(aeay ™!
{Graemd; )1 Giaemdy DY

(Ej,k;mdfl)

{Graemd; )71 Giaemd) )

{@noray! Vi1 - (aapas Dry(argar)y - form>2,1> j,
Ej,kdjTl form=>2,1<j,

A
l,t(sj,kdj )Sl,t =

Suad; ) Sud N Grady"y - fort =

[(Bexd; )7, (@,kd,_l)_l]_l(Ej,kdl‘.l)

[Gixd; ) Bad;y D™ forl< j<i,

{Goxd; DG jud; N Gad NGad NG ad DY forl =
s j,kd;l for the other cases,

(Ddg) 5,,(5,,d; N5, =

[Grad; ). ryhCsrady ) i)™ (5ad )

[Gead; ), rig(siad; ) gl fore < j,
{rl_;}c(sl,kdl_l)_lrl;k}(ij,kd;l){rl_;}{(sl,kdl_l)_lrl;k}_] Jort =]
(sexdy NG jad; N sexd )™ forl =,

[Siad; D)7, (Sz,kdfl)]_l(§j,kd]1)[(§l,kd[1)_l, (sixd; D] forl> j,
Ej,kd]?l forl< j<t.

4. Infinite presentation for M(N,,)

The main theorem in this paper is as follows:

279
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Theorem 4.1. For g > 1 and n > 0, M(N,,) has the following presentation:
generators: {te.. ,te.— | ¢ : two-sided s.c.c. on N}
UlY,o | 1 : one-sided s.c.c. on Ny, a: s.c.c. on Ny, lunal =1}
Denote the generating set by X.

relations:
(0) () tep, = 1 when 6. € {+.,—c} and ¢ bounds a disk or a Mdbius band in N,
(1) fejr, =ty = tc_';l—c’
GO PED SREED s

(I) All the braid relations

{ () fteof ' =trerre  for feX,

(i) fYuaf " = Yip s for feX,

(Il) All the 2-chain relations,

(IM) All the lantern relations,

(IV) All the relations in Lemma 2.9, i.e. Y, o5 = Y, oY,

(V) All the relations in Lemma 2.8, i.e. Y, o, = 15,0, 1521;92 for one-sided a.

The second author [16] proved Theorem 4.1 when g > 1 and n € {0, 1}. The presentation
in Theorem 3.1 of [16] is different from the presentation in Theorem 4.1 since we do not
distinguish 7., , t.1., and t;l,e, and also do not distinguish Y, ,, Y;; ., and Y1, in [16].
However, these presentation are equivalent by Relation (0)(ii) and (0)(iii). In fact, we can
apply the proof of Theorem 3.1 in [16] to the presentation in Theorem 4.1. In (I) and (IV)
one can substitute the right hand side of (V) for each generator Y, , with one-sided a. Then
one can remove the generators Y, , with one-sided « and relations (V) from the presentation.

We denote by G the group which has the presentation in Theorem 4.1 throughout this
section. Set X* := X U {x™! | x € X}, where X is the generating set in Theorem 4.1. By
Relation (I) in Theorem 4.1, we have the following lemma.

Lemma 4.2. For f € G, suppose that f = fi f>... fi, where fi, fo, ..., fr € X*. Then we
have

{ W) freof ™" = tpernon
(i) fYuaf ™" = Yiw s

The next lemma follows from an argument of the combinatorial group theory (for in-
stance, see [10, Lemma 4.2.1, p42]).

Lemma 4.3. For groups I, I and F, a surjective homomorphism © : F — T and a
homomorphism v : F — 1", we define a map v' : T — T by v/(x) := v(X) for x € T, where
X € F is a lift of x with respect to r (see the diagram below).

Then if kerr C kerv, v’ is well-defined and a homomorphism.

F
F**/>‘].—‘/

v

We start the proof of Theorem 4.1. When n € {0, 1}, we proved Theorem 4.1 in [16].



PRESENTATION FOR MAPPING CLASS GROUP 281

Assume g > 1 and n > 2. Then we obtain Theorem 4.1 if M(N,,) is isomorphic to G. Let
¢ : G —» M(Ny,) be the surjective homomorphism defined by ¢(tc.+ ) := fe4., @(tci-,) =
tee, and (Y, o) = Y0

Denote by Xo € M(N,,) the generating set of the finite presentation for M(N,,) in
Proposition 3.2. Let F(Xy) be the free group which is freely generated by X, and let 7 :
F(Xo) — M(N,,,) be the natural projection. We define the homomorphism v : F(Xy) — G
by v(a;) := a;, v(b) := b, W(y) := y, W(ai;) = aij, V(riyj) = rij, v(sij) = sijand v(5; ;) := 5,
and amap ¢ = v : M(N,,) — G by y(a') := a', y®*") = b*', y(*") = y*',
l//(a;f}) = a;f}, l//(r;f}) = r;f}, t//(sf;) = s;f}, w(f;f}) = Efj‘ and y(f) := v(f) for the other
f € M(N,,), where fe F(Xp) is a lift of f with respect to 7 (see the diagram below).

F(Xo)

ﬂi \
M(Ny) - ~>G

If ¢ is a homomorphism, oy = id ) by the definition of ¢ and . Thus it is sufficient
to show that i is a homomorphism and surjective for proving that i is isomorphism.

4.1. Proof that i is a homomorphism. By Lemma 4.3, if the relations of the presenta-
tion in Proposition 3.2 are obtained from Relations (0), (I), (I), (Il), (IV) and (V) in Theo-
rem 4.1, then y is well-defined and a homomorphism.

Let N be the subsurface of N, as in Figure 7. N is diffeomorphic to N, ; and includes
simple closed curves aj, ..., 41, 41 and B. We regard M(N) as a subgroup of M(N,,,).
Relations (Al), ..., (A9b) and (B1), ..., (B8) of the presentation for M(N,,) in Proposi-
tion 3.2 are relations of M(N) = M(N,,1). By Theorem 3.1 in [16], Relations (Al), ...,
(A9b) and (B1), ..., (B8) are obtained from Relations (0), (I), (I), (IIl), (IV) and (V).

By Proposition 5.13 in Section 5.5, we show that Relations (DO0), (D1a)-(D4g) in Propo-
sition 3.2 are obtained from Relations (I) and (IIl) in Theorem 4.1. We have proved that  is
a homomorphism.

o)

2/
ﬁi‘
X
>
3 »

b
S

Fig.7. The subsurface N of N, which is diffeomorphic to N, ;.

4.2. Surjectivity of . For some convenience, we write #..,, = f. in this subsection. We
show that there exist the inverse images of 7.’s and Y, ,’s with respect to i for cases below,
to prove the surjectivity of .

(1) t.; c is non-separating and N, — ¢ is non-orientable,
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(2) t.; cis non-separating and N, — c is orientable,
(3) t.; cis separating,

(4) Y, o; ais two-sided and N, — « is non-orientable,
(5) Y, o; ais two-sided and N, , — « is orientable,

(6) Y, «is one-sided.

Set Xg = Xo U {x7" | x € Xy}, where X is the generating set in Proposition 3.2. For a
simple closed curve ¢ on N, ,, we denote by (N, ). the surface obtained from N, , by cutting
N, along ¢ and denote by X the component of (N, ,). which does not include 6.

Simple closed curves ¢, u, and a for generators of type (1), (2), (4), (5), and (6) are
mapped in N by a product of elements in X7 using Relations (I) in Theorem 4.1 since X is
a generating set of M(N,,). Hence, by similar arguments in Section 3.2 of [16] for the case
of N1, there exist their inverse images with respect to . We note that we use the existence
for the inverse images of generators of type (3) for the proof of the existence for the inverse
images of generators of type (6).

Case (3) where X is diffeomorphic to %, for m > 0. We proceed by induction on
m > 0. When m = 0, £, is trivial by Relation (0) in Theorem 4.1. Whenm =1, ¢ = 5;:9' for
some 1 <i<n-1andé¢’ €{-1,1}. Hence d; is the inverse image of ..

When m = 2, there exists a product f = fifo--- fi € M(Ngn) of fi, fo, -+, fi € X§
which satisfies either ¢ = f(of,'j) orc = f(o"‘z'j) forsomel <i< j<n-1landé& €{-1,1},
where o ; and 7 ; are simple closed curves on N, as in Figure 5. Thus, if ¢ = f (Gﬁ;), we
have

Wsigf ) = fifee s TR, =
where € is 1 or —1. Thus fsijf‘l € M(N,,,) is the inverse image of 7. € G with respect to
Y for some € € {—1, 1}. By a similar argument, when ¢ = f(&fj), ffijf_l € M(Ny,) is also
the inverse image of 7. € G with respect to ¢ for some € € {—1, 1}.

For m > 3, there exists a simple closed curve ¢’ on X such that ¢’ separates X into X’
and X which are diffeomorphic to X4 and Xy ,,-;, respectively, and ¢ C X’. By using a
lantern relation on X', there exist simple closed curves ¢; = ¢’,¢,...,c¢ on X’ such that
to =ttt € G for some &1,&,...,80 € {—1,1}. Since each ¢; (i = 1,2,...,6)
bounds a subsurface of N, , which does not include ¢ and is diffeomorphic to X, for some
m; < m, by the inductive assumption, there exist the inverse images h, ..., hs € M(N,,) of
tes- .21, € G with respect to ¢, respectively. Thus A A5 - - - he® € M(Ng,) is the inverse
image of ¢, with respect to .

Case (3) where X is diffeomorphic to %, .| for 4 > 1 m > 0. In this case, there exists a
simple closed curve ¢’ on X such that ¢’ separates X into X" and X" which are diffeomorphic
to X; 5 and X .11, respectively. Then there exists a 2h + 1-chain ¢y, ¢, ..., c2p1 On X’ such
that Ny, (ciUcyU---Ucapy1) = X'. By the chain relation, we have (7] t‘92 g IS = ts
for some &1, &2, . .., €xps1, € € {—1, 1}. Then we show that the relation (tg‘ 12+ g2 =
tctff holds in G as follows: let ¢t : ¥ < N,, be the inclusion and let G’ be the group
whose presentation has all Dehn twists along simple closed curves on X as generators and
Relations (0”), (I’), (I), and (Il) in Theorem 2.5. By Theorem 2.5, M(X) is isomorphic
to G’, and we have the homomorphism G* — G defined by the correspondence of #,.,, to

teyun(+)- Since the Dehn twists appeared in the 2/ + 1-chain relation (£ 72 - - - 152 1)*1+2 =
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tctﬁ,' are supported on the oriented subsurface X of N, ,, we regard the 24 + 1-chain relation

as a relation of M(Z). Thus, by the composition ¢, : M(Zp,,) — G of the isomorphism

M(Z)n) — G’ and the homomorphism G' — G, the relation (f¢! 7> - - - 12122 = 1,15
holds in G.

Since t.,, t.,, ..., tc,,, are Dehn twists of type (1) and ¢’ bounds X", the elements ¢.,, t.,,

.+ teyis te € G have the inverse images Ay, ho, ..., hop1, B’ € M(Ny,) with respect to i,

respectively. Then we have

YRS RS L RS () ) = (105 e Y = g

Thus ((h]'h5 ... h;ﬁl’ﬂ)zmz(h’)‘g' € M(N,,) is the inverse image of 7. € G with respect to
W

Case (3) where X is diffeomorphic to N, for 7 > 1 m > 0. We proceed by induction
onm > 0. When m = 0, by similar arguments in Section 3.2 in [16], there exists an inverse
image of t. € G with respect to .

When m = 1, we proceed by induction on 7 > 1. When & = 1, there exists a product
f=hffo € M(Nyy) of fi, fo, -+, fu € Xt suchthatc=f(pi/.)f0rsome 1<j<n-1
and &’ € {—1, 1}. By a similar argument in the case where X is diffeomorphic to X 11, we
can obtain the inverse image of 7, with respect to . Suppose & > 2. Then there exist simple
closed curves c; and ¢, on X such that ¢; Ll ¢, separates X into X', £ and X’ which are
diffeomorphic to X4, N1 and Nj_; ;, respectively, and ¢ € X’. By using a lantern relation
on X', there exist simple closed curves cs, ..., cs on X’ such that 1. = #1221 - - - te¢ € G for
some &, &,€3,...,& € {—1,1}. Since each ¢; (i = 1,...,6) is a boundary component of a
subsurface of £ which is diffeomorphic to an orientable surface, N, ; for some h; < h or Ny, »
for some h; < h, by the inductive assumption, there exis inverse images hy, ..., hs € M(N,,)
of ., ..., 1, € G with respect to , respectively. Thus h{'h5* - - - he® € M(N,,) is the inverse
image of 7. with respect to .

Suppose m > 2. Then there exist simple closed curves c¢; and ¢; on X such that ¢; U ¢;
separates X into ', X" and X"’ which are diffeomorphic to o4, X, and N, ;, respectively,
and ¢ C ¥'. By using a lantern relation on X', there exist simple closed curves c3, ..., cg
on ¥’ such that 7, = 7 te2tes - - - o
c;i (i =1,...,6) is a boundary component of a subsurface of £ which is diffeomorphic to
an orientable surface or Nj .1 for some m; < m, by the inductive assumption, there exist
inverse images hy, ..., he € M(N,,) of t., ..., 1., € G with respect to ¥, respectively. Thus
B h -« - hge € M(N,,) is the inverse image of 7. with respect to y.

We have completed the proof of Theorem 4.1.

€ G for some &1, &7,&3,...,8 € {—1,1}. Since each

5. Proof of Proposition 3.2 and preliminaries for the proof

In this section, we give a proof of Proposition 3.2 which is used in the proof of The-
orem 4.1. The proof is given in Section 5.4 and 5.5. For giving the proof, we prepare
Section 5.1, 5.2, and 5.3.

5.1. Extended lantern relations. Let S be a connected compact surface and let D be
a disk on intS with the center point xo. Then we have the point pushing map (defined in
Section 2.2) jy, : m1(S, x0) — M(S, xp). We take an orientation 6p € {+sp, —op} of Ns(0D).
For a two-sided simple loop y on S based at xo, we take the orientation 6, € {+,,—,} of
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Ns(y) which is induced by 8;p. Denote by c¢; (resp. ¢,) the boundary component of Ns(y)
on the right (resp. left) side of y with respect to 8,, and by 6; € {+.,—} (i = 1,2) the
orientation of N(c;) which is induced by 6,. We regard vy as an element of (S, x9). Then
we have a well-known relation

jxo('}/) = lepso, tgzl;ez-

Let £* = L7(S, xo) be the subset of (S, xo) which consists of elements represented by
two-sided simple loops. Then we define a map

A=Ay : LT — M(S —intD)

as follows. For any two-sided simple loop y on S based at xy, we take Ns(y) whose interior
contains D. Then we take c;, ¢, 0; and 6, as above. Define the inclusion ¢ : S —intD — §
and & := ¢ !(¢;) for i = 1,2. Then we define

Ay) = tz,0,, lg_zl;gL._Z € M(S —intD),

where 6 is the orientation of Ns_inp(&;) (i = 1,2) which is induced by 6;.
Lemma 5.1 and 5.3 below are obtained from an argument in Section 3 of [9].

Lemma 5.1. Let A = Ay, : LT — M(S — intD) be the map defined as above. Suppose
that a, 3 € LT are represented by two-sided simple loops such that they tangentially intersect
only at xq, and the product aff also lies in L*. Then we have

A(Q)A(ﬂ) = A(aﬁ)th;‘%D ’

where € = 1 if & and 8 are counterclockwise around xy as on the left-hand side of Figure 8
and € = =1 if @ and B are clockwise around xo as on the right-hand side of Figure 8.

We call the relations in Lemma 5.1 Relations (L+) when & = 1 and Relations (L-) when
¢ = —1 (see Figure 8). By Lemma 2.8, Relations (L+) and (L-) are original lantern relations
(see for instance Section 5.1.1 in [4]). In other words, we have the following lemma.

Lemma 5.2. Relations (L+) and (L-) coincide with Relations (IIl) in Theorem 4.1.

(L+) 3

9 O 9 O

Fig.8. Oriented subsurfaces Ng(a U B).

Lemma 5.3. Let A = A,, : LT — M(S — intD) be the map defined as above. Suppose
that a, B € L™ are represented by two-sided simple loops such that they transversely intersect
only at xo. Then we have

A@)AB) = Alap).
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We call the relations in Lemma 5.3 Relations (LO). We have the following lemma.
Lemma 5.4. Relations (LO) are obtained from the braid relations (i).

Proof. Suppose that @, 8 € L* are represented by two-sided simple loops such that they
transversely intersect only at xo. We take a representative of a5 € 71 (S, x¢) by a simple loop
v and also take the orientations of Ng(a UB) C S and Ns(a UpB) —intD C S — intD which is
induced by the orientation of Ns_i,p(0D). Define boundary components a; Lias = ONs(a),
by U by, = ON(B) and ¢; U ¢c; = Ns(y) such that a;, by and c¢; are on the right-hand side
of @, B and v, respectively. We consider the case where the algebraic intersection number,
with respect to the orientation of Ns(a U 8), of @ and S is 1 and orientations of Ng_inp(@;),
Ns_inn(B;) and Ns_inp(¢;) are compatible with the orientation of Ns(a U p). Figure 9
expresses this situation. Then we have A(a) = taltgl, AB) = 1,1 Vand A(y) = tcltZ For
the other cases, we can prove this lemma by an argument similar to the following argument.

Since 7! (b;) = & for i = 1,2, we have

Alap)

-1
[511‘52
Ay, 1
= 1 (Z’EIZE )tﬁz
_ -1
= 1 tbltb taz (tbl B ) tb] b

—1\—
= 1, (t,glt )taz(t,,t )t t,,lb

Lo tar 13,1,
= A(@)A().

We have the lemma. O

D D)) (@)}
&

az aj

Fig.9. Two-sided simple loops @ and 8 on Ns(a U B) such that their alge-
braic intersection number is 1 (on the left side), and simple closed curves
a;, b; and & on Ng(a U B) —intD for i = 1,2 (on the center and the right
side).

5.2. Generators for the subgroup of the fundamental group generated by two-sided
loops. Recall that we take a model of N, as in Figure 4 for n > 1. Assume n > 2. We
regard N, ,_; as the surface obtained by regluing D,,,_1 and N,,. Put the center point x,
of Dyyn-1. Let m1(Ny,-1)" be the subgroup of m;(N,,-1, X0) which consists of elements
that is represented by loops such that the pushing maps along their loops preserve a local
orientation of xo. Let x1,...,X4,y1,...,Y,— be loops on N, ,_; based at xq as in Figure 10
and we regard N, ,_; as the surface in Figure 10 for some conveniences. Note that xlg for
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1<i<g, xpxiforl <i<g-1and xl‘lyixl for 1 <i <n -2 are elements of 71 (N, ,—1)*.
xiz, Xiy1X; and x(lyixl are represented by loops as in Figure 11. Since mr{(N,,,_1, Xo) is the free
group which is freely generated by xi,..., X4, Y1, ..., Yn-2, T1(Nypn1)" is also isomorphic to
a free group. We have the following lemma.

Lemma 5.5. Forg > 1 andn > 2, m{(Ny,-1)"* is the free group which is freely generated

2 2 -1 -1
by xl,...,xg,xgxl,...,xgxg_l,yl,...,y,,_z,xl y]X],...,Xl Yn-2X1.

Proof. We use the Reidemeister-Schreier method (for instance see [10]) for 711(Ny,,-1)" C
71 (Ny -1, Xo) to obtain the generators for (N, ,—1)*. Since m1(Ny,-1)" is an index 2 sub-
group of m(Nyu-1,%) and the non-trivial element of the quotient group
71 (Ngn-1,%0)/m1(Ngn-1)" is represented by x;, the set U := {1,x;} C m(Nyu—1)" is a
Schreier transversal for (N ,-1)" in 11 (Ny -1, Xo0). Set X := {x1,..., X4, Y1,...,Yn—2}. For
any word w in X, denote by w the element of U whose equivalence class in
71 (Nyg -1, %0) /w1 (Ng n—1)" is the same as that of w. Then 7{(N,,—1)" is the free group which
is freely generated by

B = {W_]xulxeX,ue U, xu¢ U}

{x;ix1, x;lxj, Y xl_lykxl li=1,...,9, j=2,...,9, k=1,...,n—=2}.

Put z; := x}, 2 := (xx)(x;'x) fori = 2,...,9, wy := xx; and w; = (X1 x1)(x] ' x;) for
i=2,...,9—1as words in B. By using the Tietze transformations (for instance see [10,
Proposition 4.4.5, p46]) and relations (x;lxi) = (x;x1)7'z; and (x;41x1) = w,-(xl‘lx,»)‘1 for
i > 2, we have isomorphisms

(B1)

(BUlzowjli=1,...q, j=1,...,g =1}

2= 3 = ()0 ), wn = o, vy = G )
(BUlzwili=1,...q, j=1,...,g—1}|

2 -1 -1
21 = Xy, W1 = X2X1, XiX] = Wi—1Z;_1 " W2Zy Wy,

113

13

-1 11 -1
X X = Wy 2wy e W) 2 )

~ -1 > _ s _

= ({z wj, yo, Xy li=1,...9, j=1,...,9-1, k=1,...,n=-2}|).

Note that z; = xi2 and w; = x;4+1x; as elements of 71 (N,,-1)*. We get this lemma. O

Fig.10. Loops xi,..., X4 Y1,...,Ys—2 00 Ny ,_1 based at xo.
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0 0
9 Tit1%

1

i i i+ 1

Fig.11. Loops x?, xi1%;, Xx]'yixi on N,,_; based at xo.

5.3. Group presentations and short exact sequence. Let G be a group and let H = (X |
R), Q = (Y | S) be presented groups which have the exact sequence

1—>H—L>G—V>Q—>1.

We take a lift j € G of y € Q with respect to v for each y € Q. Then we put X:={ux) | xe
X} c G and Y = {7 |y € Y} C G. Denote by 7 the word in X which is obtained from r € R
by replacing each x € X by «(x) and denote by § the word in Y which is obtained from s € S
by replacing each y € Y by 7. We note that 7 = 1 in G. For each s € §, since § € G is an
element of ker v, there exists a word v, in X such that § = v, in G. Since t(H) is a normal
subgroup of G, for each x € X and y € Y, jju(x)jj~" is an element of «(H). Hence there exists
aword w,, in X such that gt = wy, in G. The next lemma follows from an argument
of the combinatorial group theory (for instance, see [10, Proposition 10.2.1, p139]).

Lemma 5.6. In this situation above, the group G has the following presentation:
generators: {(x),j|xe X,y e Y}
relations:

(A) 7=1 forreR,

B) §=v, forses,

© gL(x)g—l =w,, forxeX yeY.

5.4. Proof of Proposition 3.2. Assume g > 1 andn > 2. Lett : Ny, < N, ,_1 be the

natural inclusion obtained by regluing N, , and the 2-disk D,,_; with the base point xo,
and let M*(Ny -1, xo) be the subgroup of M(N,,_1,x9) whose elements preserve a local
orientation of xo. For n > 2, the forgetful homomorphism 7 : M(Ny -1, Xo) = M(Ny,-1)
induces the following exact sequence
(5.1) I — 11Ny 1)" 2% M Ngrots X0) —> MNypt) — 1.
For the case (g,n) = (1,2), the group m;(N; ;)" is generated by x% by Lemma 5.5. Since
the image jxo(xf) € M*(Ny.1, xo) coincides with the Dehn twist #; along 6 = dN;; and #; is
an infinite order element of M* (N, 1, Xo), the homomorphism j,, is injective. For the other
cases, since 71(Ny -1, Xo) is isomorphic to a free group, the center of 71(N, -1, xo) is trivial.
Thus the homomorphism j,, is injective by [1, Corollary 1.2].

The inclusion ¢ : N, < N, ,_; induces the surjective homomorphism ¢, : M(N,,) —
M (Ny,n-1,x0). By Theorem 3.6 in [19], we have the exact sequence

(5.2) 1 — Z{dy-1] — MNgu) —> M*(Nyy1, x0) — 1.

The proof of Proposition 3.2 is proceeded by the induction for n > 1 and applying the
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inductive steps to the exact sequences 5.1 and 5.2. For some conveniences, we denote simply
t(a) = a, Ly) =y, Lb) = b, t(d) = d;, w.(aij) = aij, L(rij) = rij, t(sij) = i
(50 ) = i js t«(Sjksi) = Sjksi € MT(Nypu-1,X0), and we can check the following:

Fla) = a forl <i<g-1,

F®) = b,

Fy) = v,

F(d) = d forl<i<n-2,
Faij) = a;; forl<i<g-land1<j<n-2,
F(rij) = rij forl<i<gandl1<j<n-2,
F(sij) = sij forl <i<j<n-2,
FGij) = Sij forl<i<j<n-2,
F(Sjki) = Sjki for2<i<gand1<j<k<n-2.

Thus, throughout this section, we take the lifts of a;, y, b, d;, a;j, rij, sij, Sij, Sjki €
MF(Nyp-1,x0) (resp. € M(Ng,-1)) with respect to ¢, : M(Ny,) = M*(Nyu-1, Xo) (resp.
F @ M(Nygp-1,x0) = M(Nyu-1)) by a;, y, b, d;, a;j, rij, Sij Sijs Siki € M(Ngyy) (resp.
€ M (Ny,-1, X0)), respectively.

Recall that [g1, g2] = glgzgflgg !, First, we compute the conjugacy action of the lifts of
the generators for M(N,,—1) on m;(Ny,-1)*. Let xix; (1 <i<g-1), x? (1 <i<g),y;
and xl_lijl (1 < j < n—2)be generators for m;(N,,-1)* in Lemma 5.5 (see Figure 10 and
11). Remark that

Xy = X7 nxen) - X Oox) () (ox) T g - (xis) T R
for 2 < i < g. Then we have the following lemma.

Lemma 5.7. For the elements a,, (1 <m<g—-1),y, b, ap; (1 <m<g-1,1<1<n-2),
i (1 <m<g1<1<n-=2),s,(1<l<t<n=-2),5,(1<Il<t<n-2)andd
(1 <1<n=2)in M*(Nyy-1,x0) and the generators xi1x; (1 <i < g-1), xl.2 (I1<i<g)y;
and xl_lijl (1 <j<n=2)forn(Ny,-1)" in Lemma 5.5, we have the following formulas:

(Xip1x)(xiximg)  form=1i—1,
(D1a)” apu(xip1x) =9 (Xi2Xie) (xip1x:)  form=i+1,
Xip1Xi form#i—1,i+1,
(xle)‘lxgx% fori=1,
(D1b)” y(xi1x) =3 (x3x2)x7  fori=2,
Xip1X;  fori =3,
(D1o)” b(xiv1x) =
{(xax3) (02} (o { (g x3) (21} fori=1,
{(rax3) o)) (s x0){ (g x3) (x0x1)) for i =2,
(x2x1) " (Xax3)(xax1)  fori=3,
(xs5x4)(x4x3)(x2x1)  fori=4,
Xiy1X;  fori =35,
(D1d)" amy(xiv1x:) =



(Dle)”

(le)u
(D1g)”

(D1h)”

(D2a)”

(D2b)”

(D2c)”

(D2d)”

(D2e)”

(sz)//
(D2g)”

PRESENTATION FOR MAPPING CLASS GROUP

v, (xm+1xm)_l]_l(Xi+1xi)[!/,_1, o1 X)) form <i-2,

[(xixie) ™y N x)yi(xixic) - form=i—1,

Wi X)) i Xy (xipr X)) form =i,

(xi+2xi+1)_1y,_1(x,-+1x,-) form=i+1,

Xip1 X form>i+2,

rml(xt+1x1) =

[yl P ;1 ] (x1+lxz)[yl 5 m2] fO}"m <i-1,

{x !/1 }yl(xz+1xz)x y; xl{x‘z _lxiz} ! form =1,
z+1yl z+1 i+1l/lxz+1(xz+1xz) form=1i+1,

Xip1X;  form>1i+?2,

S1(Xig1X) = Xig1X;,

fzz(xmxz) =

[y ’y’] yl(xle)x O e x Py g O ) T

(') ™y fori=1,

(0 yoers My o6 O o)™ o 1) 1)

{0 e,y My O e ™' PP fori 2 2,

di(xip1x;) = xH—lxl:
x2 xl l(x,x, D! X; 2(xixie1)  form=i-1,
() = (Xir127)” x,-+l(xl+1xl) form =1,
xl.2 form #i-1,i,
{(xxy)” 'x2 %} {(szl “1,2 %} fori=1,
y(x?) ={ (xox)x? (xm) : zxf fori=
)cl.2 fori>3,
(e2x1) ™ (g 3) 7 (03002) T a2 (4 x3) 5 2 (0302) 55 % (XX )
fori=1,
{(rax3) (220} (2200 (xa.23) 06527 (21~ 3 (a3.x0) ™!
x3(x4x3)" xi(X3x2){(x4x3)(x2x1)} Jori=2
b(x?) =4 {(xax3)(x2x1)} a2 (0 x3) x5 (3.000) x5 (0.1 ) X 2
(x3x2) " x5 (x4 x3) T o x) (g x3)(xpx1)y fori =3
x5 (x3202) x5 (x21) ™1 (r302) ™15 (e 3) ™ o (e x3) (2.
Jori=4
xl.z fori>5,
Ama(x?) =
_ _1+-1 _ _ .
ly; lv(xm+1xm) ] xz[y, ,(xm+1xm) g form <i-2,
{yieixie)Y ! Ceaxic)yxd 2 (axim) ™ o O e i (xixi-1)}
form=i-1,
(i1 %)y A G x) (5 i)™ form =1,
xl.2 form>i+1,
o2 2y 2 form<i—1,
() =3 Ay xHyx?) form =,
)cl.2 Jorm>i+1,
sl,l(x?) = xiz)

51,,()612) =

289
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[y, O] e ) IO yex ) 2y 3 fori =1,
{0 i, yy e Oy ™ o 2!
O i,y My O )™ 2 fori > 2,
(D2h)” dy(x?) = x2,
(D3a)” aw(y)) = yj,
(D3b)” yly)) =y,
(D3¢)” b(y;) =y
(D3d)" amy(y;) =
[ Coner )™ 1 y3ly7 ! o)™ for 1>,
o1 %) " Y j(Xa1 X)) for L = J,
y, forl<j,
(D3e)” rmuy)) =
. 5,20 yilyn x,21 forl> .
x;,zij,%1 forl=j,
Yj forl< j,
(D31)" s14(y;) =
iy ity
forl=j,
by il fori< <t
y 'y fort=j
y; forthe other cases,
(D3g)” §1.(y;) =
{0 i,y My 2O e Xlz]} Yj
{0 o,y My (x1 !/txl) X forl>
I y i,y Ty O yex) ™ o 2 Ny
(L ey Ny o yex) ™ a2y for =
[ )™yl )yl forl<j<t,
{(Xl_lyle)y;l}_1yj{(xflyle)y;l} Jort =]
y; fort<j,
(D3h)” di(y;) =y,
(D4a)” ap(x;'yjx) =
{ {x;zxgz(ml)}‘l(x;lijl){XI2xg2(szl)} form =1,
x[ yjxi form=>2,
(D4b)” y(x;yjxr) = {x72 (o) 257} Oy ) (o 2 (eox ) 25 a7,
(D4e)” b(x;'y;x1) = {x7*(x3x2) ™" x4 (x4x3)x32(x3x2)x22(x2x1)} 1(x1—1ijl)
{x72 (32 ™ oy 2 (o 3) x5 2 (X3.00) 6, 2 (2.1,
(D4d)” am;l(xflijl) =

1
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{x] x2 (xle)(xl i)Yy )
{xl x2 (szl)(xl yx)™'} form=1,1<j,
(O yx)™ Xl 252 (ax)Y (o yx)
(O )™ g xzz(szl)} form=1,1> j,
{(XmXim-— 1)Xm L )Xy 2o x )V Y X
{(XmXim- 1)Xm L (x)x (ox)) form = 2,10 = |,
{(Xm X)X 5 - (x320)25 2o x )Y i) T o2 (0L i)
oty i) 0 i) T 20 i)
{(XnXm=)X2_ - (X)X, 2 (x00x1)} form > 2,1> j,
xl‘ly X1 for the other cases,
(D4e)” rm;l(x;lijl) =
(20 ) e oty ) 2O i)y
form=1,1< ]
{2 oty ey 3y form=1,1=
(O i)™ o Py Y O ) THO i) T Py )
form=1,1> ],
{(nXme)x2, |+ (322) x5 2 (0} (o y )
{(XnXme)x2_ - (3x2)x5 2 (x0x1)} form > 2,1 = j,
{Qomxm-) X2 -+ (x322)25 2 (022} i) ™ 33,2 (5 o)) !
(0 120 yaem) ™ 26,06 1)}
{(XnXme)X2_ - (3x)x, 2 (x00x1)} form > 2,1> j,
xl‘lijl form>2,1<j,
(DAY s1,(x yjx1) =
Oty Oy ) ) fore =
1

[y )™ Oy ™ ()
[ yex) ™ )™ forl< j<i,
(O )y )Y O e UGy ) y )y for =
-1
X['y;x1  forthe other cases,
L(xyyx) =
[(xl‘lyle),xl‘2y, 27 oy )
[(x; ' yexn), x)2 y, xjl fort<j,
{Xl yl_l 2}()C1 ijl){xlzyll 2}_1
yx )y forl =,

_ ISR _ _ .
[ )™y Oy DG ) Ly forl>
-1 .
xjypx o forl<j<i,
(D4h)” dl(xl‘lijl) = xl‘lijl.

(D4g)”

el

fort=j,

Sketch of the proof. Let X, be the subset of M*(N,,-1, xo) consists of the elements a,,
A<m<g-D,y,byan; 1 <m<g-1,1<1<n-1),rp(1<m<g,1<1<n-1),
sy (I<l<t<n=1),5,(0<l<t<n-1),andd (1 <l <n-2)in M*(Nyu_1,xo),
and X, the generating set for 71(N,,-1)" in Lemma 5.5. For each elements x € X, and
f € Xy, we construct a product w', r of elements in X, such that f(x) = w - For example,
for x;1x; € X and riy € Xy, riy(xi+1X;) is represented by the loop as on the right-hand side
of Figure 12. Thus we have
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-2 -1.2 -1, -1 -2 —1.2,-1
Fi(xi X)) = {7y Xy x)x; Yy xidxg Ty x0T € mi(Ngae)®,

and show the formula (Dle)” for m = i. Table 1 indicates the corresponding codes of

formulas f(x) = w; P O

0

731(Ti174)

- '-v._‘_‘/ji,l
i 1+1 [ i i+1 l

Fig.12. Loop ri(xis1x;) on Ny 1 based at xo for 1 <i<n-—2.

Table 1. Codes of formulas in Lemma 5.7.

xe X2 f © Xl Aam y b Al Vil St El,t dl
Xit 1 X; (Dla)” [ (D1b)” [(D1c)” [ (D1d)” [ (D1e)” [(D1f)” [ (D1g)” [ (D1h)”
2 (D2a)” | (D2b)” | (D2c)” | (D2d)” | (D2e)” | (D2f)” | (D2g)” | (D2h)”
y; (D3a)” | (D3b)” | (D3c)” | (D3d)” | (D3e)” | (D3f)” [ (D3g)” | (D3h)”
xl_lijl (D4a)” | (D4b)” | (D4c)” | (D4d)” | (D4e)” | (D4f)” | (D4g)” | (D4h)”

Applying Lemma 5.6 to the exact sequence 5.1, we have the following lemma.

Lemma 5.8. Assume that g > 1 and n > 2. If M(N,,-1) has the finite presentation
in Proposition 3.2, then M* (N1, xo) admits the presentation which is obtained from the
finite presentation for M(N,,_) in Proposition 3.2 by adding generators a;,—; (1 < i <
g—1), ripo1 (1<i<g), sin-1 (1 <i<n—-2),and ;-1 (1 <i<n—2), and the following
relations for 1 < j<n—-2,1<1,t <n-2, and any possible 1 <i,m < g:

(a,-;n,lai_l)(ai,l;n,lai__ll) form=i-1,
(Dlay am(aip-1a;Ma,' =3 (@ina1a;) aa;")  form=i+1,
U form#i—-1,i+1,
(arp-1a;") " roeiripe fori=1,
(D1b) y(ainra; Yy =3 (app105 Yriay fori=2,
ai;n_lai_l fori>3,

Aip-14;

(Dle) blagra; )b~ =

{(@3p1a5 Y arp-1a; DY N arp-1a; N(azp-1a5 Y arp-1a; "))

fori=1,
{(asp-1a5" Y ar-1a; DY azn-105 M(azp-1a5 Y arp-1a; )
fori=2,

(al;n—lafl)_l(a3;n—1a§1)(al;n—lafl) fori =3,
(a4;n—1azl)(GS;n—lagl)(al;n—lafl) Jori=4,
ai;n_la;' fori>>5,
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(D1dy am;l(ai;,,_lai_l)axl =
[(Stam1d;) ™ @sne1ay )™ @inmra)
[(Sta1dy D™ (amnray )™ form <=2,
[@ic1sn-1a" )" (imrdy D) N @in-10; D) (S1pm1d N ai-10-107)
form=i-1,
{(Sl,n—ldl_l)(ai;n—lai_l)}_1(ai;n—lai_l){(sl,n—ldl_l)(ai;n—lai_l)}
form =1,
(@i ) et dy D N aipara;!) - form =i+1,
a,-;n_lai_l form>i+?2,
(D1e) rui(ain-1a;)r,} =
[(stamrd,) ™ T @it a D pamady )
form<i-1,
{rp 1 (Stam1dy D) rin 1Y (siaardy N ainora;")
Stn-rad; Y Grady D) i)™ form =1,
i1 a1 dy ) i1 G vindy @in1a;)
form=i+1,
ai;n_la;] form>i+?2,
D1ty Sl,t(ai;nflai_l)sztl = ai;nflai_l,
(D1g) Saim-1a; )5, =
[(Sirdy D7, Sz,n—ld,_]]_l(Sl,n—ldl_])(Cll;n—lafl)rl;n—l(fz,n—ld,_])rl_;,_l
(Stnm1d; ) i1 Sencad D [rnady D (seaady DY fori =1,
{5,p1d; ", (St,nfldt_])_l][sl,nfldl_larl;n—l(gt,n—ldt_l)_]rl_;]n_l]}
(ai;n—lai_l)
{[Si01d,", (St,n—ldt_l)_]][sz,n—ldl_],rl;n—l(fz,n—ldt_l)_lrl_;,_l }!
fori>?2,
(D1hY di(aipra;Yd ' = aguora;’,
Fint Timtin-1(@ic10-107" ) " Fin (@ic 17 )
, ) form=i-1,
| @inraHY G @inaast)  form =,
Fin-1 form #i—1,i,
{@rn1ar)  raperria )
' (arp1a] Irin-1(@in-1a7) Fop1rin-1 - fori =2,
Tipn-1 fori=3,

(D2a)’ anrip-1a,

1
n—1
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(@rp-1a;) Nazpo1a5) N azp-1a;") ™!

Pt (@135 (ar 16y s, (areia)h)
fori=1,

{(asp-1a5" N arn-1a; DY N arp-1a; ) azp-1a5 ) rom-
r'1;n-1 (al;n—l afl)_lr&n—l (a2;n—la51)_lr3;n—l
(a3;n—1a§1)_lr4;n—1(a2;n—1a51){(a3;n—la§1)(al;n—lal_l)}
fori=2,

(D2cy bri;n—lb_l = {(a3;n—la§] )(al;n—lafl )}_1 r;;]n—l

(Dzd), Am;iFin-1 a_l

(D2e)

(D2fy
(D2g)

(D2h)’
(D3ay’
(D3b)’
(D3cy
(D3dYy’

s 1
Stilisn-18,, =

(@3.0-105 )15, (@2n105" )15, (@rneray D
(azp-1a5") ' rapor (@303 arpma) ™!
{3103 aroraih)} - fori=3,
Fan-1(@2n16; o1 (@rp-1a; ) rago (@ ay ') ™!
r3;n—l(03;n—1a;1)71r4;n—1(a3;n—la;1)(al;n—la]71)
fori=4,

Fin—1 fori>35,

m;l =

e o141 e e
[(sl,n—ldl 1) 1, (am;n—laml) 1] ri;n—l[(sl,n—ldl 1) 19 (am;n—laml) 1]
form <i-2,
{(Stn1dy N @ictn-10 DY @icinm16 ) (Spnm1d) D
Fictin-1(@i-10-10 ") 7 inet S ridy N (i dy N aiinra;!))

i—1 I 1 i-1

form=1i-1,
(ainra; ) (spard ) ;n_l(ai;n—lai_l)(El,n—l;idl_l)_l
form =1,
Fin-1 form>i+1,

el -1 el -
[(sl,n—ldl 1) 17 I”m;ln_l] ri;n—l[(sl,n—ldl 1) 1, I"m;ln_l
Jorm<i—1,

-1 - _ _
Pt Fin=1T g = N ACStna1dy it} Fin—t{(Stnm1dy Drisn—1}

form =1,
Fin-1 form>i+1,

-1 _
SLilizn-18;; = Tin-1,

[sen1d s Grnardy ) i1 Gramady Dy (Stamady D) ™ e
fori=1,

{rady s Gonady Y Msinmadr s rine1 (Senmady D~ 17
TRY | TPRY s APy i | KPR T AR S TR (T /e Rt |
fori>?2,

dirip1d;" = Fipy,
am(sj,n—ldjl)ay_nl = Sj,n—ldj_'I,
y(sj,n—ld;l)y_l = Sj,n—ldfl,
b(sj,n—ld;])b_l = sj,n—ldj_'l»

am;l(sj,n—ld;l )a,,_n;ll =
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(1417 @inc10,) 1 (1)
[(Sta-1d; D7 (@meneray)™] for 1>,
(am;n—lar_nl)_l(sj,n—ldfl)(am;n—la;f) forl = j,
sj,n,ldj_,l forl=j,

(D3ey rml(sjn ld_l)r;lll =

D3ty

%

[(sln ld ) 1, ,;1,, 1] (sjn 1d )[(Sln ld ) 1’ ,_nln 1]
forl> j,

r,;l;ln_l(sj,n—ldj_'l)rm;n—l fOl"l = j,

sj,,,_ldj‘.l forl < j,

Li(Sjnm1d; sy =
{(Sz,n—ldl_l)(sj,n—ldfl)}_l(sj,n—ldfl){(Sz,n—ld;—l)(sj,n—ld;l)}
forl=j,

(St Gt dy T (sjmd )
[(Stn1d, D) (spmrdy D)™ forl< j<i,
(Sl,n—ldl_l)_l(sj,n—ldjl)(sz,n—ldl_l) fort=j,

(D3g)’

(]l

Sin- 1dj_.1 for the other cases,

1:(s j,n—ld;-l)Eztl =

{ra1dy ", Genady Y Msinaady s rine1 (Senoady D™
(Sj,nfldj_'])

(a1 (Senrdy Y Mstnmady s rina (Senady D™y 1)
forl> j,

{[Ej,n—ldj_'l’ (St,n—]dz_l)_l](sj,n—ld;l)rl;n—l (Et,n—ldz_l)_lrl_;;_l}_l
(Sj,n—ld]_'l)

{[Ej,n—ldj_'l’ (St,n—ld;_l)_l](Sj,n—ld;l)rl;n—l(Et,n—ld[_l) 17‘1_:1 1}
forl=j,

[Graa1d; )™ Sencrd T (8 juo1d; D Grnordy ) seacrd) ]
forl< j<t,
{(il,n—ldl_l)(sj,n—ldjl)_1}_I(Sj,n—ldjl){(Ez,n—ld,_I)(Sj,n—ldjl)_l}
fort=j,

sj,,,_ldj’.l fort < j,

(D3h)’ dl(Sj,n—la’;l)d[l = Sj,n—ld;I,
(D4a)" a,(5;,- 1d_l)a_l =

(D4b)" y

{rln 1 2,, 1(611,, lal )} (Sjn ld ){ ln 1 2,, l(aln lall)}
form =1,
fj,n_ld]_»l form > 2,

(Ej,n—ld;l)fl = {r;;il_l(al;n—la;l)izr&n—lrl;n—l}71(§j,n—1d;1)

{rl_;h_l(algn—lafl)_er;n—l Flin-1}s

(D4c) b

(Sjn-1d; D07 = {ri (@213 g (@303 75,

(az;n_lagl)rgj,_l(an;n_1al‘l)}‘l(Ej,n_ldjl){r;;i,_l(az;n_lagl)‘l
’Z;L,l(a&n—la;l)r3_;1n,1(QZ;n—lagl)rg;il,l(al;n—lafl )b

(D4d) a

m;l(Ej,n— 1 d/_l )a,_n;ll =

295
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{FI;L_IG;L_I(fll;n—lafl)(il,n—ldl_l)_l}_l(ij,n—ldfl)

i Toma @1y D Graady Y™y form =1,1<
{(il,n—ldfl)_lrl_;b_l7‘2_;1_1(al;n—lafl)}_l(fj,n—ldjl)
{Grad D)) s _((@ipaa)) - form=1,1> j,
(@m0, Dot -+ (az;n_lagl)rg;i_l(al;n_lajl)}‘l
(Ej,n—1;m+1d}])

{(amr1n-10," Vrimrnr - -+ (az;n_lagl)rg;i_l(a1;n_1a;1)}
form>21=j,

{(am—l;n—la,;l_l)rm—lzn—l T (a2;n—1a£l)r£;,_1(al;n—lafl)}_l
{(il,n—l;mdfl)_lr,;;ln_l(fl,n—l;m+1d[1)}_1(§j,n—1;md;1)
{(5z,n—1;md,_1)_17”;,;1,,_1(fl,n—l;m+1dl_l)}

{(@n-101@," V-t -+ (@2mr1a5 D) (@ipera;h)}
form=>21> j, ’

Sin- ldj_.l for the other cases,

(Dde)’ rm;l(Ej,n—ld;I)r;l;ll =
{1’1_51_1(5z,n—1dl_1)_1(Sz,n—ldl_l)rl;n—l}_1(§j,n—1dj_-1)

o Graady D) ppady i) form=1,01<
{(Sj,n—ldj_-l)rl;n—l }_l(fj,n—ldjl){(sj,n—ldjl)rl;n—l}
form=1,1=j,
{(51,n—1d,_1)_1’"1_;},_1(Sl,n—ldl_l)rl;n—l}_1(5j,n—1dj)_l
{Grady D) Grady e}y form=1,1> j,
(@010, o1 -+ (@2n105 )5 (@raeiay))
(Sjn-1md; ")

{(am—l;n—la,;l_l)rm—l;n—l e (a2;n—1a£l)r£;i,_1(al;n—lafl)}
form>21=j,

{(atn—l;n—la;l_l)rm—l;n—l ce (a2;n—1a£l)r2_;1z_1(al;n—laIl)}_
{(El,n—l;mdl_l)_lr,;;ln,l(il,n—l;mdl_l)}_l

(Ej,n—l;mdj_'l)

{Gratmd D7) S tmdy )

{(@m-r1021@," Vrimtinet -+ - (@105 5L (@rpora;h)}
form>2,1> j, ’

Sj,,,_ld]_.l form>21<j,

(D4 51,(5j0-1d;")s7) =

(il,n—ldl_l)_l(Ej,n—ld;l)(gl,n—ldl_l) Jort =]
[Grn1d )™ Graadi T (01l
[Grn1dy D) Grnoady ™' forl< j<iu,
{(Et,n—ldt_l)(E.j,n—ldfl)}_](Ej,n—ld;]){(Et,n—ldt_l)(Ej,n—ld;])}
Jorl=j,

S j,n_ldj‘.l for the other cases,

(D4g)y El,t(ij,n—ldj_'l)il_’tl =

-1

1
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[Grard; )il (Stamady ) it G )

[Srnrd; ), iy (Stncady ) il fore <,
{1’1_31_1(Sz,n—1dl_1)_11”1;n—1}(fj,n—ldfl){rl_;;_l(Sl,n—ldl_l)_lrl;n—l}_l
fort =],

(Sta-1d; VS jnm1d; N sppad; N forl =,

[(Sirdy D7, (Sz,n—ld,_])]_](Ej,n—ld;])[(fl,n—ld[])_] NEEY )
forl> j,

Ej,,,_ldj‘.l forl<j<t,

(DARY di(S 1) = §0md,

Proof. Assume that g > 1, n > 2, and M(N,,-1) has the finite presentation in Proposi-
tion 3.2. The presentation for M(N, ,-1) has generators a;, d;, a;.j, v j, Sk, Sk (1 <0 <
g-1,1<i" <g 1l <j<n-21<k<l<n-2),yforg > 2, and b for g > 4.
By Lemma 5.5, the group 7i(N,,—1)" is the free group which is freely generated by x;.1x;
(1<i<g-1,x(1<i<g),y;(1<j<n-2),andx;'y;x; (1 <j<n-2). Remark that

Jxo(Xiv1 X)) = aipora;’,
jxo(xiz) = Tin-1,
ij(yj) = Sj’n_ldjl,

A - -1
Jxo (X7 YjX1) = Sjp-1d;

(5.3)

by Lemma 2.8. Since we take lifts of a;, dj, ai.j, rvj, Sk ki Y, b € M(Nypn-1) With
respect t0 e W,1x0) & M (Ngp-1,X0) = M(Nyp-1) by ai, dj, aicj, 1irjs Skis Skas y» b €
M*(Ny -1, x0), respectively, applying Lemma 5.6 to the exact sequence 5.1, we obtain the
presentation for M*(N,,-1, Xo) whose generators are
(1) ai,dj, aij, rijs Sk, Sk (1 <i<g—-1,1<7"<g,1<j<n-2,1<k<l<n-2),y
for g > 2, and b for g > 4,

(2) ripm1 (1 <i<g) a1 <i<g—1), spm1d' (1 <i<n-2),and §,-1d;"
(1<i<n=2).
Denote by X; the set of generators in (1) and by X, the set of generators in (2). Since
71 (Ny—1)" is the free group, the defining relations are obtained as follows:
(1) for any relation v{' ---v7* = w‘f‘ e wf‘ of the presentation for M(N,,_1) in Propo-
sition 3.2 and the lifts 3;, W; € M™*(Ny -1, x0) of v;, w; € M(Ny,-1) with respect to
FIM Nyt 30)s respectively, there exists a product v 7 of elements in X,

such that

O1 . 01y-1,51
(" w, )

_ 701 =0 )
=W w, U(wzlsl 5

~E ~El
e ! A P B
1 1%

AR
(2) for x € X, and f € X, there exists a product w, ; of elements in X, such that

fxf_l = Wy, f-

Note that the generators of this presentation consist of a;, d;, a;.jr, v j, Skg, Sk (1 <0 <
g-1,1<i"<g,1<j<n=-2,1<j<n-1,1<k<l<n-1),yforg>2,andbforg >4
essentially, the generators in (1) are lifts of the generators of the presentation for M(N,,_1)
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in Proposition 3.2, and the generators in (2) are the images of the generators for (N, ,—1)*
in Lemma 5.5.

We calculate each ety 1t and w, ; in the relations (1) and (2) above. We take
the subsurface N’ of N, which is diffeomorphic to N, as in Figure 13. By the definition
of the elements in X; € M™(N,,-1,x), every simple closed curve which appears in X;
is isotopic to a simple closed curve on intN’ relative to xo. We regard generators of the
presentation for M(N, ,-1) as elements of M(N’). In particular, the inclusiont’ : N < N, ,
induces the injective homomorphism ¢, : M(N’) — M(Ny,,). By using the composition
t,ot, : M(N") = M*(Ny,u-1,X0), we can show that Dty et = 1 for each relation

oft -t = w‘ls‘ ---wfi of the presentation for M(N,-1).

For the relation (2) above, we construct w, s as follows. We take x € X, and f € X;. By
the formulas 5.3, there exists an element w € m;(N,,-1)" which lies in the generating set in
Lemma 5.5 such that x = j, (w). Since fij(w)f‘l = jy,(f(w)) for any w € m1(Ny -1, X0)
and f € M*(Ny,-1,x0), we have

Fxf™' = Fin@)f = jo (fw)).

By Lemma 5.7, we have a product w‘f] e wf’ of generators for 711(N,,-1)* in Lemma 5.5
such that f(w) = w‘f] e wf’. Therefore we have the relation

Fxfl = )0 - i (wp)

Applying the formulas 5.3 to the equation above, fj, (w)f~! is equal to a product of ele-
ments in X, and we obtain w, ;. We can check that if the formula f(w) = w‘ls‘ e w‘;’ 1s one
of the cords (D1a)”-(D4h)” in Lemma 5.7, then the obtained relation fj,(x)f -1 = Wy, s CO-
incides with one of Relations (D1a)’-(D4h)” in Lemma 5.8. For example, for ai;n_lai‘l € X,
and r;; € X;, we have ai;n_lai‘l = Jy,(xis1X;). Recall that r;(x;.1;) is represented by the
loop as on the right-hand side of Figure 12. By the formula (D1e)”” for m = i in Lemma 5.7,
we have

-2 -1.2 -1 -1 -2 -1 _2\-1
ri(Xi1xi) = {x; Y, X Wi(Xiv1X)X; Y xi{x; Y x;} E7T1(Ng,n_1)+.

Recall that 5, is the Dehn twist along the simple closed curve 7 jx.; = 1(0 ;i) and 7 j;; is
defined in Figure 6. Thus we show that

—1y,.—1 -1 —1\—1 -1 -1
ri;l(ai;n—lai )r,';[ = {rj;n_l(sl,n—ld[ ) ri;n—l}(sl,n—ldl )(ai;n—lai )
- 11y -1 Sl -1
(sl,n—l;idl ) {rl’;n_l(sl,n—ldl ) ri;n—l} .

This relation is Relation (Dle)’ for m = i. Therefore M*(N,,-1, Xo) has the presentation
which is obtained from the finite presentation for M(N,,,-1) by adding generators a;,,—; for
1<i<g-1,ryforl <i<g,s,-;and 5, for 1 <i<n-2,and Relations (Dla)’-
(D4h)’. O

Let of' --- v} = wf‘ ---wf’ be a relation in M*(N, -1, xo), and 5; € M(N,,) (resp. 0; €
M(N, ) a lift of v; (resp. w;) with respect to t, : M(Ny,) = M*(Nyu-1,x9). By the
exact sequence 5.2, there exists an integer € € Z such that we have the following relation in
M(Nyp):
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Fig.13. The subsurface N’ of N, , which is diffeomorphic to N ,_;.

~&1 ~& _ =01 . =01 j&
0, 0, = o, d,_,.

We call the integer & € Z above the index of the relation v - - - v;* = wf‘ e wfl in M*(Ny-1,

xo), and the relation &' -+ 0% = @' ---@"d® | in M(N,,,) the relation which is obtained

o 0,
‘;:l...v‘g]‘ = wl...wll

from the relation v i 1 with the index e. Note that the index depends on
the choice of lifts ; and @;. Recall that we take lifts of a;, y, b, d;, a; j, 1ij, Sij, Sij, Sjki €
MF(Nyp-1,x9) with respect to ¢, 1 M(Ny,) = M (Ng,u-1,X0) by ai, y, b, d;, a; j, rij, i,
Sij» Sjki € M(Ny,), respectively. We remark that the defining relations of the presentation
for M*(Ny -1, X0) in Lemma 5.8 are Relations (A1)-(B8), (DO) for 1 < jk,t < n-2,
(Dla)-(D4g) for 1 < k < n — 2 in Proposition 3.2, and (D1a)’-(D4g)’ in Lemma 5.8. We

prepare the following lemma.

Lemma 5.9. The indices for the relations of the presentation for M™*(Ny_1,Xo) in
Lemma 5.8 are as follows:

2 for Relation (Dle) form =i+ 1,

1 for Relations (D1d)’ form =i+ 1, (D2a) form=i-1,
and (D2b)’ fori = 2,

g =1 -1 forRelations (D1b)’ fori =2, (Dlc) fori=4,
and (D1d) form=i-1

-2 for Relations (D1b)’ for i = 1, and (D1e)’ for m = i,

0  for the other cases.

We prove Lemma 5.9 in Section 5.5. Applying Lemma 5.6 to the exact sequence 5.2, we
have the following lemma.

Lemma 5.10. Assume that g > 1 and n > 2. If M (N, -1, Xo) has the finite presentation
in Lemma 5.8, then M(N,,,) admits the presentation which is obtained from the finite pre-
sentation for M*(Ny -1, Xo) in Lemma 5.8 by adding the generator d,,_\ and the relations

(DOY [dp-1,ai] = [dn-1,y] = [dn-1,b] = [dy-1,di] = [dp-1, aix] = [dn-1,7ji] = [dn-1, 51,]
= [dp-1, 51,1 =1
Jor1 <i<g-11<j<g 1 <k<n-1andl <1 <t < n-1, and replacing
Relations (D1a)’-(D4h)’ by the relations which are obtained from Relations (D1a)’ -(D4h)’
with the following indices:
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2 for Relation (Dle) form =i+ 1,

1 for Relations (D1d)’ form =i+ 1, (D2a) form=i-1,
and (D2b)’ fori = 2,

=4 —1 for Relations (D1b) fori =2, (Dlc) fori =4,
and (D1d) form=1i-1

-2 for Relations (D1b)’ for i = 1, and (D1e)’ for m = i,

0  for the other cases.

Proof. Assume that g > 1, n > 2 and M*(N,,_1,xp) has the finite presentation in
Lemma 5.8. Let X be the subset of M(N, ,-1) which consists of a;, d;, a;.j, v j, Ski, Ski
1<i<g-1,1<i"<g1<j<n=-21<j<n-1,1<k<l<n-1)yforg>2,
and b for g > 4. We remark that the presentation for M*(N,,-1, Xp) in Lemma 5.8 has the
generating set ¢.(X) € M*(Ny,-1, Xo) and Relations (A1)-(B8), (DO) for 1 < j,k,t <n—2,
(Dla)-(D4g) for 1 < k < n —2 in Proposition 3.2, and (D1a)’-(D4g)" in Lemma 5.8. Every
element in M(N,,) commutes with d,,_;. By applying Lemma 5.6 to the exact sequence 5.2,
we obtain the presentation for M(N, ,—1) whose generating set is X U {d,,_;} and the defining
relations as follows:
(1) For each relation vf' - - - v}* = w‘f‘ e wf‘ of the finite presentation for M* (N1, Xo)
in Lemma 5.8 and the lift 5; € M(N,,) (resp. ©; € M(Ny,)) of v; (resp. w;) with
respect to ¢, : M(Ny,) = M*(Ny -1, Xo), there exists & € Z such that

NSI---NSk_ ~5]...~61 €
Uy U =Wy w;'d,_;.

(2) For each x € X,
[dn—le x] =1

The relations (2) above correspond to the added relations (D0)’. To determine the relation (1)
above, we need to compute the index £ € Z for each relation of the finite presentation for
M*(Nyp-1,%p) in Lemma 5.8. By Lemma 5.9, their indices are determined and coincide
with ones in Lemma 5.10. Therefore we have proved Lemma 5.10. |

Proof of Proposition 3.2. We proceed by induction on n > 1. The base case is of n = 1.
The finite presentation for M(N,, ) is given by Theorem 3.1.

Assume n > 2.By the inductive hypothesis, M(N, ,—1) admits the presentation in Proposi-
tion 3.2. By Lemma 5.8, the group M™*(N, -1, x9) admits the presentation whose generators
are a;, dj, ai.j, 1y j, Sk Skt (1 <i<g=1,1 <" <g,1<j<n-2,1<j <n-1,1<k<I<
n—1),yforg > 2, and b for g > 4, and the defining relations are Relations (A1)-(B8), (D0)
for1 < j,k,t <n-2,(Dla)-(D4g) for 1 < k < n—-2in Proposition 3.2, and (D1a)’-(D4g)’ in
Lemma 5.8. By Lemma 5.10, M(N,,,) admits the presentation whose generators are a;, d;,
ai;j»,ri/,jf,sk,l,ik,l(l <i<g-1,1<i"<g,1<j<n-1,1<j<n-1,1<k<lI<n-1),
y for g > 2, and b for g > 4, and the defining relations are Relations (A1)-(BS), (D0), (D1a)-
(D4g) above, (D0O)’, and the relations which are obtained from Relations (D1a)’-(D4h)” with
the indices as in Lemma 5.10. The generating set of this presentation for M(N, ) coincides
with the generating set of the presentation for M(N,,) in Proposition 3.2. We can check
that Relation (D0)’ coincides with Relation (DO) for either j=n—1,k=n—1,ort=n-1,
the relations which are obtained from Relations (D1a)’-(D4h)” with the indices above co-
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incide with Relations (D1a)-(D4h) for k = n — 1, respectively. Therefore the presentation
for M(N,,,) above is equal to the presentation for M(N,,,) in Proposition 3.2 and we have
completed the proof of Proposition 3.2. O

5.5. Computing indices. In this subsection, we prove Lemma 5.9. We compute the in-
dex & € Z for each relation of the finite presentation for M*(Ny,-1,x9) in Lemma 5.8.
Recall that the defining relations of the presentation for M™(N,,-1,xp) in Lemma 5.8 are
Relations (A1)-(B8), (DO) for 1 < j, k,t < n -2, (Dla)-(D4g) for 1 < k < n — 2 in Proposi-
tion 3.2, and (D1a)’-(D4g)" in Lemma 5.8. First we compute the indices for Relations (A1)-
(B8), (D0), and (D1a)-(D4g) above. These relations come from the defining relations of the
presentation for M(N, ,-1) in Proposition 3.2. We have the following lemma.

Lemma 5.11. The indices for Relations (A1)-(B8), (DO0), and (D1a)-(D4g) in the presen-
tation for M* (N -1, Xo) in Lemma 5.8 are zero.

Proof. Recall that N’ is the subsurface of N, as in Figure 13 which is diffeomorphic to
Nyn-1, and we have the inclusions N’ < Nyn < Ny 1. The inclusion relations induce

the sequence of homomorphisms M(N") <& M(Ny,) 5 MF(Ngy,-1, x0). By the definition
of defining simple closed curves of the generators for M*(N, -1, xo) (see the beginning
of Section 5.4 and Figure 4, 5, and 6), the mapping classes a;, y, b, dk, Gik, Vik, Siks Sik
Siki € M (Ngnu-1, Xo) are represented by diffeomorphisms on N,,_; which are supported
on N’. Note that at the beginning of Section 5.4, we took the lifts of a;, y, b, di, aix, rix,
Siks> Siks Sjki € M+(Ng,n_|,)€()) with respect to ¢. : M(Ng’n) — M+(Ng,n_1,X0) by a;, y, b,
di, ik, Tiks Sik> Siks Sjki € M(Nyp), respectively. We can check that the choice of lifts

are natural for the homomorphisms M(N") < M(Ny,) R MF(Ny-1, x0). Thus, for each
relation o' - - - v = w‘f‘ e wf’ of the finite presentation for M*(N, -1, Xo) in Lemma 5.8 and
the lift 5; € M(N,,) (resp. @; € M(Ny,)) of v; (resp. w;) with respect to ¢, : M(N,,) —
M*(Ny,u-1, Xo), we have the relation 77" - - - 77" = 17)(151 e zI)f’ in M(N’). Therefore, the indices
for Relations (A1)-(B8), (D0), and (D1a)-(D4g) in the presentation for M*(N, -1, Xo) in

Lemma 5.8 are zero, and we have completed Lemma 5.11. |

For the completion of the proof of Lemma 5.9, calculations of indices for Relation (D1a)’-
(D4g)’ remain. By using the braid relations, we have the following lemma.

Lemma 5.12. The indices for the following relations are zero:

Relations (D1a)’ form # i—1,i+1, (D1b) fori > 3, (D1c) fori # 4, (D1d) form < i-2,
m=iandm>i+2 (Dle) form<i-1,andm>i+2, (DIf)y, (Dlg) fori> 2, (D1h),
(D2a) form #i— 1, (D2b) fori # 2, (D2¢) fori > 5, (D2d) form <i-2, andm > i+ 1,
(D2ey, (D2fY, (D2g) fori > 2, (D2h), and (D3a)’-(D4h)’.

Proof. Let X; and X, be the subsets of M™(N,,-1,xo) as in the proof of Lemma 5.8.
Each relation above is to be a following form: there exist elements f € X;, x € X, and
h € M*(Ny,-1,x0) such that

fxf~t = hxh'.

Recall that we have the inclusion Ny, = Ny ,,-1 —intDy,—; < Ny -1 and the point x lies in
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the interior of the disk Dy, ,_;. The element x is either a Dehn twist or a product of two Dehn
twists along disjoint simple closed curves on the subsurface N,, C N, ,-;. Hence we put
either x = 7. or x = ¢, t;zl for some simple closed curve ¢ or a pair of disjoint simple closed
curves ¢y and ¢; on Ny, C N, in Figure 4, 5, and 6. In each case, by the braid relations,
the relation above coincides with either the relation 75 = fp) or ff(c,)f}(lcz) = th(cl)t,;('CZ)
in M*(Ny,-1,%0). These relations mean that the simple closed curve f(c) (resp. the pair
(f(c1), f(c2))) is isotopic to the simple closed curve f (resp. the pair (h(cy), h(c2))) in
Nyn-1 — xo. We can take the isotopy as one which fixes the disk D, pointwise. Hence
the relations /() = fie) and 7 f7 ) = tuenlye,) hold in M(N,,). Therefore the index of
the relation fxf~' = hxh™! is zero and we have completed the proof of Lemma 5.12. |

Proof of Lemma 5.9. By Lemma 5.11 and 5.12, remaining cases are for the following
19 relations: Relators (D1a)’ form =i—1,i+ 1, (D1b) fori = 1,2, (Dlc)’ fori = 4, (D1d)’
form=1i-1,i+ 1, (Dle) form = i,i+ 1, (D1g)’ fori = 1, (D2a)’ form =i — 1, (D2b)’
fori =2, (D2c) fori=1,2,3,4,(D2d) form =i —1,i and (D2g)’ for i = 1. We compute
the indices by using Relations (L+), (L-), and (LO) (see Lemma 5.1 and 5.3), and the braid
relations. The indices for Relations (D1a)’ for m = i — 1,i + 1 and (D1b)’ for i = 2 are
computed by a single braid relation and one of Relations (L+), (L-) and (LO). For instance,
for Relation (D1a)’ when m =i — 1, we have

(@107 )@tp1a) = MG TAC-)
(LO)
=" A1) (X xi-1))

= A@i-1(xis1X)
@ a4 (@ip-1a; a;
in M(N,,,). Thus the index for Relations (D1a)’ form = i—11is & = 0. By similar arguments,
we can show that the indices are € = 0 for Relations (Dla)’ whenm =i+ 1 and ¢ = —1
Relation (D1b)" when i = 2. By easy calculations, we show that the indices are £ = -2 for
Relations (D1b)’ wheni =1, & = —1 for (D1c) wheni =4, & = 1 for (D1d)’ whenm = i+1,
g =1 for (D2a) whenm =i— 1, & =1 for (D2b)’ when i = 2, & = 0 for (D2d)’ when m = i.
For the other cases, computations of indices require observations by figures. As examples,
we compute the indices for Relation (D1e)” when m = i and Relation (D2c¢)” when i = 2 by
using figures.
For the other cases, we give computations of indices by only deformations of the expres-
sions. We define

Yi
gi;j

-1 .
X yixy fori=1,...,n-2,

(o)™ x5+ (o)™ e gl G TG - (o) T )

forl<i<n-2,2<j<g.

Remark that y;;; = x;lyixj.
For Relation (D1le)” when m = i, we have the following relation in M(N,,,) by Figure 14:

_ 1 (L __ L __
AGDAC )DAGE) ™ 2 Ay x AT Z My x)g N>,

Note that A(rj(xit1x;)) = ri;,(a,-;n_lai")r;ll by the braid relation. Hence we have
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r”, l(sln le ) Tin—1 (Sln ld] )(all’l la )(sln lld[ )_

1
r”, l(sln ld ) Vin—1

{ }

{ -

= i Stam1dy D s AW A1 X)) AGr) ™!
i Gtnady ) i)™
{Fl,, L Sardy ) i 1}A(!/1(Xz+1xz)y1,)dn ,
{ -

1
rll’l l(sln ld[ ) Tin—1

(0]

= A{ri,- 1(szn 1d; ) i 1}<yz<xl+1x,>yl,>)d2
= A({xi yl i}Ul(xini)yz;i{xi yl i} )dﬁ_l
= A(i’i;l(xi+1xi))d5,1

(2

—-1\,—-1 ;2
ri;l(ai;n—laj )r,’;[ dn_l-

Thus € = -2 for Relation (D1le)” when m = i.

0

(L+)
—
i t+1 l
(L+)
/
) . )
Yi(Tin12:) Y
~
i 1+1 l i t+1 l

Fig. 14. On the upper side, we explain that the relation A(y)A((x;+1x;)) =
A((y(xi+1x;))d,—1 is obtained from Relation (L+). Similarly, the arrow
from the upper right side to lower left side explain that the relation
ANixin xiDAGL) = Myi(xis1x)F;;} )dy-1 is obtained from Relation (L+).
“~” means a deformation of the loop by a homotopy fixing xo.

For Relation (D2¢)” when i = 2, we note that b(x%) is represented by a loop as on the
lower right side of Figure 20 and A(b(x%)) = bry,,_1b™! by the braid relation. By Figure 15,
we have

-1 -1 —1\-1
(al;n—lal )(03;11—1“3 )rZ;n—lrl;n—l(al;n—lal )
—1 2 2 -1\-1
= (arp-1a) )A(xax3)A) A ) @rp-1ay )
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(L+) - ) e

= (al;n—lall)A(x4x3)A(x2x1)(a1;n—la11) 1dn—l
L+) -1 2.2 —1\-

= (@110 DA(xax3) 0 x5 ) @r-1a; ) dx
@

= Allarp-1a7 ) ((ax3) ),
in M(N,,,). By Figure 16 and Figure 17, we have the following relation in M(N,,).
(@2n-105") " P31 (@3p-1a5 ) ragner (@105 )
= (@165 P31 P FZ;L_l (@30-103") " rape1(@2o10y )

“IN-T A2 A 2y ] -1 -1
= (azm-1ay ) AGDAXDr g, 1 AXax3)" rap-1(azn-1a; )

(L+).M “1v=1 2 2 _ _ _

=7 (ae105 ) AR AT, (ax3) )@ 105 o
L) 1 - -

= (@105 A ((eax3) D)) a2-105 )

m

A((ClZ;nflaz )" (x3x4r4;il_1 ((X4)C3)_1 ).

Let £; and ¢, be simple closed curves on N, as in Figure 18. Since ¢.(t;,) € M (Ny,-1, Xo)
fixes x3 and A((@r-1a;)(xax3)5323) = 1,17, we have A((@r-1a;")((xaxs)3a]))(x3) =

1()cz) We remark that the loop as on the upper right side of Figure 19 is homotopic to the
loop as on the lower right side of Figure 19 by a homotopy fixing x( as in Figure 19. By the

relations above and Figure 20, we have

-1 —1\—1 -1 -1
{(a3;n—1a3 )(al;n—lal )} (al;n—lal )(GS;n—la3 )r2;n—1r1;n—1

“1-1 Sl “1y-1
(@rn1ay )" rop1(azp-1a; ) 1r350-1(a3,0-1a3 )™ T4t

1 . 1
(a2.p—105 N(azu-1a5 Nau—-1a; )}

F2O T ((aspa1a5 Y @107 A@ o167 (Rax3) 8 2
(a20-105") " rap-1(@30105 ) a1 (@103 ")
{(azp-1a5 Narura; s
TOLMD 30165 Y @117 AC@ 1107 (23R 2
A(agn-1a5 ") (55 ((xax3) "I (@3n-105 N arm-1a7 )}
d_,
= {(@350-105 ) @r-1a7 DV A@1 107D (0 x3)2537))AGS)
A(@rp-1a7)((xax3)53D)) " Al(ar 17 H((xax3)35x7))
A(@2n-105") " G5y ((aax3) I (azm1a5 N ararar )}
d2
(@310 @re1a Y A (EDA@r1a; ) (e B)
Aazp-1a5")" (x3x4r4;n_1((x4x3) (@3 p-1a5" a1}
d_,
(L-)

= {(@3-103 ) @rn-1a7 )™ 1A(f (Xz))
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A((arp1a7 W(xax3)5x7) - (azp-105) "~ (G257 (xax3) ™))

{(@30-105" Y ar-1a; Y-
= (agpm1a3 Naray A () -
(@18, ) (ax3)5x7) - (aa1ay ) 05575, (axs) ™))
{(@3-105 Y arp-1a; )}
Al(azp-1a5" Yaym-1a; )Y (1 (3) -
(@107 N(xXax3)x5x7) - (13" ) (0G50 ((aax3) ™))
= Ab(()

bl"z;n_lb_l .

Thus & = 0 for Relation (D2¢)” when i = 2.

(L+)
—
1 2 3 4
(L+) N S
P (a110; ) ((w4w3)2323)
(11:71,71(11_1
.
1 2 3 4 1 2 3 4

Fig. 15. Relations A()A(x]) = A(GxDd,-1 and A(xsx3)A(xixd) =

A((x4x3)x3x3)dy—1 and 100p (ayu—1a; ) ((xax3)x3x7).

()

Fig.16. Relation AG2)AG?) = AGR2)d, 1.
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] _
0 7‘4:71,71«‘7"4‘7:3) )

1 2 3 4

2 3 4
wjadri (@) ™) f)
T
(a2:ka51)71
® ® L
1 9 3 1 ((1,2,,,,_1(1,2_1)_1(fI:%(:Iq:r;;;)_l:zrf)

Fig. 17. Relation A(x%xi)A(r;;L_l((xA;)cg)_l)) = A(x%xir;;ln_l((mxﬁ_l))d;_ll

and loops ”Z;,_l ((x4x3)7") and (az;n-lagl)‘l(x§XZr;;L_1 ((x4x3)71)).

G

Fig.18. Simple closed curves {; and {> on N ,,.
For Relation (D1d)’ when m = i — 1, we have

(@110 )" (St d ) @1 DY (St dy Y1167
Sty Y @imtno16 )V AGGx- ) AWD A ) (S10m1d) )

-1
(ai—l;n—la,‘_l )}

L _ _ _ _
2 (Sma1d Yt A AW i ) (S1am1d )

-1
(ai-1 n—1a4;_1 )dy-1

LO _ _ _ _
D Stprd N a1 a D M x Dy i X (S d )
(@110 )y

2 AUCStp-1d; YN @imtn-1a DY (axie)Yi(Xis1X0))) -1
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Fig.19. Loop 7' (x3).

= A@i-1(xir1X:)dp-1
€3] . -
= ai-1(Ain-14; l)ai_ll;ldn—l .
Thus & = —1 for Relation (D1d)’ whenm =i — 1.
For Relation (D1e)’ when m =i + 1, we have
rilll;n_l(sl,n—ldl_])_]ri+1;n—l(§l,n—l;i+1dl_l)(ai;n—lai_l)
= rﬁll;n_lA(yz_l)ri+1;n—1A(El;m)A(XmXi)
DL

AT oy U DA i (i1 x|
AT e U7 i (i1 )2

= A1 x))d
)

L)

1yl g2
ri+l;l(ai;n—l a; )ri+1;ldn—1

Thus & = -2 for Relation (Dle) whenm =i + 1.
For Relation (D1g)’ when i = 1, we have
[Srne1dy )7 spnm1dy 17 (tnmrdy N armray rinoy (Spamrd; D,y
(Sta-1dy ) Pt Gonmrd, D) [Graidy D™ (seamrdy D]

= (G di D spc1d T A AR )P A, A) ™!
Pt DG 1 [Sinmrdy D7 (spnardy D]
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—1 2,.2
(arn—107 ) ((@sz3)ada?) -

11,22 —1 - E e _
(azp—105 ") "M (23airy, _ (zazs) ™) (agn—1ay ) Hader s ((z423)7h)

(@10 (wgs)aded)

1
i
|
1
1
i

1
((ll:nflal ) l
((1'25:11—1(1';:1)71

£ a3) (@107 ((@ara)aded)
(azn-105 ) (@Feri,y (2423) ™)

Fig. 20. Relations A((@yp-1a7 ) (x423) 55D A(azp-1a5") ™"
(53257 ((xax3) ™)) = Aarp-ra;H((xax3)x5x7):
(azn105") 7 (Ggr,_ ((ax3) ™)) and
A(fg; (ONA@r-1a7 ) ((xax3)5x7) - (@105 (05X, (ax3) ™)) =
A (3) - arp-1a7 N ((axs)x3x7) - (ae16; )™ (057, ((axs) ™)

and loop b(x2).

L0 (Gady ) s dT T A (ax)
A1t GAYD ™ A 101 @) Grnardy D™ (Senmrdy D1d

QG d Y sae1d, T AW X DA ) )
[Srne1d; )7 (Sinmrdy )]y

C G d Y sope1d, T AW DA L G W)™
[Srnm1dy )7 (stnmrd) )]

Q AAGLAdY T se1d, T Wi )AC L G )™

= AGL(xit1x7)

(2

= —1y=—1
sl;t(ai;n—lai )sl;[-

Thus € = 0 for Relation (D1g)’ when i = 1.
For Relation (D2¢)” when i = 1, we have

~1y-1 ~1y-1 ~1y-1 1 -1
(al;n—lal ) (a3;n—la3 ) (az;n—laz ) r4;n_1(a3;n—la3 )
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-1 —1y,—1 -1
1”3;”_1(612;”_1612 )rz;n_l(al;n—lal )
_ —1\—-1 -1 _1A —lA 2\—1 -1
= (a9 ) (@3p-1a3 ) Alsxn) A(xy) ™ (azp-1a3 )

P 1 AP 1 AR) T A (@ra; )

20 (e a3m1a5) A5 0) T ) @310
A5y (30))AGG X5 ) arp-1a; )d, 2

DL (@rm1a7) Az 165 () X NAGTL (xa)xs757)
(@ip-1ayHd;!

2 @) M@0 () 5 )26
(arp1a;")

QA1) (@310 () 5 x5 52)

= Ab(G)

b

Thus € = 0 for Relation (D2¢)’ when i = 1.
For Relation (D2¢)’ when i = 3, we have
((@3105 Yarn-1a7 D) i, (@30-165r5, (@20165 1)
Fomet @107 D (@105 ragei (@seray’) ™!
(@in-1ay) (@103 Naym-1a;h))
= {@spm1a3 )@Y g (@103, (@210

-1 201 A2y ~1-1 ~1-1
P 1 A2 X )21 A(X5) " Ax)) ™ (2n-165 )™ r3m-1(a3m-1a3 )

ACxax1) (azp-1a5 Narpra;)}
VLD asa105 Y ar1ay (@310 (@105
Ay Cax))ACS X7 W a20-105" ) a1 (a3in-1a5 )™
ACex) {(azp-1a5 Nayu-1a7 M,
(L+)

-1 —1\\-1,.-1 —1y,.—-1 -1
= A(azm-103 Narm—1ay )Y ra_(@zn-1a3 )y, _(@2n-10;)

-1 2 2 Sy N
A(ry,, 1 (x2x1)Xy X1 N azn-105 )" r3m-1(a3p-103)

ACox) {(@3-105 ) @ra-1a; )}
{(azn-1a3" Y ar-ra;H) !

—1 15,1 -1 -1 -2 -2
r4;n_1A({(a3;n—la3 )r3;n_1(a2;n—laz )}(rz;n_l(xle)xz Xq ))r4;n—1

A AGx) (@105 Y ara-1a;h)

(D.(L-) .

{(a3n-105" Y ar-1a7))

-1 —1y..—1 -1 -1 -2 -2
A({7'4;n_1(a3;n—la3 )r3;n_1(a2;n71a2 )}(rz;n_1(x2x1)x2 Xq )

A (0x1) D(@sn-105 Y arn-1a; "))
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(L+)

U]

M
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{(a3-105" Y arp-ra;HY!

A{rg 1 @313 Iy (@105 )}y (X)X x7 )X
(xox) " N(@zp-1a5 N arn-1a; )}
A({(as;nflagl)(al;nflafl)}‘l({r;;b_l(as;nflagl)rgji_l(az;nflagl)}
(rym1 (22257 x7 ) x5y 2 (x2x1) ™)

Ab(x3))

b(r3-1)b "

Thus & = 0 for Relation (D2¢)” when i = 3.
For Relation (D2¢)” when i = 4, we have

D.(LO)

L)

LH.D

-1 151
Fan-1(A20-105 Ir1ip-1(Q10-1a] )" F2pet
141 “1y-1 -1 -1
(aZ;n—laz ) r3;n—l(a3;n—la3 ) r4;n—l(a3;n—1a3 )(al;n—lal )
2 2 CIv=lAg 2 1 -1
AxDAGx2) A @rn-1a7 )™ A (@1a-1a; )A(x2x1)

(a2n-105" ) ACS ) (@2n-105") AQxsxa) ™ Alxgxs)™

Fa:n—1 A(xXgx3)A(X2X1)
ACDAC3x)ACDA(@rn-1a7 )™ () AGRx) ™!
A(arn-1a5") " ) Axx2) ™" (x4 x3) ™ ran-1 Alxaxs)Axax1)
A (330D A(@rn-1a7 )™ (63)Axx,) ™!

A(azn-1a5") " () A(x320) ™ (x4x3) ™D ran-1 Axax3 xox1)d,_
ACG(3x2)xDA(@rn-1a7 ) () AGRx) ™!

A@2-185 ") (3) (03202) ™ (a3) ™ g1 ACxaxs xoxy )2

AGG (3 x)xDA(@r 107 D) A x) ™!

(a2n-105") 1 (3) (3 x2) ™ (eax3) g1 ACaxz xoxy )2

AGG (3 x)xDA(@r 107 ) (5) (1) ™!

(@105 ") (3) (03 x2) ™! (xa3) ™ a1 ACxa X3 X231 )y

AGG (3 x2)x3 (a1 n-1a7 ) T ) (ax) N aap1a5 ") (3 (3 x0) ™!

(ax3)” DA x3 x5 x1) Alxaxsxax1) ™ AG A x3 X2 x1)

AGG(x3x)x7(arn-1a; ) ) (xax))  aa-1a5") 1 (5) (x3xn) ™!

(x423) " xg 30001 ) A(A (g 3. 001) ™ (X))

AGG (3 x2)x3 (a1 n-1a7 ) T ) ax) azp-1a5") " (3) (s xn) ™!
(x423) " xg 30001 A 32021) 1 (x5))

AD(x})
b(rap-1)b™".
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Thus & = 0 for Relation (D2¢)” when i = 4.
For Relation (D2d)” when m =i — 1, we have
{(Stno1dy Wizt me1a DY @i 1nm16 ) (Sinm1d D ino1 Fio e
@i—10-10;") " Finot Suneridy N(spamrdy Naizrnmra )
= AGim1d] N @icrna1a)DY N @icina1a ) AN A ARG )

(di—l;n—lai__ll)_lA(X?)(fl,n—l;idl_l){(Sl,n—ldl_l)(Cli—l;n—lfli__ll)}

1 @1 DY @101 DA @101
AGCH Sy -1y N(Spamrdy Naizimera Do

2 ((Sm1dy a1 67DV A @1 a2 ) AG)
a1z ) A Sy W(sinmrdy Naizimarai)M_

R (RTINS (VR N N
ASp-1idy ) CONSnrdy N ai—inmraDYr

U TR b ORIV VN (C IRV (8 2R 000 )
A1) N CSinm1d) N @i-1n-1a7)Ydey

C (ad @11 @D A 11 a7 G2 i
a1z, ) N (Stam1dy Naiimarai )}

QAU Y@ 1167 DY @167 P i
(Sra-1:d; )7 (D))

= A@i1-1(x)

O

.
= Gictn-1Fin-1)a; 1y -

Thus & = 0 for Relation (D2d)” when m =i — 1.
For Relation (D2g)’ when i = 1, we have

[Send; ", (El,n—ldl_l)_l][rl;n—l(fz,n—ld,_l)rl_;l_l,(Sz,n—ldl_l)_l]i’l;n—l
= (Seaa1d, DAG)  (Saa1d, D T AGYAGCT)(Srnm1d )

-1 —1y-1 . -1
rl;n_l(sl,n—ldz ) -1 A, rl;n_l(sl,n—ldl -1

2 A1, @) AGDAG) Grnrd, ) ACD 1)
Ay (tnm1dy D) e @)™

QA1 d, G AGIAGIArrd; Y (D)
ATy (Stamrdi ) 1 )7

A1 d YT AGTOAGrnrd ) (D))
AT Stae1dy ) e 30) 7

(L-)

= Asia1d, DG MGG Gad ) OD)
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ATy (e di DY P @) 2
= A d, D@D G Separd, D))
ACT o St dy DY @)
= A d DG G enady D DI St dy D e @07
= AGL(D)

- —1
S1(rin-1)3y, -

Thus € = 0 for Relation (D2g)” when i = 1.Therefore we have completed the proof of
Lemma 5.9. O

As a corollary of the proof of Lemma 5.9 and 5.12, we have the following proposition.

Proposition 5.13. Relations (D0), (D1a)-(D4g) of the finite presentation for M(N,,) in
Proposition 3.2 are obtained from Relations (1) and (Il) in Theorem 4.1.

Proof. Relations (DO0) in Proposition 3.2 are clearly obtained from Relations (I) in The-
orem 4.1. We first consider Relations (D1a)-(D4g) for k = n — 1. We remark that Rela-
tions (D1a)-(D4g) for k = n — 1 coincide with the relations which are obtained from Rela-
tions (D1a)’-(D4h)’ in Lemma 5.8 with the indices as in Lemma 5.9. For Relations (D1a)-
(D4g) which are obtained from some of Relations (D1a)’-(D4h)’ listed in Lemma 5.12, by
the argument in the proof of Lemma 5.12, we show that these relations are obtained from
Relations (I). For the other relations, that are Relations (D1a)-(D4g) which are obtained
from Relations (D1a)’-(D4h)’ discussed in the proof of Lemma 5.9, by the argument and
deformations of the expressions in the proof of Lemma 5.9, we show that these relations
are obtained from Relations (I), (L+), (L-), and (LO). By Lemma 5.2 and 5.4, we show that
Relations (LO) are obtained from Relations (I) in Theorem 4.1 and Relations (L+) and (L-)
coincide with Relations (IIl) in Theorem 4.1.

We take any 1 < kK’ < n— 2. Let N(k') be the subsurface of N,, as in Figure 21, and
N’(k’) the surface which is obtained by regluing N(k’) and the 2-disk Dy, with the base
point xj. Since N(k') and N'(k") are diffeomorphic to Ny 11 and N, , respectively, we re-
gard the inclusion relation N(k") C N'(k") as Ny +1 C Ny . The mapping classes a;, y, b,
dp, aig, rigs Sigs Sigs Sjii € M(Ng,) for 1 <1 < k" are represented by diffeomorphisms on N,
which are supported on N(k) = N, .1. Thus Relations (D1a)-(D4g) for k = k” of the pre-
sentation for M(N,,,) in Proposition 3.2 are regarded as relations in M(Ny41) C M(Ny,,).
These relations clearly coincide with Relations (D1a)-(D4g) for k = k’ of the presentation
for M(Ny+1) in Proposition 3.2, and also the relations which are obtained from Rela-
tions (Dla)’-(D4g)’ of the presentation for M* (N, x{,) in Lemma 5.8 with the indices as
in Lemma 5.9. By the argument in the proof of Lemma 5.9 and Lemma 5.12 for the case
n—1 =k’, we show that Relations (D1a)-(D4g) for k = k’ of the presentation for M(N 1)
in Proposition 3.2 are obtained from Relations (I) and (II) of the presentation for M(Nx+1)
in Theorem 4.1. By the natural inclusion M(Nx+1) € M(N,,), Relations (I) and (II) in
M(Ny+1) are to be Relations (I) and (IIl) in M(N,,). Therefore we have completed the
proof of Proposition 5.13. O
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Fig.21. The subsurface N(k’) of N,,, which is diffeomorphic to Ny 4.
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