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Abstract
We give an infinite presentation for the mapping class group of a non-orientable surface with

boundary components. The presentation is a generalization of the presentation given by the
second author [16]. We also give a finite presentation for the mapping class group to obtain the
infinite presentation.

1. Introduction

1. Introduction
Let Σg,n be a compact connected oriented surface of genus g ≥ 0 with n ≥ 0 bound-

ary components. The mapping class group (Σg,n) of Σg,n is the group of isotopy classes of
orientation preserving self-diffeomorphisms on Σg,n fixing the boundary pointwise. Hatcher-
Thurston [8] were the first to give a finite presentation for (Σg,0) in general genus cases.
By applying their method in [8] to non-empty boundary cases, Harer [7] gave a finite pre-
sentation for (Σg,0) for n ≥ 1. Wajnryb [22] simplified their presentation for n ∈ {0, 1}.
Furthermore, for n ≥ 0, a finite presentation for (Σg,n) was given by Gervais [6] and
Labruère-Paris [12]. Gervais [5] gave an infinite presentation for (Σg,n) for arbitrary g ≥ 0
and n ≥ 0 by using Harer’s and Wajnryb’s finite presentations for (Σg,n) ([7, 22]). To prove
this, Gervais constructed explicit isomorphisms between the group obtained from his infi-
nite presentations and the group obtained from Harer’s and Wajnryb’s finite presentations for
(Σg,n). This Gervais’ presentation has infinitely many generators and relations, however,
the relations are simple. Luo [15] reduced relations in Gervais’ presentation into a simpler
infinite presentation (see Theorem 2.5).

Let Ng,n be a compact connected non-orientable surface of genus g ≥ 1 with n ≥ 0
boundary components. The surface Ng,0 is a connected sum of g real projective planes. The
mapping class group (Ng,n) of Ng,n is the group of isotopy classes of self-diffeomorphisms
on Ng,n fixing the boundary pointwise. For n ∈ {0, 1}, Paris-Szepietowski [17] were the
first to give a finite presentation for (Ng,n) in general genus cases. Stukow [20] rewrote
Paris-Szepietowski’s presentation into a finite presentation with Dehn twists and one “Y-
homeomorphism” as generators (see Theorem 3.1). In low genus cases for n ∈ {0, 1}, finite
presentations for (Ng,n) were given by Lickorish [13], Birman-Chillingworth [2], and
Stukow [18]. A finite presentation for (Ng,n) for n ≥ 2 was not known.

In this paper, we give a simple infinite presentation for (Ng,n) for g ≥ 1 and n ≥ 2
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(Theorem 4.1). The generating set consists of all Dehn twists and all “crosscap pushing
maps” along simple loops. We review the crosscap pushing map in Section 2. In the case of
n ∈ {0, 1}, an infinite presentation for (Ng,n) was given by the second author [16]. To prove
Theorem 4.1, we construct an explicit finite presentation for (Ng,n) for g ≥ 1 and n ≥ 2
(Proposition 3.2), and apply Gervais’ argument to the finite presentation in Proposition 3.2.
We prove Proposition 3.2 by inductively applying the forgetful exact sequence to the group
obtained from known finite presentation for (Ng,1).

Contents of this paper are as follows. In Section 2, we prepare some elements of (Ng,n)
and some relations among their elements in (Ng,n), and review the infinite presentation
for (Σg,n) (Theorem 2.5) which is an improvement by Luo [15] of Gervais’ presentation
in [5]. In Section 3, we review Stukow’s finite presentation for (Ng,n) when n ∈ {0, 1}
(Theorem 3.1) and give a finite presentation for (Ng,n) when n ≥ 2 (Proposition 3.2). In
the proof of the main theorem in Section 4, we use their finite presentations for (Ng,n). In
Section 4, we give the main theorem (Theorem 4.1) in this paper and a proof of the main
theorem. Finally, in Section 5, we give a proof of Proposition 3.2.

2. Preliminaries

2. Preliminaries
In this section, we recall the definitions of Dehn twists and crosscap pushing maps, and

their important relations from Section 2 in [16].

2.1. Relations among Dehn twists and Gervais’ presentation.
2.1. Relations among Dehn twists and Gervais’ presentation. Let S be either Ng,n or

Σg,n. We denote by S(A) a regular neighborhood of a subset A in S. We assume that
every simple closed curve on S is oriented throughout this paper, and for simple closed
curves c1, c2 on S, c1 = c2 means c1 is isotopic to c2 in consideration of their orientations.
Denote by c−1 the inverse curve of a simple closed curve c on S. Note that (c−1)−1 = c.
For a two-sided simple closed curve c on S, we can take two orientations +c and −c of
S(c). When S is orientable, we take +c as the orientation of S(c) which is induced by the
orientation of S. For a two-sided simple closed curve c on S and an orientation θ ∈ {+c,−c}
of S(c), denote by tc;θ the right-handed Dehn twist along c on S with respect to θ. Note that
tc;+c = tc−1;+c = t−1

c;−c
. For some convenience, we write tc = tc;+c for a two-sided simple closed

curve c, where the orientation of S(c) is given explicitly (for instance, S is an oriented
surface). In particular, for a given explicit two-sided simple closed curve, an arrow on a
side of the simple closed curve indicates the direction of the Dehn twist (see Figure 1). For
elements f = [ϕ], h = [ψ] ∈(S), we define f h := [ϕ ◦ ψ] ∈(S).

Fig. 1. The right-handed Dehn twist tc = tc;θ along a two-sided simple
closed curve c on S with respect to the orientation θ ∈ {+c,−c} of S(c)
as in the figure.

Recall the following relations in (S) among Dehn twists along two-sided simple closed
curves on S.
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Lemma 2.1. Let c be a two-sided simple closed curve on S and θ ∈ {+c,−c} an orientation
of S(c). If c bounds a disk or a Möbius band in S, then we have tc;θ = 1 in (S).

For a two-sided simple closed curve c on S and f ∈ (S), we have a bijection f∗ =
( f |S(c))∗ : {+c,−c} → {+ f (c),− f (c)}.

Lemma 2.2 (The braid relation (i)). For a two-sided simple closed curve c on S and
f ∈(S), we have

f tc;θ f −1 = t f (c); f∗(θ).

When f is a Dehn twist td;θ′ along a two-sided simple closed curve d and the geometric
intersection number |c ∩ d| of c and d is m, we denote by Tm the braid relation.

Let c1, c2, . . . , ck be two-sided simple closed curves on S. The sequence c1, c2, . . . , ck is a
k-chain on S if c1, c2, . . . , ck satisfy |ci∩ ci+1| = 1 for each i = 1, 2, . . . , k−1 and |ci∩ c j| = 0
for | j − i| > 1.

Lemma 2.3 (The k-chain relation). Let c1, c2, . . . , ck be a k-chain on S and let δ, δ′ (resp.
δ) be distinct boundary components (resp. the boundary component) of S(c1∪c2∪· · ·∪ck)
when k is odd (resp. even). We give an orientation of S(c1 ∪ c2 ∪ · · · ∪ ck), and it induces
orientations θi (i = 1, 2, . . . , k), θ, and θ′ of S(ci) (i = 1, 2, . . . , k), S(δ), and S(δ′),
respectively. Then we have

(tc1;θ1 tc2;θ2 · · · tck;θk )
k+1 = tδ;θtδ′;θ′ when k is odd,

(tc1;θ1 tc2;θ2 · · · tck;θk )
2k+2 = tδ;θ when k is even.

Lemma 2.4 (The lantern relation). Let Σ be a subsurface of S which is diffeomorphic
to Σ0,4 and let δ12, δ23, δ13, δ1, δ2, δ3 and δ4 be simple closed curves on Σ as in Fig-
ure 2. We give an orientation of Σ, and it induces orientations θi (i = 1, 2, 3, 4), and θi j

((i, j) = (1, 2), (2, 3), (1, 3)) of S(δi) (i = 1, 2, 3, 4), and S(δi j) ((i, j) = (1, 2), (2, 3), (1, 3)),
respectively. Then we have

tδ12;θ12 tδ23;θ23 tδ13;θ13 = tδ1;θ1 tδ2;θ2 tδ3;θ3 tδ4;θ4 .

Fig.2. The simple closed curves δ12, δ23, δ13, δ1, δ2, δ3 and δ4 on Σ.

Luo’s presentation for (Σg,n), which is an improvement of Gervais’ one, is as follows.

Theorem 2.5 ([5], [15]). For g ≥ 0 and n ≥ 0, (Σg,n) has the following presentation:
generators: {tc | c : s.c.c. on Σg,n}, where s.c.c. means simple closed curve.
relations:

(0′) tc = 1 when c bounds a disk in Σg,n,
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(I′) All the braid relations T0 and T1,
(II) All the 2-chain relations,
(III) All the lantern relations.

2.2. Relations among the crosscap pushing maps and Dehn twists.
2.2. Relations among the crosscap pushing maps and Dehn twists. Let μ be a one-

sided simple closed curve on Ng,n and let α be a simple closed curve on Ng,n such that μ and
α intersect transversely at one point. Recall that α is oriented. For these simple closed curves
μ and α, we denote by Yμ,α a self-diffeomorphism on Ng,n which is described as the result of
pushing the Möbius band Ng,n(μ) once along α. We call Yμ,α a crosscap pushing map. In
particular, if α is two-sided, we call Yμ,α a Y-homeomorphism (or a crosscap slide), where a
crosscap means a Möbius band in the interior of a surface. Note that Yμ,α = Y−1

μ,α−1 = Yμ−1,α.
The Y-homeomorphism was originally defined by Lickorish [13]. We have the following
fundamental relation in (Ng,n) and we also call the relation the braid relation.

Lemma 2.6 (The braid relation (ii)). Let μ be a one-sided simple closed curve on Ng,n

and let α be simple closed curve on Ng,n such that μ and α intersect transversely at one
point. For f ∈(Ng,n), we have

f Yμ,α f −1 = Yf (μ), f (α).

We describe crosscap pushing maps from a different point of view. Let e : D′ ↪→ intS be
a smooth embedding of the unit disk D′ ⊂ C. Put D := e(D′). Let S′ be the surface obtained
from S − intD by the identification of antipodal points of ∂D. We call the manipulation that
gives S′ from S the blowup of S on D. Note that the image M ⊂ S′ of S−intD(∂D) ⊂ S− intD
with respect to the blowup of S on D is a crosscap. Conversely, the blowdown of S′ on M is
the following manipulation that gives S from S′. We paste a disk on the boundary obtained by
cutting S along the center line μ of M. The blowdown of S′ on M is the inverse manipulation
of the blowup of S on D.

Let μ be a one-sided simple closed curve on Ng,n and let S be the surface which is obtained
from Ng,n by the blowdown of Ng,n on Ng,n(μ). Note that S is diffeomorphic to Ng−1,n or
Σh,n for g = 2h+1. Denote by xμ the center point of a disk Dμ that is pasted on the boundary
obtained by cutting S along μ. Let e : D′ ↪→ Dμ ⊂ S be a smooth embedding of the unit disk
D′ ⊂ C to S such that Dμ = e(D′) and e(0) = xμ. Let (S, xμ) be the group of isotopy classes
of self-diffeomorphisms on S fixing the boundary ∂S and the point xμ, where isotopies also
fix the boundary ∂S and xμ. Then we have the blowup homomorphism

ϕμ : (S, xμ)→(Ng,n)

that is defined as follows. For h ∈(S, xμ), we take a representative diffeomorphism ω ∈ h
of the mapping class h which satisfies either of the following conditions: (a) ω|Dμ

is the
identity map on Dμ, (b) ω(x) = e(e−1(x)) for x ∈ Dμ, where e−1(x) is the complex conjugate
of e−1(x) ∈ C. Such ω is compatible with the blowup of S on Dμ, thus ϕμ(h) ∈(Ng,n) is
induced and well-defined (c.f. [21, Subsection 2.3]).

The point pushing map

jxμ : π1(S, xμ)→(S, xμ)

is a homomorphism that is defined as follows. For γ ∈ π1(S, xμ), jxμ(γ) ∈ (S, xμ) is
described as the result of pushing the point xμ once along γ. The point pushing map comes
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from the Birman exact sequence. Note that for γ1, γ2 ∈ π1(S, xμ), γ1γ2 means γ1γ2(t) =
γ2(2t) for 0 ≤ t ≤ 1

2 and γ1γ2(t) = γ1(2t − 1) for 1
2 ≤ t ≤ 1.

Following Szepietowski [21] we define the composition of the homomorphisms:

ψxμ := ϕμ ◦ jxμ : π1(S, xμ)→(Ng,n).

For each closed curve α on Ng,n which transversely intersects with μ at one point, we take a
loop α on S based at xμ such that α has no self-intersection points on Dμ and α is the image
of α with respect to the blowup of S on Dμ. If α is simple, we take α as a simple loop. The
next two lemmas follow from the description of the point pushing map (see [11, Lemma 2.2,
Lemma 2.3]).

Lemma 2.7. For a simple closed curve α on Ng,n which transversely intersects with a
one-sided simple closed curve μ on Ng,n at one point, we have

ψxμ(α) = Yμ,α.

Lemma 2.8. For a one-sided simple closed curve α on Ng,n which transversely intersects
with a one-sided simple closed curve μ on Ng,n at one point, we take S(α) such that the
interior of S(α) contains Dμ and an orientation θα ∈ {+α,−α} of S(α). Denote by δ1

(resp. δ2) the boundary component of S(α) on the right (resp. left) side of α, and by δi

(i = 1, 2) the two-sided simple closed curve on Ng,n which is the image of δi with respect to
the blowup of S on Dμ. Let θi ∈ {+δi

,−δi
} (i = 1, 2) be the orientation of S(δi) which is

induced by θα and θi ∈ {+δi ,−δi} (i = 1, 2) the orientation of Ng,n(δi) which is induced by θi

(see Figure 3). Then we have

Yμ,α = tδ1;θ1 t
−1
δ2;θ2

.

Fig.3. Simple closed curves δ1, δ2, δ1 and δ2, and orientations θ1, θ2, θ1 and
θ2 of their regular neighborhoods. The x-mark means that antipodal points
of ∂Dμ are identified.

By the definition of the homomorphism ψxμ and Lemma 2.7, we have the following
lemma.

Lemma 2.9. Let α and β be simple closed curves on Ng,n each of which transversely
intersect with a one-sided simple closed curve μ on Ng,n at one point. Suppose that the
product αβ of α and β in π1(S, xμ) is represented by a simple loop on S, and αβ is a simple
closed curve on Ng,n which is the image of the representative of αβ with respect to the blow-
up of S on Dμ. Then we have
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Yμ,αβ = Yμ,αYμ,β.

3. Finite presentation for (Ng,n)

3. Finite presentation for (Ng,n)
In this section, we review Stukow’s finite presentation for (Ng,n) when n ∈ {0, 1} and

give a finite presentation for (Ng,n) when n ≥ 2. We use their finite presentations for
(Ng,n) in the proof of the main theorem in Section 4.

Let ei : D′ ↪→ intΣ0,1 for i = 1, 2, . . . , g + n − 1 be smooth embeddings of the unit disk
D′ ⊂ C to a disk Σ0,1 such that Di := ei(D′) and Dj are disjoint for distinct 1 ≤ i, j ≤ g+n−1.
For n ≥ 1, we take a model of Ng,n as the surface obtained from Σ0,1−(intDg+1�· · ·�intDn−1)
by the blowups on D1, . . . ,Dg and we describe the identification of ∂Di by the x-mark as in
Figures 4. We denote by δ1, . . . , δn−1 and δ boundary components of Ng,n as in Figure 4
which are obtained from ∂Dg+1, . . . , ∂Dg+n−1 and ∂Σ0,1, respectively. Let α1, . . . , αg−1, β

and μ1 be simple closed curves on Ng,n as in Figure 4 and let αi; j for 1 ≤ i ≤ g − 1 and
1 ≤ j ≤ n − 1, ρi; j for 1 ≤ i ≤ g and 1 ≤ j ≤ n − 1 and σi, j, σ̄i, j for 1 ≤ i < j ≤ n − 1 be
simple closed curves on Ng,n as in Figure 5. We give orientations of regular neighborhoods
of their simple closed curves as in Figure 4 and 5. Then we define the mapping classes

ai := tαi for 1 ≤ i ≤ g − 1,

b := tβ,

y := Yμ1,α1 ,

di := tδi for 1 ≤ i ≤ n − 1,

ai; j := tαi; j for 1 ≤ i ≤ g − 1 and 1 ≤ j ≤ n − 1,

ri; j := tρi; j for 1 ≤ i ≤ g and 1 ≤ j ≤ n − 1,

si, j := tσi, j for 1 ≤ i < j ≤ n − 1,

s̄i, j := tσ̄i, j for 1 ≤ i < j ≤ n − 1,

s̄ j,k;i := {(a1;ka−1
1 )−1r2;k · · · (ai−1;ka−1

i−1)−1ri;k}−1 s̄ j,k

{(a1;ka−1
1 )−1r2;k · · · (ai−1;ka−1

i−1)−1ri;k}
for 2 ≤ i ≤ g and 1 ≤ j < k ≤ n − 1.

Remark that, for 2 ≤ i ≤ g and 1 ≤ j < k ≤ n − 1, s̄ j,k;i is the Dehn twist along the simple
closed curve σ̄ j,k;i on Ng,n as in Figure 6.

Fig.4. A model of Ng,n and simple closed curves α1, . . . , αg−1, β and μ1 on Ng,n.
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Fig.5. The simple closed curves αi; j, ρi; j, σi, j and σ̄i, j on Ng,n.

Fig.6. The simple closed curve σ̄ j,k;i on Ng,n.

Epstein [3] show that (N1,1) is trivial. For a group G and g1, g2 ∈ G, we define [g1, g2] =
g1g2g

−1
1 g−1

2 . Stukow gave the following finite presentation for (Ng,1) when g = 2 in [18],
and when g ≥ 3 in [20] by rewriting the finite presentation in [17].

Theorem 3.1 ([3], [18], [20]). (N1,1) is the trivial group. (N2,1) has the presentation

(N2,1) =
〈
a1, y | ya1y

−1 = a−1
1
〉
.

If g ≥ 3, then (Ng,1) admits a presentation with generators a1, . . . , ag−1, y, and b for
g ≥ 4. The defining relations are

(A1) [ai, a j] = 1 for g ≥ 4, |i − j| > 1,
(A2) aiai+1ai = ai+1aiai+1 for i = 1, . . . , g − 2,
(A3) [ai, b] = 1 for g ≥ 4, i � 4,
(A4) a4ba4 = ba4b for g ≥ 5,
(A5) (a2a3a4b)10 = (a1a2a3a4b)6 for g ≥ 5,
(A6) (a2a3a4a5a6b)12 = (a1a2a3a4a5a6b)9 for g ≥ 7,

(A9a) [b2, b] = 1 for g = 6,
(A9b) [ag−5, b g−2

2
] = 1 for g ≥ 8 even,

where b0 = a1, b1 = b and
bi+1 = (bi−1a2ia2i+1a2i+2a2i+3bi)5(bi−1a2ia2i+1a2i+2a2i+3)−6

for 1 ≤ i ≤ g−4
2 ,

(B1) y(a2a3a1a2ya−1
2 a−1

1 a−1
3 a−1

2 ) = (a2a3a1a2ya−1
2 a−1

1 a−1
3 a−1

2 )y for g ≥ 4,
(B2) y(a2a1y

−1a−1
2 ya1a2)y = a1(a2a1y

−1a−1
2 ya1a2)a1,

(B3) [ai, y] = 1 for g ≥ 4, i = 3, . . . , g − 1,
(B4) a2(ya2y

−1) = (ya2y
−1)a2,

(B5) ya1 = a−1
1 y,
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(B6) byby−1 = {a1a2a3(y−1a2y)a−1
3 a−1

2 a−1
1 }{a−1

2 a−1
3 (ya2y

−1)a3a2} for g ≥ 4,
(B7) [(a4a5a3a4a2a3a1a2ya−1

2 a−1
1 a−1

3 a−1
2 a−1

4 a−1
3 a−1

5 a−1
4 ), b] = 1 for g ≥ 6,

(B8) {(ya−1
1 a−1

2 a−1
3 a−1

4 )b(a4a3a2a1y
−1)}{(a−1

1 a−1
2 a−1

3 a−1
4 )b−1(a4a3a2a1)}

= {(a−1
4 a−1

3 a−1
2 )y(a2a3a4)}{a−1

3 a−1
2 y−1a2a3}{a−1

2 ya2}y−1 for g ≥ 5.

For n ≥ 2, we have the following finite presentation for (Ng,n) and give a proof in
Section 5.4.

Proposition 3.2. For g ≥ 1 and n ≥ 2, (Ng,n) has the presentation which is ob-
tained from the finite presentation for (Ng,1) in Theorem 3.1 by adding generators di

(i = 1, . . . , n − 1), ai; j (1 ≤ i ≤ g − 1, 1 ≤ j ≤ n − 1), ri, j (1 ≤ i ≤ g, 1 ≤ j ≤ n − 1), si, j

(1 ≤ i < j ≤ n − 1), and s̄i, j (1 ≤ i < j ≤ n − 1), the relations

(D0) [d j, ai] = [d j, y] = [d j, b] = [d j, dl] = [d j, ai;k] = [d j, ri′;k] = [d j, sl,t] = [d j, s̄l,t] = 1
for 1 ≤ i ≤ g − 1, 1 ≤ i′ ≤ g − 1, 1 ≤ j, k ≤ n − 1, and 1 ≤ l < t ≤ n − 1, and the following
relations for 1 ≤ j, k ≤ n − 1, 1 ≤ l, t < k, and any possible 1 ≤ i,m ≤ g:

(D1a) am(ai;ka−1
i )a−1

m =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(ai;ka−1

i )(ai−1;ka−1
i−1) for m = i − 1,

(ai+1;ka−1
i+1)−1(ai;ka−1

i ) for m = i + 1,
ai;ka−1

i for m � i − 1, i + 1,

(D1b) y(ai;ka−1
i )y−1 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(a1;ka−1

1 )−1r2;kr1;kd−2
n−1 for i = 1,

(a2;ka−1
2 )r1;kd−1

k for i = 2,
ai;ka−1

i for i ≥ 3,
(D1c) b(ai;ka−1

i )b−1 =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{(a3;ka−1
3 )(a1;ka−1

1 )}−1(a1;ka−1
1 ){(a3;ka−1

3 )(a1;ka−1
1 )} for i = 1,

{(a3;ka−1
3 )(a1;ka−1

1 )}−1(a2;ka−1
2 ){(a3;ka−1

3 )(a1;ka−1
1 )} for i = 2,

(a1;ka−1
1 )−1(a3;ka−1

3 )(a1;ka−1
1 ) for i = 3,

(a4;ka−1
4 )(a3;ka−1

3 )(a1;ka−1
1 )d−1

k for i = 4,
ai;ka−1

i for i ≥ 5,
(D1d) am;l(ai;ka−1

i )a−1
m;l =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[(sl,kd−1
l )−1, (am;ka−1

m )−1]−1(ai;ka−1
i )[(sl,kd−1

l )−1, (am;ka−1
m )−1]

for m ≤ i − 2,
[(ai−1;ka−1

i−1)−1, (sl,kd−1
l )−1](ai;ka−1

i )(sl,kd−1
l )(ai−1;ka−1

i−1)d−1
k

for m = i − 1,
{(sl,kd−1

l )(ai;ka−1
i )}−1(ai;ka−1

i ){(sl,kd−1
l )(ai;ka−1

i )} for m = i,
(ai+1;ka−1

i+1)−1(sl,kd−1
l )−1(ai;ka−1

i )dk for m = i + 1,
ai;ka−1

i for m ≥ i + 2,
(D1e) rm;l(ai;ka−1

i )r−1
m;l =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[(sl,kd−1
l )−1, r−1

m;k]−1(ai;ka−1
i )[(sl,kd−1

l )−1, r−1
m;k] for m ≤ i − 1,

{r−1
i;k (sl,kd−1

l )−1ri;k}(sl,kd−1
l )(ai;ka−1

i )
(s̄l,k;id−1

l )−1{r−1
i;k (sl,kd−1

l )−1ri;k}−1d−2
k for m = i,

r−1
i+1;k(sl,kd−1

l )−1ri+1;k(s̄l,k;i+1d−1
l )(ai;ka−1

i )d2
k for m = i + 1,

ai;ka−1
i for m ≥ i + 2,

(D1f) sl,t(ai;ka−1
i )s−1

l,t = ai;ka−1
i ,

(D1g) s̄l,t(ai;ka−1
i )s̄−1

l,t =
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[(s̄l,kd−1

l )−1, st,kd−1
t ]−1(sl,kd−1

l )(a1;ka−1
1 )r1;k(s̄t,kd−1

t )r−1
1;k

(sl,kd−1
l )−1r1;k(s̄t,kd−1

t )−1r−1
1;k[(s̄l,kd−1

l )−1, (st,kd−1
t )] for i = 1,

{[s̄l,kd−1
l , (st,kd−1

t )−1][sl,kd−1
l , r1;k(s̄t,kd−1

t )−1r−1
1;k]}(ai;ka−1

i )
{[s̄l,kd−1

l , (st,kd−1
t )−1][sl,kd−1

l , r1;k(s̄t,kd−1
t )−1r−1

1;k]}−1 for i ≥ 2,

(D2a) amri;ka−1
m =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
ri;kri−1;k(ai−1;ka−1

i−1)−1ri;k(ai−1;ka−1
i−1)dk

for m = i − 1,
(ai;ka−1

i )−1r−1
i+1;k(ai;ka−1

i ) for m = i,
ri;k for m � i − 1, i,

(D2b) yri;ky
−1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
{(a1;ka−1

1 )−1r2;kr1;k}−1r−1
1;k{(a1;ka−1

1 )−1r2;kr1;k}
for i = 1,
(a1;ka−1

1 )r1;k(a1;ka−1
1 )−1r2;kr1;kdn−1 for i = 2,

ri;k for i ≥ 3,

(D2c) bri;kb−1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a1;ka−1
1 )−1(a3;ka−1

3 )−1(a2;ka−1
2 )−1

r−1
4;k(a3;ka−1

3 )r−1
3;k(a2;ka−1

2 )r−1
2;k(a1;ka−1

1 ) for i = 1,
{(a3;ka−1

3 )(a1;ka−1
1 )}−1(a1;ka−1

1 )(a3;ka−1
3 )r2;k

r1;k(a1;ka−1
1 )−1r2;k(a2;ka−1

2 )−1r3;k(a3;ka−1
3 )−1

r4;k(a2;ka−1
2 ){(a3;ka−1

3 )(a1;ka−1
1 )} for i = 2,

{(a3;ka−1
3 )(a1;ka−1

1 )}−1r−1
4;k

(a3;ka−1
3 )r−1

3;k(a2;ka−1
2 )r−1

2;k(a1;ka−1
1 )r−1

1;k
(a2;ka−1

2 )−1r3;k

(a3;ka−1
3 )−1(a1;ka−1

1 )−1{(a3;ka−1
3 )(a1;ka−1

1 )} for i = 3,
r4;k(a2;ka−1

2 )
r1;k(a1;ka−1

1 )−1r2;k(a2;ka−1
2 )−1r3;k(a3;ka−1

3 )−1

r4;k(a3;ka−1
3 )(a1;ka−1

1 ) for i = 4,
ri;k for i ≥ 5,

(D2d) am;lri;ka−1
m;l =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[(sl,kd−1
l )−1, (am;ka−1

m )−1]−1ri;k[(sl,kd−1
l )−1, (am;ka−1

m )−1]
for m ≤ i − 2,
{(sl,kd−1

l )(ai−1;ka−1
i−1)}−1(ai−1;ka−1

i−1)(sl,kd−1
l )ri;k

ri−1;k(ai−1;ka−1
i−1)−1ri;k(s̄l,k;id−1

l ){(sl,kd−1
l )(ai−1;ka−1

i−1)}
for m = i − 1,
(ai;ka−1

i )−1(sl,kd−1
l )−1r−1

i+1;k(ai;ka−1
i )(s̄l,k;id−1

l )−1 for m = i,
ri;k for m ≥ i + 1,

(D2e) rm;lri;kr−1
m;l =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
[(sl,kd−1

l )−1, r−1
m;k]−1ri;k[(sl,kd−1

l )−1, r−1
m;k]

for m ≤ i − 1,
{(sl,kd−1

l )ri;k}−1ri;k{(sl,kd−1
l )ri;k} for m = i,

ri;k for m ≥ i + 1,
(D2f) sl,tri;k s−1

l,t = ri;k,
(D2g) s̄l,tri;k s̄−1

l,t =⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
[st,kd−1

t , (s̄l,kd−1
l )−1][r1;k(s̄t,kd−1

t )r−1
1;k, (sl,kd−1

l )−1]r1;k for i = 1,
{[s̄l,kd−1

l , (st,kd−1
t )−1][sl,kd−1

l , r1;k(s̄t,kd−1
t )−1r−1

1;k]}−1r1;k

{[s̄l,kd−1
l , (st,kd−1

t )−1][sl,kd−1
l , r1;k(s̄t,kd−1

t )−1r−1
1;k]} for i ≥ 2,

(D3a) am(s j,kd−1
j )a−1

m = s j,kd−1
j ,
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(D3b) y(s j,kd−1
j )y−1 = s j,kd−1

j ,
(D3c) b(s j,kd−1

j )b−1 = s j,kd−1
j ,

(D3d) am;l(s j,kd−1
j )a−1

m;l =⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
[(sl,kd−1

l )−1, (am;ka−1
m )−1]−1(s j,kd−1

j )[(sl,kd−1
l )−1, (am;ka−1

m )−1]
for l > j,
(am;ka−1

m )−1(s j,kd−1
j )(am;ka−1

m ) for l = j,
s j,kd−1

j for l = j,
(D3e) rm;l(s j,kd−1

j )r−1
m;l =⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[(sl,kd−1
l )−1, r−1

m;k]−1(s j,kd−1
j )[(sl,kd−1

l )−1, r−1
m;k] for l > j,

r−1
m;k(s j,kd−1

j )rm;k for l = j,
s j,kd−1

j for l < j,
(D3f) sl,t(s j,kd−1

j )s−1
l,t =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{(st,kd−1
t )(s j,kd−1

j )}−1(s j,kd−1
j ){(st,kd−1

t )(s j,kd−1
j )} for l = j,

[(st,kd−1
t )−1, (sl,kd−1

l )−1]−1(s j,kd−1
j )[(st,kd−1

t )−1, (sl,kd−1
l )−1]

for l < j < t,
(sl,kd−1

l )−1(s j,kd−1
j )(sl,kd−1

l ) for t = j,
s j,kd−1

j for the other cases,
(D3g) s̄l,t(s j,kd−1

j )s̄−1
l,t =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{[s̄l,kd−1
l , (st,kd−1

t )−1][sl,kd−1
l , r1;k(s̄t,kd−1

t )−1r−1
1;k]}−1(s j,kd−1

j )
{[s̄l,kd−1

l , (st,kd−1
t )−1][sl,kd−1

l , r1;k(s̄t,kd−1
t )−1r−1

1;k]} for l > j,
{[s̄ j,kd−1

j , (st,kd−1
t )−1](s j,kd−1

j )r1;k(s̄t,kd−1
t )−1r−1

1;k}−1(s j,kd−1
j )

{[s̄ j,kd−1
j , (st,kd−1

t )−1](s j,kd−1
j )r1;k(s̄t,kd−1

t )−1r−1
1;k} for l = j,

[(s̄l,kd−1
l )−1, st,kd−1

t ]−1(s j,kd−1
j )[(s̄l,kd−1

l )−1, st,kd−1
t ] for l < j < t,

{(s̄l,kd−1
l )(s j,kd−1

j )−1}−1(s j,kd−1
j ){(s̄l,kd−1

l )(s j,kd−1
j )−1} for t = j,

s j,kd−1
j for t < j,

(D4a) am(s̄ j,kd−1
j )a−1

m =⎧⎪⎪⎨⎪⎪⎩ {r
−1
1;kr−1

2;k(a1;ka−1
1 )}−1(s̄ j,kd−1

j ){r−1
1;kr−1

2;k(a1;ka−1
1 )} for m = 1,

s̄ j,kd−1
j for m ≥ 2,

(D4b) y(s̄ j,kd−1
j )y−1 = {r−1

1;k(a1;ka−1
1 )−2r2;kr1;k}−1(s̄ j,kd−1

j ){r−1
1;k(a1;ka−1

1 )−2r2;kr1;k},
(D4c) b(s̄ j,kd−1

j )b−1 =

{r−1
1;k(a2;ka−1

2 )−1r−1
4;k(a3;ka−1

3 )r−1
3;k(a2;ka−1

2 )r−1
2;k(a1;ka−1

1 )}−1(s̄ j,kd−1
j )

{r−1
1;k(a2;ka−1

2 )−1r−1
4;k(a3;ka−1

3 )r−1
3;k(a2;ka−1

2 )r−1
2;k(a1;ka−1

1 )},
(D4d) am;l(s̄ j,kd−1

j )a−1
m;l =
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{r−1
1;kr−1

2;k(a1;ka−1
1 )(s̄l,kd−1

l )−1}−1(s̄ j,kd−1
j ){r−1

1;kr−1
2;k(a1;ka−1

1 )(s̄l,kd−1
l )−1}

for m = 1, l < j,
{(s̄l,kd−1

l )−1r−1
1;kr−1

2;k(a1;ka−1
1 )}−1(s̄ j,kd−1

j ){(s̄l,kd−1
l )−1r−1

1;kr−1
2;k(a1;ka−1

1 )}
for m = 1, l > j,
{(am−1;ka−1

m−1)rm−1;k · · · (a2;ka−1
2 )r−1

2;k(a1;ka−1
1 )}−1(s̄ j,k;m+1d−1

j )
{(am−1;ka−1

m−1)rm−1;k · · · (a2;ka−1
2 )r−1

2;k(a1;ka−1
1 )} for m ≥ 2, l = j,

{(am−1;ka−1
m−1)rm−1;k · · · (a2;ka−1

2 )r−1
2;k(a1;ka−1

1 )}−1

{(s̄l,k;md−1
l )−1r−1

m;k(s̄l,k;m+1d−1
l )}−1(s̄ j,k;md−1

j )
{(s̄l,k;md−1

l )−1r−1
m;k(s̄l,k;m+1d−1

l )}
{(am−1;ka−1

m−1)rm−1;k · · · (a2;ka−1
2 )r−1

2;k(a1;ka−1
1 )} for m ≥ 2, l > j,

s̄ j,kd−1
j for the other cases,

(D4e) rm;l(s̄ j,kd−1
j )r−1

m;l =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{r−1
1;k(s̄l,kd−1

l )−1(sl,kd−1
l )r1;k}−1(s̄ j,kd−1

j )
{r−1

1;k(s̄l,kd−1
l )−1(sl,kd−1

l )r1;k} for m = 1, l < j,
{(s j,kd−1

j )r1;k}−1(s̄ j,kd−1
j ){(s j,kd−1

j )r1;k} for m = 1, l = j,
{(s̄l,kd−1

l )−1r−1
1;k(sl,kd−1

l )r1;k}−1(s̄ j,kd j)−1

{(s̄l,kd−1
l )−1r−1

1;k(sl,kd−1
l )r1;k} for m = 1, l > j,

{(am−1;ka−1
m−1)rm−1;k · · · (a2;ka−1

2 )r−1
2;k(a1;ka−1

1 )}−1

(s̄ j,k;md−1
j )

{(am−1;ka−1
m−1)rm−1;k · · · (a2;ka−1

2 )r−1
2;k(a1;ka−1

1 )} for m ≥ 2, l = j,
{(am−1;ka−1

m−1)rm−1;k · · · (a2;ka−1
2 )r−1

2;k(a1;ka−1
1 )}−1

{(s̄l,k;md−1
l )−1r−1

m;k(s̄l,k;md−1
l )}−1

(s̄ j,k;md−1
j )

{(s̄l,k;md−1
l )−1r−1

m;k(s̄l,k;md−1
l )}

{(am−1;ka−1
m−1)rm−1;k · · · (a2;ka−1

2 )r−1
2;k(a1;ka−1

1 )} for m ≥ 2, l > j,
s̄ j,kd−1

j for m ≥ 2, l < j,
(D4f) sl,t(s̄ j,kd−1

j )s−1
l,t =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(s̄l,kd−1
l )−1(s̄ j,kd−1

j )(s̄l,kd−1
l ) for t = j,

[(s̄t,kd−1
t )−1, (s̄l,kd−1

l )−1]−1(s̄ j,kd−1
j )

[(s̄t,kd−1
t )−1, (s̄l,kd−1

l )−1] for l < j < t,
{(s̄t,kd−1

t )(s̄ j,kd−1
j )}−1(s̄ j,kd−1

j ){(s̄t,kd−1
t )(s̄ j,kd−1

j )} for l = j,
s̄ j,kd−1

j for the other cases,
(D4g) s̄l,t(s̄ j,kd−1

j )s̄−1
l,t =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[(s̄t,kd−1
t ), r−1

1;k(sl,kd−1
l )−1r1;k]−1(s̄ j,kd−1

j )
[(s̄t,kd−1

t ), r−1
1;k(sl,kd−1

l )−1r1;k] for t < j,
{r−1

1;k(sl,kd−1
l )−1r1;k}(s̄ j,kd−1

j ){r−1
1;k(sl,kd−1

l )−1r1;k}−1 for t = j,
(st,kd−1

t )(s̄ j,kd−1
j )(st,kd−1

t )−1 for l = j,
[(s̄l,kd−1

l )−1, (st,kd−1
t )]−1(s̄ j,kd−1

j )[(s̄l,kd−1
l )−1, (st,kd−1

t )] for l > j,
s̄ j,kd−1

j for l < j < t.

4. Infinite presentation for (Ng,n)

4. Infinite presentation for (Ng,n)
The main theorem in this paper is as follows:
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Theorem 4.1. For g ≥ 1 and n ≥ 0, (Ng,n) has the following presentation:
generators: {tc;+c , tc;−c | c : two-sided s.c.c. on Ng,n}

∪{Yμ,α | μ : one-sided s.c.c. on Ng,n, α : s.c.c. on Ng,n, |μ ∩ α| = 1}.
Denote the generating set by X.

relations:

(0) (i) tc;θc = 1 when θc ∈ {+c,−c} and c bounds a disk or a Möbius band in Ng,n,
(ii) tc;+c = tc−1;+c = t−1

c;−c
,

(iii) Yμ,α = Y−1
μ,α−1 = Yμ−1,α,

(I) All the braid relations

{
(i) f tc;θ f −1 = t f (c); f∗(θ) for f ∈ X,
(ii) f Yμ,α f −1 = Yf (μ), f (α) for f ∈ X,

(II) All the 2-chain relations,
(III) All the lantern relations,
(IV) All the relations in Lemma 2.9, i.e. Yμ,αβ = Yμ,αYμ,β,
(V) All the relations in Lemma 2.8, i.e. Yμ,α = tδ1;θ1 t

−1
δ2;θ2

for one-sided α.

The second author [16] proved Theorem 4.1 when g ≥ 1 and n ∈ {0, 1}. The presentation
in Theorem 3.1 of [16] is different from the presentation in Theorem 4.1 since we do not
distinguish tc;+c , tc−1;+c and t−1

c;−c
, and also do not distinguish Yμ,α, Y−1

μ,α−1 and Yμ−1,α in [16].
However, these presentation are equivalent by Relation (0)(ii) and (0)(iii). In fact, we can
apply the proof of Theorem 3.1 in [16] to the presentation in Theorem 4.1. In (I) and (IV)
one can substitute the right hand side of (V) for each generator Yμ,α with one-sided α. Then
one can remove the generators Yμ,α with one-sided α and relations (V) from the presentation.

We denote by G the group which has the presentation in Theorem 4.1 throughout this
section. Set X± := X ∪ {x−1 | x ∈ X}, where X is the generating set in Theorem 4.1. By
Relation (I) in Theorem 4.1, we have the following lemma.

Lemma 4.2. For f ∈ G, suppose that f = f1 f2 . . . fk, where f1, f2, . . . , fk ∈ X±. Then we
have {

(i) f tc;θ f −1 = t f (c); f∗(θ),

(ii) f Yμ,α f −1 = Yf (μ), f (α).

The next lemma follows from an argument of the combinatorial group theory (for in-
stance, see [10, Lemma 4.2.1, p42]).

Lemma 4.3. For groups Γ, Γ′ and F, a surjective homomorphism π : F → Γ and a
homomorphism ν : F → Γ′, we define a map ν′ : Γ → Γ′ by ν′(x) := ν(x̃) for x ∈ Γ, where
x̃ ∈ F is a lift of x with respect to π (see the diagram below).

Then if ker π ⊂ ker ν, ν′ is well-defined and a homomorphism.

We start the proof of Theorem 4.1. When n ∈ {0, 1}, we proved Theorem 4.1 in [16].
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Assume g ≥ 1 and n ≥ 2. Then we obtain Theorem 4.1 if (Ng,n) is isomorphic to G. Let
ϕ : G → (Ng,n) be the surjective homomorphism defined by ϕ(tc;+c) := tc;+c , ϕ(tc;−c) :=
tc;−c and ϕ(Yμ,α) := Yμ,α.

Denote by X0 ⊂ (Ng,n) the generating set of the finite presentation for (Ng,n) in
Proposition 3.2. Let F(X0) be the free group which is freely generated by X0 and let π :
F(X0) →(Ng,n) be the natural projection. We define the homomorphism ν : F(X0) → G
by ν(ai) := ai, ν(b) := b, ν(y) := y, ν(ai; j) := ai; j, ν(ri; j) := ri; j, ν(si, j) := si, j and ν(s̄i, j) := s̄i, j,
and a map ψ = ν′ : (Ng,n) → G by ψ(a±1

i ) := a±1
i , ψ(b±1) := b±1, ψ(y±1) := y±1,

ψ(a±1
i; j ) := a±1

i; j , ψ(r±1
i; j ) := r±1

i; j , ψ(s±1
i, j ) := s±1

i, j , ψ(s̄±1
i, j ) := s̄±1

i, j and ψ( f ) := ν( f̃ ) for the other

f ∈(Ng,n), where f̃ ∈ F(X0) is a lift of f with respect to π (see the diagram below).

If ψ is a homomorphism, ϕ◦ψ = id(Ng,n) by the definition of ϕ and ψ. Thus it is sufficient
to show that ψ is a homomorphism and surjective for proving that ψ is isomorphism.

4.1. Proof that ψ is a homomorphism.
4.1. Proof that ψ is a homomorphism. By Lemma 4.3, if the relations of the presenta-

tion in Proposition 3.2 are obtained from Relations (0), (I), (II), (III), (IV) and (V) in Theo-
rem 4.1, then ψ is well-defined and a homomorphism.

Let N be the subsurface of Ng,n as in Figure 7. N is diffeomorphic to Ng,1 and includes
simple closed curves α1, . . . , αg−1, μ1 and β. We regard (N) as a subgroup of (Ng,n).
Relations (A1), . . . , (A9b) and (B1), . . . , (B8) of the presentation for (Ng,n) in Proposi-
tion 3.2 are relations of (N) � (Ng,1). By Theorem 3.1 in [16], Relations (A1), . . . ,
(A9b) and (B1), . . . , (B8) are obtained from Relations (0), (I), (II), (III), (IV) and (V).

By Proposition 5.13 in Section 5.5, we show that Relations (D0), (D1a)-(D4g) in Propo-
sition 3.2 are obtained from Relations (I) and (III) in Theorem 4.1. We have proved that ψ is
a homomorphism.

Fig.7. The subsurface N of Ng,n which is diffeomorphic to Ng,1.

4.2. Surjectivity of ψ.
4.2. Surjectivity of ψ. For some convenience, we write tc;+c = tc in this subsection. We

show that there exist the inverse images of tc’s and Yμ,α’s with respect to ψ for cases below,
to prove the surjectivity of ψ.

(1) tc; c is non-separating and Ng,n − c is non-orientable,
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(2) tc; c is non-separating and Ng,n − c is orientable,
(3) tc; c is separating,
(4) Yμ,α; α is two-sided and Ng,n − α is non-orientable,
(5) Yμ,α; α is two-sided and Ng,n − α is orientable,
(6) Yμ,α; α is one-sided.

Set X±0 := X0 ∪ {x−1 | x ∈ X0}, where X0 is the generating set in Proposition 3.2. For a
simple closed curve c on Ng,n, we denote by (Ng,n)c the surface obtained from Ng,n by cutting
Ng,n along c and denote by Σ the component of (Ng,n)c which does not include δ.

Simple closed curves c, μ, and α for generators of type (1), (2), (4), (5), and (6) are
mapped in N by a product of elements in X±0 using Relations (I) in Theorem 4.1 since X±0 is
a generating set of (Ng,n). Hence, by similar arguments in Section 3.2 of [16] for the case
of Ng,1, there exist their inverse images with respect to ψ. We note that we use the existence
for the inverse images of generators of type (3) for the proof of the existence for the inverse
images of generators of type (6).

Case (3) where Σ is diffeomorphic to Σ0,m+1 for m ≥ 0. We proceed by induction on
m ≥ 0. When m = 0, tc is trivial by Relation (0) in Theorem 4.1. When m = 1, c = δε

′
i for

some 1 ≤ i ≤ n − 1 and ε′ ∈ {−1, 1}. Hence di is the inverse image of tc.
When m = 2, there exists a product f = f1 f2 · · · fk ∈ (Ng,n) of f1, f2, · · · , fk ∈ X±0

which satisfies either c = f (σε
′

i, j) or c = f (σ̄ε
′

i, j) for some 1 ≤ i < j ≤ n − 1 and ε′ ∈ {−1, 1},
where σi, j and σ̄i, j are simple closed curves on Ng,n as in Figure 5. Thus, if c = f (σε

′
i, j), we

have

ψ( f si, j f −1) = f1 f2 · · · fk si, j f −1
k · · · f −1

2 f −1
1

Lem. 4.2
= tεf (σi, j) = tεc ,

where ε is 1 or −1. Thus f sεi, j f −1 ∈(Ng,n) is the inverse image of tc ∈ G with respect to
ψ for some ε ∈ {−1, 1}. By a similar argument, when c = f (σ̄ε

′
i, j), f s̄εi, j f −1 ∈(Ng,n) is also

the inverse image of tc ∈ G with respect to ψ for some ε ∈ {−1, 1}.
For m ≥ 3, there exists a simple closed curve c′ on Σ such that c′ separates Σ into Σ′

and Σ′′ which are diffeomorphic to Σ0,4 and Σ0,m−1, respectively, and c ⊂ Σ′. By using a
lantern relation on Σ′, there exist simple closed curves c1 = c′, c2, . . . , c6 on Σ′ such that
tc = tε1

c1 tε2
c2 · · · tε6

c6 ∈ G for some ε1, ε2, . . . , ε6 ∈ {−1, 1}. Since each ci (i = 1, 2, . . . , 6)
bounds a subsurface of Ng,n which does not include c and is diffeomorphic to Σ0,mi+1 for some
mi < m, by the inductive assumption, there exist the inverse images h1, . . . , h6 ∈(Ng,n) of
tc1 , . . . , tc6 ∈ G with respect to ψ, respectively. Thus hε1

1 hε2
2 · · · hε6

6 ∈ (Ng,n) is the inverse
image of tc with respect to ψ.

Case (3) where Σ is diffeomorphic to Σh,m+1 for h ≥ 1 m ≥ 0. In this case, there exists a
simple closed curve c′ on Σ such that c′ separates Σ into Σ′ and Σ′′ which are diffeomorphic
to Σh,2 and Σ0,m+1, respectively. Then there exists a 2h + 1-chain c1, c2, . . . , c2h+1 on Σ′ such
that Ng,n(c1∪c2∪· · ·∪c2h+1) = Σ′. By the chain relation, we have (tε1

c1 tε2
c2 · · · tε2h+1

c2h+1 )2h+2 = tctε
′

c′

for some ε1, ε2, . . . , ε2h+1, ε
′ ∈ {−1, 1}. Then we show that the relation (tε1

c1 tε2
c2 · · · tε2h+1

c2h+1 )2h+2 =

tctε
′

c′ holds in G as follows: let ι : Σ ↪→ Ng,n be the inclusion and let G′ be the group
whose presentation has all Dehn twists along simple closed curves on Σ as generators and
Relations (0′), (I′), (II), and (III) in Theorem 2.5. By Theorem 2.5, (Σ) is isomorphic
to G′, and we have the homomorphism G′ → G defined by the correspondence of tc;+c to
tι(c);ι∗(+c). Since the Dehn twists appeared in the 2h + 1-chain relation (tε1

c1 tε2
c2 · · · tε2h+1

c2h+1 )2h+2 =
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tctε
′

c′ are supported on the oriented subsurface Σ of Ng,n, we regard the 2h + 1-chain relation
as a relation of (Σ). Thus, by the composition ι∗ : (Σh,m) → G of the isomorphism
(Σh,m) → G′ and the homomorphism G′ → G, the relation (tε1

c1 tε2
c2 · · · tε2h+1

c2h+1 )2h+2 = tctε
′

c′

holds in G.
Since tc1 , tc2 , . . . , tc2h+1 are Dehn twists of type (1) and c′ bounds Σ′′, the elements tc1 , tc2 ,

. . . , tc2h+1 , tc′ ∈ G have the inverse images h1, h2, . . . , h2h+1, h′ ∈(Ng,n) with respect to ψ,
respectively. Then we have

ψ((hε1
1 hε2

2 . . . hε2h+1
2h+1)2h+2(h′)−ε

′
) = (tε1

c1
tε2
c2
· · · tε2h+1

c2h+1
)2h+2t−ε

′
c′ = tc.

Thus ((hε1
1 hε2

2 . . . hε2h+1
2h+1)2h+2(h′)−ε′ ∈ (Ng,n) is the inverse image of tc ∈ G with respect to

ψ.
Case (3) where Σ is diffeomorphic to Nh,m+1 for h ≥ 1 m ≥ 0. We proceed by induction

on m ≥ 0. When m = 0, by similar arguments in Section 3.2 in [16], there exists an inverse
image of tc ∈ G with respect to ψ.

When m = 1, we proceed by induction on h ≥ 1. When h = 1, there exists a product
f = f1 f2 · · · fk ∈(Ng,n) of f1, f2, · · · , fk ∈ X±0 such that c = f (ρε

′
1; j) for some 1 ≤ j ≤ n− 1

and ε′ ∈ {−1, 1}. By a similar argument in the case where Σ is diffeomorphic to Σ0,m+1, we
can obtain the inverse image of tc with respect to ψ. Suppose h ≥ 2. Then there exist simple
closed curves c1 and c2 on Σ such that c1 � c2 separates Σ into Σ′, Σ′′ and Σ′′′ which are
diffeomorphic to Σ0,4, N1,1 and Nh−1,1, respectively, and c ⊂ Σ′. By using a lantern relation
on Σ′, there exist simple closed curves c3, . . . , c6 on Σ′ such that tc = tε1

c1 tε2
c2 tε3

c3 · · · tε6
c6 ∈ G for

some ε1, ε2, ε3, . . . , ε6 ∈ {−1, 1}. Since each ci (i = 1, . . . , 6) is a boundary component of a
subsurface of Σwhich is diffeomorphic to an orientable surface, Nhi,1 for some hi ≤ h or Nhi,2

for some hi < h, by the inductive assumption, there exis inverse images h1, . . . , h6 ∈(Ng,n)
of tc1 , . . . , tc6 ∈ G with respect to ψ, respectively. Thus hε1

1 hε2
2 · · · hε6

6 ∈(Ng,n) is the inverse
image of tc with respect to ψ.

Suppose m ≥ 2. Then there exist simple closed curves c1 and c2 on Σ such that c1 � c2

separates Σ into Σ′, Σ′′ and Σ′′′ which are diffeomorphic to Σ0,4, Σ0,m and Nh,1, respectively,
and c ⊂ Σ′. By using a lantern relation on Σ′, there exist simple closed curves c3, . . . , c6

on Σ′ such that tc = tε1
c1 tε2

c2 tε3
c3 · · · tε6

c6 ∈ G for some ε1, ε2, ε3, . . . , ε6 ∈ {−1, 1}. Since each
ci (i = 1, . . . , 6) is a boundary component of a subsurface of Σ which is diffeomorphic to
an orientable surface or Nh,mi+1 for some mi < m, by the inductive assumption, there exist
inverse images h1, . . . , h6 ∈(Ng,n) of tc1 , . . . , tc6 ∈ G with respect to ψ, respectively. Thus
hε1

1 hε2
2 · · · hε6

6 ∈(Ng,n) is the inverse image of tc with respect to ψ.
We have completed the proof of Theorem 4.1.

5. Proof of Proposition 3.2 and preliminaries for the proof

5. Proof of Proposition 3.2 and preliminaries for the proof
In this section, we give a proof of Proposition 3.2 which is used in the proof of The-

orem 4.1. The proof is given in Section 5.4 and 5.5. For giving the proof, we prepare
Section 5.1, 5.2, and 5.3.

5.1. Extended lantern relations.
5.1. Extended lantern relations. Let S be a connected compact surface and let D be

a disk on intS with the center point x0. Then we have the point pushing map (defined in
Section 2.2) jx0 : π1(S, x0)→(S, x0). We take an orientation θ∂D ∈ {+∂D,−∂D} of S(∂D).
For a two-sided simple loop γ on S based at x0, we take the orientation θγ ∈ {+γ,−γ} of
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S(γ) which is induced by θ∂D. Denote by c1 (resp. c2) the boundary component of S(γ)
on the right (resp. left) side of γ with respect to θγ, and by θi ∈ {+ci ,−ci} (i = 1, 2) the
orientation of S(ci) which is induced by θγ. We regard γ as an element of π1(S, x0). Then
we have a well-known relation

jx0 (γ) = tc1;θ1 t
−1
c2;θ2

.

Let + = +(S, x0) be the subset of π1(S, x0) which consists of elements represented by
two-sided simple loops. Then we define a map

Δ = Δx0 : + →(S − intD)

as follows. For any two-sided simple loop γ on S based at x0, we take S(γ) whose interior
contains D. Then we take c1, c2, θ1 and θ2 as above. Define the inclusion ι : S − intD → S
and c̃i := ι−1(ci) for i = 1, 2. Then we define

Δ(γ) := tc̃1;θc̃1
t−1
c̃2;θc̃2
∈(S − intD),

where θc̃i is the orientation of S−intD(c̃i) (i = 1, 2) which is induced by θi.
Lemma 5.1 and 5.3 below are obtained from an argument in Section 3 of [9].

Lemma 5.1. Let Δ = Δx0 : + → (S − intD) be the map defined as above. Suppose
that α, β ∈ + are represented by two-sided simple loops such that they tangentially intersect
only at x0, and the product αβ also lies in +. Then we have

Δ(α)Δ(β) = Δ(αβ)tε∂D;θ∂D
,

where ε = 1 if α and β are counterclockwise around x0 as on the left-hand side of Figure 8
and ε = −1 if α and β are clockwise around x0 as on the right-hand side of Figure 8.

We call the relations in Lemma 5.1 Relations (L+) when ε = 1 and Relations (L-) when
ε = −1 (see Figure 8). By Lemma 2.8, Relations (L+) and (L-) are original lantern relations
(see for instance Section 5.1.1 in [4]). In other words, we have the following lemma.

Lemma 5.2. Relations (L+) and (L-) coincide with Relations (III) in Theorem 4.1.

Fig.8. Oriented subsurfaces S(α ∪ β).

Lemma 5.3. Let Δ = Δx0 : + → (S − intD) be the map defined as above. Suppose
that α, β ∈ + are represented by two-sided simple loops such that they transversely intersect
only at x0. Then we have

Δ(α)Δ(β) = Δ(αβ).
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We call the relations in Lemma 5.3 Relations (L0). We have the following lemma.

Lemma 5.4. Relations (L0) are obtained from the braid relations (i).

Proof. Suppose that α, β ∈ + are represented by two-sided simple loops such that they
transversely intersect only at x0. We take a representative of αβ ∈ π1(S, x0) by a simple loop
γ and also take the orientations of S(α∪ β) ⊂ S and S(α∪ β)− intD ⊂ S − intD which is
induced by the orientation of S−intD(∂D). Define boundary components a1 � a2 = ∂S(α),
b1 � b2 = ∂S(β) and c1 � c2 = ∂S(γ) such that a1, b1 and c1 are on the right-hand side
of α, β and γ, respectively. We consider the case where the algebraic intersection number,
with respect to the orientation of S(α ∪ β), of α and β is 1 and orientations of S−intD(ãi),
S−intD(b̃i) and S−intD(c̃i) are compatible with the orientation of S(α ∪ β). Figure 9
expresses this situation. Then we have Δ(α) = tã1 t

−1
ã2

, Δ(β) = tb̃1
t−1
b̃2

and Δ(γ) = tc̃1 t
−1
c̃2

. For
the other cases, we can prove this lemma by an argument similar to the following argument.

Since t−1
ã2

(b̃i) = c̃i for i = 1, 2, we have

Δ(αβ) = tc̃1 t
−1
c̃2

(I)
= t−1

ã2
(tb̃1

t−1
b̃2

)tã2

= t−1
ã2

tb̃1
t−1
b̃2

tã2 · (tb̃1
t−1
b̃2

)−1tb̃1
t−1
b̃2

= t−1
ã2

(tb̃1
t−1
b̃2

)tã2 (tb̃1
t−1
b̃2

)−1 · tb̃1
t−1
b̃2

(I)
= t−1

ã2
tã1 · tb̃1

t−1
b̃2

= Δ(α)Δ(β).

We have the lemma. �

Fig.9. Two-sided simple loops α and β on S(α ∪ β) such that their alge-
braic intersection number is 1 (on the left side), and simple closed curves
ãi, b̃i and c̃i on S(α ∪ β) − intD for i = 1, 2 (on the center and the right
side).

5.2. Generators for the subgroup of the fundamental group generated by two-sided
loops.

5.2. Generators for the subgroup of the fundamental group generated by two-sided
loops. Recall that we take a model of Ng,n as in Figure 4 for n ≥ 1. Assume n ≥ 2. We
regard Ng,n−1 as the surface obtained by regluing Dg+n−1 and Ng,n. Put the center point x0

of Dg+n−1. Let π1(Ng,n−1)+ be the subgroup of π1(Ng,n−1, x0) which consists of elements
that is represented by loops such that the pushing maps along their loops preserve a local
orientation of x0. Let x1, . . . , xg, y1, . . . , yn−2 be loops on Ng,n−1 based at x0 as in Figure 10
and we regard Ng,n−1 as the surface in Figure 10 for some conveniences. Note that x2

i for
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1 ≤ i ≤ g, xi+1xi for 1 ≤ i ≤ g − 1 and x−1
1 yix1 for 1 ≤ i ≤ n − 2 are elements of π1(Ng,n−1)+.

x2
i , xi+1xi and x−1

1 yix1 are represented by loops as in Figure 11. Since π1(Ng,n−1, x0) is the free
group which is freely generated by x1, . . . , xg, y1, . . . , yn−2, π1(Ng,n−1)+ is also isomorphic to
a free group. We have the following lemma.

Lemma 5.5. For g ≥ 1 and n ≥ 2, π1(Ng,n−1)+ is the free group which is freely generated
by x2

1, . . . , x2
g, x2x1, . . . , xgxg−1, y1, . . . , yn−2, x−1

1 y1x1, . . . , x−1
1 yn−2x1.

Proof. We use the Reidemeister-Schreier method (for instance see [10]) for π1(Ng,n−1)+ ⊂
π1(Ng,n−1, x0) to obtain the generators for π1(Ng,n−1)+. Since π1(Ng,n−1)+ is an index 2 sub-
group of π1(Ng,n−1, x0) and the non-trivial element of the quotient group
π1(Ng,n−1, x0)/π1(Ng,n−1)+ is represented by x1, the set U := {1, x1} ⊂ π1(Ng,n−1)+ is a
Schreier transversal for π1(Ng,n−1)+ in π1(Ng,n−1, x0). Set X := {x1, . . . , xg, y1, . . . , yn−2}. For
any word w in X, denote by w the element of U whose equivalence class in
π1(Ng,n−1, x0)/π1(Ng,n−1)+ is the same as that of w. Then π1(Ng,n−1)+ is the free group which
is freely generated by

B = {xu−1xu | x ∈ X, u ∈ U, xu � U}
= {xix1, x−1

1 x j, yk, x−1
1 yk x1 | i = 1, . . . , g, j = 2, . . . , g, k = 1, . . . , n − 2}.

Put z1 := x2
1, zi := (xix1)(x−1

1 xi) for i = 2, . . . , g, w1 := x2x1 and wi := (xi+1x1)(x−1
1 xi) for

i = 2, . . . , g − 1 as words in B. By using the Tietze transformations (for instance see [10,
Proposition 4.4.5, p46]) and relations (x−1

1 xi) = (xix1)−1zi and (xi+1x1) = wi(x−1
1 xi)−1 for

i ≥ 2, we have isomorphisms〈
B |〉

�
〈
B ∪ {zi, w j | i = 1, . . . g, j = 1, . . . , g − 1} |

z1 = x2
1, zi = (xix1)(x−1

1 xi), w1 = x2x1, w j = (x j+1x1)(x−1
1 x j)

〉
�
〈
B ∪ {zi, w j | i = 1, . . . g, j = 1, . . . , g − 1} |

z1 = x2
1, w1 = x2x1, xix1 = wi−1z−1

i−1 · · ·w2z−1
2 w1,

x−1
1 x j+1 = w

−1
1 z2w

−1
2 · · · z jw

−1
j z j+1

〉
�
〈{zi, w j, yk, x−1

1 yk x1 | i = 1, . . . g, j = 1, . . . , g − 1, k = 1, . . . , n − 2} |〉.
Note that zi = x2

i and wi = xi+1xi as elements of π1(Ng,n−1)+. We get this lemma. �

Fig.10. Loops x1, . . . , xg, y1, . . . , yn−2 on Ng,n−1 based at x0.
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Fig.11. Loops x2
i , xi+1xi, x−1

1 yix1 on Ng,n−1 based at x0.

5.3. Group presentations and short exact sequence.
5.3. Group presentations and short exact sequence. Let G be a group and let H =

〈
X |

R
〉
, Q =

〈
Y | S〉 be presented groups which have the exact sequence

1 −→ H
ι−→ G

ν−→ Q −→ 1.

We take a lift ỹ ∈ G of y ∈ Q with respect to ν for each y ∈ Q. Then we put X̃ := {ι(x) | x ∈
X} ⊂ G and Ỹ := {ỹ | y ∈ Y} ⊂ G. Denote by r̃ the word in X̃ which is obtained from r ∈ R
by replacing each x ∈ X by ι(x) and denote by s̃ the word in Ỹ which is obtained from s ∈ S
by replacing each y ∈ Y by ỹ. We note that r̃ = 1 in G. For each s ∈ S, since s̃ ∈ G is an
element of ker ν, there exists a word vs in X̃ such that s̃ = vs in G. Since ι(H) is a normal
subgroup of G, for each x ∈ X and y ∈ Y , ỹι(x)ỹ−1 is an element of ι(H). Hence there exists
a word wx,y in X̃ such that ỹι(x)ỹ−1 = wx,y in G. The next lemma follows from an argument
of the combinatorial group theory (for instance, see [10, Proposition 10.2.1, p139]).

Lemma 5.6. In this situation above, the group G has the following presentation:
generators: {ι(x), ỹ | x ∈ X, y ∈ Y}.
relations:

(A) r̃ = 1 for r ∈ R,
(B) s̃ = vs for s ∈ S,
(C) ỹι(x)ỹ−1 = wx,y for x ∈ X, y ∈ Y.

5.4. Proof of Proposition 3.2.
5.4. Proof of Proposition 3.2. Assume g ≥ 1 and n ≥ 2. Let ι : Ng,n ↪→ Ng,n−1 be the

natural inclusion obtained by regluing Ng,n and the 2-disk Dg+n−1 with the base point x0,
and let +(Ng,n−1, x0) be the subgroup of (Ng,n−1, x0) whose elements preserve a local
orientation of x0. For n ≥ 2, the forgetful homomorphism  : (Ng,n−1, x0) →(Ng,n−1)
induces the following exact sequence

1 −→ π1(Ng,n−1)+
jx0−→+(Ng,n−1, x0)

−→(Ng,n−1) −→ 1.(5.1)

For the case (g, n) = (1, 2), the group π1(N1,1)+ is generated by x2
1 by Lemma 5.5. Since

the image jx0 (x2
1) ∈+(N1,1, x0) coincides with the Dehn twist tδ along δ = ∂N1,1 and tδ is

an infinite order element of +(N1,1, x0), the homomorphism jx0 is injective. For the other
cases, since π1(Ng,n−1, x0) is isomorphic to a free group, the center of π1(Ng,n−1, x0) is trivial.
Thus the homomorphism jx0 is injective by [1, Corollary 1.2].

The inclusion ι : Ng,n ↪→ Ng,n−1 induces the surjective homomorphism ι∗ : (Ng,n) →
+(Ng,n−1, x0). By Theorem 3.6 in [19], we have the exact sequence

1 −→ Z[dn−1] −→(Ng,n)
ι∗−→+(Ng,n−1, x0) −→ 1.(5.2)

The proof of Proposition 3.2 is proceeded by the induction for n ≥ 1 and applying the
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inductive steps to the exact sequences 5.1 and 5.2. For some conveniences, we denote simply
ι∗(ai) = ai, ι∗(y) = y, ι∗(b) = b, ι∗(di) = di, ι∗(ai, j) = ai, j, ι∗(ri, j) = ri, j, ι∗(si, j) = si, j,
ι∗(s̄i, j) = s̄i, j, ι∗(s̄ j,k;i) = s̄ j,k;i ∈+(Ng,n−1, x0), and we can check the following:

 (ai) = ai for 1 ≤ i ≤ g − 1,

 (b) = b,

 (y) = y,

 (di) = di for 1 ≤ i ≤ n − 2,

 (ai; j) = ai; j for 1 ≤ i ≤ g − 1 and 1 ≤ j ≤ n − 2,

 (ri; j) = ri; j for 1 ≤ i ≤ g and 1 ≤ j ≤ n − 2,

 (si, j) = si, j for 1 ≤ i < j ≤ n − 2,

 (s̄i, j) = s̄i, j for 1 ≤ i < j ≤ n − 2,

 (s̄ j,k;i) = s̄ j,k;i for 2 ≤ i ≤ g and 1 ≤ j < k ≤ n − 2.

Thus, throughout this section, we take the lifts of ai, y, b, di, ai, j, ri, j, si, j, s̄i, j, s̄ j,k;i ∈
+(Ng,n−1, x0) (resp. ∈ (Ng,n−1)) with respect to ι∗ : (Ng,n) → +(Ng,n−1, x0) (resp.
 : (Ng,n−1, x0) → (Ng,n−1)) by ai, y, b, di, ai, j, ri, j, si, j, s̄i, j, s̄ j,k;i ∈ (Ng,n) (resp.
∈+(Ng,n−1, x0)), respectively.

Recall that [g1, g2] = g1g2g
−1
1 g−1

2 . First, we compute the conjugacy action of the lifts of
the generators for (Ng,n−1) on π1(Ng,n−1)+. Let xi+1xi (1 ≤ i ≤ g − 1), x2

i (1 ≤ i ≤ g), y j

and x−1
1 y jx1 (1 ≤ j ≤ n − 2) be generators for π1(Ng,n−1)+ in Lemma 5.5 (see Figure 10 and

11). Remark that

x−1
i y jxi = x−2

i (xixi−1) · · · x−2
2 (x2x1)(x−1

1 y jx1)(x2x1)−1x2
2 · · · (xixi−1)−1x2

i

for 2 ≤ i ≤ g. Then we have the following lemma.

Lemma 5.7. For the elements am (1 ≤ m ≤ g−1), y, b, am;l (1 ≤ m ≤ g−1, 1 ≤ l ≤ n−2),
rm,l (1 ≤ m ≤ g, 1 ≤ l ≤ n − 2), sl,t (1 ≤ l < t ≤ n − 2), s̄l,t (1 ≤ l < t ≤ n − 2), and dl

(1 ≤ l ≤ n− 2) in +(Ng,n−1, x0) and the generators xi+1xi (1 ≤ i ≤ g− 1), x2
i (1 ≤ i ≤ g), y j

and x−1
1 y jx1 (1 ≤ j ≤ n − 2) for π1(Ng,n−1)+ in Lemma 5.5, we have the following formulas:

(D1a)′′ am(xi+1xi) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(xi+1xi)(xixi−1) for m = i − 1,
(xi+2xi+1)−1(xi+1xi) for m = i + 1,
xi+1xi for m � i − 1, i + 1,

(D1b)′′ y(xi+1xi) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(x2x1)−1x2

2x2
1 for i = 1,

(x3x2)x2
1 for i = 2,

xi+1xi for i ≥ 3,
(D1c)′′ b(xi+1xi) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{(x4x3)(x2x1)}−1(x2x1){(x4x3)(x2x1)} for i = 1,
{(x4x3)(x2x1)}−1(x3x2){(x4x3)(x2x1)} for i = 2,
(x2x1)−1(x4x3)(x2x1) for i = 3,
(x5x4)(x4x3)(x2x1) for i = 4,
xi+1xi for i ≥ 5,

(D1d)′′ am;l(xi+1xi) =
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[y−1
l , (xm+1xm)−1]−1(xi+1xi)[y−1

l , (xm+1xm)−1] for m ≤ i − 2,
[(xixi−1)−1, y−1

l ](xi+1xi)yl(xixi−1) for m = i − 1,
{yl(xi+1xi)}−1(xi+1xi){yl(xi+1xi)} for m = i,
(xi+2xi+1)−1y−1

l (xi+1xi) for m = i + 1,
xi+1xi for m ≥ i + 2,

(D1e)′′ rm;l(xi+1xi) =⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
[y−1

l , x−2
m ]−1(xi+1xi)[y−1

l , x−2
m ] for m ≤ i − 1,

{x−2
i y−1

l x2
i }yl(xi+1xi)x−1

i y−1
l xi{x−2

i y−1
l x2

i }−1 for m = i,
x−2

i+1y
−1
l x2

i+1 · x−1
i+1yl xi+1(xi+1xi) for m = i + 1,

xi+1xi for m ≥ i + 2,
(D1f)′′ sl,t(xi+1xi) = xi+1xi,
(D1g)′′ s̄l,t(xi+1xi) =⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

[y−1
l , yt]−1yl(x2x1)x2

1(x−1
1 yt x1)x−2

1 y−1
l x2

1(x−1
1 yt x1)−1x−2

1
[(x−1

1 yl x1)−1, yt] for i = 1,
{[x−1

1 yl x1, y
−1
t ][yl, x2

1(x−1
1 yt x1)−1x−2

1 ]}(xi+1xi)
{[x−1

1 yl x1, y
−1
t ][yl, x2

1(x−1
1 yt x1)−1x−2

1 ]}−1 for i ≥ 2,
(D1h)′′ dl(xi+1xi) = xi+1xi,

(D2a)′′ am(x2
i ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x2

i x2
i−1(xixi−1)−1x2

i (xixi−1) for m = i − 1,
(xi+1xi)−1x−2

i+1(xi+1xi) for m = i,
x2

i for m � i − 1, i,

(D2b)′′ y(x2
i ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
{(x2x1)−1x2

2x2
1}−1x−2

1 {(x2x1)−1x2
2x2

1} for i = 1,
(x2x1)x2

1(x2x1)−1x2
2x2

1 for i = 2,
x2

i for i ≥ 3,

(D2c)′′ b(x2
i ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(x2x1)−1(x4x3)−1(x3x2)−1x−2
4 (x4x3)x−2

3 (x3x2)x−2
2 (x2x1)

for i = 1,
{(x4x3)(x2x1)}−1(x2x1)(x4x3)x2

2x2
1(x2x1)−1x2

2(x3x2)−1

x2
3(x4x3)−1x2

4(x3x2){(x4x3)(x2x1)} for i = 2,
{(x4x3)(x2x1)}−1x−2

4 (x4x3)x−2
3 (x3x2)x−2

2 (x2x1)x−2
1

(x3x2)−1x2
3(x4x3)−1(x2x1)−1{(x4x3)(x2x1)} for i = 3,

x2
4(x3x2)x2

1(x2x1)−1x2
2(x3x2)−1x2

3(x4x3)−1x2
4(x4x3)(x2x1)

for i = 4,
x2

i for i ≥ 5,
(D2d)′′ am;l(x2

i ) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[y−1
l , (xm+1xm)−1]−1x2

i [y−1
l , (xm+1xm)−1] for m ≤ i − 2,

{yl(xixi−1)}−1(xixi−1)yl x2
i x2

i−1(xixi−1)−1x2
i (x−1

i yl xi){yl(xixi−1)}
for m = i − 1,
(xi+1xi)−1y−1

l x−2
i+1(xi+1xi)(x−1

i yl xi)−1 for m = i,
x2

i for m ≥ i + 1,

(D2e)′′ rm;l(x2
i ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
[y−1

l , x−2
m ]−1x2

i [y−1
l , x−2

m ] for m ≤ i − 1,
{yl x2

i }−1x2
i {yl x2

i } for m = i,
x2

i for m ≥ i + 1,
(D2f)′′ sl,t(x2

i ) = x2
i ,

(D2g)′′ s̄l,t(x2
i ) =
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[yt, (x−1

1 yl x1)−1][x2
1(x−1

1 yt x1)x−2
1 , y−1

l ]x2
1 for i = 1,

{[x−1
1 yl x1, y

−1
t ][yl, x2

1(x−1
1 yt x1)−1x−2

1 ]}−1

x2
1{[x−1

1 yl x1, y
−1
t ][yl, x2

1(x−1
1 yt x1)−1x−2

1 ]} for i ≥ 2,
(D2h)′′ dl(x2

i ) = x2
i ,

(D3a)′′ am(y j) = y j,
(D3b)′′ y(y j) = y j,
(D3c)′′ b(y j) = y j,
(D3d)′′ am;l(y j) =⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[y−1
l , (xm+1xm)−1]−1

y j[y−1
l , (xm+1xm)−1] for l > j,

(xm+1xm)−1y j(xm+1xm) for l = j,
y j for l < j,

(D3e)′′ rm;l(y j) =⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
[yl, x−2

m ]−1
y j[yl, x−2

m ] for l > j,
x−2

m y jx2
m for l = j,

y j for l < j,
(D3f)′′ sl,t(y j) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{yty j}−1y j{yty j}
for l = j,
[y−1

t , y−1
l ]−1

y j[y−1
t , y−1

l ] for l < j < t,
y−1

l y jyl for t = j,
y j for the other cases,

(D3g)′′ s̄l,t(y j) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{[x−1
1 yl x1, y

−1
t ][yl, x2

1(x−1
1 yt x1)−1x−2

1 ]}−1y j

{[x−1
1 yl x1, y

−1
t ][yl, x2

1(x−1
1 yt x1)−1x−2

1 ]} for l > j,
{[x−1

1 y jx1, y
−1
t ]y jx2

1(x−1
1 yt x1)−1x−2

1 }−1y j

{[x−1
1 y jx1, y

−1
t ]y jx2

1(x−1
1 yt x1)−1x−2

1 } for l = j,
[(x−1

1 yl x1)−1, yt]
−1
y j[(x−1

1 yl x1)−1, yt] for l < j < t,
{(x−1

1 yl x1)y−1
j }−1y j{(x−1

1 yl x1)y−1
j } for t = j,

y j for t < j,
(D3h)′′ dl(y j) = y j,
(D4a)′′ am(x−1

1 y jx1) ={ {x−2
1 x−2

2 (x2x1)}−1(x−1
1 y jx1){x−2

1 x−2
2 (x2x1)} for m = 1,

x−1
1 y jx1 for m ≥ 2,

(D4b)′′ y(x−1
1 y jx1) = {x−2

1 (x2x1)−2x2
2x2

1}−1(x−1
1 y jx1){x−2

1 (x2x1)−2x2
2x2

1},
(D4c)′′ b(x−1

1 y jx1) = {x−2
1 (x3x2)−1x−2

4 (x4x3)x−2
3 (x3x2)x−2

2 (x2x1)}−1(x−1
1 y jx1)

{x−2
1 (x3x2)−1x−2

4 (x4x3)x−2
3 (x3x2)x−2

2 (x2x1)},
(D4d)′′ am;l(x−1

1 y jx1) =
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{x−2
1 x−2

2 (x2x1)(x−1
1 yl x1)−1}−1(x−1

1 y jx1)
{x−2

1 x−2
2 (x2x1)(x−1

1 yl x1)−1} for m = 1, l < j,
{(x−1

1 yl x1)−1x−2
1 x−2

2 (x2x1)}−1(x−1
1 y jx1)

{(x−1
1 yl x1)−1x−2

1 x−2
2 (x2x1)} for m = 1, l > j,

{(xmxm−1)x2
m−1 · · · (x3x2)x−2

2 (x2x1)}−1(x−1
m+1y jxm+1)

{(xmxm−1)x2
m−1 · · · (x3x2)x−2

2 (x2x1)} for m ≥ 2, l = j,
{(xmxm−1)x2

m−1 · · · (x3x2)x−2
2 (x2x1)}−1{(x−1

m yl xm)−1x−2
m (x−1

m+1yl xm+1)}−1

(x−1
m y jxm){(x−1

m ylxm)−1x−2
m (x−1

m+1yl xm+1)}
{(xmxm−1)x2

m−1 · · · (x3x2)x−2
2 (x2x1)} for m ≥ 2, l > j,

x−1
1 y jx1 for the other cases,

(D4e)′′ rm;l(x−1
1 y jx1) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{x−2
1 (x−1

1 yl x1)−1(yl)x2
1}−1(x−1

1 y jx1){x−2
1 (x−1

1 yl x1)−1yl x2
1}

for m = 1, l < j,
{y jx2

1}−1(x−1
1 y jx1){y jx2

1} for m = 1, l = j,
{(x−1

1 yl x1)−1x−2
1 yl x2

1}−1(x−1
1 y jx1)−1{(x−1

1 yl x1)−1x−2
1 yl x2

1}
for m = 1, l > j,
{(xmxm−1)x2

m−1 · · · (x3x2)x−2
2 (x2x1)}−1(x−1

m y jxm)
{(xmxm−1)x2

m−1 · · · (x3x2)x−2
2 (x2x1)} for m ≥ 2, l = j,

{(xmxm−1)x2
m−1 · · · (x3x2)x−2

2 (x2x1)}−1{(x−1
m yl xm)−1x−2

m (x−1
m yl xm)}−1

(x−1
m y jxm){(x−1

m ylxm)−1x−2
m (x−1

m yl xm)}
{(xmxm−1)x2

m−1 · · · (x3x2)x−2
2 (x2x1)} for m ≥ 2, l > j,

x−1
1 y jx1 for m ≥ 2, l < j,

(D4f)′′ sl,t(x−1
1 y jx1) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(x−1
1 yl x1)−1(x−1

1 y jx1)(x−1
1 yl x1) for t = j,

[(x−1
1 yt x1)−1, (x−1

1 yl x1)−1]−1(x−1
1 y jx1)

[(x−1
1 yt x1)−1, (x−1

1 yl x1)−1] for l < j < t,
{(x−1

1 yt x1)(x−1
1 y jx1)}−1(x−1

1 y jx1){(x−1
1 yt x1)(x−1

1 y jx1)} for l = j,
x−1

1 y jx1 for the other cases,
(D4g)′′ s̄l,t(x−1

1 y jx1) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[(x−1
1 yt x1), x−2

1 y−1
l x2

1]−1(x−1
1 y jx1)

[(x−1
1 yt x1), x−2

1 y−1
l x2

1] for t < j,
{x−2

1 y−1
l x2

1}(x−1
1 y jx1){x−2

1 y−1
l x2

1}−1 for t = j,
yt(x−1

1 y jx1)y−1
t for l = j,

[(x−1
1 yl x1)−1, yt]

−1(x−1
1 y jx1)[(x−1

1 yl x1)−1, yt] for l > j,
x−1

1 y jx1 for l < j < t,
(D4h)′′ dl(x−1

1 y jx1) = x−1
1 y jx1.

Sketch of the proof. Let X1 be the subset of +(Ng,n−1, x0) consists of the elements am

(1 ≤ m ≤ g − 1), y, b, am;l (1 ≤ m ≤ g − 1, 1 ≤ l ≤ n − 1), rm,l (1 ≤ m ≤ g, 1 ≤ l ≤ n − 1),
sl,t (1 ≤ l < t ≤ n − 1), s̄l,t (1 ≤ l < t ≤ n − 1), and dl (1 ≤ l ≤ n − 2) in +(Ng,n−1, x0),
and X2 the generating set for π1(Ng,n−1)+ in Lemma 5.5. For each elements x ∈ X2 and
f ∈ X1, we construct a product w′x, f of elements in X2 such that f (x) = w′x, f . For example,
for xi+1xi ∈ X2 and ri;l ∈ X1, ri;l(xi+1xi) is represented by the loop as on the right-hand side
of Figure 12. Thus we have
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ri;l(xi+1xi) = {x−2
i y−1

l x2
i }yl(xi+1xi)x−1

i y−1
l xi{x−2

i y−1
l x2

i }−1 ∈ π1(Ng,n−1)+,

and show the formula (D1e)′′ for m = i. Table 1 indicates the corresponding codes of
formulas f (x) = w′x, f . �

Fig.12. Loop ri;l(xi+1xi) on Ng,n−1 based at x0 for 1 ≤ i ≤ n − 2.

Table 1. Codes of formulas in Lemma 5.7.

���������x ∈ X2

f ∈ X1 am y b am;l rm;l sl,t s̄l,t dl

xi+1xi (D1a)′′ (D1b)′′ (D1c)′′ (D1d)′′ (D1e)′′ (D1f)′′ (D1g)′′ (D1h)′′

x2
i (D2a)′′ (D2b)′′ (D2c)′′ (D2d)′′ (D2e)′′ (D2f)′′ (D2g)′′ (D2h)′′

y j (D3a)′′ (D3b)′′ (D3c)′′ (D3d)′′ (D3e)′′ (D3f)′′ (D3g)′′ (D3h)′′

x−1
1 y jx1 (D4a)′′ (D4b)′′ (D4c)′′ (D4d)′′ (D4e)′′ (D4f)′′ (D4g)′′ (D4h)′′

Applying Lemma 5.6 to the exact sequence 5.1, we have the following lemma.

Lemma 5.8. Assume that g ≥ 1 and n ≥ 2. If (Ng,n−1) has the finite presentation
in Proposition 3.2, then +(Ng,n−1, x0) admits the presentation which is obtained from the
finite presentation for (Ng,n−1) in Proposition 3.2 by adding generators ai;n−1 (1 ≤ i ≤
g − 1), ri,n−1 (1 ≤ i ≤ g), si,n−1 (1 ≤ i ≤ n − 2), and s̄i,n−1 (1 ≤ i ≤ n − 2), and the following
relations for 1 ≤ j ≤ n − 2, 1 ≤ l, t ≤ n − 2, and any possible 1 ≤ i,m ≤ g:

(D1a)′ am(ai;n−1a−1
i )a−1

m =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(ai;n−1a−1

i )(ai−1;n−1a−1
i−1) for m = i − 1,

(ai+1;n−1a−1
i+1)−1(ai;n−1a−1

i ) for m = i + 1,
ai;n−1a−1

i for m � i − 1, i + 1,

(D1b)′ y(ai;n−1a−1
i )y−1 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(a1;n−1a−1

1 )−1r2;n−1r1;n−1 for i = 1,
(a2;n−1a−1

2 )r1;n−1 for i = 2,
ai;n−1a−1

i for i ≥ 3,
(D1c)′ b(ai;n−1a−1

i )b−1 =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{(a3;n−1a−1
3 )(a1;n−1a−1

1 )}−1(a1;n−1a−1
1 ){(a3;n−1a−1

3 )(a1;n−1a−1
1 )}

for i = 1,
{(a3;n−1a−1

3 )(a1;n−1a−1
1 )}−1(a2;n−1a−1

2 ){(a3;n−1a−1
3 )(a1;n−1a−1

1 )}
for i = 2,
(a1;n−1a−1

1 )−1(a3;n−1a−1
3 )(a1;n−1a−1

1 ) for i = 3,
(a4;n−1a−1

4 )(a3;n−1a−1
3 )(a1;n−1a−1

1 ) for i = 4,
ai;n−1a−1

i for i ≥ 5,
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(D1d)′ am;l(ai;n−1a−1
i )a−1

m;l =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[(sl,n−1d−1
l )−1, (am;n−1a−1

m )−1]−1(ai;n−1a−1
i )

[(sl,n−1d−1
l )−1, (am;n−1a−1

m )−1] for m ≤ i − 2,
[(ai−1;n−1a−1

i−1)−1, (sl,n−1d−1
l )−1](ai;n−1a−1

i )(sl,n−1d−1
l )(ai−1;n−1a−1

i−1)
for m = i − 1,
{(sl,n−1d−1

l )(ai;n−1a−1
i )}−1(ai;n−1a−1

i ){(sl,n−1d−1
l )(ai;n−1a−1

i )}
for m = i,
(ai+1;n−1a−1

i+1)−1(sl,n−1d−1
l )−1(ai;n−1a−1

i ) for m = i + 1,
ai;n−1a−1

i for m ≥ i + 2,
(D1e)′ rm;l(ai;n−1a−1

i )r−1
m;l =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[(sl,n−1d−1
l )−1, r−1

m;n−1]−1(ai;n−1a−1
i )[(sl,n−1d−1

l )−1, r−1
m;n−1]

for m ≤ i − 1,
{r−1

i;n−1(sl,n−1d−1
l )−1ri;n−1}(sl,n−1d−1

l )(ai;n−1a−1
i )

(s̄l,n−1;id−1
l )−1{r−1

i;n−1(sl,n−1d−1
l )−1ri;n−1}−1 for m = i,

r−1
i+1;n−1(sl,n−1d−1

l )−1ri+1;n−1(s̄l,n−1;i+1d−1
l )(ai;n−1a−1

i )
for m = i + 1,
ai;n−1a−1

i for m ≥ i + 2,
(D1f)′ sl,t(ai;n−1a−1

i )s−1
l,t = ai;n−1a−1

i ,
(D1g)′ s̄l,t(ai;n−1a−1

i )s̄−1
l,t =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[(s̄l,n−1d−1
l )−1, st,n−1d−1

t ]−1(sl,n−1d−1
l )(a1;n−1a−1

1 )r1;n−1(s̄t,n−1d−1
t )r−1

1;n−1
(sl,n−1d−1

l )−1r1;n−1(s̄t,n−1d−1
t )−1r−1

1;n−1[(s̄l,n−1d−1
l )−1, (st,n−1d−1

t )] for i = 1,
{[s̄l,n−1d−1

l , (st,n−1d−1
t )−1][sl,n−1d−1

l , r1;n−1(s̄t,n−1d−1
t )−1r−1

1;n−1]}
(ai;n−1a−1

i )
{[s̄l,n−1d−1

l , (st,n−1d−1
t )−1][sl,n−1d−1

l , r1;n−1(s̄t,n−1d−1
t )−1r−1

1;n−1]}−1

for i ≥ 2,
(D1h)′ dl(ai;n−1a−1

i )d−1
l = ai;n−1a−1

i ,

(D2a)′ amri;n−1a−1
m =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
ri;n−1ri−1;n−1(ai−1;n−1a−1

i−1)−1ri;n−1(ai−1;n−1a−1
i−1)

for m = i − 1,
(ai;n−1a−1

i )−1r−1
i+1;n−1(ai;n−1a−1

i ) for m = i,
ri;n−1 for m � i − 1, i,

(D2b)′ yri;n−1y
−1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
{(a1;n−1a−1

1 )−1r2;n−1r1;n−1}−1r−1
1;n−1

{(a1;n−1a−1
1 )−1r2;n−1r1;n−1} for i = 1,

(a1;n−1a−1
1 )r1;n−1(a1;n−1a−1

1 )−1r2;n−1r1;n−1 for i = 2,
ri;n−1 for i ≥ 3,
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(D2c)′ bri;n−1b−1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a1;n−1a−1
1 )−1(a3;n−1a−1

3 )−1(a2;n−1a−1
2 )−1

r−1
4;n−1(a3;n−1a−1

3 )r−1
3;n−1(a2;n−1a−1

2 )r−1
2;n−1(a1;n−1a−1

1 )
for i = 1,
{(a3;n−1a−1

3 )(a1;n−1a−1
1 )}−1(a1;n−1a−1

1 )(a3;n−1a−1
3 )r2;n−1

r1;n−1(a1;n−1a−1
1 )−1r2;n−1(a2;n−1a−1

2 )−1r3;n−1

(a3;n−1a−1
3 )−1r4;n−1(a2;n−1a−1

2 ){(a3;n−1a−1
3 )(a1;n−1a−1

1 )}
for i = 2,
{(a3;n−1a−1

3 )(a1;n−1a−1
1 )}−1r−1

4;n−1
(a3;n−1a−1

3 )r−1
3;n−1(a2;n−1a−1

2 )r−1
2;n−1(a1;n−1a−1

1 )r−1
1;n−1

(a2;n−1a−1
2 )−1r3;n−1(a3;n−1a−1

3 )−1(a1;n−1a−1
1 )−1

{(a3;n−1a−1
3 )(a1;n−1a−1

1 )} for i = 3,
r4;n−1(a2;n−1a−1

2 )r1;n−1(a1;n−1a−1
1 )−1r2;n−1(a2;n−1a−1

2 )−1

r3;n−1(a3;n−1a−1
3 )−1r4;n−1(a3;n−1a−1

3 )(a1;n−1a−1
1 )

for i = 4,
ri;n−1 for i ≥ 5,

(D2d)′ am;lri;n−1a−1
m;l =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[(sl,n−1d−1
l )−1, (am;n−1a−1

m )−1]−1ri;n−1[(sl,n−1d−1
l )−1, (am;n−1a−1

m )−1]
for m ≤ i − 2,
{(sl,n−1d−1

l )(ai−1;n−1a−1
i−1)}−1(ai−1;n−1a−1

i−1)(sl,n−1d−1
l )ri;n−1

ri−1;n−1(ai−1;n−1a−1
i−1)−1ri;n−1(s̄l,n−1;id−1

l ){(sl,n−1d−1
l )(ai−1;n−1a−1

i−1)}
for m = i − 1,
(ai;n−1a−1

i )−1(sl,n−1d−1
l )−1r−1

i+1;n−1(ai;n−1a−1
i )(s̄l,n−1;id−1

l )−1

for m = i,
ri;n−1 for m ≥ i + 1,

(D2e)′ rm;lri;n−1r−1
m;l =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[(sl,n−1d−1
l )−1, r−1

m;n−1]−1ri;n−1[(sl,n−1d−1
l )−1, r−1

m;n−1]
for m ≤ i − 1,
{(sl,n−1d−1

l )ri;n−1}−1ri;n−1{(sl,n−1d−1
l )ri;n−1}

for m = i,
ri;n−1 for m ≥ i + 1,

(D2f)′ sl,tri;n−1s−1
l,t = ri;n−1,

(D2g)′ s̄l,tri;n−1 s̄−1
l,t =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[st,n−1d−1
t , (s̄l,n−1d−1

l )−1][r1;n−1(s̄t,n−1d−1
t )r−1

1;n−1, (sl,n−1d−1
l )−1]r1;n−1

for i = 1,
{[s̄l,n−1d−1

l , (st,n−1d−1
t )−1][sl,n−1d−1

l , r1;n−1(s̄t,n−1d−1
t )−1r−1

1;n−1]}−1

r1;n−1{[s̄l,n−1d−1
l , (st,n−1d−1

t )−1][sl,n−1d−1
l , r1;n−1(s̄t,n−1d−1

t )−1r−1
1;n−1]}

for i ≥ 2,
(D2h)′ dlri;n−1d−1

l = ri;n−1,
(D3a)′ am(s j,n−1d−1

j )a−1
m = s j,n−1d−1

j ,
(D3b)′ y(s j,n−1d−1

j )y−1 = s j,n−1d−1
j ,

(D3c)′ b(s j,n−1d−1
j )b−1 = s j,n−1d−1

j ,
(D3d)′ am;l(s j,n−1d−1

j )a−1
m;l =



Presentation forMapping Class Group 295⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
[(sl,n−1d−1

l )−1, (am;n−1a−1
m )−1]−1(s j,n−1d−1

j )
[(sl,n−1d−1

l )−1, (am;n−1a−1
m )−1] for l > j,

(am;n−1a−1
m )−1(s j,n−1d−1

j )(am;n−1a−1
m ) for l = j,

s j,n−1d−1
j for l = j,

(D3e)′ rm;l(s j,n−1d−1
j )r−1

m;l =⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
[(sl,n−1d−1

l )−1, r−1
m;n−1]−1(s j,n−1d−1

j )[(sl,n−1d−1
l )−1, r−1

m;n−1]
for l > j,
r−1

m;n−1(s j,n−1d−1
j )rm;n−1 for l = j,

s j,n−1d−1
j for l < j,

(D3f)′ sl,t(s j,n−1d−1
j )s−1

l,t =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{(st,n−1d−1
t )(s j,n−1d−1

j )}−1(s j,n−1d−1
j ){(st,n−1d−1

t )(s j,n−1d−1
j )}

for l = j,
[(st,n−1d−1

t )−1, (sl,n−1d−1
l )−1]−1(s j,n−1d−1

j )
[(st,n−1d−1

t )−1, (sl,n−1d−1
l )−1] for l < j < t,

(sl,n−1d−1
l )−1(s j,n−1d−1

j )(sl,n−1d−1
l ) for t = j,

s j,n−1d−1
j for the other cases,

(D3g)′ s̄l,t(s j,n−1d−1
j )s̄−1

l,t =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{[s̄l,n−1d−1
l , (st,n−1d−1

t )−1][sl,n−1d−1
l , r1;n−1(s̄t,n−1d−1

t )−1r−1
1;n−1]}−1

(s j,n−1d−1
j )

{[s̄l,n−1d−1
l , (st,n−1d−1

t )−1][sl,n−1d−1
l , r1;n−1(s̄t,n−1d−1

t )−1r−1
1;n−1]}

for l > j,
{[s̄ j,n−1d−1

j , (st,n−1d−1
t )−1](s j,n−1d−1

j )r1;n−1(s̄t,n−1d−1
t )−1r−1

1;n−1}−1

(s j,n−1d−1
j )

{[s̄ j,n−1d−1
j , (st,n−1d−1

t )−1](s j,n−1d−1
j )r1;n−1(s̄t,n−1d−1

t )−1r−1
1;n−1}

for l = j,
[(s̄l,n−1d−1

l )−1, st,n−1d−1
t ]−1(s j,n−1d−1

j )[(s̄l,n−1d−1
l )−1, st,n−1d−1

t ]
for l < j < t,
{(s̄l,n−1d−1

l )(s j,n−1d−1
j )−1}−1(s j,n−1d−1

j ){(s̄l,n−1d−1
l )(s j,n−1d−1

j )−1}
for t = j,
s j,n−1d−1

j for t < j,
(D3h)′ dl(s j,n−1d−1

j )d−1
l = s j,n−1d−1

j ,
(D4a)′ am(s̄ j,n−1d−1

j )a−1
m =⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

{r−1
1;n−1r−1

2;n−1(a1;n−1a−1
1 )}−1(s̄ j,n−1d−1

j ){r−1
1;n−1r−1

2;n−1(a1;n−1a−1
1 )}

for m = 1,
s̄ j,n−1d−1

j for m ≥ 2,
(D4b)′ y(s̄ j,n−1d−1

j )y−1 = {r−1
1;n−1(a1;n−1a−1

1 )−2r2;n−1r1;n−1}−1(s̄ j,n−1d−1
j )

{r−1
1;n−1(a1;n−1a−1

1 )−2r2;n−1r1;n−1},
(D4c)′ b(s̄ j,n−1d−1

j )b−1 = {r−1
1;n−1(a2;n−1a−1

2 )−1r−1
4;n−1(a3;n−1a−1

3 )r−1
3;n−1

(a2;n−1a−1
2 )r−1

2;n−1(a1;n−1a−1
1 )}−1(s̄ j,n−1d−1

j ){r−1
1;n−1(a2;n−1a−1

2 )−1

r−1
4;n−1(a3;n−1a−1

3 )r−1
3;n−1(a2;n−1a−1

2 )r−1
2;n−1(a1;n−1a−1

1 )},
(D4d)′ am;l(s̄ j,n−1d−1

j )a−1
m;l =



296 R. Kobayashi and G. Omori⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{r−1
1;n−1r−1

2;n−1(a1;n−1a−1
1 )(s̄l,n−1d−1

l )−1}−1(s̄ j,n−1d−1
j )

{r−1
1;n−1r−1

2;n−1(a1;n−1a−1
1 )(s̄l,n−1d−1

l )−1} for m = 1, l < j,
{(s̄l,n−1d−1

l )−1r−1
1;n−1r−1

2;n−1(a1;n−1a−1
1 )}−1(s̄ j,n−1d−1

j )
{(s̄l,n−1d−1

l )−1r−1
1;n−1r−1

2;n−1(a1;n−1a−1
1 )} for m = 1, l > j,

{(am−1;n−1a−1
m−1)rm−1;n−1 · · · (a2;n−1a−1

2 )r−1
2;n−1(a1;n−1a−1

1 )}−1

(s̄ j,n−1;m+1d−1
j )

{(am−1;n−1a−1
m−1)rm−1;n−1 · · · (a2;n−1a−1

2 )r−1
2;n−1(a1;n−1a−1

1 )}
for m ≥ 2, l = j,
{(am−1;n−1a−1

m−1)rm−1;n−1 · · · (a2;n−1a−1
2 )r−1

2;n−1(a1;n−1a−1
1 )}−1

{(s̄l,n−1;md−1
l )−1r−1

m;n−1(s̄l,n−1;m+1d−1
l )}−1(s̄ j,n−1;md−1

j )
{(s̄l,n−1;md−1

l )−1r−1
m;n−1(s̄l,n−1;m+1d−1

l )}
{(am−1;n−1a−1

m−1)rm−1;n−1 · · · (a2;n−1a−1
2 )r−1

2;n−1(a1;n−1a−1
1 )}

for m ≥ 2, l > j,
s̄ j,n−1d−1

j for the other cases,
(D4e)′ rm;l(s̄ j,n−1d−1

j )r−1
m;l =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{r−1
1;n−1(s̄l,n−1d−1

l )−1(sl,n−1d−1
l )r1;n−1}−1(s̄ j,n−1d−1

j )
{r−1

1;n−1(s̄l,n−1d−1
l )−1(sl,n−1d−1

l )r1;n−1} for m = 1, l < j,
{(s j,n−1d−1

j )r1;n−1}−1(s̄ j,n−1d−1
j ){(s j,n−1d−1

j )r1;n−1}
for m = 1, l = j,
{(s̄l,n−1d−1

l )−1r−1
1;n−1(sl,n−1d−1

l )r1;n−1}−1(s̄ j,n−1d j)−1

{(s̄l,n−1d−1
l )−1r−1

1;n−1(sl,n−1d−1
l )r1;n−1} for m = 1, l > j,

{(am−1;n−1a−1
m−1)rm−1;n−1 · · · (a2;n−1a−1

2 )r−1
2;n−1(a1;n−1a−1

1 )}−1

(s̄ j,n−1;md−1
j )

{(am−1;n−1a−1
m−1)rm−1;n−1 · · · (a2;n−1a−1

2 )r−1
2;n−1(a1;n−1a−1

1 )}
for m ≥ 2, l = j,
{(am−1;n−1a−1

m−1)rm−1;n−1 · · · (a2;n−1a−1
2 )r−1

2;n−1(a1;n−1a−1
1 )}−1

{(s̄l,n−1;md−1
l )−1r−1

m;n−1(s̄l,n−1;md−1
l )}−1

(s̄ j,n−1;md−1
j )

{(s̄l,n−1;md−1
l )−1r−1

m;n−1(s̄l,n−1;md−1
l )}

{(am−1;n−1a−1
m−1)rm−1;n−1 · · · (a2;n−1a−1

2 )r−1
2;n−1(a1;n−1a−1

1 )}
for m ≥ 2, l > j,
s̄ j,n−1d−1

j for m ≥ 2, l < j,
(D4f)′ sl,t(s̄ j,n−1d−1

j )s−1
l,t =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(s̄l,n−1d−1
l )−1(s̄ j,n−1d−1

j )(s̄l,n−1d−1
l ) for t = j,

[(s̄t,n−1d−1
t )−1, (s̄l,n−1d−1

l )−1]−1(s̄ j,n−1d−1
j )

[(s̄t,n−1d−1
t )−1, (s̄l,n−1d−1

l )−1] for l < j < t,
{(s̄t,n−1d−1

t )(s̄ j,n−1d−1
j )}−1(s̄ j,n−1d−1

j ){(s̄t,n−1d−1
t )(s̄ j,n−1d−1

j )}
for l = j,
s̄ j,n−1d−1

j for the other cases,
(D4g)′ s̄l,t(s̄ j,n−1d−1

j )s̄−1
l,t =
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[(s̄t,n−1d−1
t ), r−1

1;n−1(sl,n−1d−1
l )−1r1;n−1]−1(s̄ j,n−1d−1

j )
[(s̄t,n−1d−1

t ), r−1
1;n−1(sl,n−1d−1

l )−1r1;n−1] for t < j,
{r−1

1;n−1(sl,n−1d−1
l )−1r1;n−1}(s̄ j,n−1d−1

j ){r−1
1;n−1(sl,n−1d−1

l )−1r1;n−1}−1

for t = j,
(st,n−1d−1

t )(s̄ j,n−1d−1
j )(st,n−1d−1

t )−1 for l = j,
[(s̄l,n−1d−1

l )−1, (st,n−1d−1
t )]−1(s̄ j,n−1d−1

j )[(s̄l,n−1d−1
l )−1, (st,n−1d−1

t )]
for l > j,
s̄ j,n−1d−1

j for l < j < t,
(D4h)′ dl(s̄ j,n−1d−1

j )d−1
l = s̄ j,n−1d−1

j .

Proof. Assume that g ≥ 1, n ≥ 2, and (Ng,n−1) has the finite presentation in Proposi-
tion 3.2. The presentation for (Ng,n−1) has generators ai, d j, ai; j, ri′, j, sk,l, s̄k,l (1 ≤ i ≤
g − 1, 1 ≤ i′ ≤ g, 1 ≤ j ≤ n − 2, 1 ≤ k < l ≤ n − 2), y for g ≥ 2, and b for g ≥ 4.
By Lemma 5.5, the group π1(Ng,n−1)+ is the free group which is freely generated by xi+1xi

(1 ≤ i ≤ g − 1), x2
i (1 ≤ i ≤ g), y j (1 ≤ j ≤ n − 2), and x−1

1 y jx1 (1 ≤ j ≤ n − 2). Remark that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

jx0 (xi+1xi) = ai;n−1a−1
i ,

jx0 (x2
i ) = ri;n−1,

jx0 (y j) = s j,n−1d−1
j ,

jx0 (x−1
1 y jx1) = s̄ j,n−1d−1

j

(5.3)

by Lemma 2.8. Since we take lifts of ai, d j, ai; j, ri′, j, sk,l, s̄k,l, y, b ∈ (Ng,n−1) with
respect to  |+(Ng,n−1,x0) : +(Ng,n−1, x0) → (Ng,n−1) by ai, d j, ai; j, ri′, j, sk,l, s̄k,l, y, b ∈
+(Ng,n−1, x0), respectively, applying Lemma 5.6 to the exact sequence 5.1, we obtain the
presentation for +(Ng,n−1, x0) whose generators are

(1) ai, d j, ai; j, ri′, j, sk,l, s̄k,l (1 ≤ i ≤ g− 1, 1 ≤ i′ ≤ g, 1 ≤ j ≤ n− 2, 1 ≤ k < l ≤ n− 2), y
for g ≥ 2, and b for g ≥ 4,

(2) ri;n−1 (1 ≤ i ≤ g), ai;n−1a−1
i (1 ≤ i ≤ g − 1), si,n−1d−1

i (1 ≤ i ≤ n − 2), and s̄i,n−1d−1
i

(1 ≤ i ≤ n − 2).
Denote by X1 the set of generators in (1) and by X2 the set of generators in (2). Since
π1(Ng,n−1)+ is the free group, the defining relations are obtained as follows:

(1) for any relation vε1
1 · · · vεk

k = w
δ1
1 · · ·wδl

l of the presentation for (Ng,n−1) in Propo-
sition 3.2 and the lifts ṽi, w̃ j ∈+(Ng,n−1, x0) of vi, w j ∈(Ng,n−1) with respect to
 |+(Ng,n−1,x0), respectively, there exists a product v(wδ11 ···w

δl
l )−1v

ε1
1 ···v

εk
k

of elements in X2

such that

ṽε1
1 · · · ṽεk

k = w̃
δ1
1 · · · w̃δl

l v(wδ11 ···w
δl
l )−1v

ε1
1 ···v

εk
k
,

(2) for x ∈ X2 and f ∈ X1, there exists a product wx, f of elements in X2 such that

f x f −1 = wx, f .

Note that the generators of this presentation consist of ai, d j, ai; j′ , ri′, j′ , sk,l, s̄k,l (1 ≤ i ≤
g−1, 1 ≤ i′ ≤ g, 1 ≤ j ≤ n−2, 1 ≤ j′ ≤ n−1, 1 ≤ k < l ≤ n−1), y for g ≥ 2, and b for g ≥ 4
essentially, the generators in (1) are lifts of the generators of the presentation for (Ng,n−1)
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in Proposition 3.2, and the generators in (2) are the images of the generators for π1(Ng,n−1)+

in Lemma 5.5.
We calculate each v(wδ11 ···w

δl
l )−1v

ε1
1 ···v

εk
k

and wx, f in the relations (1) and (2) above. We take
the subsurface N′ of Ng,n which is diffeomorphic to Ng,n−1 as in Figure 13. By the definition
of the elements in X1 ⊂ +(Ng,n−1, x0), every simple closed curve which appears in X1

is isotopic to a simple closed curve on intN′ relative to x0. We regard generators of the
presentation for (Ng,n−1) as elements of (N′). In particular, the inclusion ι′ : N′ ↪→ Ng,n

induces the injective homomorphism ι′∗ : (N′) → (Ng,n). By using the composition
ι∗ ◦ ι′∗ : (N′) →+(Ng,n−1, x0), we can show that v(wδ11 ···w

δl
l )−1v

ε1
1 ···v

εk
k
= 1 for each relation

vε1
1 · · · vεk

k = w
δ1
1 · · ·wδl

l of the presentation for (Ng,n−1).
For the relation (2) above, we construct wx, f as follows. We take x ∈ X2 and f ∈ X1. By

the formulas 5.3, there exists an element w ∈ π1(Ng,n−1)+ which lies in the generating set in
Lemma 5.5 such that x = jx0 (w). Since f jx0 (w) f −1 = jx0 ( f (w)) for any w ∈ π1(Ng,n−1, x0)
and f ∈+(Ng,n−1, x0), we have

f x f −1 = f jx0 (w) f −1 = jx0 ( f (w)).

By Lemma 5.7, we have a product wδ1
1 · · ·wδl

l of generators for π1(Ng,n−1)+ in Lemma 5.5
such that f (w) = wδ1

1 · · ·wδl
l . Therefore we have the relation

f x f −1 = jx0 (w1)δ1 · · · jx0 (wl)δl .

Applying the formulas 5.3 to the equation above, f jx0 (w) f −1 is equal to a product of ele-
ments in X2 and we obtain wx, f . We can check that if the formula f (w) = wδ1

1 · · ·wδl
l is one

of the cords (D1a)′′-(D4h)′′ in Lemma 5.7, then the obtained relation f jx0 (x) f −1 = wx, f co-
incides with one of Relations (D1a)′-(D4h)′ in Lemma 5.8. For example, for ai;n−1a−1

i ∈ X2

and ri;l ∈ X1, we have ai;n−1a−1
i = jx0 (xi+1xi). Recall that ri;l(xi+1xi) is represented by the

loop as on the right-hand side of Figure 12. By the formula (D1e)′′ for m = i in Lemma 5.7,
we have

ri;l(xi+1xi) = {x−2
i y−1

l x2
i }yl(xi+1xi)x−1

i y−1
l xi{x−2

i y−1
l x2

i }−1 ∈ π1(Ng,n−1)+.

Recall that s̄ j,k;i is the Dehn twist along the simple closed curve σ̄ j,k;i = ι(σ̄ j,k;i) and σ̄ j,k;i is
defined in Figure 6. Thus we show that

ri;l(ai;n−1a−1
i )r−1

i;l = {r−1
i;n−1(sl,n−1d−1

l )−1ri;n−1}(sl,n−1d−1
l )(ai;n−1a−1

i )

(s̄l,n−1;id−1
l )−1{r−1

i;n−1(sl,n−1d−1
l )−1ri;n−1}−1.

This relation is Relation (D1e)′ for m = i. Therefore +(Ng,n−1, x0) has the presentation
which is obtained from the finite presentation for (Ng,n−1) by adding generators ai;n−1 for
1 ≤ i ≤ g − 1, ri;n−1 for 1 ≤ i ≤ g, si,n−1 and s̄i,n−1 for 1 ≤ i ≤ n − 2, and Relations (D1a)′-
(D4h)′. �

Let vε1
1 · · · vεk

k = w
δ1
1 · · ·wδl

l be a relation in +(Ng,n−1, x0), and ṽi ∈(Ng,n) (resp. w̃ j ∈
(Ng,n)) a lift of vi (resp. w j) with respect to ι∗ : (Ng,n) → +(Ng,n−1, x0). By the
exact sequence 5.2, there exists an integer ε ∈ Z such that we have the following relation in
(Ng,n):
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Fig.13. The subsurface N′ of Ng,n which is diffeomorphic to Ng,n−1.

ṽε1
1 · · · ṽεk

k = w̃
δ1
1 · · · w̃δl

l dεn−1.

We call the integer ε ∈ Z above the index of the relation vε1
1 · · · vεk

k = w
δ1
1 · · ·wδl

l in +(Ng,n−1,

x0), and the relation ṽε1
1 · · · ṽεk

k = w̃δ1
1 · · · w̃δl

l dεn−1 in (Ng,n) the relation which is obtained
from the relation vε1

1 · · · vεk
k = wδ1

1 · · ·wδl
l with the index ε. Note that the index depends on

the choice of lifts ṽi and w̃i. Recall that we take lifts of ai, y, b, di, ai, j, ri, j, si, j, s̄i, j, s̄ j,k;i ∈
+(Ng,n−1, x0) with respect to ι∗ : (Ng,n) → +(Ng,n−1, x0) by ai, y, b, di, ai, j, ri, j, si, j,
s̄i, j, s̄ j,k;i ∈(Ng,n), respectively. We remark that the defining relations of the presentation
for +(Ng,n−1, x0) in Lemma 5.8 are Relations (A1)-(B8), (D0) for 1 ≤ j, k, t ≤ n − 2,
(D1a)-(D4g) for 1 ≤ k ≤ n − 2 in Proposition 3.2, and (D1a)′-(D4g)′ in Lemma 5.8. We
prepare the following lemma.

Lemma 5.9. The indices for the relations of the presentation for +(Ng,n−1, x0) in
Lemma 5.8 are as follows:

ε =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2 for Relation (D1e)′ for m = i + 1,
1 for Relations (D1d)′ for m = i + 1, (D2a)′ for m = i − 1,

and (D2b)′ for i = 2,
−1 for Relations (D1b)′ for i = 2, (D1c)′ for i = 4,

and (D1d)′ for m = i − 1
−2 for Relations (D1b)′ for i = 1, and (D1e)′ for m = i,
0 for the other cases.

We prove Lemma 5.9 in Section 5.5. Applying Lemma 5.6 to the exact sequence 5.2, we
have the following lemma.

Lemma 5.10. Assume that g ≥ 1 and n ≥ 2. If +(Ng,n−1, x0) has the finite presentation
in Lemma 5.8, then (Ng,n) admits the presentation which is obtained from the finite pre-
sentation for +(Ng,n−1, x0) in Lemma 5.8 by adding the generator dn−1 and the relations

(D0)′ [dn−1, ai] = [dn−1, y] = [dn−1, b] = [dn−1, dl] = [dn−1, ai;k] = [dn−1, r j;k] = [dn−1, sl,t]
= [dn−1, s̄l,t] = 1

for 1 ≤ i ≤ g − 1, 1 ≤ j ≤ g, 1 ≤ k ≤ n − 1, and 1 ≤ l < t ≤ n − 1, and replacing
Relations (D1a)′-(D4h)′ by the relations which are obtained from Relations (D1a)′-(D4h)′

with the following indices:
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ε =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2 for Relation (D1e)′ for m = i + 1,
1 for Relations (D1d)′ for m = i + 1, (D2a)′ for m = i − 1,

and (D2b)′ for i = 2,
−1 for Relations (D1b)′ for i = 2, (D1c)′ for i = 4,

and (D1d)′ for m = i − 1
−2 for Relations (D1b)′ for i = 1, and (D1e)′ for m = i,
0 for the other cases.

Proof. Assume that g ≥ 1, n ≥ 2 and +(Ng,n−1, x0) has the finite presentation in
Lemma 5.8. Let X be the subset of (Ng,n−1) which consists of ai, d j, ai; j′ , ri′, j′ , sk,l, s̄k,l

(1 ≤ i ≤ g − 1, 1 ≤ i′ ≤ g, 1 ≤ j ≤ n − 2, 1 ≤ j′ ≤ n − 1, 1 ≤ k < l ≤ n − 1), y for g ≥ 2,
and b for g ≥ 4. We remark that the presentation for +(Ng,n−1, x0) in Lemma 5.8 has the
generating set ι∗(X) ⊂+(Ng,n−1, x0) and Relations (A1)-(B8), (D0) for 1 ≤ j, k, t ≤ n − 2,
(D1a)-(D4g) for 1 ≤ k ≤ n − 2 in Proposition 3.2, and (D1a)′-(D4g)′ in Lemma 5.8. Every
element in (Ng,n) commutes with dn−1. By applying Lemma 5.6 to the exact sequence 5.2,
we obtain the presentation for (Ng,n−1) whose generating set is X∪{dn−1} and the defining
relations as follows:

(1) For each relation vε1
1 · · · vεk

k = w
δ1
1 · · ·wδl

l of the finite presentation for +(Ng,n−1, x0)
in Lemma 5.8 and the lift ṽi ∈ (Ng,n) (resp. w̃ j ∈ (Ng,n)) of vi (resp. w j) with
respect to ι∗ : (Ng,n)→+(Ng,n−1, x0), there exists ε ∈ Z such that

ṽε1
1 · · · ṽεk

k = w̃
δ1
1 · · · w̃δl

l dεn−1.

(2) For each x ∈ X,

[dn−1, x] = 1.

The relations (2) above correspond to the added relations (D0)′. To determine the relation (1)
above, we need to compute the index ε ∈ Z for each relation of the finite presentation for
+(Ng,n−1, x0) in Lemma 5.8. By Lemma 5.9, their indices are determined and coincide
with ones in Lemma 5.10. Therefore we have proved Lemma 5.10. �

Proof of Proposition 3.2. We proceed by induction on n ≥ 1. The base case is of n = 1.
The finite presentation for (Ng,1) is given by Theorem 3.1.

Assume n ≥ 2.By the inductive hypothesis, (Ng,n−1) admits the presentation in Proposi-
tion 3.2. By Lemma 5.8, the group +(Ng,n−1, x0) admits the presentation whose generators
are ai, d j, ai; j′ , ri′, j′ , sk,l, s̄k,l (1 ≤ i ≤ g−1, 1 ≤ i′ ≤ g, 1 ≤ j ≤ n−2, 1 ≤ j′ ≤ n−1, 1 ≤ k < l ≤
n − 1), y for g ≥ 2, and b for g ≥ 4, and the defining relations are Relations (A1)-(B8), (D0)
for 1 ≤ j, k, t ≤ n−2, (D1a)-(D4g) for 1 ≤ k ≤ n−2 in Proposition 3.2, and (D1a)′-(D4g)′ in
Lemma 5.8. By Lemma 5.10, (Ng,n) admits the presentation whose generators are ai, d j,
ai; j′ , ri′, j′ , sk,l, s̄k,l (1 ≤ i ≤ g − 1, 1 ≤ i′ ≤ g, 1 ≤ j ≤ n − 1, 1 ≤ j′ ≤ n − 1, 1 ≤ k < l ≤ n − 1),
y for g ≥ 2, and b for g ≥ 4, and the defining relations are Relations (A1)-(B8), (D0), (D1a)-
(D4g) above, (D0)′, and the relations which are obtained from Relations (D1a)′-(D4h)′ with
the indices as in Lemma 5.10. The generating set of this presentation for (Ng,n) coincides
with the generating set of the presentation for (Ng,n) in Proposition 3.2. We can check
that Relation (D0)′ coincides with Relation (D0) for either j = n− 1, k = n− 1, or t = n− 1,
the relations which are obtained from Relations (D1a)′-(D4h)′ with the indices above co-
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incide with Relations (D1a)-(D4h) for k = n − 1, respectively. Therefore the presentation
for (Ng,n) above is equal to the presentation for (Ng,n) in Proposition 3.2 and we have
completed the proof of Proposition 3.2. �

5.5. Computing indices.
5.5. Computing indices. In this subsection, we prove Lemma 5.9. We compute the in-

dex ε ∈ Z for each relation of the finite presentation for +(Ng,n−1, x0) in Lemma 5.8.
Recall that the defining relations of the presentation for +(Ng,n−1, x0) in Lemma 5.8 are
Relations (A1)-(B8), (D0) for 1 ≤ j, k, t ≤ n − 2, (D1a)-(D4g) for 1 ≤ k ≤ n − 2 in Proposi-
tion 3.2, and (D1a)′-(D4g)′ in Lemma 5.8. First we compute the indices for Relations (A1)-
(B8), (D0), and (D1a)-(D4g) above. These relations come from the defining relations of the
presentation for (Ng,n−1) in Proposition 3.2. We have the following lemma.

Lemma 5.11. The indices for Relations (A1)-(B8), (D0), and (D1a)-(D4g) in the presen-
tation for +(Ng,n−1, x0) in Lemma 5.8 are zero.

Proof. Recall that N′ is the subsurface of Ng,n as in Figure 13 which is diffeomorphic to

Ng,n−1, and we have the inclusions N′
ι′
↪→ Ng,n

ι
↪→ Ng,n−1. The inclusion relations induce

the sequence of homomorphisms (N′)
ι′∗
↪→(Ng,n)

ι∗→+(Ng,n−1, x0). By the definition
of defining simple closed curves of the generators for +(Ng,n−1, x0) (see the beginning
of Section 5.4 and Figure 4, 5, and 6), the mapping classes ai, y, b, dk, ai,k, ri,k, si,k, s̄i,k,
s̄ j,k;i ∈ +(Ng,n−1, x0) are represented by diffeomorphisms on Ng,n−1 which are supported
on N′. Note that at the beginning of Section 5.4, we took the lifts of ai, y, b, dk, ai,k, ri,k,
si,k, s̄i,k, s̄ j,k;i ∈ +(Ng,n−1, x0) with respect to ι∗ : (Ng,n) → +(Ng,n−1, x0) by ai, y, b,
dk, ai,k, ri,k, si,k, s̄i,k, s̄ j,k;i ∈ (Ng,n), respectively. We can check that the choice of lifts

are natural for the homomorphisms (N′)
ι′∗
↪→(Ng,n)

ι∗→+(Ng,n−1, x0). Thus, for each
relation vε1

1 · · · vεk
k = w

δ1
1 · · ·wδl

l of the finite presentation for +(Ng,n−1, x0) in Lemma 5.8 and
the lift ṽi ∈ (Ng,n) (resp. w̃ j ∈ (Ng,n)) of vi (resp. w j) with respect to ι∗ : (Ng,n) →
+(Ng,n−1, x0), we have the relation ṽε1

1 · · · ṽεk
k = w̃

δ1
1 · · · w̃δl

l in (N′). Therefore, the indices
for Relations (A1)-(B8), (D0), and (D1a)-(D4g) in the presentation for +(Ng,n−1, x0) in
Lemma 5.8 are zero, and we have completed Lemma 5.11. �

For the completion of the proof of Lemma 5.9, calculations of indices for Relation (D1a)′-
(D4g)′ remain. By using the braid relations, we have the following lemma.

Lemma 5.12. The indices for the following relations are zero:
Relations (D1a)′ for m � i−1, i+1, (D1b)′ for i ≥ 3, (D1c)′ for i � 4, (D1d)′ for m ≤ i−2,

m = i, and m ≥ i + 2, (D1e)′ for m ≤ i − 1, and m ≥ i + 2, (D1f)′, (D1g)′ for i ≥ 2, (D1h)′,
(D2a)′ for m � i − 1, (D2b)′ for i � 2, (D2c)′ for i ≥ 5, (D2d)′ for m ≤ i − 2, and m ≥ i + 1,
(D2e)′, (D2f)′, (D2g)′ for i ≥ 2, (D2h)′, and (D3a)′-(D4h)′.

Proof. Let X1 and X2 be the subsets of +(Ng,n−1, x0) as in the proof of Lemma 5.8.
Each relation above is to be a following form: there exist elements f ∈ X1, x ∈ X2, and
h ∈+(Ng,n−1, x0) such that

f x f −1 = hxh−1.

Recall that we have the inclusion Ng,n = Ng,n−1 − intDg+n−1
ι
↪→ Ng,n−1 and the point x0 lies in
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the interior of the disk Dg+n−1. The element x is either a Dehn twist or a product of two Dehn
twists along disjoint simple closed curves on the subsurface Ng,n ⊂ Ng,n−1. Hence we put
either x = tc or x = tc1 t

−1
c2

for some simple closed curve c or a pair of disjoint simple closed
curves c1 and c2 on Ng,n ⊂ Ng,n−1 in Figure 4, 5, and 6. In each case, by the braid relations,
the relation above coincides with either the relation t f (c) = th(c) or t f (c1)t−1

f (c2) = th(c1)t−1
h(c2)

in +(Ng,n−1, x0). These relations mean that the simple closed curve f (c) (resp. the pair
( f (c1), f (c2))) is isotopic to the simple closed curve th(c) (resp. the pair (h(c1), h(c2))) in
Ng,n−1 − x0. We can take the isotopy as one which fixes the disk Dg+n−1 pointwise. Hence
the relations t f (c) = th(c) and t f (c1)t−1

f (c2) = th(c1)t−1
h(c2) hold in (Ng,n). Therefore the index of

the relation f x f −1 = hxh−1 is zero and we have completed the proof of Lemma 5.12. �

Proof of Lemma 5.9. By Lemma 5.11 and 5.12, remaining cases are for the following
19 relations: Relators (D1a)′ for m = i− 1, i+ 1, (D1b)′ for i = 1, 2, (D1c)′ for i = 4, (D1d)′

for m = i − 1, i + 1, (D1e)′ for m = i, i + 1, (D1g)′ for i = 1, (D2a)′ for m = i − 1, (D2b)′

for i = 2, (D2c)′ for i = 1, 2, 3, 4, (D2d)′ for m = i − 1, i and (D2g)′ for i = 1. We compute
the indices by using Relations (L+), (L-), and (L0) (see Lemma 5.1 and 5.3), and the braid
relations. The indices for Relations (D1a)′ for m = i − 1, i + 1 and (D1b)′ for i = 2 are
computed by a single braid relation and one of Relations (L+), (L-) and (L0). For instance,
for Relation (D1a)′ when m = i − 1, we have

(ai,n−1a−1
i )(ai−1;n−1a−1

i−1) = Δ(xi+1xi)Δ(xixi−1)
(L0)
= Δ((xi+1xi)(xixi−1))

= Δ(ai−1(xi+1xi))
(I)
= ai−1(ai;n−1a−1

i )a−1
i−1

in (Ng,n). Thus the index for Relations (D1a)′ for m = i−1 is ε = 0. By similar arguments,
we can show that the indices are ε = 0 for Relations (D1a)′ when m = i + 1 and ε = −1
Relation (D1b)′ when i = 2. By easy calculations, we show that the indices are ε = −2 for
Relations (D1b)′ when i = 1, ε = −1 for (D1c)′ when i = 4, ε = 1 for (D1d)′ when m = i+1,
ε = 1 for (D2a)′ when m = i − 1, ε = 1 for (D2b)′ when i = 2, ε = 0 for (D2d)′ when m = i.

For the other cases, computations of indices require observations by figures. As examples,
we compute the indices for Relation (D1e)′ when m = i and Relation (D2c)′ when i = 2 by
using figures.

For the other cases, we give computations of indices by only deformations of the expres-
sions. We define

ȳi := x−1
1 yix1 for i = 1, . . . , n − 2,

ȳi; j := {(x2x1)−1x2
2 · · · (x jx j−1)−1x2

j }−1ȳi{(x2x1)−1x2
2 · · · (x jx j−1)−1x2

j }
for 1 ≤ i ≤ n − 2, 2 ≤ j ≤ g.

Remark that ȳi; j = x−1
j yix j.

For Relation (D1e)′ when m = i, we have the following relation in (Ng,n) by Figure 14:

Δ(yl)Δ((xi+1xi))Δ(ȳl;i)−1 (L+)
= Δ(yl(xi+1xi))Δ(ȳ−1

l;i )dn−1
(L+)
= Δ(yl(xi+1xi)ȳ−1

l;i )d2
n−1.

Note that Δ(ri;l(xi+1xi)) = ri;l(ai;n−1a−1
i )r−1

i;l by the braid relation. Hence we have
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{r−1
i;n−1(sl,n−1d−1

l )−1ri;n−1}(sl,n−1d−1
l )(ai;n−1a−1

i )(s̄l,n−1;id−1
l )−1

{r−1
i;n−1(sl,n−1d−1

l )−1ri;n−1}−1

= {r−1
i;n−1(sl,n−1d−1

l )−1ri;n−1}Δ(yl)Δ((xi+1xi))Δ(ȳl;i)−1

{r−1
i;n−1(sl,n−1d−1

l )−1ri;n−1}−1

= {r−1
i;n−1(sl,n−1d−1

l )−1ri;n−1}Δ(yl(xi+1xi)ȳ−1
l;i )d2

n−1

{r−1
i;n−1(sl,n−1d−1

l )−1ri;n−1}−1

(I)
= Δ({r−1

i;n−1(sl,n−1d−1
l )−1ri;n−1}(yl(xi+1xi)ȳ−1

l;i ))d2
n−1

= Δ({x−2
i y−1

l x2
i }yl(xi+1xi)ȳ−1

l;i {x−2
i y−1

l x2
i }−1)d2

n−1

= Δ(ri;l(xi+1xi))d2
n−1

(I)
= ri;l(ai;n−1a−1

i )r−1
i;l d2

n−1.

Thus ε = −2 for Relation (D1e)′ when m = i.

Fig. 14. On the upper side, we explain that the relation Δ(yl)Δ((xi+1xi)) =
Δ((yl(xi+1xi))dn−1 is obtained from Relation (L+). Similarly, the arrow
from the upper right side to lower left side explain that the relation
Δ((yl(xi+1xi))Δ(ȳ−1

l;i ) = Δ(yl(xi+1xi)ȳ−1
l;i )dn−1 is obtained from Relation (L+).

“
” means a deformation of the loop by a homotopy fixing x0.

For Relation (D2c)′ when i = 2, we note that b(x2
2) is represented by a loop as on the

lower right side of Figure 20 and Δ(b(x2
2)) = br2;n−1b−1 by the braid relation. By Figure 15,

we have

(a1;n−1a−1
1 )(a3;n−1a−1

3 )r2;n−1r1;n−1(a1;n−1a−1
1 )−1

= (a1;n−1a−1
1 )Δ(x4x3)Δ(x2

2)Δ(x2
1)(a1;n−1a−1

1 )−1
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(L+)
= (a1;n−1a−1

1 )Δ(x4x3)Δ(x2
2x2

1)(a1;n−1a−1
1 )−1dn−1

(L+)
= (a1;n−1a−1

1 )Δ((x4x3)x2
2x2

1)(a1;n−1a−1
1 )−1d2

n−1
(I)
= Δ((a1;n−1a−1

1 )((x4x3)x2
2x2

1))d2
n−1

in (Ng,n). By Figure 16 and Figure 17, we have the following relation in (Ng,n).

(a2;n−1a−1
2 )−1r3;n−1(a3;n−1a−1

3 )−1r4;n−1(a2;n−1a−1
2 )

= (a2;n−1a−1
2 )−1r3;n−1r4;n−1r−1

4;n−1(a3;n−1a−1
3 )−1r4;n−1(a2;n−1a−1

2 )

= (a2;n−1a−1
2 )−1Δ(x2

3)Δ(x2
4)r−1

4;n−1Δ(x4x3)−1r4;n−1(a2;n−1a−1
2 )

(L+),(I)
= (a2;n−1a−1

2 )−1Δ(x2
3x2

4)Δ(r−1
4;n−1((x4x3)−1))(a2;n−1a−1

2 )dn−1

(L-)
= (a2;n−1a−1

2 )−1Δ(x2
3x2

4r−1
4;n−1((x4x3)−1))(a2;n−1a−1

2 )
(I)
= Δ((a2;n−1a−1

2 )−1(x2
3x2

4r−1
4;n−1((x4x3)−1))).

Let ζ1 and ζ2 be simple closed curves on Ng,n as in Figure 18. Since ι∗(tζ1 ) ∈+(Ng,n−1, x0)
fixes x2

2 and Δ((a1;n−1a−1
1 )((x4x3)x2

2x2
1)) = tζ1 t

−1
ζ2

, we have Δ((a1;n−1a−1
1 )((x4x3)x2

2x2
1))(x2

2) =
t−1
ζ2

(x2
2). We remark that the loop as on the upper right side of Figure 19 is homotopic to the

loop as on the lower right side of Figure 19 by a homotopy fixing x0 as in Figure 19. By the
relations above and Figure 20, we have

{(a3;n−1a−1
3 )(a1;n−1a−1

1 )}−1(a1;n−1a−1
1 )(a3;n−1a−1

3 )r2;n−1r1;n−1

(a1;n−1a−1
1 )−1r2;n−1(a2;n−1a−1

2 )−1r3;n−1(a3;n−1a−1
3 )−1r4;n−1

(a2;n−1a−1
2 ){(a3;n−1a−1

3 )(a1;n−1a−1
1 )}

(L+),(I)
= {(a3;n−1a−1

3 )(a1;n−1a−1
1 )}−1Δ((a1;n−1a−1

1 )((x4x3)x2
2x2

1))r2;n−1

(a2;n−1a−1
2 )−1r3;n−1(a3;n−1a−1

3 )−1r4;n−1(a2;n−1a−1
2 )

{(a3;n−1a−1
3 )(a1;n−1a−1

1 )}d2
n−1

(L+),(L-),(I)
= {(a3;n−1a−1

3 )(a1;n−1a−1
1 )}−1Δ((a1;n−1a−1

1 )((x4x3)x2
2x2

1))r2;n−1

Δ((a2;n−1a−1
2 )−1(x2

3x2
4r−1

4;n−1((x4x3)−1))){(a3;n−1a−1
3 )(a1;n−1a−1

1 )}
d2

n−1

= {(a3;n−1a−1
3 )(a1;n−1a−1

1 )}−1Δ((a1;n−1a−1
1 )((x4x3)x2

2x2
1))Δ(x2

2)

Δ((a1;n−1a−1
1 )((x4x3)x2

2x2
1))−1Δ((a1;n−1a−1

1 )((x4x3)x2
2x2

1))

Δ((a2;n−1a−1
2 )−1(x2

3x2
4r−1

4;n−1((x4x3)−1))){(a3;n−1a−1
3 )(a1;n−1a−1

1 )}
d2

n−1
(I)
= {(a3;n−1a−1

3 )(a1;n−1a−1
1 )}−1Δ(t−1

ζ2
(x2

2))Δ((a1;n−1a−1
1 )((x4x3)x2

2x2
1))

Δ((a2;n−1a−1
2 )−1(x2

3x2
4r−1

4;n−1((x4x3)−1))){(a3;n−1a−1
3 )(a1;n−1a−1

1 )}
d2

n−1
(L-)
= {(a3;n−1a−1

3 )(a1;n−1a−1
1 )}−1Δ(t−1

ζ2
(x2

2))
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Δ((a1;n−1a−1
1 )((x4x3)x2

2x2
1) · (a2;n−1a−1

2 )−1(x2
3x2

4r−1
4;n−1((x4x3)−1)))

{(a3;n−1a−1
3 )(a1;n−1a−1

1 )}dn−1

(L-)
= {(a3;n−1a−1

3 )(a1;n−1a−1
1 )}−1Δ(t−1

ζ2
(x2

2) ·
(a1;n−1a−1

1 )((x4x3)x2
2x2

1) · (a2;n−1a−1
2 )−1(x2

3x2
4r−1

4;n−1((x4x3)−1)))

{(a3;n−1a−1
3 )(a1;n−1a−1

1 )}
(I)
= Δ({(a3;n−1a−1

3 )(a1;n−1a−1
1 )}−1(t−1

ζ2
(x2

2) ·
(a1;n−1a−1

1 )((x4x3)x2
2x2

1) · (a2;n−1a−1
2 )−1(x2

3x2
4r−1

4;n−1((x4x3)−1))))

= Δ(b(x2
2))

(I)
= br2;n−1b−1.

Thus ε = 0 for Relation (D2c)′ when i = 2.

Fig. 15. Relations Δ(x2
2)Δ(x2

1) = Δ(x2
2x2

1)dn−1 and Δ(x4x3)Δ(x2
1x2

2) =
Δ((x4x3)x2

2x2
1)dn−1 and loop (a1;n−1a−1

1 )((x4x3)x2
2x2

1).

Fig.16. Relation Δ(x2
3)Δ(x2

4) = Δ(x2
3x2

4)dn−1.
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Fig. 17. Relation Δ(x2
3x2

4)Δ(r−1
4;n−1((x4x3)−1)) = Δ(x2

3x2
4r−1

4;n−1((x4x3)−1))d−1
n−1

and loops r−1
4;n−1((x4x3)−1) and (a2;n−1a−1

2 )−1(x2
3x2

4r−1
4;n−1((x4x3)−1)).

Fig.18. Simple closed curves ζ1 and ζ2 on Ng,n.

For Relation (D1d)′ when m = i − 1, we have

[(ai−1;n−1a−1
i−1)−1, (sl,n−1d−1

l )−1](ai;n−1a−1
i )(sl,n−1d−1

l )(ai−1;n−1a−1
i−1)

= {(sl,n−1d−1
l )(ai−1;n−1a−1

i−1)}−1Δ(xixi−1)Δ(yl)Δ(xi+1xi){(sl,n−1d−1
l )

(ai−1;n−1a−1
i−1)}

(L+)
= {(sl,n−1d−1

l )(ai−1;n−1a−1
i−1)}−1Δ(xixi−1)Δ(yl(xi+1xi)){(sl,n−1d−1

l )

(ai−1;n−1a−1
i−1)}dn−1

(L0)
= {(sl,n−1d−1

l )(ai−1;n−1a−1
i−1)}−1Δ((xixi−1)yl(xi+1xi)){(sl,n−1d−1

l )

(ai−1;n−1a−1
i−1)}dn−1

(I)
= Δ({(sl,n−1d−1

l )(ai−1;n−1a−1
i−1)}−1((xixi−1)yl(xi+1xi)))dn−1
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Fig.19. Loop t−1
ζ2

(x2
2).

= Δ(ai−1;l(xi+1xi))dn−1
(I)
= ai−1;l(ai;n−1a−1

i )a−1
i−1;ldn−1.

Thus ε = −1 for Relation (D1d)′ when m = i − 1.
For Relation (D1e)′ when m = i + 1, we have

r−1
i+1;n−1(sl,n−1d−1

l )−1ri+1;n−1(s̄l,n−1;i+1d−1
l )(ai;n−1a−1

i )

= r−1
i+1;n−1Δ(y−1

l )ri+1;n−1Δ(ȳl;i+1)Δ(xi+1xi)

(I),(L-)
= Δ(r−1

i+1;n−1(y−1
l ))Δ(ȳl;i+1(xi+1xi))d−1

n−1
(L-)
= Δ(r−1

i+1;n−1(y−1
l )ȳl;i+1(xi+1xi))d−2

n−1

= Δ(ri+1;l(xi+1xi))d−2
n−1

(I)
= ri+1;l(ai;n−1a−1

i )r−1
i+1;ld

−2
n−1.

Thus ε = −2 for Relation (D1e)′ when m = i + 1.
For Relation (D1g)′ when i = 1, we have

[(s̄l,n−1d−1
l )−1, st,n−1d−1

t ]−1(sl,n−1d−1
l )(a1;n−1a−1

1 )r1;n−1(s̄t,n−1d−1
t )r−1

1;n−1

(sl,n−1d−1
l )−1r1;n−1(s̄t,n−1d−1

t )−1r−1
1;n−1[(s̄l,n−1d−1

l )−1, (st,n−1d−1
t )]

= [(s̄l,n−1d−1
l )−1, st,n−1d−1

t ]−1Δ(yl)Δ(x2x1)r1;n−1Δ(ȳt)r−1
1;n−1Δ(yl)−1

r1;n−1Δ(ȳt)−1r−1
1;n−1[(s̄l,n−1d−1

l )−1, (st,n−1d−1
t )]
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Fig. 20. Relations Δ((a1;n−1a−1
1 )((x4x3)x2

2x2
1))Δ((a2;n−1a−1

2 )−1

(x2
3x2

4r−1
4;n−1((x4x3)−1))) = Δ(a1;n−1a−1

1 )((x4x3)x2
2x2

1)·
(a2;n−1a−1

2 )−1(x2
3x2

4r−1
4;n−1((x4x3)−1)))d−1

n−1 and
Δ(t−1

ζ2
(x2

2))Δ(a1;n−1a−1
1 )((x4x3)x2

2x2
1) · (a2;n−1a−1

2 )−1(x2
3x2

4r−1
4;n−1((x4x3)−1))) =

Δ(t−1
ζ2

(x2
2) · a1;n−1a−1

1 )((x4x3)x2
2x2

1) · (a2;n−1a−1
2 )−1(x2

3x2
4r−1

4;n−1((x4x3)−1)))d−1
n−1

and loop b(x2
2).

(L+),(I)
= [(s̄l,n−1d−1

l )−1, st,n−1d−1
t ]−1Δ(yl(x2x1))

Δ(r1;n−1(ȳt))Δ(yl)−1Δ(r1;n−1(ȳt))−1[(s̄l,n−1d−1
l )−1, (st,n−1d−1

t )]dn−1

(I)
= [(s̄l,n−1d−1

l )−1, st,n−1d−1
t ]−1Δ(yl(x2x1))Δ(Δ(r1;n−1(ȳt))(yl))−1

[(s̄l,n−1d−1
l )−1, (st,n−1d−1

t )]dn−1

(L-)
= [(s̄l,n−1d−1

l )−1, st,n−1d−1
t ]−1Δ(yl(x2x1)Δ(r1;n−1(ȳt))(yl)−1)

[(s̄l,n−1d−1
l )−1, (st,n−1d−1

t )]
(I)
= Δ([(s̄l,n−1d−1

l )−1, st,n−1d−1
t ]−1(yl(x2x1)Δ(r1;n−1(ȳt))(yl)−1))

= Δ(s̄l;t(xi+1xi))
(I)
= s̄l;t(ai;n−1a−1

i )s̄−1
l;t .

Thus ε = 0 for Relation (D1g)′ when i = 1.
For Relation (D2c)′ when i = 1, we have

(a1;n−1a−1
1 )−1(a3;n−1a−1

3 )−1(a2;n−1a−1
2 )−1r−1

4;n−1(a3;n−1a−1
3 )
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r−1
3;n−1(a2;n−1a−1

2 )r−1
2;n−1(a1;n−1a−1

1 )

= (a1;n−1a−1
1 )−1(a3;n−1a−1

3 )−1Δ(x3x2)−1Δ(x2
4)−1(a3;n−1a−1

3 )

r−1
3;n−1Δ(x3x2)r3;n−1Δ(x2

3)−1Δ(x2
2)−1(a1;n−1a−1

1 )

(L-),(I)
= (a1;n−1a−1

1 )−1(a3;n−1a−1
3 )−1Δ((x3x2)−1x−2

4 )(a3;n−1a−1
3 )

Δ(r−1
3;n−1(x3x2))Δ(x−2

3 x−2
2 )(a1;n−1a−1

1 )d−2
n−1

(I),(L+)
= (a1;n−1a−1

1 )−1Δ((a3;n−1a−1
3 )−1((x3x2)−1x−2

4 ))Δ(r−1
3;n−1(x3x2)x−2

3 x−2
2 )

(a1;n−1a−1
1 )d−1

n−1
(L+)
= (a1;n−1a−1

1 )−1Δ((a3;n−1a−1
3 )−1((x3x2)−1x−2

4 )r−1
3;n−1(x3x2)x−2

3 x−2
2 )

(a1;n−1a−1
1 )

(I)
= Δ((a1;n−1a−1

1 )−1((a3;n−1a−1
3 )−1((x3x2)−1x−2

4 )r−1
3;n−1(x3x2)x−2

3 x−2
2 ))

= Δ(b(x2
1))

(I)
= b(r1;n−1)b−1.

Thus ε = 0 for Relation (D2c)′ when i = 1.
For Relation (D2c)′ when i = 3, we have

{(a3;n−1a−1
3 )(a1;n−1a−1

1 )}−1r−1
4;n−1(a3;n−1a−1

3 )r−1
3;n−1(a2;n−1a−1

2 )

r−1
2;n−1(a1;n−1a−1

1 )r−1
1;n−1(a2;n−1a−1

2 )−1r3;n−1(a3;n−1a−1
3 )−1

(a1;n−1a−1
1 )−1{(a3;n−1a−1

3 )(a1;n−1a−1
1 )}

= {(a3;n−1a−1
3 )(a1;n−1a−1

1 )}−1r−1
4;n−1(a3;n−1a−1

3 )r−1
3;n−1(a2;n−1a−1

2 )

r−1
2;n−1Δ(x2x1)r2;n−1Δ(x2

2)−1Δ(x2
1)−1(a2;n−1a−1

2 )−1r3;n−1(a3;n−1a−1
3 )−1

Δ(x2x1)−1{(a3;n−1a−1
3 )(a1;n−1a−1

1 )}
(I),(L-)
= {(a3;n−1a−1

3 )(a1;n−1a−1
1 )}−1r−1

4;n−1(a3;n−1a−1
3 )r−1

3;n−1(a2;n−1a−1
2 )

Δ(r−1
2;n−1(x2x1))Δ(x−2

2 x−2
1 )(a2;n−1a−1

2 )−1r3;n−1(a3;n−1a−1
3 )−1

Δ(x2x1)−1{(a3;n−1a−1
3 )(a1;n−1a−1

1 )}d−1
n−1

(L+)
= {(a3;n−1a−1

3 )(a1;n−1a−1
1 )}−1r−1

4;n−1(a3;n−1a−1
3 )r−1

3;n−1(a2;n−1a−1
2 )

Δ(r−1
2;n−1(x2x1)x−2

2 x−2
1 )(a2;n−1a−1

2 )−1r3;n−1(a3;n−1a−1
3 )−1

Δ(x2x1)−1{(a3;n−1a−1
3 )(a1;n−1a−1

1 )}
(I)
= {(a3;n−1a−1

3 )(a1;n−1a−1
1 )}−1

r−1
4;n−1Δ({(a3;n−1a−1

3 )r−1
3;n−1(a2;n−1a−1

2 )}(r−1
2;n−1(x2x1)x−2

2 x−2
1 ))r4;n−1

Δ(x2
4)−1Δ(x2x1)−1{(a3;n−1a−1

3 )(a1;n−1a−1
1 )}

(I),(L-)
= {(a3;n−1a−1

3 )(a1;n−1a−1
1 )}−1

Δ({r−1
4;n−1(a3;n−1a−1

3 )r−1
3;n−1(a2;n−1a−1

2 )}(r−1
2;n−1(x2x1)x−2

2 x−2
1 ))

Δ(x−2
4 (x2x1)−1){(a3;n−1a−1

3 )(a1;n−1a−1
1 )}
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(L+)
= {(a3;n−1a−1

3 )(a1;n−1a−1
1 )}−1

Δ({r−1
4;n−1(a3;n−1a−1

3 )r−1
3;n−1(a2;n−1a−1

2 )}(r−1
2;n−1(x2x1)x−2

2 x−2
1 )x−2

4

(x2x1)−1){(a3;n−1a−1
3 )(a1;n−1a−1

1 )}
(I)
= Δ({(a3;n−1a−1

3 )(a1;n−1a−1
1 )}−1({r−1

4;n−1(a3;n−1a−1
3 )r−1

3;n−1(a2;n−1a−1
2 )}

(r−1
2;n−1(x2x1)x−2

2 x−2
1 )x−2

4 (x2x1)−1))

= Δ(b(x2
3))

(I)
= b(r3;n−1)b−1.

Thus ε = 0 for Relation (D2c)′ when i = 3.
For Relation (D2c)′ when i = 4, we have

r4;n−1(a2;n−1a−1
2 )r1;n−1(a1;n−1a−1

1 )−1r2;n−1

(a2;n−1a−1
2 )−1r3;n−1(a3;n−1a−1

3 )−1r4;n−1(a3;n−1a−1
3 )(a1;n−1a−1

1 )

= Δ(x2
4)Δ(x3x2)Δ(x2

1)(a1;n−1a−1
1 )−1Δ(x2

2)(a1;n−1a−1
1 )Δ(x2x1)−1

(a2;n−1a−1
2 )−1Δ(x2

3)(a2;n−1a−1
2 ) Δ(x3x2)−1Δ(x4x3)−1

r4;n−1Δ(x4x3)Δ(x2x1)
(I),(L0)
= Δ(x2

4)Δ(x3x2)Δ(x2
1)Δ((a1;n−1a−1

1 )−1(x2
2))Δ(x2x1)−1

Δ((a2;n−1a−1
2 )−1(x2

3))Δ((x3x2)−1(x4x3)−1)r4;n−1Δ(x4x3)Δ(x2x1)
(L+)
= Δ(x2

4(x3x2)x2
1)Δ((a1;n−1a−1

1 )−1(x2
2))Δ(x2x1)−1

Δ((a2;n−1a−1
2 )−1(x2

3))Δ((x3x2)−1(x4x3)−1)r4;n−1Δ(x4x3x2x1)d3
n−1

(L-)
= Δ(x2

4(x3x2)x2
1)Δ((a1;n−1a−1

1 )−1(x2
2))Δ(x2x1)−1

Δ((a2;n−1a−1
2 )−1(x2

3)(x3x2)−1(x4x3)−1)r4;n−1Δ(x4x3x2x1)d2
n−1

(L0)
= Δ(x2

4(x3x2)x2
1)Δ((a1;n−1a−1

1 )−1(x2
2))Δ((x2x1)−1

(a2;n−1a−1
2 )−1(x2

3)(x3x2)−1(x4x3)−1)r4;n−1Δ(x4x3x2x1)d2
n−1

(L-)
= Δ(x2

4(x3x2)x2
1)Δ((a1;n−1a−1

1 )−1(x2
2)(x2x1)−1

(a2;n−1a−1
2 )−1(x2

3)(x3x2)−1(x4x3)−1)r4;n−1Δ(x4x3x2x1)dn−1

(L-)
= Δ(x2

4(x3x2)x2
1(a1;n−1a−1

1 )−1(x2
2)(x2x1)−1(a2;n−1a−1

2 )−1(x2
3)(x3x2)−1

(x4x3)−1)Δ(x4x3x2x1) Δ(x4x3x2x1)−1Δ(x2
4)Δ(x4x3x2x1)

(L+),(I)
= Δ(x2

4(x3x2)x2
1(a1;n−1a−1

1 )−1(x2
2)(x2x1)−1(a2;n−1a−1

2 )−1(x2
3)(x3x2)−1

(x4x3)−1x4x3x2x1)Δ(Δ(x4x3x2x1)−1(x2
4))dn−1

(L-)
= Δ(x2

4(x3x2)x2
1(a1;n−1a−1

1 )−1(x2
2)(x2x1)−1(a2;n−1a−1

2 )−1(x2
3)(x3x2)−1

(x4x3)−1x4x3x2x1Δ(x4x3x2x1)−1(x2
4))

= Δ(b(x2
4))

(I)
= b(r4;n−1)b−1.
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Thus ε = 0 for Relation (D2c)′ when i = 4.
For Relation (D2d)′ when m = i − 1, we have

{(sl,n−1d−1
l )(ai−1;n−1a−1

i−1)}−1(ai−1;n−1a−1
i−1)(sl,n−1d−1

l )ri;n−1ri−1;n−1

(ai−1;n−1a−1
i−1)−1ri;n−1(s̄l,n−1;id−1

l ){(sl,n−1d−1
l )(ai−1;n−1a−1

i−1)}
= {(sl,n−1d−1

l )(ai−1;n−1a−1
i−1)}−1(ai−1;n−1a−1

i−1)Δ(yl)Δ(x2
i )Δ(x2

i−1)

(ai−1;n−1a−1
i−1)−1Δ(x2

i )(s̄l,n−1;id−1
l ){(sl,n−1d−1

l )(ai−1;n−1a−1
i−1)}

(L+)
= {(sl,n−1d−1

l )(ai−1;n−1a−1
i−1)}−1(ai−1;n−1a−1

i−1)Δ(ylx2
i x2

i−1)(ai−1;n−1a−1
i−1)−1

Δ(x2
i )(s̄l,n−1;id−1

l ){(sl,n−1d−1
l )(ai−1;n−1a−1

i−1)}d2
n−1

(I)
= {(sl,n−1d−1

l )(ai−1;n−1a−1
i−1)}−1Δ((ai−1;n−1a−1

i−1)(yl x2
i x2

i−1))Δ(ȳl;i)

(s̄l,n−1;id−1
l )−1Δ(x2

i )(s̄l,n−1;id−1
l ){(sl,n−1d−1

l )(ai−1;n−1a−1
i−1)}d2

n−1

(I)
= {(sl,n−1d−1

l )(ai−1;n−1a−1
i−1)}−1Δ((ai−1;n−1a−1

i−1)(yl x2
i x2

i−1))Δ(ȳl;i)

Δ((s̄l,n−1;id−1
l )−1(x2

i )){(sl,n−1d−1
l )(ai−1;n−1a−1

i−1)}d2
n−1

(L-)
= {(sl,n−1d−1

l )(ai−1;n−1a−1
i−1)}−1Δ((ai−1;n−1a−1

i−1)(yl x2
i x2

i−1)ȳl;i)

Δ((s̄l,n−1;id−1
l )−1(x2

i )){(sl,n−1d−1
l )(ai−1;n−1a−1

i−1)}dn−1

(L-)
= {(sl,n−1d−1

l )(ai−1;n−1a−1
i−1)}−1Δ((ai−1;n−1a−1

i−1)(yl x2
i x2

i−1)ȳl;i

(s̄l,n−1;id−1
l )−1(x2

i )){(sl,n−1d−1
l )(ai−1;n−1a−1

i−1)}
(I)
= Δ({(sl,n−1d−1

l )(ai−1;n−1a−1
i−1)}−1((ai−1;n−1a−1

i−1)(yl x2
i x2

i−1)ȳl;i

(s̄l,n−1;id−1
l )−1(x2

i )))

= Δ(ai−1;n−1(x2
i ))

(I)
= ai−1;n−1(ri;n−1)a−1

i−1;n−1.

Thus ε = 0 for Relation (D2d)′ when m = i − 1.
For Relation (D2g)′ when i = 1, we have

[st,n−1d−1
t , (s̄l,n−1d−1

l )−1][r1;n−1(s̄t,n−1d−1
t )r−1

1;n−1, (sl,n−1d−1
l )−1]r1;n−1

= (st,n−1d−1
t )Δ(ȳl)−1(st,n−1d−1

t )−1Δ(ȳl)Δ(x2
1)(s̄t,n−1d−1

t )

r−1
1;n−1(sl,n−1d−1

l )−1r1;n−1Δ(ȳt)−1r−1
1;n−1(sl,n−1d−1

l )r1;n−1

(I)
= Δ((st,n−1d−1

t )(ȳl))−1Δ(ȳl)Δ(ȳt)(s̄t,n−1d−1
t )−1Δ(x2

1)(s̄t,n−1d−1
t )

Δ(r−1
1;n−1(sl,n−1d−1

l )−1r1;n−1(ȳt))−1

(I)
= Δ((st,n−1d−1

t )(ȳl))−1Δ(ȳl)Δ(ȳt)Δ((s̄t,n−1d−1
t )−1(x2

1))

Δ(r−1
1;n−1(sl,n−1d−1

l )−1r1;n−1(ȳt))−1

(L-)
= Δ((st,n−1d−1

t )(ȳl))−1Δ(ȳlȳt)Δ((s̄t,n−1d−1
t )−1(x2

1))

Δ(r−1
1;n−1(sl,n−1d−1

l )−1r1;n−1(ȳt))−1d−1
n−1

(L-)
= Δ((st,n−1d−1

t )(ȳl))−1Δ(ȳlȳt(s̄t,n−1d−1
t )−1(x2

1))
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Δ(r−1
1;n−1(sl,n−1d−1

l )−1r1;n−1(ȳt))−1d−2
n−1

(L+)
= Δ((st,n−1d−1

t )(ȳl)−1ȳlȳt(s̄t,n−1d−1
t )−1(x2

1))

Δ(r−1
1;n−1(sl,n−1d−1

l )−1r1;n−1(ȳt))−1d−1
n−1

(L+)
= Δ((st,n−1d−1

t )(ȳl)−1ȳlȳt(s̄t,n−1d−1
t )−1(x2

1)r−1
1;n−1(sl,n−1d−1

l )−1r1;n−1(ȳt)−1)

= Δ(s̄l,t(x2
1))

(I)
= s̄l,t(r1;n−1)s̄−1

l,t .

Thus ε = 0 for Relation (D2g)′ when i = 1.Therefore we have completed the proof of
Lemma 5.9. �

As a corollary of the proof of Lemma 5.9 and 5.12, we have the following proposition.

Proposition 5.13. Relations (D0), (D1a)-(D4g) of the finite presentation for (Ng,n) in
Proposition 3.2 are obtained from Relations (I) and (III) in Theorem 4.1.

Proof. Relations (D0) in Proposition 3.2 are clearly obtained from Relations (I) in The-
orem 4.1. We first consider Relations (D1a)-(D4g) for k = n − 1. We remark that Rela-
tions (D1a)-(D4g) for k = n − 1 coincide with the relations which are obtained from Rela-
tions (D1a)′-(D4h)′ in Lemma 5.8 with the indices as in Lemma 5.9. For Relations (D1a)-
(D4g) which are obtained from some of Relations (D1a)′-(D4h)′ listed in Lemma 5.12, by
the argument in the proof of Lemma 5.12, we show that these relations are obtained from
Relations (I). For the other relations, that are Relations (D1a)-(D4g) which are obtained
from Relations (D1a)′-(D4h)′ discussed in the proof of Lemma 5.9, by the argument and
deformations of the expressions in the proof of Lemma 5.9, we show that these relations
are obtained from Relations (I), (L+), (L-), and (L0). By Lemma 5.2 and 5.4, we show that
Relations (L0) are obtained from Relations (I) in Theorem 4.1 and Relations (L+) and (L-)
coincide with Relations (III) in Theorem 4.1.

We take any 1 ≤ k′ ≤ n − 2. Let N(k′) be the subsurface of Ng,n as in Figure 21, and
N′(k′) the surface which is obtained by regluing N(k′) and the 2-disk Dg+k′ with the base
point x′0. Since N(k′) and N′(k′) are diffeomorphic to Ng,k′+1 and Ng,k′ , respectively, we re-
gard the inclusion relation N(k′) ⊂ N′(k′) as Ng,k′+1 ⊂ Ng,k′ . The mapping classes ai, y, b,
dl, ai,l, ri,l, si,l, s̄i,l, s̄ j,l;i ∈(Ng,n) for 1 ≤ l ≤ k′ are represented by diffeomorphisms on Ng,n

which are supported on N(k′) = Ng,k′+1. Thus Relations (D1a)-(D4g) for k = k′ of the pre-
sentation for (Ng,n) in Proposition 3.2 are regarded as relations in (Ng,k′+1) ⊂(Ng,n).
These relations clearly coincide with Relations (D1a)-(D4g) for k = k′ of the presentation
for (Ng,k′+1) in Proposition 3.2, and also the relations which are obtained from Rela-
tions (D1a)′-(D4g)′ of the presentation for +(Ng,k′ , x′0) in Lemma 5.8 with the indices as
in Lemma 5.9. By the argument in the proof of Lemma 5.9 and Lemma 5.12 for the case
n−1 = k′, we show that Relations (D1a)-(D4g) for k = k′ of the presentation for (Ng,k′+1)
in Proposition 3.2 are obtained from Relations (I) and (III) of the presentation for (Ng,k′+1)
in Theorem 4.1. By the natural inclusion (Ng,k′+1) ⊂ (Ng,n), Relations (I) and (III) in
(Ng,k′+1) are to be Relations (I) and (III) in (Ng,n). Therefore we have completed the
proof of Proposition 5.13. �
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Fig.21. The subsurface N(k′) of Ng,n which is diffeomorphic to Ng,k′+1.
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