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GEOMETRY OF KALMAN FILTERS
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Communicated by Martin Schlichenmaier

Abstract. We present a geometric explanation of Kalman filters in terms of a
symplectic linear space and a special quadratic form on it. It is an extension of the
work of Bougerol with application of a different metric we have introduced earlier.
The new results are contained in Theorem 1 and Theorem 4.

1. Kalman Filters and Two Contractions

Let us consider a linear dynamical system with noise. In the simplest case of
discrete time we have a linear map F : R

k → R
k with additive noise

Xn = FXn−1 + Gεn, n ≥ 1

where Xn is the state of the system at time n ≥ 0 and the noise {εn}, n ≥ 1,
is a sequence of independent normalized gaussian vectors in R

l and G is a k × l
matrix, with l ≤ k. The initial state X0 has also a gaussian distribution with mean
X̂0 and covariance matrix P0.

We take measurements on the system and the result at time n is

Yn = HXn + ηn, n ≥ 1

where H is a m× k matrix and {ηn} is the observational noise which is assumed
again to be a sequence of independent normalized gaussian vectors. The dimen-
sion of the measurement vector (m) is in general smaller than the dimension of
the state vector (k), e.g., m = 1.

The problem addressed by the Kalman filter is to estimate Xn given the values of
Y1, ..., Yn. The ideal answer is the estimator

X̂n = E(Xn|Fn)
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where Fn is the sigma-algebra generated by the random vectors Y1, ..., Yn. The
Kalman filter amounts to the remarkable recursive relation

X̂n = ZnX̂n−1 + TnYn (1)

where
Zn = G − PnH∗HG, Tn = PnH∗

and Pn is the conditional error covariance matrix

Pn = E((Xn − X̂n)(Xn − X̂n)∗|Fn).

Postponing for a moment the discussion of Pn let us note that it is unusual for X̂1

to be a good estimate of X1 since little information is available. On the other hand
after some time the quality of the estimate X̂n is much better. It follows that in
the successive applications of (1) the memory of X̂0 should disappear. Hence the
product

Zn = Zn . . . Z2Z1

needs to decay, without much assumptions and sufficiently fast. We will give a
purely geometric account of this phenomenon, which essentially follows Bouge-
rol’s paper [1].

The Kalman filter is completed by the recursive, and deterministic, relation for Pn

Pn = Φ(Pn−1) (2)

where
Φ(P ) = (C + DP )(A + BP )−1 (3)

and the k×k matrices A,B,C,D are the blocks of the linear map S : R
k×R

k →
R

k × R
k

S =

[
A B
C D

]
=

[
(I + H∗H)F ∗−1 H∗HF

GG∗F ∗−1 F

]
=

[
I H∗H
0 I

] [
I 0

GG∗ I

] [
F ∗−1 0

0 F

]
.

(4)

Maps of the form (3) are given different names: matrix linear fractional transfor-
mation (mlft), matrix Möbius map, or discrete Riccati equation. We will use the
first term. The mlft (3) can be understood as the action of the linear map S on
the grassmannian (the manifold of linear subspaces of fixed dimension in a vector
space). In our case it is the action of the linear map on subspaces of the form
gP := {(x, Px);x ∈ R

k} (gP is the graph of P ) where P is a k × k matrix.
The linear map S is quite special since Φ has to take symmetric positive definite
matrices into symmetric positive definite matrices.
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Proposition 1. Let a linear nonsingular map S : R
k × R

k → R
k × R

k

S =

[
A B
C D

]
act on k-dimensional subspaces of the form {(x, Px) ; x ∈ R

k} by the mlft

Φ(P ) = (C + DP )(A + BP )−1.

If Φ(P ) is symmetric for any P from an open set of symmetric matrices then
A∗C and D∗B are symmetric and there must be a nonzero constant α such that
A∗D − C∗B = αI .

It follows that S is a multiple of a symplectic matrix. Namely let us consider the
linear symplectic space W = R

k × R
k with the symplectic form ω

ω(w,w′) = 〈w1, w
′
2〉 − 〈w2, w

′
1〉

where w = (w1, w2), w′ = (w′
1, w

′
2) and 〈·, ·〉 denotes the standard scalar product

in R
k. The claim in Proposition 1 is equivalent to

ω(Sw,Sw′) = αω(w,w′)

for all vectors w,w′ ∈ R
k × R

k.

In the language of the symplectic form the matrix P is symmetric if and only if
ω vanishes on the graph subspace gP , i.e., gP is a Lagrangian subspace. Hence
Proposition 1 can be reformulated to say that any nonsingular linear map S which
takes Lagrangian subspaces into Lagrangian subspaces must be a multiple of a
linear symplectic map. Multiplying S by a scalar does not change the respective
mlft. The map S in (4) is actually symplectic, i.e., α = 1.

In the proof we will need the following

Lemma 2. If for two k × k matrices X,Y we have that XZ + ZY is symmetric
for any symmetric matrix Z, then there is a constant α such that X − Y ∗ = αI .

Proof: We have XZ +ZY = ZX∗+Y ∗Z and hence (X −Y ∗)Z = Z(X∗−Y )
for any symmetric matrix Z. Taking Z = I we get that X − Y ∗ = X∗ − Y .
Further the only matrix that commutes with all symmetric matrices is a multiple
of identity. �
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Proof of Proposition 1:
If Φ(P ) is symmetric then so is

Ψ(P ) =(A∗ + PB∗)Φ(P )(A + BP ) = (A∗ + PB∗)(C + DP )

=A∗C + A∗DP + PB∗C + PB∗DP.

Differentiating Ψ(P ) at some fixed P0 we get that for any symmetric W the fol-
lowing matrix is also symmetric

DP0ΨW =A∗DW + WB∗C + WB∗DP0 + P0B
∗DW

=(A∗D + P0B
∗D)W + W (B∗C + B∗DP0) .

By Lemma 1 we conclude that there is α = α(P0) such that

A∗D + P0B
∗D = C∗B + P0D

∗B + α(P0)I.

Differentiating the last equation with respect to P0 we conclude that B∗D is sym-
metric and α must be constant. We obtain further that A∗D − C∗B = αI .

Finally also A∗C = Ψ(P )−A∗DP −PB∗C −PB∗DP must be symmetric. �

In his groundbreaking paper Bougerol [1] addressed the consequences of the fact
that Φ must take positive definite matrices into positive definite matrices. The
space of positive definite matrices carries the riemannian metric of a symmetric
space and Bougerol showed that it is contracted by the action of any such Φ. He
also showed in a very general setting that each Zn is a contraction when 〈P−1

n−1·, ·〉
and 〈P−1

n ·, ·〉 are used as scalar products in the domain and target spaces respec-
tively. These two contraction properties are the bedrock of the stability of Kalman
filters. In particular Pn for large n depends very weakly on P0. Bougerol’s ap-
proach allows variable, or random S and Φ [2].

Contraction property is understood here in the weak sense of non-expansion. It
holds without any assumptions on the system. Strict contraction requires addi-
tional properties which are called controllability and observability. These two
properties have transparent geometric interpretation in the language of the maps
S.

Our purpose in this note is to show that both contraction properties can be under-
stood purely in terms of the symplectic structure and that they are rigidly related.
This is accomplished by the introduction of another metric into the space of pos-
itive definite matrices, based on the symplectic structure [5]. We will call it the
sector metric. Several basic properties of this metric were established in [5]. In
particular it is a finslerian metric, i.e., at every tangent space there is a norm, rather
than a scalar product.
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We will prove the following property of Kalman filters.

Theorem 3. For a Kalman filter (1),(2) we have for any j ≥ 1, i ≥ 1

1 ≥‖Zj+i . . . Zj‖
2 = ‖DPj−1Φ

i+1‖

≥‖
(
DPj−1Φ

i+1
)−1

‖−1 = ‖(Zj+i . . . Zj)
−1‖−2

where the sector metric is used for the norm of DΦ, and the scalar products
〈P−1

j−1·, ·〉 and 〈P−1
i+j ·, ·〉 for the other norms.

In particular we get that for n = 1, 2, . . . , both the weakest and the strongest
rates of local contraction of DPn−1Φ are equal to the squares of the weakest and
strongest rates of contraction of Zn, when these rates are measured in appropriate
way (using the sector metric for DΦ). It shows that the two contractions are rigidly
tied.

2. Symplectic Sectors and the Sector Metric

The relative covariance matrices Pn of a Kalman filter are positive definite ma-
trices and hence the symplectic map S has to preserve the family of Lagrangian
subspaces which are graphs of positive semi-definite matrices. The union of such
Lagrangian subspaces is the cone

C = {w = (w1, w2) ∈ R
k × R

k; 〈w1, w2〉 ≥ 0}

which we will call the standard symplectic sector. The symplectic sector is de-
fined as the positive cone of the indefinite quadratic form Q(w) = 2〈w1, w2〉 (the
factor 2 is introduced here to simplify some further formulas). The symplectic
map S defined by a Kalman filter takes the standard symplectic sector into itself,
we will call such a symplectic map monotone. It turns out that monotonicity is
equivalent to Q(Sw) ≥ Q(w) for every vector w. If this inequality is strict for
nonzero vectors we say that S is strictly monotone. For every monotone symplec-
tic map S we have the following factorization

S =

[
A B
C D

]
=

[
I L
0 I

] [
I 0
R I

] [
D∗−1 0

0 D

]
(5)

with symmetric positive semi-definite L and R, i.e., L ≥ 0, R ≥ 0. In particular
D (and A) must be nonsingular. Strict monotonicity is equivalent to L > 0 and
R > 0, [8].

Let us introduce a symplectic sector and the form Q in a geometric, i.e., coordinate
free way. This was done in [8], see also [9], where one can find proofs of all the
properties which are not proven here.
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Definition 4. Given two transversal Lagrangian subspaces V1 and V2 we define
the symplectic sector between V1 and V2 by

C = C (V1, V2) = {w ∈ W ; ω(v1, v2) ≥ 0 for w = v1 + v2, vi ∈ Vi, i = 1, 2}.

We call V1 and V2 the sides of the sector.

Equivalently we define first the quadratic form associated with an ordered pair
of transversal Lagrangian subspaces by the formula Q(w) = 2ω(v1, v2) where
w = v1 + v2, vi ∈ Vi, i = 1, 2, is the unique decomposition. We have then
C = {w ∈ W;Q(w) ≥ 0}.

If we take V1 = R
k × {0} (the horizontal subspace) and V2 = {0} × R

k (the
vertical subspace) we get

Q ((w1, w2)) = 2〈w1, w2〉

and the standard symplectic sector C. Since any two pairs of transversal La-
grangian subspaces are symplectically equivalent we can consider only this case
without loss of generality. However the coordinate free formulations expose better
the geometric contents.

The sides of a sector C are singled out among all Lagrangian subspaces contained
in the boundary of C by being the only isolated points [8]. It follows that a sym-
plectic sector determines uniquely its sides.

All our constructions are now based on the symplectic form ω and a chosen sym-
plectic sector (defined by a pair of transversal Lagrangian subspaces or equiva-
lently by the quadratic form Q).

We introduce first two monotonicity properties of a linear symplectic map.

Definition 5. Given a symplectic sector C we call a linear symplectic map S
monotone if

SC ⊂ C

and strictly monotone if
SC \ {0} ⊂ int C.

An equivalent property is given by

Theorem 6. ([8]) S is (strictly) monotone if and only if Q (Sw) ≥ Q (w) for
every w ∈ W (Q (Sw) > Q (w) for every w ∈ W, w �= 0).
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Following [5] we define a symplectic angle between two vectors in one symplectic
sector (using only the symplectic form ω and the form Q).

Definition 7. ([5]) The symplectic angle between two vectors w, w ′ ∈ int C is the
real number Θ = Θ(w, w′) such that

ω(w, w′) =
√
Q(w)

√
Q(w′) sinhΘ.

For any monotone symplectic map S and two vectors w, w ′ ∈ int C we have

sinh Θ(Sw, Sw′) = sinhΘ(w, w′)

√
Q(w)

Q(Sw)

√
Q(w′)

Q(Sw′)
·

Hence by Theorem 2 a monotone map S does not increase the absolute value of
the symplectic angle and the contraction of the symplectic angle can be estimated
by the least coefficient of the expansion of Q under the monotone map. By defini-
tion if the symplectic form vanishes on a pair of vectors then the symplectic angle
between them is zero.

We say that a Lagrangian subspace is contained strictly in the sector C (or that it
is positive) if the restriction of the form Q to the subspace is positive definite, or
equivalently, if all of its nonzero vectors are contained in the interior of C. We
consider the manifold of all Lagrangian subspaces which are strictly contained in
the sector C and denote it by L. In the case of the standard symplectic sector L is
the space of positive definite matrices.

Definition 8. ([5]) The distance s(L, L′) of two positive Lagrangian subspaces
L and L′ is equal to

s(L, L′) = sup
0�=w∈L,0�=w′∈L′

|Θ(w, w′)|.

The contraction property for the mlft of a Kalman filter is built into the definition
of this distance function. What is less obvious is that s(·, ·) is indeed a metric. It
can be checked by computing it in coordinates.

Theorem 9. ([5]) The distance s(P, P ′) of two positive definite matrices P and
P ′, interpreted as two positive Lagrangian subspaces gP and gP ′ in the standard
symplectic sector, is equal to

s(P, P ′) = max{
| ln λ|

2
; λ is an eigenvalue of P ′P−1}

= sup
0�=u∈Rk

1

2
| ln〈P ′u, u〉 − ln〈Pu, u〉|.
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Corollary 10. The function s(·, ·) is a complete metric on the space of positive
definite matrices. The topology defined by this metric coincides with the standard
topology.

We will call this metric the sector metric.

The sector metric is actually the restriction of the Kobayashi metric of the Siegel’s
upper half-plane to the “imaginary axis” of positive definite matrices, [4], [6], [9].
In particular it is a finslerian metric. More precisely let us introduce norms | · | in
the tangent spaces TPL by the formula

|W | =
1

2
‖P− 1

2 WP− 1
2 ‖ =

1

2
sup

0�=u∈Rk

|〈Wu, u〉|

〈Pu, u〉

= max{
|λ|

2
; λ is an eigenvalue of WP−1}

for W ∈ TPL. It is proven in [5] that the sector metric is the distance function
defined by this finslerian metric.

In a different context the sector metric was also introduced by Vesentini [7]. It is a
natural generalization of the Hilbert projective metric since it satisfies the Birkhoff
identity [3]: the coefficient of least contraction is equal to the hyperbolic tangent
of the diameter of the image, [5].

The advantage of the sector metric is revealed in the following

Theorem 11. For a fixed positive definite matrix P and its graph, the Lagrangian
subspace L = gP we have

||DP Φ|| = ||
(
S|L

)−1
||2 ≤ 1 ≤ || (DP Φ)−1 || = ||S|L||

2

where the norm of DP Φ is defined by the sector metric and the norm of S by the
restriction of the quadratic form Q to the respective Lagrangian subspaces.

It follows that DΦ, and hence also Φ, is a contraction (in the weak sense) of the
sector metric. We postpone the discussion of strict contraction.

Proof: The isometries of the sector metric are given by the block diagonal ma-
trices in (5). Hence they act transitively on the space of positive Lagrangian sub-
spaces L and we can assume without loss of generality that P = I and that this
subspace is a fixed point of Φ, i.e., Φ(I) = I . This leads to A+B = C +D = K
with nonsingular K.

The tangent space TIL is the space of symmetric matrices. For W ∈ TIL we
have

s
(
eεW , I

)
= ε|W | + o(ε), s

(
Φ(eεW ),Φ(I)

)
= ε|DIΦW | + o(ε). (6)
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By the definition of the sector metric we have

s
(
eεW , I

)
= sup

u �=0,u′ �=0
sinh−1 |ω

(
(u, eεW u), (u′, u′)

)
|

2
√

〈u, eεW u〉
√
〈u′, u′〉

= ε sup
u �=0,u′ �=0

|〈Wu,u′〉|

2
√

〈u, u〉
√

〈u′, u′〉
+ o(ε).

(7)

In the same way using (6) and (7) we have also

s
(
Φ(eεW ),Φ(I)

)
= sup

u �=0,u′ �=0
sinh−1 |ω

(
S(u, eεW u), S(u′, u′)

)
|√

Q(S(u, eεW u))
√

Q(S(u′, u′))

= ε sup
u �=0,u′ �=0

|〈Wu,u′〉|√
Q(S(u, u))

√
Q(S(u′, u′))

+ o(ε).

(8)

It follows from (6) and (8) that

|DIΦW | = sup
u �=0,u′ �=0

|〈Wu,u′〉|√
Q(S(u, u))

√
Q(S(u′, u′))

≤ sup
u �=0,u′ �=0

√
Q((u, u))

√
Q((u′, u′))√

Q(S(u, u))
√

Q(S(u′, u′))
|W |

= sup
u �=0

Q((u, u))

Q(S(u, u))
|W | = ||

(
S|L

)−1
||2|W |.

Since this inequality becomes equality for W = I we obtain the first part of
Theorem 4.

Similarly

|DIΦW | ≥ ||S|L||
−2 sup

u �=0,u′ �=0

|〈Wu,u′〉|√
Q((u, u))

√
Q((u′, u′))

= ||S|L||
−2

|W |.

We get equality again if we choose W =K∗K that produces the rest of Theorem 4.
�

We proceed to prove Theorem 1. Let L0 = gP0 be the graph of P0 and Ln =
SnL0 then Z∗

n is the projection on the first coordinate of the restriction of S−1 to
Ln, i.e., the following diagram commutes

R
k × R

k S−1

−→ R
k × R

k . . . R
k × R

k S−1

−→ R
k × R

k⋃ ⋃
. . .

⋃ ⋃
Ln

S−1

−→ Ln−1 . . . L1
S−1

−→ L0

↓ π1 ↓ π1 . . . ↓ π1 ↓ π1

R
k Z∗

n−→ R
k . . . R

k
Z∗

1−→ R
k
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where π1 : R
k × R

k → R
k is the projection on the first coordinate. Hence if we

use 〈Pn·, ·〉 and 〈Pn−1·, ·〉 as scalar product in the domain and target space respec-
tively we obtain by Theorem 4 that Z∗

n is a contraction and that the squares of the
weakest and the strongest rates are equal to the rates of contraction of DPn−1Φ.
The contraction properties of Zn are the same as the contraction properties of
Z∗

n if we use 〈P−1
n−1·, ·〉 and 〈P−1

n ·, ·〉 as scalar products in the domain and target
space respectively. The same can be claimed about the compositions Zi+j . . . Zj

and DPj−1Φ
i+1, in view of the general nature of Theorem 4. This establishes

Theorem 1.

Let us finally discuss the important issue of strict contraction.

Theorem 12. ([5]) The mlft Φ defined by a monotone map S is a strict contraction
of the sector metric if and only if S is strictly monotone.

A monotone map S is strictly monotone if and only if Φ takes the sides of the
standard sector into positive subspaces, i.e., if and only if the matrices B and C
in (5) are of full rank.

For the mlft of the Kalman filter we do not get strict monotonicity for time one
because usually the matrices GG∗ and/or H∗H are not of full rank. However for
some composition Sn the matrices B and C in (5) may become nondegenerate.
By definition the system is observable if after some time the matrix B becomes
nondegenerate. It is controllable if after some time the matrix C becomes nonde-
generate.

By Theorem 4 if Sn is strictly monotone, then the map Zn = Zn . . . Z1 is a strict
contraction. However the following weaker condition is sufficient.

Proposition 13. The restriction of S to a positive subspace L = gP is a strict
expansion if and only if the kernels of BP and C have only trivial intersection.

Proof: Let us consider the factorization (5) of S. Since the last factor does not
change the value of the form Q we can assume without loss of generality that
D = I . Now if there is a vector u ∈ R

k such that

Q(S(u, Pu)) = 〈u, Pu〉 (9)

then Q((u,Ru + Pu)) = 〈u, Pu〉 and we get 〈u, Ru〉 = 0, and finally Ru = 0
because R ≥ 0.

Having established that, we get S(u, Pu) = (u + LPu,Pu) and using again (9)
we conclude that LPu = 0. �
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In particular observability or controllability alone is sufficient to guarantee strict
contraction in Theorem 1 and Theorem 4.

In the case of time dependent systems, or the case of random coefficients con-
sidered in [2], the explicit conditions of observability and controllability may get
cumbersome, but their geometric meaning does not change, it is about the horizon-
tal or vertical side of the standard sector entering eventually the interior (mapping
onto a positive Lagrangian subspace).

If the system is both controllable and observable then Φ is a strict contraction. Its
weakest rate of contraction is connected to the weakest rate of expansion of the
form Q by the symplectic monotone map S. We have

Theorem 14. ([5]) The coefficient of least contraction of the sector metric under
the action of the mlft Φ defined by a strictly monotone map S is equal to the inverse
square of the coefficient of least expansion of the form Q over the interior of the
symplectic sector. This coefficient is also equal to tanh diam(ΦL)

2 , and diam(ΦL)
is equal to the distance of the image under Φ of the vertical and horizontal sub-
spaces respectively, i.e., diam(ΦL) = 1

2 ln λ where λ is the largest eigenvalue of
CA−1BD−1 (which is automatically positive).

Hence our Theorem 4 can be understood as the local version of Theorem 6.

3. Appendix. Derivation of the Kalman Filter

For the convenience of the reader we include a brief derivation of the Kalman
filter.

Let us recall first two basic properties of gaussian vectors.

(∗) If X ∈ R
k is a gaussian vector with mean X̂ and covariance matrix

Cov(X,X) = M and A is a k × k matrix then AX is a Gaussian vec-
tor with the mean AX̂ and the covariance matrix AMA∗.

(∗∗) If (X,Y ) ∈ R
k × R

m is a gaussian vector then X and Y are gaussian
vectors in their own right and the conditional distribution of X given Y is
also gaussian with E(X|Y ) = X̂ + SQ−1(Y − Ŷ ) and Cov(X,X|Y ) =
Cov(X,X) − SQ−1S∗ where S = Cov(X,Y ) and Q = Cov(Y, Y ).

The crucial claim is that given Y1, Y2, . . . , Yn−1 the random vector (Xn, Yn) is
Gaussian. The proof in this case is by induction. Since X0 is Gaussian, we get
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that (X1, Y1) is Gaussian. Let us assume that given Y1, Y2, . . . , Yn−2 the ran-
dom vector (Xn−1, Yn−1) is Gaussian. We have also that (Xn−1, Yn−1, εn, ηn) is
Gaussian, given Y1, . . . , Yn−2. We have

Xn = FXn−1 + Gεn (10)

Yn = HFXn−1 + HGεn + ηn. (11)

By the property (∗) we conclude that (Xn, Yn, Yn−1) is a Gaussian vector, given
Y1, . . . , Yn−2. The inductive step now follows from the property (∗∗). Indeed
including Yn−1 in the condition results in a Gaussian vector (Xn, Yn), given
Y1, ..., Yn−1.

Averaging (10) under the condition Y1, . . . , Yn−1 we get

E(Xn|Fn−1) = FX̂n−1 + GG∗.

We apply the property (∗∗) to the Gaussian vector (Xn, Yn). We conclude that

X̂n = E(Xn|Fn) = E(Xn|Fn−1) + SnQ−1
n (Yn − Ŷn)

where Sn = Cov(Xn, Yn|Fn−1) and Qn = Cov(Yn, Yn|Fn−1).

Let us introduce Pn = Cov(Xn,Xn|Fn) and Rn = Cov(Xn,Xn|Fn−1). We get
from (10) and the property (∗∗) that

Rn = FPn−1F
∗ + GG∗ (12)

Pn = Rn − SnQ−1
n S∗

n. (13)

(12) is an mlft connecting Rn and Pn−1. Our goal is to show that also (13) is an
mlft relating Rn and Pn. By the group property of mlfts we will obtain then the
mlft relating Pn and Pn−1.

We get from (10) and (11)

Sn = FPn−1F
∗H∗ + GG∗H∗ = RnH∗ = PnH∗ + SnQ−1

n S∗
nH∗ (14)

Qn = HFPn−1F
∗H∗ + HGG∗H∗ + I. (15)

We get further from (14) and (15) that HSn = Qn − I = S∗
nH∗. Substituting

the last formula into (14) we get PnH∗ = SnQ−1
n . Using the last equality and

S∗
n = HRn we get from (13)

Rn = Pn + SnQ−1
n S∗

n = Pn(I + H∗HRn).

We conclude that
Pn = Rn(I + H∗HRn)−1.

The derivation of the Kalman filter is completed.
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